National College of Ireland
BSc in Computing
2017/2018

Aaron Meaney
14326016
14326016@student.ncirl.ie

Bus Stop!

Technical Report

"—‘-
\ National
Collegeof

[reland

Bus Stop! — Aaron Meaney — 14326016

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name: Aaron Meaney

Student ID: 14326016

Supervisor: Dominic Carr

SECTION 2 Confirmation of Authorship
The acceptance of your work is subject to your signature on the following declaration:

| confirm that | have read the College statement on plagiarism (summarised overleaf and printed in full in the Student

Handbook) and that the work | have submitted for assessment is entirely my own work.

Signature: Aaron Meaney Date: 13/05/2018

NB. If it is suspected that your assignment contains the work of others falsely represented as your own, it will be referred
to the College’s Disciplinary Committee. Should the Committee be satisfied that plagiarism has occurred this is likely to

lead to your failing the module and possibly to your being suspended or expelled from college.

Complete the sections above and attach it to the front of one of the copies of your assignment,

Table of Contents

EXECULIVE SUMIMAIY ...ttt e e e e e e e e et e e e e e 5
A 011 o Yo [[£ o PR 6
0 A = = od (o {0 U1 o SRR 6
I N | 01 PSRRI 6
1.3 TECNNOIOQIES ...uuiiieieeeeeeee e e e e e e e e eeannes 9
IR 700 R [o1 Y 9
1.3.2 Mapbox SDK for UNity......cccceeeiiiiiiiiiiiee e 9
1.3.3 Visual StUIO IDEccoooiiiii e 9
1.3.4 PUBNUD oo 9
1,35 S NAIIA .o 9
1.3.6 POSIGreSQL. ... i 9
1.3.7 G00Ogle MAPS AP ... 10
1.3.8 ANAroid StUAIO......cooeie e 10
1.3.9 HEIOKU..coo i 10
Y (=T 1 [PPSO P PR PPRPPPPPPPPIN 11
2.1 REQUITEBMENTS ... 11
2.1.1 Functional Requirement 1: User Views Realtime Map 11
2.1.2 Functional Requirement 2: User Hails BUS..............ccooeeeiiiiiiieeeee. 13
2.1.3 Functional Requirement 3: Bus Sends Bus Datac.......... 15
2.1.4 Data reqUIrEMENTS.......uuiii e eeeeeeeitie e e e e e e e e e e e e e 17
2.1.5 USEr reqUIrEMENTS.....ccoiiiiiieeeee e 18
2.1.6 Environmental reqUIr€mMeENtsSccccoeeeeeiiiiiiiiiiiie e 19
2.1.7 Usability reqUIr€mMENTS........ccouiiiiiiiiie e 19

2.2 Design and ArchiteCture...........oooooriiiei i 20
2.3 IMPIEMENLALIONcovei e 23
2.4 Graphical User Interface (GUI) Layout...........cooooeveiiiiiiiiie 27

2 T = 1| T 31

K I O] o Tod 1§ [0 o U RSRRPPRPN 32
4 Further development or research.........ccccoooeii 33
4.1 Predictive Analysis for TiIme SIOtS.........ccouuuiiiiiiiiiiiieiii e 33

Bus Stop! — Aaron Meaney — 14326016

4.2 Full Traffic SIMUIAtIoNcoooveiiiii e 33
G T =T LS Y =T 4 (PP 33
A4 Other INAUSTIESuuiiiiee e e e e 33
5 REIEIBNCES ...uuiiiiiiiiiiiiiiiii bbb nnnne 34
I N o] 1= Lo | P SERPPRPN 35
6.1 SUINVEY RESUILS.....coiiiiiiiiiie e e e e e eeeees 35
6.2 ProjeCt Proposaluiiiiiiiiiiiiiiei e 38
6.3 Requirements SPecCifiCationcoooeeriiiiii i 46
6.4 MoNthly JOUMNAIS..........uuiiii i e e e eeanns 84
6.4.1 SePteMDer. ..o 84
6.4.2 OCIODEI ..o 85
6.4.3 NOVEMDET ... 86
6.4.4 FEDIUAIY ..o 86
6.45 MarCh ..o 87
B.4.6 API oo 87
B.4.7 MaAY oo 87

Bus Stop! — Aaron Meaney — 14326016

Executive Summary

“Bus Stop!” is a proof-of-concept Android application that allows the user to view
the live position, capacity and miscellaneous information of busses in a public
transport network. The app also gives the user the ability to hail a bus remotely
through the use of the app, for situations where the user cannot hail the bus at a
stop. For example, the user is outside the line of sight of the bus or multiple

busses are pulling into a stop and the user needs to hail one.

This proof-of-concept prototype is powered by a simulation running on the Unity
game engine which provides the Android application with public transport data.
Short term data (such as bus position, name, assigned route, etc) is transmitted
between the Android app and Unity simulation by the PubNub networking
service, while long term data (such as bus routes, route waypoints, bus stops) is

stored on a PostgreSQL database running on a Sinatra server hosted by Heroku.

While the project was developed to a Minimum Viable Product, it was originally
intended to have a much larger scope. The project manages to communicate its
idea in its current form, however with more time it would have been able to do
this even more so. Nonetheless, great care was put into the design, development
and implementation of the project and despite the lack of time to finish it to the

original goal, | am very proud of what | accomplished with it.

1 Introduction

1.1 Background

For my whole life I've depended on public transport. Because of this, my only
way to reach the college is by bus. I've taken the same bus for the past four
years and many times | have missed the bus just as | turned the corner to the
bus stop. Having to wait for 30 minutes for the next bus, and by extension miss
classes and appointments, is extremely annoying. This made me consider the

development of a project that would improve the public transport experience.

During the process of considering what projects to develop, | liked the idea of
developing a project with the Unity game engine. I'm personally very passionate
about game development and I've used this engine in my spare time for hobbyist
game development. | wanted to become more familiar with the engine and to
improve my skills with using it. | also wanted to develop a project that had an loT
application, and so the idea of creating a simulation of 0T connected busses was

conceived.

1.2 Aims

My goals for the development of this project are:

1. Develop a proof-of-concept Android app that:
1.1. Allows users to view real-time bus data on a Google Map interface
1.2. Allows users to hail a bus at a specified stop
1.3.Reads in data from the Unity simulation
2. Develop a backend Unity simulation that:
2.1. Simulates a public transport bus system composed of:
2.1.1. Busses
2.1.2. Bus Stops
2.1.3. Bus Routes
2.1.4. Bus Services
2.1.5. Bus Timetables

Bus Stop! — Aaron Meaney — 14326016

2.1.6. Bus Time Slots
2.2.Sends real-time bus data to the Android app
2.3. Predictably responds to hail commands from the Android app
2.4.Allow the user to configure the simulation with different simulation
components, E.g. routes, stops, timetables, busses, etc
2.5.Allow the user to configure the bus timetables through a custom user
interface
3. Develop a backend web service (Sinatra + PostgreSQL) that:
3.1. Stores long-term important data for the application
4. Integrate a MQTT style network service (PubNub) that:

4.1. Transmits messages between the app and the simulation

The basic flow of the system will be:

The user will configure the Unity simulation by adding bus stops, waypoints, bus
routes, bus companies, and finally bus timetables to the main scene. The user
can use a custom-built Timetable Ul (built as a Unity Editor Window) to modify
bus timetable data. The Timetable Ul will mimic the display of a real bus
timetable with multiple routes and will display the busses in the correct order by

using a topological sort on the bus stops against the bus routes.

When the simulation is started, it will send the data that it has been configured
with to the web server. The web server will receive this JSON message and will
then encode the data as base64 to prevent any escape characters from
interfering with the language interpreter, causing unintended behaviour. The
Sinatra server will then save the data in a key-value-pair table in the PostgreSQL

database.

Once the Unity simulation is fully initialized, it will then check the timetables that
have been configured by the user. From this timetable data, the scheduler will
dispatch busses to the appropriate services/routes once the current time reaches

the time of these bus time slots.

Bus Stop! — Aaron Meaney — 14326016

Once a bus begins a service, it will broadcast this event (over PubNub) and it will
service the first stop. For each stop that the bus stops at, it will let off any
passengers that want to get off at that stop and will then allow passengers to
embark if the bus isn’t full. Passengers will only embark on a bus if it is going to

their destination stop.

Once the bus gets close to a bus stop, if a passenger wants to get off at that stop
or a passenger is waiting at that stop and wants to get onto the bus, the bus will

be hailed. If a bus is hailed to a stop, it will service that stop once it reaches it.

Once a bus reaches the end of a bus route, it will let off everyone and will
despawn, sending an end service event to PubNub, and returning to the bus

companies’ pool of busses.

While the bus is in service, it will transmit its current state to PubNub. The
Android app will listen for this real-time data once it receives the simulation data

from the Sinatra server.

The Android app will render a map of the bus stops in the simulation, along with
markers representing the real-time position of the busses. If a user taps a bus
icon, they will see that bus’s visible route on the map represented by a line,
alongside a list of bus stops that the bus has yet to visit. The bus’s current

capacity and other miscellaneous information will also be shown.

Bus Stop! — Aaron Meaney — 14326016

1.3 Technologies

1.3.1 Unity

The Unity Game Engine is the platform that the simulation is built on and is a
main technology for this project. The components that make up the “Bus Stop!”
simulation is built in C# and are put together in Unity.

1.3.2 Mapbox SDK for Unity
The Mapbox SDK adds Mapbox specific functionality to Unity. For example, the

map of Dublin is generated using this SDK, as well as coordinate conversions.

1.3.3 Visual Studio IDE

Visual Studio IDE was used to write the C# code for the simulation, used in Unity.
The VS debugger was also used, as Visual Studio can attach to the Unity
instance to read the call stack and read watched variables to improve the

debugging experience.

1.3.4 PubNub

PubNub was used to communicate fast, real-time messages between the

Android application and the Unity simulation. For example, bus data.

1.3.5 Sinatra

Sinatra was used as the web service platform as it exposes an easy to use REST
API with a low learning curve to develop on it. Sinatra was used to interface with
PostgreSQL.

1.3.6 PostgreSQL

PostgreSQL was used to store important data on the Sinatra server in a key-

value pair database. For example, bus stop and bus waypoint data.

Bus Stop! — Aaron Meaney — 14326016

1.3.7 Google Maps API

The Google Maps APl was used to render the Google Maps display on the
Android app.

1.3.8 Android Studio

Android Studio was used to develop the Android application.

1.3.9 Heroku

Heroku was used to deploy the Sinatra web server and to host the PostgreSQL

database.

-10 -

Bus Stop! — Aaron Meaney — 14326016

2 System

2.1 Requirements

Please see the appendix for previous functional requirements in the

Requirements Specification.

2.1.1 Functional Requirement 1: User Views Realtime Map

Description & Priority:

Priority: High

The user can view a Google Maps interface when they open the app. The app
should display all the Bus Stops and Busses once the API is ready. The app

should update the positions of Busses once the map receives that Bus’s

message from the API.
Use Case

Scope: The user should be able to navigate the populated map, and the bus

markers should update in real time.

Description: This use case describes the process of getting the bus stop, bus

route and live bus data from the Bus Stop API.

-11 -

Bus Stop! — Aaron Meaney — 14326016

Use Case Diagram:

User Views Realtime Map /
s
Bus Stop App
Y s
Interactwithy _____ . Populate Map ___ [Get Bus
Map With Data Data
User . PubMNub
'
:._ _________ Get Bus Stop .
P
Bus Stop ARl

Flow Description

Precondition: The app has a connection to the internet. Location Services are
Enabled.

Activation: The use case begins when the user opens the map.
Main Flow:

The Bus Stop App gets the Bus Data from PubNub.

The Bus Stop App gets the Bus Stop Data from the Bus Stop API.
The Bus Stop App populates the Map.

The User interacts with the Google Map.

a ~ N

The Main Flow returns to 1.
Termination: The use case terminates when the app closes.

Post Condition: The map contains up to date information.

-12 -

Bus Stop! — Aaron Meaney — 14326016

2.1.2 Functional Requirement 2: User Hails Bus
Description & Priority:
Priority: High

Once the map is initialized and the busses are being simulated, the user can hail

the bus through the mobile app.
Use Case
Scope: The user should be able to hail the bus through the mobile app.

Description: This use case describes the process of sending a hail bus

message to the Bus Stop Simulation through PubNub.

Use Case Diagram:

LIser Hails Bus /

T

Get Bus List
Bus Stop App
£y Yy
@ -
Message
User FubMub

Flow Description
Precondition: The map is populated, and the user has selected a bus.

Activation: The use case is activated when the user presses the “Hail” button on
one of the bus stop lists.

Main Flow:

1. The User presses the Hail button
2. The Bus Stop App provides the User with the Bus Id and Bus Stop Id of the
hailed Bus

-13-

Bus Stop! — Aaron Meaney — 14326016

3. PubNub sends the hail message with the Bus Id and Bus Stop Id.
Termination: The use case terminates after the hail message is sent.

Post Condition: The bus that the user selected is hailed.

-14 -

Bus Stop! — Aaron Meaney — 14326016

2.1.3 Functional Requirement 3: Bus Sends Bus Data
Description & Priority:

Priority: High

The Bus in the Unity Simulation can send Bus Data to PubNub.
Use Case

Scope: This use case considers an individual bus in the Unity simulation sending
data to PubNub.

Description: In this use case the Bus pushes data up to PubNub on a regular

interval for consumption by the Android app.

Use Case Diagram:

Bus Sends Bus Data)

Y

Get Bus Data —

A Bus Stop App

~ ; ~

Send Bus
Data

Send Bus
Data

Bus PubMNub

Flow Description

Precondition: The Unity Simulation is running and is connected to the internet.
The Bus Stop App is connected to the internet and Location Services are
enabled.

Activation: The use case begins when the Bus enters service.
Main Flow:

1. The Bus sends its data to the PubNub API
2. The PubNub API sends the Bus Data

-15-

Bus Stop! — Aaron Meaney — 14326016

3. The Bus Stop App gets the Bus Data from PubNub
Termination: The use case ends when the Bus exits its service.

Post Condition: The Bus Stop App received the Bus Stop Data.

-16 -

Bus Stop! — Aaron Meaney — 14326016

2.1.4 Data requirements

The data model must exist on the Unity, and parts can be transferred to the
Android app.

The data model that describes the bus system must be composed of:

Bus Belongs to a Bus Company. Has a Bus

Service. Has many Bus Passengers.
Bus Passenger Belongs to a Bus or a Bus Stop.

Bus Stop Has many Bus Passengers. Belongs to

Bus Waypoint. Belongs to Bus Time

Slot.

Bus Waypoint Has a Bus Stop. Belongs to many Bus
Routes.

Bus Route Has many Bus Waypoints. Belongs to

Bus Company.

Bus Time Slot Has a Bus Stop. Has a Bus Service.

Belongs to a Timetable.
Bus Service Belongs to Bus. Belongs to Time Slots.

Bus Timetable Has many Time Slots. Belongs to a

Bus Company.

Bus Company Has many Busses. Has many Bus

Timetables. Has many Bus Routes.

-17 -

Bus Stop! — Aaron Meaney — 14326016

2.1.5 User requirements

Must Have

The User can Navigate the Map on the App

The User can see live bus information by tapping marker icons on the Map
The User can see the selected bus’s list of upcoming Bus Stops

The User can hail Busses using the App

The Busses can automatically route themselves in the Simulation

The Busses can follow timetable directions in the Simulation

The Unity User can configure the Simulation parameters

Should Have

The User can search for Bus Stops and Busses on the App

The User can see the Timetable data for each Bus Stop

The User can receive Predictive Analysis for Time Slots

Traffic is simulated by using a heatmap and by capping the bus speed
Could Have

Simulated Person system is implemented (See original Req Specification)
The User can get alerts when their Bus is near a stop

The Unity User can see Debug Information Panels in the Simulation

The Android App runs a security check to ensure it is not blacklisted
Busses deploy from and return to set Bus Depot locations in the Simulation
Traffic is fully simulated

Would Have

Detailed Simulated Person system (See original Req Specification)

-18-

Bus Stop! — Aaron Meaney — 14326016

2.1.6 Environmental requirements

The Unity simulation needs to run on a machine that has the graphical
performance equivalent to or greater than a Nvidia GTX960m Graphics Card to
run smoothly and accurately. The machine also needs a stable internet
connection with ping less than 30ms, download speed greater than 10 Mbps,

upload speed greater than 2Mbps.

The Sinatra web service needs to run on a Heroku server with a dedicated
PostgreSQL database hosted and connected to the same account. A free Heroku

account is sufficient to run the server application

The Android App needs to run on an Android OS of version equal to or greater
than Android 7.0 Nougat (API Level 24). The user needs to allow the app to use
ACCESS_FINE_LOCATION, INTERNET and ACCESS_NETWORK_STATE
permission. The device needs a stable internet connection with less than 30ms

ping, download speed greater than 10 Mbps, upload speed greater than 2 Mbps.

2.1.7 Usability requirements

The Android application must only contain one activity to make sure the user
won’t get lost navigating the application. The Bottom Sheet must be responsive
to the user pressing it and the application Ul state must be consistent to the
context of that application; for example, if a user has tapped a bus stop, don’t’
show a different bus’s list of upcoming bus stops. Instead, hide the bottom of the

Bottom Sheet to prevent confusion to the user.

The user interface should be easy to understand by just looking at the app view;
everything should be self-explanatory. Icons should be used instead of text
where applicable. For example, use a hand icon instead of the words “hail” to

represent a button to hail a bus.

-19-

Bus Stop! — Aaron Meaney — 14326016

2.2 Design and Architecture

Compan
i Ti—iniaie 1 e 1
Thanderoun Escress Timexkle IPresewsbon From S_W'or'c: M Zomll 1
v o Daye: Hznzay, Tusadey, Wedneazay, Thursday, hdap
M M
B Timetable ; Route
1 1
o_Beaman Rast M M
s_Saonds Byoass
. — Service ; Route Waypoint
1 1
M 1
Time Slot y y Bus Stop
T M
[1[E]| Gela] [e Te]m]
13 |18 15 | & 1 |18 16 | &
N eTw TN Em fmEm amm !
Topological Sort on Bus Stops 7&1 Bus
hJ Y ‘ (ﬁJ)\ 1
—»| Bus Stop AFI Task Scheduler
MaTT
PubMub Sinatra Contains List of Time
Server Slots to Activate

Figure 1 - Bus Stop Simulation System Architecture (Simplified Bus Stop API Interface)

In the above diagram (Figure 1) you can see the general architecture of the Unity
simulation. This diagram shows 3 things: the entity relationships between the bus
simulation objects (grey boxes), the relation between the bus system and the
Task Scheduler / Bus Stop API Managers, and the Unity Editor Window display
of the Timetable.

In the simulation, the Company is the root object for the rest of the entities that
run the simulation. The Route Waypoints define absolute positions on the road
that any other Route from any other Company can pass through, and Bus Stops
can be linked to these Route Waypoints. This allows for cases where multiple
Companies and Routes will share a bus stop. Routes are a list of Route
Waypoints (coordinate data) that belong to a company, but they don’t hold any
scheduling data. Routes, Waypoints, Timetables and Busses can all be directly

modified with the default Unity hierarchy and inspector (Figure 2).

-20 -

Bus Stop! — Aaron Meaney — 14326016

¥ Thundergun Express Bus Company
¥ Bus Routes
Bus Route s_507
Bus Route s_S06X
Bus Route s_505
Bus Route s_504
Bus Route s_503
Bus Route s_502
Bus Route s_S01X
Bus Route s_S00X
Bus Route s_S00N
Bus Route s_500
Bus Route n_S506
Bus Route n_S505x
Bus Route n_S504x
Bus Route n_503
Bus Route n_S501
Bus Route n_S00X
Bus Route n_S00N
Bus Route n_500
¥ Bus Timetables
Thundergun Express Timetable [Showcase - From Swords (10:30 - 1pm)]
Thundergun Express Timetable [Showcase - To Swords (10:30 - 1pm)]
Thundergun Express Timetable [Presentation - From Swords (4 - 5pm)]
Thundergun Express Timetable [Presentation - To Swords (4 - Spm)]
Thundergun Express Timetable [Test (midnight to 3am])]
Thundergun Express Timetable [8am to noon]
Thundergun Express Timetable [Test (noon to 6pm)]
Thundergun Express Timetable [Test (6pm to midnight)]
¥ Bus Pool
» [Thundergun Express] Bus - 12-D-2000
» [Thundergun Express] Bus - 12-D-2001
» [Thundergun Express] Bus - 12-D-2002
P [Thundergun Express] Bus - 12-D-2003

Figure 2 - Hierarchy of the Bus Company

Scheduling data is contained by the Timetable, Time Slot and Service objects.
Services hold the scheduling information for a Route, as Routes are just a list of
coordinates for a Bus to follow. A Timetable simply contains a list of Services,
which in turn contains a list of Time Slots. The Time Slots contain the time data
for each Bus Stop in the Service’s Route. In the context of rows and columns, the
Service would be considered a column and a Bus Stop would be considered a

row. The intersection is the Time Slot for that Bus Stop, on that Service/Route.

-21 -

Bus Stop! — Aaron Meaney — 14326016

= Timetable |
Thunderaun Exoress Timetable [Presentation - From Swords (4 - Som1
Service Days: Monday, Tuesday, Wednesday, Thursday, Friday

Bus Stops | s so0x¢| [s sSo00 #| [s sooxi| |s_soo0 3
s_Abbeyvale 15 [0 | 15 |45 | (168 |0 | 18 |45 |
s_Swords Manor 15 [[1 | 15 |[a6 | [16 |1 | (16 |[46 |
s_Walley View 15 |z | 15 |48 | (16 |z | (18 |48 |
s_TheGallops 15 |3 | 15 |48 | (168 |3 | (18 |48 |
s_Lios Cian 15 |[a | 15 |[a7 | (18 |4 | (18 |47 |
s_Cianlea [15 |[5 | [15 |[a7 | [18 |[s | [1s6 |[47 |
s_Laurelton 15 /e | 15 |48 | (168 |8 | 18 |48 |
s_Applewood Estate 15 |[7 | 15 |'so | (18 |7 | 18 |50 |
s_Jlugback Lane 15 /'8 | 15 |51 | (16 |'8 | 18 |/51 |
s_5t Colmcille's GAA [15 |[9 | [15 |[52 | [16 |[e@ | [1s |[52 |
s_West Seatown 15 |10 | 15 |55 | (16 |10 | 18 |55 |
s_Seatown Road 15 |[11 | 15 |57 | (16 |11 | (18 |57 |
s_Swords Bypass 15 |[1z | 15 |58 | (16 |1z | 18 |58 |
s_Malahide Roundabout 15 |[13 | 15 |58 | (16 |13 | 18 |59 |
s_Pavilions Shopping Centre @ 15 |59 | @ 16 |[59 |
s_Dublin Road (Penneys) @ 15 o | @ 16 |0 |
s_Highfields o [15 |[z] o [16 |[2]
s_Ballintrane @ 15 |3 | @ 16 |3 |
s_Boroimhe Laurels @ 15 |[a] @ 16 |[a |
s_Boroimhe Maples @ 15 |5 | @ 16 |5 |
s_Airside Road @ 15 |8 | @ 16 |68 |
s_Airside Central @ 15 |8 | @ 16 |68 |
s_Holywell Distributor Road @ 15 |[7] @ 16 1[7 |
s5_M1 Drinan @ 15 |8 | @ 16 |8 |
s_Pinnock Hill r/about [15 |[14] @ 16 |[14 |]

s_Reids Furniture 15 |15 | @ 16 |[15 | @

s_Swords Bypass opp Texaco 15 |[16 | @ 16 |16 | @

s_National Show Ground 15 |17 | @ 16 |[17 | @

s_East Wall Road 15 |18 | (15 |[z1 | (16 |18 | (18 ||z1 |
s_Convention Center 15 |13 | 15 |[z4 | (16 |13 | (18 ||z4 |
s_Sean O'Casey Bridge [15 |[20 | [15 |[2z5 | [16 |[20 | [1s |[25 |
s_Eden Quay 15 |z | 15 |z | (16 |z1 | 18 ||z8 |

Figure 3 - Timetable Example

The custom Timetable Editor (Figure 3) allows the user to modify the Time Slot
and Services of the Time Stamp, as they can’t be directly edited with the Unity
default inspector. Different routes can be displayed on the same timetable, just
like a real bus timetable! Since all the Bus Routes in the Timetable can be
logically represented as a digraph, a Topological Sort can be applied to them to
sort them in the same manner as a normal timetable. The Topological Sort is

applied dynamically as Routes are removed and added to the timetable.

Once the simulation starts, the Task Scheduler is invoked by all the Time Slots,
adding a callback to activate the calling Time Slot. Once a Time Slot is activated,
the Company dispatches a Bus to that service. The Time Slot is then scheduled
to be called again the next day it's available. When the bus is dispatched, it
begins calling the Bus Stop API and it sends its data to PubNub.

-22 -

Bus Stop! — Aaron Meaney — 14326016

2.3 Implementation

There is no one main method in the Unity simulation. A combination of the Task
Scheduler and C# Delegates/Actions allowed for the development of an

asynchronous system that simulates the operation of a bus route.

The entry point for this behaviour is after Unity loads the map scene. Each
timetable waits for the map visualiser to loads. Once this occurs, the timetables

initialize their timeslots. See (Code Snippet 1).

private void Awake()

{
taskRunner = FindObjectOfType<ScheduleTaskRunner>();

dateTimeManager = FindObjectOfType<DateTimeManager>();

// Initialize Time Slots when the Map is finished loading
MapVisualizer.OnMapVisualizerStateChanged += (s) =>

{
if (s == ModuleState.Finished)

{
}

InitializeTimeSlots();

};

Code Snippet 1 - BusTimetable.cs (95-108)

“Initialize TimeSlots();” calls the Initialize method on each Time Slot. This sets the
Time Slot’s islnitialized = true and calls “ScheduleTimeSlot();” on that Time Slot.
This sets up the Time Slot to get activated once it reaches its scheduled time.
This works by passing “ActivateTimeSlot” as a delegate to a ScheduledTask and
then enqueuing that task to the Task Scheduler (a.k.a. ScheduledTaskRunner).
See (Code Snippet 2). The Task Scheduler queue is pre-sorted from soonest
callback time to latest callback time because every enqueue performs an ordered

insert.

-23-

Bus Stop! — Aaron Meaney — 14326016

/// <summary>

/// Schedules this <see cref="BusTimeSlot"/>'s activation with the <see
cref="ScheduleTaskRunner"/>.

/// </summary>

private void ScheduleTimeSlot()

{

DateTime currentDateTime = dateTimeManager.CurrentDateTime;
List<DayOfWeek> runningDays = Service.ParentBusTimetable.DaysRunning();

// Set scheduled date time
DateTime scheduledDateTime = new DateTime(currentDateTime.Year,
currentDateTime.Month, currentDateTime.Day, scheduledHour, scheduledMinute, 0);

// If the scheduled time is in the past or does not take place on a scheduled day,
advance day by 1 and check again

while (DateTime.Compare(scheduledDateTime, currentDateTime) < @ ||
I'runningDays.Contains(scheduledDateTime.DayOfWeek))

scheduledDateTime = scheduledDateTime.AddDays(1);
}

// Create Scheduled Task
ScheduledTask task = new ScheduledTask(ActivateTimeSlot, scheduledDateTime);
taskRunner.AddTask(task);

Code Snippet 2 - BusTimeSlot.cs (106, 126)

Once the “ActivateTimeSlot” method is queued in the Task Scheduler, it is only a
matter of time before it is called back. The Task Scheduler will check the list at
each frame by calling “ExecuteReadyTasks” and when the front item is ready to
be called (by comparing its timestamp to now), the Task Scheduler will dequeue
and execute that Task Scheduler’s callback. The Task Scheduler will continue
executing and dequeuing from the queue during this frame until it reaches a Task
that is not ready to be scheduled. Once this happens, it stops and waits for the
next frame. Because the list is sorted, this results in a very small performance hit

as the loop will break very quickly. See (Code Snippet 3).

=24 -

Bus Stop! — Aaron Meaney — 14326016

private void ExecuteReadyTasks()
{
while (taskList.Count > © && DateTime.Compare(taskList[@].ScheduledDateTime,
dateTimeManager.CurrentDateTime) < 0)
{
taskList[@].ExecuteTask();
taskList.Remove(taskList[0]);

Code Snippet 3 - ScheduleTaskRunner.cs (30, 40)

Once the Time Slot is activated, it sets its service’s “Scheduled Time Slot” to
itself. This runs code in a C# property that starts the Time Slot’s Service on this
Time Slot if the Service has not already been started. This is done by calling
DeployBus() on the Time Slot’'s Company. This in turn sets the bus’s position,
places it in the scene and starts the Service. The bus will then drive along its
route until it gets hailed by other Bus Passengers waiting at a stop. They hail the
bus once the bus gets close enough to their bus stop, which is implemented as
an Action. See (Code Snippet 4).

public BusPassenger(BusStop originBusStop, BusStop destinationBusStop)
{

// Hail the bus once it approaches and it is going to the passenger's destination
originBusStop.OnBusApproach += HailBus;

/// <summary>
/// The passenger will try to hail the bus.
/// </summary>
private void HailBus(Bus bus)
{
Debug.Log("OnBusApproach called for "™ + bus.RegistrationNumber);
if (bus.CurrentRoute.BusStops.Contains(destinationBusStop) &&
Ibus.HailedStops.Contains(originBusStop))
{

Debug.Log(FullName + " hailed " + bus.RegistrationNumber + " to " +
originBusStop.BusStopIdInternal + " because it is going to " +
destinationBusStop.BusStopIdInternal);

bus.Hail(originBusStop);

originBusStop.OnBusApproach -= HailBus;

Code Snippet 4 - BusPassenger.cs (60..76)

-25.-

Bus Stop! — Aaron Meaney — 14326016

The bus will continue driving on its route, picking up and dropping off passengers

until it reaches the final stop. At this point, the bus will drop off all the passengers

and will then remove itself from the scene, returning to the Bus Companies’ Bus

Pool.

Finally, this is the code for the Topological Sort that was used to sort the busses

in the timetable UI.

/// <summary>
/// Sorts the <see cref="BusStop"/>s in the list of <see cref="BusRoute"/>s by using
Topological Sort.
/// Adapted from Wikipedia: https://en.wikipedia.org/wiki/Topological_sorting#Depth-
first_search
/// </summary>
/// <param name="busRoutes">List of <see cref="BusRoute"/>s to sort</param>
/// <returns>An ordered topological list of <see cref="BusStop"/>s from each <see
cref="BusRoute"/></returns>
public static List<BusStop> TopologicalSort(List<BusRoute> busRoutes)
{
// Sorted bus stops to return at end of method
List<BusStop> sortedBusStops = new List<BusStop>();

// Dict of Bus Stop edges for graph
Dictionary<BusStop, List<BusStop>> busStopEdges = new Dictionary<BusStop,
List<BusStop>>();

// List of unvisited Bus Stops for the sort
List<BusStop> unvisitedBusStops = new List<BusStop>();

// Create Graph of Bus Stops
foreach (BusRoute route in busRoutes)

{

// Create Vertex for each pair of Bus Stops

for (int busStopIndex = 1; busStopIndex < route.BusStops.Count; busStopIndex++)

{
BusStop stop = route.BusStops[busStopIndex - 1];
BusStop nextStop = route.BusStops[busStopIndex];

// Add Vertex if it doesn’'t already exist
if (!busStopEdges.ContainsKey(stop))
busStopEdges[stop] = new List<BusStop>();

// Add next stop to Vertex if it doesn't already exist
if (!busStopEdges[stop].Contains(nextStop))
busStopEdges[stop] .Add(nextStop);

// Add stops 1list of unvisited Bus Stops for Topological Sort
if (!'unvisitedBusStops.Contains(stop))

{
¥

unvisitedBusStops.Add(stop);

if (lunvisitedBusStops.Contains(nextStop))

unvisitedBusStops.Add(nextStop);

¥

// Perform Topological Sort
List<BusStop> beingVisitedBusStops = new List<BusStop>();

while (unvisitedBusStops.Count != ©)
{
BusStop selectedStop = unvisitedBusStops[O];
Visit(selectedStop, unvisitedBusStops, busStopEdges, sortedBusStops,
beingVvVisitedBusStops);
b

sortedBusStops.Reverse();
return sortedBusStops;

Code Snippet 5 - Topological Sort Code

-26 -

Bus Stop! — Aaron Meaney — 14326016

2.4 Graphical User Interface (GUI) Layout

v"",

watery \0

ard River
lley
3
23 W

WOr

LA/

Google

Figure 4 - Map on App Start

When the Android App (Figure 4) starts, the first view that the user will see will be
the map. The blue marker icons represent bus stops. The red marker icon
represents a bus. The bus marker will update in real time according to the update

messages being sent from the Unity Simulation.

-27 -

Bus Stop! — Aaron Meaney — 14326016

-
- Sogy,
"*'y-%‘
St Colmcilles GAA Club

HORNLEIGH

APPLEWEOD & e
&

&
5

Thundergun Express - 500 @
8 /50 seats ®

Jugback Lane

ETA: 14:36 @
St Colmcille's GAA

ETA: 14:37 ’W @
West Seatown ‘W m

Figure 5 - Selected Bus with Stop List

When the user taps a bus marker, the camera will zoom into a marker position
and the top of the Bottom Sheet will appear. The sheet will contain the name of
the Bus and a live updating text view of the seat capacity in the bus. When the
user taps the name on the Bottom Sheet (in this case, Thundergun Express —
500), the Bottom Sheet will expand, displaying a list such as the one in (Figure
5).

From this list, the user can perform several different tasks:

e Center the Camera on the Selected Bus by tapping the “location” button
on the top-right section of the sheet.

e View a Bus Stop by tapping the “info” button inside one of the list entries.

e Hail a Bus at a Stop by tapping the “hand” button inside one of the list
entries. (A Tick Icon will appear if the bus is hailed for that stop)

e View Extra Information by tapping the “info” button beside the seat

indicator.

-28 -

Bus Stop! — Aaron Meaney — 14326016

7
E\ tﬂé%j’v
S
St Colmcilles GAA Club

HORNLEIGH

APPLEWOOD &
3

&
&

Thundergun Express - 500 @
10/ 50 seats ®

Registration Number: 12-D-2000
Model: Scania K114 Irizar Century
Company: Thundergun Express
Latitude: 53.468608859098374
Longitude: -6.228079796150547

Figure 6 - Selected Bus with Extra Info

Once the user presses the “info” button beside the seats indicator, the list will be
swapped out for the info panel seen in (Figure 6). If the user presses the “info”

button again, they will return to the list seen in (Figure 5).
The extra info panel displays the following information:

e Bus Registration Number
e Bus Model

e Bus Company

e Bus Position Latitude

e Bus Position Longitude

-29.

Bus Stop! — Aaron Meaney — 14326016

& Timetable |
Thunderaun Express Timetable [Presentation - From Swords (4 - Soml]
Service Days: Monday, Tuesday, Wednesday, Thursday, Friday

Bus Stops | s_s00x +| |s 500 #| |s_Soox:| |s_500 i Add Service
s_Abbeyvale 15 1o | (15 a5 | 18 [0 | 18 |45 |
s_Swords Manor [15 [T | [15 |[46 | [18 |[2 | [156 |[45 |
L 3| | | e
s_TheGallops 15 ||3 15 |46 16 (|3 16 | 46

s_Lios Cian 15 1fa | (15 (a7 | (18 4 | 18 |47 |

s_Cianlea [15 [[5 | [15 |[a7 | [18 |[5 | [156 |[a7 |

s_Laurelton 15 /& | (15 (a8 | (18 |8 | [18 |48 |

s_Applewood Estate 15 17 | 15 |so | 18 |7 | 18 |50 |

s_Jugback Lane [15 |[8 | [15 |[52 | [18 |[8 | [15 |[51 |

s_5t Colmcille's GAA [15 |[a | [15 |[52 | [16 |/3 | (16 |[52 |

s_West Seatown 15 10 | (15 /55 | (18 (10 | 18 |55 |

s_Seatown Road 15 111 | (15 /57 | (1 (11 | 18 |57 |

s_Swords Bypass [15 |[12 | [15 |[58 | [18 |[22 | [15 |[58 |

s_Malahide Roundabout 15 |[13 | [15 |[59 | (16 |/13 | (16 |/59 |

s_Pavilions Shopping Centre @ 15 |59 | @ 16 |59 |

s_Dublin Road (Penneys) @ s o | @ 16 o |

s_Highfields [[15 [z] [[16 |z]

s_Ballintrane @ [15][z] @ [16 |[3 |

s_Boroimhe Laurels @ s (4 | @ 16 [[a |

s_Boroimhe Maples @ [15 |[5 | @ [16 |[5 |

s_Airside Road @ 15 |68 | @ 16 |6 |

s_Airside Central @ s s | @ 16 6 |

s_Holywell Distributor Road @ s |7 | @ 16 |7 |

s_M1 Drinan a@ [15 |[s | a@ [16 |[8 |

s_Pinnock Hill r/fabout 15 |14 | @ 16 |[14 | []

s_Reids Furniture 15 15 | @ 16 /15 | @

s_Swords Bypass opp Texaco 15 116 | @ 16 |16 | @

s_National Show Ground [15 [[17 | @ [16 [[17 | @

s_East Wall Road [15 |[18 | [15 |[z2 | [1s |[18 | [156 |[21]

s_Convention Center 15 119 | (15 |[za | (18 (13 | 18 ||za4 |

s_Sean O'Casey Bridge [15 |[z0 | [15 |[25 | [16 |[20 | [16 |[25 |

s_Eden Quay [15 |[z1 | [15 |[z8 | [1e |[z1 | (16 |[z8 |

Figure 7 - Timetable with Controls

When the user selects a timetable in the Unity inspector, and opens a Timetable
window, the timetable for that object will show up, naturally. This can be seen in
(Figure 7). The user can add new services by clicking the Add Service button.
Services can be moved left and right by clicking Edit Mode. Clicking Copy Mode
will copy a service to the end of the timetable. Remove Mode will remove
selected services from the timetable. The user can change Time Slot values by
typing in the Hour and Minute fields for each cell. The user can also select the
route for each service by clicking on the Dropdown Menu at the top of each
column. The timetable will auto-sort the bus stops by using a topological sort. If a
bus stop row and a route column intersect where that bus stop does not belong
to that route, the NULL symbol will be displayed instead, indicating that a Time

Slot does not exist there.

-30-

Bus Stop! — Aaron Meaney — 14326016

2.5 Testing

| demonstrated an early version of this project on January 24™, 2018 at a game
development meetup called “The Games Co-Op”. | got some good feedback
regarding the future applications of the project, such as potential VR applications
or expanding the project to new industries, such as rail and airlines. | also used

JUnit testing on the Android application.

@Test
objectModel isValid() {

List<BusStop> busStoplList = ArraylList<>()

busStopList.add(BusStop(

busStopList.add(BusStop(

))

BusRoute r = BusRoute(busStopList)

List<TimeSlot> timeslots = ArrayList<>()

timeslots.add(TimeSlot(busStopList.get (@)))
))

timeslots.add(TimeSlot(busStopList.get (1)
Bus b = Bus (

r, r.getBusStops().get(9)
ArraylList<BusStop>()
timeslots)
assertEquals(b.getCurrentRoute(), r)
assertEquals(b.getCurrentCapacity() <= b.getMaximumCapacity()
assertEquals(b.getCurrentStop(), r.getBusStops().get(9))
assertEquals(b.getCurrentStop().getInternalld())

Code Snippet 6 - Example Unit Test from Android (BusStopUnitTests)

-31-

Bus Stop! — Aaron Meaney — 14326016

3 Conclusions

| found that this was a very interesting project to work on. As | mentioned before,
| enjoy working with the Unity Engine and | really wanted to work on a project that
would allow me to improve my skills with Unity and to learn more about the

engine. Simple for this reason | enjoyed working on the project.

| feel that the scope was far too big for what was possible to pull off with my
allotted time over the last two semesters. | could have made the scope smaller
but at the same time | was not aware of my total workload during Semester 8
when | determined the scope for this project. | feel losing the month of April to

working on other projects seriously limited the potential of this project.

| was able to implement the MVP of the project and for that | am very proud. | put
a lot of work into this project and despite what marks | get | can at least feel

assured that | tried my best to make this project what it is today.

Even if | had an extra month, | wouldn’t have hit my original target scope for the
project. | was overambitious, but | learned a lot during the development of this
project. | feel that my skills in Unity have improved significantly than they were 6

months ago and that’s the core of what | wanted out of the project.

As for the scope of the project itself, | feel that even though it hit MVP a lot more
could have been done with it. Since the conception of the idea there wasn’t a
clear end goal in sight for the project and this resulted in some features being

implemented that weren’t essential to the project succeeding at large.

Overall, I'm grateful for the opportunity to work on this project and for the

experience gained during the development cycle.

-32-

Bus Stop! — Aaron Meaney — 14326016

4 Further development or research

4.1 Predictive Analysis for Time Slots

A type of predictive learning system would be a useful additional feature as it
would allow users to see predictions of traffic patterns and would make planning

their commute even more efficient and useful.

4.2 Full Traffic Simulation

With more time, a traffic simulation would be a good addition to the bus system
simulation as it would provide a more realistic environment for the busses to

traverse, generating more useful data for the predictive analysis.

4.3 Bus Alerts

A system to alert the user when to leave for their bus would be a very useful
addition to the application.

4.4 Other Industries

The application could be extended to be used in other industries such as aviation
and rail transport industries. There could be unexplored potential in using this

application and it’s predictive analysis systems in these other industries.

-33-

Bus Stop! — Aaron Meaney — 14326016

5 References

Android Developers. (2018). Developer Guides | Android Developers. [online]

Available at: https://developer.android.com/guide/ [Accessed 7 Mar. 2018].

Postgresqgl.org. (2018). PostgreSQL: Documentation. [online] Available at:
https://www.postgresqgl.org/docs/ [Accessed 1 Feb. 2018].

Technologies, U. (2018). Unity - Manual: Unity User Manual (2018.1). [online]
Docs.unity3d.com. Available at: https://docs.unity3d.com/Manual/index.html
[Accessed 9 Mar. 2018].

Unity Forum. (2018). Follow Orbit Camera. [online] Available at:
https://forum.unity.com/threads/follow-orbit-camera.202490/ [Accessed 7 Jan.
2018].

Unity Forum. (2018). Handles.Label fail when point behind camera. [online]
Available at: https://forum.unity.com/threads/handles-label-fail-when-point-
behind-camera.79217/ [Accessed 21 Mar. 2018].

Unity Forum. (2018). Handles.Label fail when point behind camera. [online]
Available at: https://forum.unity.com/threads/handles-label-fail-when-point-
behind-camera.79217/ [Accessed 10 Feb. 2018].

Unity, S. (2018). Serialize and Deserialize Json and Json Array in Unity. [online]
Stack Overflow. Available at:
https://stackoverflow.com/questions/36239705/serialize-and-deserialize-json-
and-json-array-in-unity [Accessed 13 Feb. 2018].

-34 -

Bus Stop! — Aaron Meaney — 14326016

6 Appendix

6.1 Survey Results

Do you take the bus as part of your daily routine?

16 responses

® ves
@ Mo

Which days do you usually take the bus?

11 responses

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Sunday

If you find taking the bus annoying, what do you find annoying about it?
11 responses
I don't like waitin_ .. 6 (54.5%)
It takes too long...
I don't like sitting...
I can't refy on th...
Bus overpacked
Alot of the time._..
I don't like people

Constant breakd. ..

-35-

Bus Stop! — Aaron Meaney — 14326016

What would make taking the bus more enjoyable?

11 responses

Alert when | sho...
Alert when I'm a...
Real-time data t..
Being able to se...
Being able to au...
Accurate real-ti...
Nothing, the bus...
A personal bus. ..

Feople playing...

12

How do you usually get around?

5 responses

Walking
Cycling
Car
Motarcycle
Train

LUAS 3 (60%)

Why don't you usually take the bus?

b responses

| dont usually n...
I don't like waitin...
It takes foo long. .. 3 (60%)
| don't like sitting...
| can't rely on th_..

There's no bus 5...

Far too busy

-36 -

Bus Stop! — Aaron Meaney — 14326016

What would convince you to take the bus more often?

5 responses

Alertwhen | sho...
Alertwhen I'm a...
Realtime datat .
Being able to se_..
Being able to au...
Accurate reali...
Ifthere was a b...

There's nothing...

Would you use this app If it were available now?

16 responses

® ves
@ No
What Operating System is on your phone?
16 responses
@ Android
®i0s

® Windows Phone
@ None of the above

-37-

3 (60%)

Bus Stop! — Aaron Meaney — 14326016

6.2 Project Proposal

Project Proposal

Bus Stop!

Aaron Meaney, 14326016, aaronmeaney@hotmail.com

BSc (Hons) in Computing
Internet of Things

24th October 2017

-38-

Bus Stop! — Aaron Meaney — 14326016

1. Objectives

Primary Objective:

The purpose of this project is to build a proof-of-concept app that provides a more
convenient public transport experience by ensuring passengers are provided
detailed information on their bus journey. By doing this, the project should provide
insight into how a ubiquitous public transport system might look in the future. If this
project were to be released commercially, then it should aim to encourage more
passengers to take the bus.

Build an app to provide passengers with real-time journey information:

The app should provide passengers with information on the bus company, the bus
the passenger is taking, and their bus route. Estimated arrival times based on
previous trends allow passengers to plan their day more effectively. Push
notifications should inform passengers when they should leave for the bus stop to
make it on time, and should also alert passengers when they're about to reach
their stop; allowing them to sleep on the bus knowing they won't miss their stop.
Notifications of delays and breakdowns will also be important information for the
passenger. If the passenger has planned their journey and they're close enough
to the bus stop, the app will automatically hail their bus by triggering the ‘STOP’
button remotely.

Build a web service to share bus companies’ data with passengers:

The web service should provide an API for the passenger app to request data on
the bus companies’ services. For example; routes, busses in service, bus
breakdown history, ETAs, etc. The service should also provide an API for busses
to upload their sensor data. From a business point of view, the web service should
be generic and contain a web page for administration purposes, making it easy to
integrate the company’s fleet into the service. The web service should also have a
database to store sensor history, in which case trends can be analysed. Data such
as breakdown history and arrival times can be used to determine breakdown rates
and on-time percentages, which can be made known to passengers.

Build a bus network simulation to demonstrate the web service and app:

A simulation of a bus network will be built to send data to the web APl as opposed
to developing the app on a real bus. The simulation will handle passenger and bus
routing behaviour with the goal to demonstrate how the app will be used in a real-
world setting. The app will be able to send data back to the simulation to make it
interactive, such as by hailing a specific bus.

-39-

Bus Stop! — Aaron Meaney — 14326016

2. Background

Idea Background

| take the bus to college every morning, and over the last 3 years several issues
have started to annoy me. While public transport is supposed to be a cheap and
convenient way to get around the city, I've found that it can be a very stressful and
frustrating experience. In the mornings, | find that sometimes I'll skip breakfast
since I'm worried that I'll miss my bus and be late for college. Sometimes, I'll get
there early and I'll have just made it on time. Other times, I'll be waiting for 10
minutes for the bus to arrive. | never know when | should leave to catch the bus.

| know I’'m not the only person who dislikes public transport, there are many issues
with taking it. From waiting a long time for the bus, not knowing if there’ll be enough
seats on the bus, not knowing what time I'll arrive at my destination, not knowing
which bus to take to get to my destination — it's a frustrating experience. From this
| can understand why people drive instead. However, taking the bus is cheaper
and is better for the environment than driving in a private car. This inspired me to
build an app to make taking the bus more convenient by coming up with solutions
to common public transportation problems, and to make a service that bus
companies can easily integrate into.

Public Transport Problems and Solutions
Problem: People don’t know when to leave for the bus to minimise waiting time.

To solve this problem, | planned on the passenger app sending a push notification
to the passenger for when they should leave for the bus. This works by analysing
data such as the traffic, bus position, arrival trends and how long it takes the
passenger to reach the bus stop to determine when the passenger should leave
their house. This minimises time wasted at the bus stop and gives the passenger
peace of mind knowing that they won't be late for the bus once they leave.

Problem: The bus driver might not see the passenger trying to hail the bus.

If the passenger is in a crowd and multiple busses are driving past the stop at once,
it can be difficult to hail the bus you want to get on. By using this app, the passenger
can hail their bus by triggering the ‘STOP’ button on the bus. To prevent abuse,
the mobile device must be GPS enabled and the user must be within a certain
distance of the bus stop to hail the bus remotely. To prevent GPS spoofing, the
app will check if the phone is rooted or is using the developer mode’s mock GPS
locations, and will disable the hailing feature in these cases.

- 40 -

Bus Stop! — Aaron Meaney — 14326016

Problem: The passenger is just around the corner and can't hail the bus on time.
If the passenger is running towards the bus and just can’t make it around the corner
on time to hail it, the app can hail the bus automatically if the passenger setup their
journey on that bus beforehand. Once they're close enough to the bus stop and
auto-hailing is enabled, the bus will be hailed and the passenger should have
enough time to make it onto the bus.

Problem: Passengers want to sleep on the bus but don’t want to miss their stop.

Many people have slept past their stop on the bus to solve this issue, this app will
add a ‘GPS alarm’ function to wake people up once they get close to their stop. As
the bus pulls away from the stop prior to their one, the phone will vibrate 3 times
and a push notification will be sent, prompting the user to exit the bus. If they don’t
wake up and sleep past their stop, the vibrating will continue at a higher intensity.

Problem: The passenger wants to get on a bus with specific seats available.

If multiple busses are pulling over at once on the same route and the passenger
wants to get on the bus with the least capacity, they can’t know until they get on
the bus. This app will solve that problem by not only showing the user the capacity
of the bus, but by also showing them the actual seats available. On busses with a
space for wheelchairs and buggies, a distance sensor can detect if it is free,
notifying the passenger.

Conclusion

While these are just a few examples of problems and solutions that passengers
encounter on the bus, there are many more that are outside the scope of this
project. Each feature of this service should be designed to counter at least one of
these problems.

Other features that could be added to this service are auto-routing, to detect which
busses the passenger should take and the total price / duration of the journey will
be. Bus passes, Tickets and Leap Cards could also be integrated into the app, so
tapping onto the bus with the mobile device could be a possible feature.

The service also must be designed so that when a bus company subscribes to it,
it takes a small amount of effort to integrate the company’s bus fleet. The fact that
the demo company is in a computer simulation should be abstracted away from
the web service so that if it were to be integrated in real life, no extra coding work
will have to be done to the web service or mobile app.

=41 -

Bus Stop! — Aaron Meaney — 14326016

3. Technical Approach

Throughout the duration of this project I'll continue to update the documentation
and project plan to account for changes to the project schedule and technical
implementation. I'll use a system based on Agile Sprints to determine my weekly
tasks and to keep track of the project’s progress in relation to the feature list and
deadlines.

Once | finish the requirements specification document, | can begin creating small
prototypes to decide how | should build the project’s tech stack. I've already put
some thought into this and I've decided that | want to use the Unity game engine
for the simulation since it's a very powerful and versatile tool that | happen to
already have experience with. I've used node.js previously for developing an API
and | would like to try using a different web framework since | dislike the lack of
type-safety in Javascript which can result in buggy and unsafe code. Perhaps a
framework based on C#, Kotlin or Java would be more suitable? I'll develop the
Android app using Android Studio since it is the standard method of developing
apps and | also have prior experience using the program and the relevant
languages such as Java and XML. | currently don’t know what other libraries or
frameworks I'll need; however, | will investigate these once | begin developing the
prototypes to ensure that the tech stack is ready to be used with the full application.

The first thing that I'll work on after finishing the requirements specification
document is the prototype for the mid-term presentation. | want the prototype to
focus on the most critical technical aspect of the project first. In this case | want to
setup a basic simulation and to see the real-time results of the simulation on an
app connected over a web service. For example, | want to simulate a GPS-enabled
bus sending longitude/latitude data to an app embedded with Google Maps. This
will prove that the foundation of the project is sound and that | can continue to build
features on top of this application architecture.

Once the prototype is completed | can begin to implement the rest of the features
across the whole tech stack. For example, if | want to implement monitoring for
seat capacity, | can implement the code in the simulation first and then send it to
the web service to ensure that I'm getting all the raw data that | need. | can then
process the raw data on the server and prepare it to be sent to the app. Afterwards,
| can implement the Ul changes and functionality in the app and then begin pulling
the processed data from the web service. By ensuring that each feature is
implemented this way, | can split up each feature into different tasks which makes
it easier to implement due to each part of the project having its own separation of
concerns. This in turn makes it easier to integrate unit testing which will make it
easier to debug the project in the long run.

-42 -

Bus Stop! — Aaron Meaney —

4. Project Plan

Gantt Chart

Bus Stop!

Pre-Production:
Come up with Project idea
Pitch Project Idea
Wirite Project Proposal
Write Requirements Specification
Determine Project Requirements
Determine Project Scope
Design Project Architecture & Tech Stack
Plan Sprints & Product Backlog
Prototyping
Build Project Prototype
Develap Simulation Prototype
Develop Web Service Prototype
Develop App Prototype
Design App Look & Feel
Implement App Prototype
Prepare Mid-Point Presentation

Present Prototype at Mid-Point Presentation
Development:

Wite Project Documentation

Implement features from the Product Backlog
Test Project and Fix Issues

Sign off on Documentation and Final Project
Release:

Prepare Final Presentation

Present Project at Final Presentation

Create Showcase Profiles

Prepare Showcase Poster

Showcase Project at NCI Project Showcase

sov Y pre-Production

14326016

1 [with Project Idea
Pitch Project Idea
Write Requirements Specification
Defermine Project Requirements
termine Project Scope
Design Project Architecture & Tech Stack
Plan Sprints & Product Backiog
pr— 5ctotyping:
Build Project Prototype
Defelop Simulation Prototype
;J evelop Web Service Prototype
Develop App Prototype
© besin op ook e

Prepare Mid-Point Presentation

N Devel

Present Prototype at Mid-Point Presentation
v
8

Write Project
'—] Implerhent features from the Product Backlog
Test Project and Fix Issues.

Sign off on Documentation and Final Project
Release:
Prepare Final Presentation
@ Present Project at Final Presentation
Create Showcase Profiles
Prepare Showcase Poster

@ Showcase Project at NCI Project Showcase

Figure 1. Snapshot of the Project Plan Gantt Chart, 10'" of October 2017.

Description

As illustrated above, most of the work during 2017 is centred around requirements
gathering, prototyping and project planning in preparation for the main
development cycle during January and May 2018.

While there are very little details about the project during the main development
phase, the project plan will be updated regularly to account for unforeseen
changes during the project’'s development. For example, once the requirements
specification is complete, it will then be possible to plan the sprints and product
backlog to populate the development cycle with tasks to be completed and features
to be implemented.

The time frame during the release cycle is also inaccurate as a date has not yet

been chosen for the final presentations or project deadline. Therefore, the later
stages of the project plan are naturally inaccurate.

-43 -

Bus Stop! — Aaron Meaney — 14326016

5. Technical Details

Web Service

In-Memory
Database

Simulation

Mobile
! Z ~ ey Application

[s (Passenger)
< Lo s
£

Web Application
(Administrator)

Figure 2. High-Level Diagram of the project architecture.

Simulation

As mentioned earlier, | plan on using the Unity game engine as the platform for
developing my simulation. Unity scripts are written in C# and use the ‘Entity-
Component’ programming paradigm which utilises the concept of composition over
inheritance, allowing for faster development cycles. Once | have a basic simulation
model built, | can connect to the web service using Unity’s built in networking API.
The simulation will run on a local machine such as a laptop.

Web Service

The web service could be implemented using a web framework such as Ruby on
Rails or Django, however, as | mentioned before | would prefer to use a type-safe
language to develop the web service. The current state of the bus network should
be stored in primary memory for fast access. However, each update should be
saved to the database so that if the server is restarted it can recover its previous
operational state. The database will require very fast I/O speeds due to the
potential high load and scalability requirement. | think an in-memory database such
as Redis could be very useful, while maintaining the update log separately for
persistence. | plan on hosting the web service on an online cloud-based-platform
such as Amazon Web Services’ Free Tier.

Mobile Application

As mentioned earlier, the mobile application will be programmed using Java and
Android Studio. User settings such as what bus the user prefers to get will be
stored on the local device, but live data will be retrieved from the web service.

-44 -

Bus Stop! — Aaron Meaney — 14326016

6. Evaluation

Unit & System Testing

Throughout the whole development cycle of the application, | plan on using unit
tests to ensure that any changes | make don’t have unintended side effects within
the system. I'd like to use Document-Driven Development and Test-Driven
Development to ensure that the code | write for the application is designed to a
professional standard and to prevent software brittleness; allowing me to develop
new features without worrying about breaking implemented features.

| plan on using JUnit for unit testing on the Android application, and Espresso for
GUI testing on the Android application. If my unit tests fail to catch an unintended
side effect, the GUI testing should hopefully catch one of these changes. | also
plan on load testing the web service since it will require high availability and
scalability due to the potentially high user count. For Unity’s unit-testing, | plan on
using the Unity Test Runner, which is a variant of NUnit specifically designed for
the Unity engine.

Continuous Integration

I'm also going to set up a Continuous Integration server to ensure that any tests
that | forget to run are automatically executed when | commit my changes. Another
benefit is that once a build has passed the Cl process, it is available for download
from the Cl server, which will make distributing any project artifacts to testers much
easier. | may use Travis Cl for the Android application and the web service. Travis
Cl is an easy to setup service that integrates directly with my GitHub repositories.
For the Unity simulation, | can use Unity’s Cloud Build service which has similar
functionality as Travis.

User Testing

| plan on testing my app with real users from the very beginning of the development
cycle. Once | get feedback on my prototypes, | can update the Ul design and can
continue to get feedback by distributing new versions of the Android app by
sending testers the link to the app’s Travis Cl download page. This will allow for
rapid testing with users and should make the Ul design process faster and more
effective.

QA

Once the product backlog has been fully implemented or | reach the 3™ last week
of the project plan, I'll commence a feature freeze and begin thoroughly fixing any
remaining bugs. | will also continue testing the app throughout the final few weeks
to catch any bugs | may have missed up until then.

-45-

Bus Stop! — Aaron Meaney — 14326016

6.3 Requirements Specification

BSCH

Requirements
Specification (RS)

Bus Stop!

Aaron Meaney
22/11/2017

-46 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

Requirements Specification (RS)

Table of Contents

Requirements Specification (RS) 1
1 Introduction 3
1.1 Purpose 3
1.2 Project Scope 3
1.2.1 Mobile App Scope 3
1.2.2 Web Service Scope 5
1.2.3 Simulation Scope 5
1.2.4 Constraints 7

1.3 Definitions, Acronyms, and Abbreviations 7

2 User Requirements Definition 8
2.1 Survey Results 8
2.2 Survey Analysis 11

3 Requirements Specification 12
3.1 Functional Requirements 12
3.1.1 Requirement 1: Navigate Map 12
3.1.2 Requirement 2: Select Map ltem 14
3.1.3 Requirement 3: Create Alert 16
3.1.4 Requirement 4: Manage Alerts 18
3.1.5 Requirement 5: Hail Bus 20
3.1.6 Requirement 6: Bind Simulated Person 22

3.2 Non-Functional Requirements 25
3.2.1 Performance/Response time requirement 25
3.2.2 Security requirement 25
3.2.3 Reliability requirement 25
3.2.4 Extendibility requirement 25
3.2.5 Resource utilization requirement 25

4 Interface requirements 26
41 GUI 26
4.1.1 Map Screen 26

=47 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

4.1.2 Options Menu 26
4.1.3 Bus Info Panel 27
4.1.4 Bus Stop Info Panel 27
41.5 Search Bar 28
41.6 Create Alert 28
4.1.7 Modify Alerts 29
4.1.8 Bind Simulated Person 29

4.2 Application Programming Interfaces (API) 30

5 System Architecture 31
5.1 Mobile App 31
5.2 Web Service 32
5.2.1 Get Map Data 32
5.2.2 Put Map Data 32
5.2.3 GetBus Data 32
5.2.4 PutBus Data 32
5.2.5 Get Bus Stop Data 32
5.2.6 Put Bus Stop Data 33
5.2.7 Get New Commands 33
5.2.8 PutBind SP 33
5.2.9 Put Unbind SP 33

5.3 Simulation 33

6 System Evolution 34
7 Appendix 35
7.1 Survey Results 35

2

-48 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification
1 Introduction

1.1 Purpose

The purpose of this document is to determine the requirements for the
development of the ‘Bus Stop!" mobile application and its components: the ‘Bus
Stop!” web service to link the simulation to the mobile application, and the bus
simulation to generate test data for the web service and the mobile application.

The target audience for this application are commuters who currently take the
bus, to make their experience more convenient. Another target audience are
commuters who primarily use private transportation. By solving some common
problems with taking the bus, the mobile application should aim to convince
private transport users that he bus is a cheaper, eco-friendlier alternative.

1.2 Project Scope

The scope of the project is to develop an Android mobile app, a backend web
service and a simulation to provide a bus information feed to the user. This
project will not be production ready on completion as a production-ready system
would require specialised hardware. However, with the simulation component,
the project is designed to be a proof-of-concept.

1.2.1 Mobile App Scope

The app will not be able to send commands to the web service on rooted or
unlicensed phones, as GPS spoofing abuse will not be tolerated. A check will be
executed on app start and periodically during the app’s runtime to ensure that the
phone has not been tampered with.

The mobile app should feature the ability for the user to navigate an interactive
map of their location using Google Maps. From this interactive map, the user can
select a bus or bus stop icon on the map. These stops and busses should be
searchable, with results matching data such as a bus’s route and next stop.

When selecting a bus stop, the user can see the name and timetable of that stop
and can create an alert or select the corresponding bus for the time slot in the
timetable.

When selecting a bus, the user can see the bus’s live position, the bus’s route,
the bus’s next stops and other miscellaneous information. From the next stops
list, the user can select a time slot to create an alert or can select the bus stop.
The user can also set the alert to repeat on certain days.

The app will also provide an ‘all alerts’ screen that can be accessed through the
navigation bar, which will allow the user to edit, disable or delete the alerts that
they've created so far. When an alert is created, the app will send a push
notification to tell the user when to leave their home.

=49 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

When the user has setup an alert for their bus and they are near the bus stop,
the app can automatically hail the bus once it comes within range. Since this app
is unaware if the user is on the bus or waiting for the bus, the user can also use
this app to alert them for when the bus they are travelling on is about to reach its
destination.

If the user has not setup an alert, but they are at the bus stop and the bus is
about to arrive; the alert icon will change to a stop icon and the user can
manually hail the bus.

When the user is waiting at a bus stop, the app will recognise this and will send a
push notification to the user, allowing them to immediately select that bus stop
and view its timetable.

The bus info panel will display miscellaneous information such as:

Bus company name and website link

Bus route name

Bus route punctuality (If the bus is behind or ahead of schedule)

Bus registration plate number

Bus model

Current seat capacity, grouped by seat types such as wheelchair access
Bus GPS position co-ordinates

Bus speed in km/h

Number of total breakdowns

Exceptional conditions, such as breakdowns

The time-slot info panel will also display miscellaneous information such as:

ETA, as published by the bus company

ETA, adjusted for the average lateness

Average capacity

Overall, Monthly, Weekly, Daily On-time percentage

Warnings for exceptional conditions, such as high lateness or high
breakdown rate

e Estimated carbon emissions reduction based on bus capacity as opposed
to everyone driving in a private car. Used to convince people of the eco-
friendliness of busses.

Since this project is a proof-of-concept, the user will not be able to interact with
busses in real life to test out the app. To address this issue, the app will have a
‘simulation mode’ setting. This will bind a selected simulated person’s (SP)
position in the simulation to the GPS position shown on the app. The SP will
have to exist in the simulation and is selected by entering the SP’s identifier
(SPID) in the app. This is analogous to a real person’s PPSN.

This is not a travel planning app and therefore an automatic route planner is out-
of-scope.

-50 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

1.2.2 Web Service Scope

The backend webservice should contain two different secure RESTful API
endpoints providing distinct functionality. The first API endpoint is just the ‘/api/*’
endpoint format and will be referred to as the ‘Standard API'. The Standard API
will be used for communication between the app and the simulation. The
Standard APl won't know that the sensor data is being collected from a
simulation and should theoretically be able to collect real sensor data in a
production system. The second endpoint will use the ‘/api/dev/*’ endpoint format
and will be referred to as the ‘Developer API'. The Developer API will be used for
special commands such as binding the SPs on the simulation. In a production
system, the Developer API would be useless.

The Developer API will not have access to a persistent database, however the
Standard API will. The Standard API will have data sent to and read from both
the app and the simulation in real time. Because of the high 1/O usage with the
database, it is imperative that the database is ACID complaint to ensure accurate
statistics are reported back to the user.

When data is sent to the Standard AP, it goes through a 3-step process:

1. The raw data is written to the database (E.g. Bus's state)
2. The data is processed (E.g. Average On-Time %)
3. The processed data is written to the database

1.2.3 Simulation Scope

The simulation should provide a navigable 3D interactive space based on real-
world OSM data. This will allow for the development of a simulation with terrain
and road infrastructure that will match up with the Google Maps data.

Bus Stops and Bus Depots will be manually placed in their real-world locations.
Every Bus, Bus Stop, Depot and SP in the simulation will determine their latitude
and longitude based on their transform position within the simulation.

Each bus instance is persistent, containing data such as its registration plate and
make/model. Since each bus is distinct, if there aren’t enough busses to fill each
route, then no busses can be deployed from the depot.

Each bus will have several seats and seat types. For example, a bus may have
20 standard seats and 1 wheelchair accessible seat. When a SP boards the bus,
the current capacity is updated on the bus. If there are no more available seats of
the SP’s preferred type, then the SP will not be able to board the bus. The SP will
wait at the bus stop for the next bus.

SPs will form a queue at a bus stop as it gets closer to the arrival time for their
bus. The length of these queues is determined by the time of day and the day
itself. For example, rush hour on a Monday will be busier than 3pm on a Sunday.

When a SP is instantiated in a queue, they are given a random SPID and a
random designated stop belonging to the route they'll be travelling on. Once the
SP is on the bus and is about to reach their designated stop, they will press the

-51 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

‘STOP’ button and depart once the bus pulls over. Once they depart the bus,
they will persist for a few seconds until their instance is destroyed.

Bus Routes will be represented in the simulation as an ordered list of nodes.
These nodes will be defined as either navigation nodes or bus stops. Navigation
nodes are used to tell the bus the route to take while the bus stops tell the bus
where to stop along the route. The path to take between each node is
determined using a pathfinding algorithm such as Dijkstra’s or A*.

When a bus route is scheduled to begin, a bus will be deployed from the bus
depot and will drive to the start of the route. It will wait at the bus stop and allow
other SPs to board. Once the time slot passes and everyone has boarded, the
bus will depart and drive along the route. If the next stop contains SPs forming a
queue or if the ‘STOP’ button is activated, it will pull over to the next bus stop.
Otherwise the bus will continue along the route until it stops at the final bus stop.
Once the route is complete, the bus will start its next route if it's available.
Otherwise, it will return to the depot.

If the simulation receives a message from the API to bind a SP, that SP will be
set to ‘simulation mode’. When a SP is in ‘simulation mode’, their instance will not
be destroyed once they leave the bus. They will also send their GPS position
data to the web service to be used in the app’s ‘simulation mode’. The SP will
also lose the ability to hail the bus automatically as it's now dependent on input
from the app. If an ‘unbind’ message is received, then simulation mode will be
disabled and the SP instance will be destroyed if it has finished its journey.

To make the simulation more accurate, a basic traffic simulation will have to be
implemented. Only vehicles within a small distance around each bus will be
simulated to ensure that the computer isn’t put under too much strain. Each car
will be an autonomous agent that will try to drive to a random location in the
simulation once it's created and will follow the rules of the road. Traffic lights will
be included at intersections.

Busses, Depots, Stops and SPs will all display their ‘Info Panel’ when clicked in
the simulation. The info panel will display configurable information for each of
these objects. For example, the SPID, GPS co-ordinates and state of a SP and
the company, route, speed, GPS position, route, etc. of a bus. The panel will also
allow certain actions to be taken on that object. Such as forcing a bus breakdown
or stopping queues forming on bus stops.

Each bus will contain a ‘sensor hub’ script that is responsible for recording the
capacity of the bus, its speed, its position, route, next stop, registration plate
number, model and if the bus is broken down or in service. Every few seconds,
the sensor hub will send this information to the web service which will update the
app view.

Certain features that will be out-of-scope include weather effects, a visible
day/night cycle, random breakdowns and vehicle crashes.

-52-

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

1.2.4 Constraints

Before development of the project, a Cl solution must be setup using Travis Cl
and Unity Cloud Build, and they should be linked to the project git repositories.
The latest build of the app should be available on Travis Cl for download. Unit
tests should be executed on commit using the Cl solutions.

The mobile app should be developed for the Android platform of at least API level
21, as it introduces lock-screen notifications to Android. While it only has 71.3%
Android market penetration (as of November 2017), it is assumed that by the
time the app would be production-ready, the market penetration would increase
as people with older phones would begin to upgrade.

The web service should be built in a framework that supports RESTful APls. After
the development of the prototype, the framework should be determined.

The simulation should be built using the Unity game engine version 2017.3, as it
will be the latest stable version once development of this project begins in early
2018.

Since this is a proof-of-concept, only two small bus companies will be simulated.
Real-world bus data will not be downloaded and assets such as the depot, stops,
etc. will be placed manually within the simulation.

The prototype should be completed by Monday, 4" December 2017. The
project’s features should be fully implemented by mid-April 2018. Testing should
be complete and the final build distributed through CI before mid-May 2018.

1.3 Definitions, Acronyms, and Abbreviations

3D Three-Dimensional

API Application Programming Interface
Cl Continuous Integration

ETA Estimated Time of Arrival

GPS Global Positioning System

OSM Open Street Map

SP Simulated Person

SPID Simulated Person Identifier

-53-

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification
2 User Requirements Definition

2.1 Survey Results

To understand the user requirements, a survey was sent out on 17" November
2017. Screenshots are available in the appendix. 16 people responded. The
results are as follows:

Section A: Initial Question
Question 1: Do you take the bus as part of your daily routine?

11 recipients said ‘Yes’
(68.8%)

5 recipients said ‘No’
(31.3%)

Section B: Regular Bus Passenger (Recipients who said ‘Yes’)
Question 2: Which days do you usually take the bus?
11 recipients take the bus on Monday

(100%)

11 recipients take the bus on Tuesday

(100%)

11 recipients take the bus on Wednesday

(100%)

11 recipients take the bus on Thursday

(100%)

11 recipients take the bus on Friday

(100%)

4 recipients take the bus on Saturday

(36.4%)

1 recipient takes the bus on Sunday

(9.1%)

Question 3: If you find taking the bus annoying, what do you find annoying
about it?

6 recipients said, ‘| don'’t like waiting at the bus stop.’

(54.5%)

2 recipients said, ‘It takes too long for my bus to reach its destination.’
(18.2%)

-54 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

4 recipients said, ‘| don't like sitting beside strangers on the bus.'
(36.4%)

4 recipients said, ‘I can't rely on the bus, it's usually late or never shows up.’
(36.4%)

4 recipients also had other responses regarding constant breakdowns and
busses being too full and not being able to pick up any more passengers.

Question 4: What would make taking the bus more enjoyable?

7 recipients said, ‘Alert when | should leave for the bus stop so | don't miss it.’
(63.6%)

3 recipients said, ‘Alert when I'm about to reach my stop, so | can sleep on the
bus.’
(27.3%)

9 recipients said, ‘Real time data to see how full the bus is before it arrives.’
(81.8%)

4 recipients said, ‘Being able to see if specific seats are available — such as
wheelchair access.’
(36.4%)

5 recipients said, ‘Being able to automatically hail the bus when I'm near the
stop.’
(45.5%)

10 recipients said, ‘Accurate real-time statistics on lateness and bus reliability.’
(90.9%)

Section C: Occasional Bus Passenger (Recipients who said ‘No’)
Question 2: How do you usually get around?

2 recipients said, ‘Walking.’
(40%)

1 recipient said, ‘Car.’
(20%)

1 recipients said, ‘Motorcycle.’
(20%)

2 recipients said, ‘Train.’
(40%)

3 recipients said, ‘LUAS.’
(60%)

-B5 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

Question 3: Why don’t you usually take the bus?

2 recipients said, ‘| don’t usually need to take the bus.’
(40%)

1 recipient said, ‘| don't like waiting at the bus stop.’
(20%)

3 recipients said, ‘It takes too long for my bus to reach its destination.’
(60%)

2 recipients said, ‘| don't like sitting beside strangers on the bus.’
(40%)

2 recipients said, ‘I can’t rely on the bus, it's usually late or never shows up.’
(40%)

Question 4: What would convince you to take the bus more often?

1 recipient said, ‘Alert when | should leave for the bus stop so | don’t miss it.’
(20%)

1 recipients said, ‘Alert when I'm about to reach my stop, so | can sleep on the
bus.’
(20%)

3 recipients said, ‘Real-time data to see how full the bus is before it arrives.’
(60%)

1 recipient said, ‘Being able to automatically hail the bus when I'm near the stop.’
(20%)

1 recipients said, ‘Accurate real-time statistics on lateness and bus reliability.’
(20%)

2 recipients said, ‘There’s nothing that would convince me to take the bus.’
(40%)

Section D: General Questions
Question 5: Would you use this app if it were available now:

15 recipients said, ‘Yes.’
(93.8%)

1 recipient said, ‘No.’
(6.3%)

Question 6: What Operating System is on your phone?

10 recipients said, ‘Android.’
(62.5%)

6 recipients said, ‘iOS.’
(37.5%)

10

-56 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

2.2 Survey Analysis

The list of features from most popular to least popular, as voted by people who
regularly take the bus:

1- Accurate real-time statistics on lateness and bus reliability

2- Real-time data to see how full the bus is before it arrives

3- Alert when | should leave for the bus stop so | don’t miss it

4- Being able to automatically hail the bus when I'm near the stop

5- Being able to see if specific seats are available — such as wheelchairs
6- Alert when I'm about to reach my stop, so | can sleep on the bus

For people who don't usually take the bus, they were most interested in this
feature:

« Real-time data to see how full the bus is before it arrives

People who don't usually take the bus were equally interested in the following
features:

Alert when | should leave for the bus so | don't miss it

Alert when I'm about to reach my stop, so | can sleep on the bus
Being able to automatically hail the bus when I'm near the stop
Accurate real-time statistics on lateness and bus reliability

People who don'’t usually take the bus were disinterested in the following feature:

e Being able to see if specific seats are available — such as wheelchairs

From this survey, this is a sorted list of the most important features to consider
for both regular bus users and occasional bus users:

1- Real-time data to see how full the bus is before it arrives

2- Accurate real-time statistics on lateness and bus reliability

3- Alert when | should leave for the bus stop so | don’t miss it

4- Being able to automatically hail the bus when I’'m near the stop

5- Alert when I'm about to reach my stop, so | can sleep on the bus

6- Being able to see if specific seats area available — such as wheelchairs

This sorted list will affect the priority of feature development during the main
development cycle of the project.

11

-57-

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification
3 Requirements Specification

3.1 Functional Requirements

Functional requirements refer to the basic functionality that the project should
meet, disregarding non-implementation specific factors such as performance or
security.

3.1.1 Requirement 1: Navigate Map

3.1.1.1 Description & Priority
Priority: High

The user should be able to navigate a map of the world on their screen by using
standard Google Maps interface. The map should display a search bar, real-time
bus icons and bus stop icons. When the app loads, the app should initialise the
map at the user’s location to make it more convenient to search for nearby bus
stops. Users can search for busses and bus stops using the search bar. The app
should update the selectable icons on the map every few seconds.

3.1.1.2 Use Case
Scope

The scope of this use case is to allow the user to navigate the world map
and to search for bus stops and busses in real-time.

Description

This use case describes the process of downloading real time bus data
from the Standard API and displaying it on the map. It also describes the
search functionality.

Use Case Diagram
Navigate Map J
i

Download
Live Data

EA

Web Service

Figure 1 Navigate Map Use Case

12

- 58 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

Flow Description
Precondition

The app must have an internet connection and location services must be
enabled.

Activation
The use case begins when the user opens the map.
Main flow

1. The app detects the user’s current geographical position.

2. The app map zooms into the user’s current geographical position.

3. The app queries the Standard API and downloads the latest bus
state data. If the Standard API cannot be reached, see A1.

4. The app parses the download data and translates that to icons on
the map.

5. The app renders the icons on the map and begins listening for the
user’s taps on the icons.

6. The app loops back to Main Flow step 2 to continue gathering live
data.

Alternate flow

A1: Standard API could not be reached.
1. The app attempts to connect to the Standard API 3 more times.
2. If the app manages to connect, return to Main Flow.
3. Else see E1.

Exceptional flow

E1: Standard API connection failed.
1. The app displays an error to the user notifying them of the network
error. The app also displays a ‘retry’ button.
2. The app waits until the user presses the ‘retry’ button.
3. When the user presses the ‘retry’ button, see A1.

Termination

This use case terminates when the app is closed or the user navigates to
the alerts or settings screen.

Post condition
The map has been populated with information.

13

-59 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

3.1.2 Requirement 2: Select Map Item

3.1.2.1 Description & Priority
Priority: High

While navigating the map, the user should be able to tap on the icons that have
been pulled from the server. Once these icons are pressed, the map should
center on that icon and should display a floating information panel with relevant
information on that object.

For objects that contain a list (such as busses containing a list of their stops),
action buttons should be available on the list entries. For example, timetable
entries should provide a ‘Create Alert’ button and a ‘Select Bus’ button.
3.1.2.2 Use Case

Scope

The scope of this use case is to allow the user to select and deselect map
items.

Description

This use case describes the process that occurs when a map item is
selected and when a map item is deselected.

Use Case Diagram

Select Map Item

i

£ s
User

View Panel)~

]

Download
Live Data

\/
GET
Live Data

Figure 2 Select Map Item Use Case

-60 -

Web Service

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

Flow Description

Precondition

The app must have an internet connection and location services must be
enabled. The map has been populated with icons.

Activation

The use case begins when the user taps a bus or depot icon on the map.

Main flow

1.
2:

The app displays a floating panel with placeholder information.
The app queries the Standard API for information on that specific
object. If the Standard API cannot be reached, see A1.

3. The app downloads the information data.
4.
5. The app loops back to Main Flow step 2 to continue gathering live

The app replaces the displayed data with the new data.

data.

Alternate flow
A1: Standard API could not be reached.

1:
2.
3.

The app attempts to connect to the Standard API 3 more times.
If the app manages to connect, return to Main Flow.
Else see E1.

Exceptional flow
E1: Standard API connection failed.

1:

2.
3.

The app displays an error to the user notifying them of the network
error. The app also displays a ‘retry’ button.

The app waits until the user presses the ‘retry’ button.

When the user presses the ‘retry’ button, see A1.

Termination

This use case terminates when the user closes the information panel.

Post condition

The app returns to the navigation map.

15

-61-

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

3.1.3 Requirement 3: Create Alert

3.1.3.1 Description & Priority
Priority: Medium
When the user presses the ‘Create Alert’ button in the information panel, another
panel with options will be displayed to the user allowing them to configure and
create the alert. Alerts are push notifications sent to the user for when they
should leave their home to reach the bus on time.
3.1.3.2 Use Case

Scope

The scope of this use case is to allow the user to create alerts for when
they should leave for the bus.

Description

This use case describes the process that occurs during the configuration
and creating new alerts.

Use Case Diagram

Create Alert J

A @)
_, Dialog Dialog

User

Vi

Download
Live Data
V
GET
Live Data

Web Service

Figure 3 Create Alert Use Case

16

-62 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

Flow Description
Precondition

The app must have an internet connection and location services must be
enabled. The user is viewing a bus stop information panel.

Activation

The use case begins when the user taps the ‘Create Alert’ button under a
time slot entry.

Main flow

1. The app displays a dialog requesting the user to insert configuration
data for the alert.

2. The user inserts configuration data for the alert.

3. The user taps ‘Confirm’.

4. The app processes the configuration data and creates the alert. If
there is an issue with the configuration, see A1.

5. The app creates an alert listener to send a push notification once the
bus’s ETA reaches a certain value.

Alternate flow

A1: Misconfigured Alert
1. Determine which elements of the alert are misconfigured.
2. Highlight the misconfigured fields and display a tooltip to help the
user understand how to fix this error.
3. Return to Main Flow step 2.

Termination

The use case ends when the user closes the dialog or successfully creates
the alert.

Post condition

The app is now prepared to send the user a push notification once the alert
is triggered.

17

-63-

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

3.1.4 Requirement 4: Manage Alerts

3.1.4.1 Description & Priority
Priority: Medium
Multiple alerts can exist at the same time, and the user may want to edit or delete
these alerts. An alert menu will exist in the app, allowing the user to see all the
created alerts and will allow them to edit and delete these alerts.
3.1.4.2 Use Case

Scope

The scope of this use case is to allow the user to view all the alerts, and
edit/delete specific alerts.

Description

This use case describes the process that occurs during the display,
modification and deletion of alerts.

Use Case Diagram

Manage Alerts J

i< """""""""""""""" | >i

User H App
DRl N\ %o
| > Write Changes

Figure 4 Manage Alerts

Flow Description
Precondition

The app must have an internet connection and location services must be
enabled. The user is on the navigation map screen.

Activation
The use case begins when the user opens the ‘Alerts’ screen.

18

-64 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

Main flow

The app displays any alerts that have already been created.

The user taps an alert to open its configuration.

The app displays the configuration options.

The user changes the configuration.

The user taps ‘save’ to save the alert configuration. If there is an
issue with the configuration, see A1. If the user taps ‘delete’, see A2.
6. The app saves the changes made to the alerts.

7. The app closes the configuration panel.

8. Go to step 2 as the alerts screen will be refreshed.

gD

Alternate flow

A1: Misconfigured Alert
1. Determine which elements of the alert are misconfigured.
2. Highlight the misconfigured fields and display a tooltip to help the
user understand how to fix this error.
3. Return to Main Flow step 4.
A2: Delete Alert
1. The app deletes the alert data.
2. The app won't send any push notifications related to the related bus.
3. Return to Main Flow step 8

Termination

The use case terminates when the user closes the app or navigates away
from the alerts screen.

Post condition
The user’s changes to the alerts will be saved.

19

- 65 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

3.1.5 Requirement 5: Hail Bus

3.1.5.1 Description & Priority
Priority: Medium
When the user sets up an alert or presses the ‘Hail Bus’ button, the app will send
a signal to the web server, which will send a signal to the bus, triggering the
‘Stop’ buzzer to activate. While this is only going to occur in a simulation, the
real-life hardware implementation is not within the scope of this project.
3.1.5.2 Use Case

Scope

The scope of this use case is to send a stop signal to the bus, regardless of
how it was triggered.

Description
This use case describes the process of sending the stop signal to the bus.
Use Case Diagram

Hail Bus J Get Bus
D
A
PressHail \ > Send Hail A----- Automatically
Button Command Hail Bus
V
POST Hail

User App

Commands i

GET Hail
Commands Web Service
A
Check Hail
Commands

Simulation

Figure 5 Hail Bus Use Case

Flow Description
Precondition

The app must have an internet connection and location services must be
enabled.

20

- 66 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

Activation
The use case starts when the user or app invokes the ‘Hail Bus’ function.
Main flow

1. The app gathers the bus’s unique ID.

2. The app sends a hail bus command to the web service along with
the bus ID. If the Standard API cannot be reached, see A1.

3. The app will receive a response from the web server when the bus is
successfully hailed.

Alternate flow

A1: Standard API could not be reached.
1. The app attempts to connect to the Standard API 3 more times.
2. If the app manages to connect, return to Main Flow.
3. Else see E1.

Exceptional flow

E1: Standard API connection failed.
1. The app displays an error to the user notifying them of the network
error. The app also displays a ‘retry’ button.
2. The app waits until the user presses the ‘retry’ button.
3. When the user presses the ‘retry’ button, see A1.

Termination

The use case is terminated at the end of the main flow.

Post condition

The bus’s ‘STOP’ buzzer/light will have been triggered remotely.

21

-67 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

3.1.6 Requirement 6: Bind Simulated Person

3.1.6.1 Description & Priority
Priority: Low
The app contains a developer screen that allows the user to ‘bind’ the GPS
coordinates of the app to the translated co-ordinates of a SP in the simulation.
This allows the user to test features of the app within the simulation.
3.1.6.2 Use Case

Scope

The scope of this use case is to allow the user to bind the app’s GPS
coordinates with that of a SP, and to unbind the app from the SP.

Description

This use case describes the process that occurs during the binding and
unbinding process.

Use Case Diagram

Bind Simulated Person J ...

h S

i \V;

: Send U

! Reques!

nbind Send Bind
t Request

User a 1 App
2 ! Get SP
i Coordinates
""""" """
POST GET
Bind Config Bind Config
Web Service

Send SP
Coordinates

Get
Bind Config i

Figure 6 Bind Simulated Person Use Case

22

- 68 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

Flow Description
Precondition

The app must have an internet connection and location services must be
enabled.

Activation
The use case begins when the user navigates to the developer screen.
Main flow

1. The user gets the SPID by looking at the simulation.

2. The user fills out the SPID field on the form on the app.

3. The user taps the ‘BIND’ button.

4. The app sends a bind request to the Developer API. If the Developer
API cannot be reached, see A1.

5. The simulation pulls the bind request from the web service. If the
Developer API cannot be reached, see E2.

6. The simulation begins sending that SPs co-ordinates to the web
service. (E2)

7. The app begins pulling the SP co-ordinates from the web service.
(A1)

8. The app replaces the GPS co-ordinates with the SP co-ordinates.

9. When the user is finished using the binding feature, they tap the
‘UNBIND’ button.

10.The app sends an unbind request to the Developer API. (A1)

11.The simulation pulls the unbind request from the web service. (E2)

12.The simulation stops sending that SPs co-ordinates to the web
service.

13.The app stops pulling the SP co-ordinates from the web service.

Alternate flow

A1: App could not reach the Developer API.
1. The app attempts to connect to the Developer APl 3 more times.
2. If the app manages to connect, return to Main Flow.
3. Else see E1.

Exceptional flow

E1: App failed to connect to the Developer API.
1. The app displays an error to the user notifying them of the network
error. The app also displays a ‘retry’ button.
2. The app waits until the user presses the ‘retry’ button.
3. When the user presses the ‘retry’ button, see A1.
E2: Simulation failed to connect to the Developer API.
1. The simulation continues to retry to connect every 5 seconds.

23

- 69 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification
2. Once connection succeeds, the simulation returns to the Main Flow.

Termination

The use case is terminated when the app is closed or the user unbinds the
SP.

Post condition
The app goes back to using standard GPS co-ordinates.

24

-70 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

3.2 Non-Functional Requirements

Non-Functional Requirements refer to general behaviour that the project must
adhere to, disregarding the implementation of the functional requirements. For
example, the response time and security requirements.

3.2.1 Performance/Response time requirement

It is important for this application to have a quick response time, as it is a real-
time application working over a three-tier architecture. The Unity simulation can
afford to have a low framerate of at least 15 frames per second. However, the
actual simulation of the vehicles must still run in real time. To accomplish this, the
simulation must be framerate independent and be deterministic.

3.2.2 Security requirement

The web service AP| endpoints must only be accessible using an authentication
method to prevent tampering or accessing restricted data. Since this is a proof-
of-concept, the API does not require SSL or HTTPS encryption.

To prevent GPS spoofing, the user's mobile phone will be checked for tampering
on startup and every minute from then. The Android ‘SafetyNet' library is a
package designed by Google to check if the Android device for rooted or
unlicensed. The ‘SafetyNet’ library will be used to prevent GPS spoofing.

3.2.3 Reliability requirement

The project should be built to the standard so that simply using it how it was
intended to should not result in any errors. Rigorous testing throughout the
development cycle should ensure that the final project has no critical bugs in it
that make the app unreliable.

3.2.4 Extendibility requirement

The app and web service must be designed so that a production ready build
would be easy to implement. The simulation tier does not need to be extendible.
The Standard API should be ignorant to the fact it is getting data from a
simulation, since it would be getting data from a hardware device on a bus. The
app will need minor tweaking for a production-ready build, such as removing the
developer mode.

3.2.5 Resource utilization requirement

The Unity simulation will have to run at an acceptable framerate medium-end
gaming laptop with an Nvidia GTX660m Graphics Card. Because of this,
simulation factors outside of the main scope should not be processed or should
be processed only when necessary. For example, instead of simulating an entire
city with traffic, the traffic simulation will only occur around the areas where the
busses already exist.

25

-71 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification
4 Interface requirements

4.1 GUI

4.1.1 Map Screen

When the user opens the app for the
first time, they will encounter the
main map screen. This screen
contains a search bar, options menu
and the icons the user interacts with
to use the app’s main functionality.

In this example, the person icon
represents the user’'s position, the
alert icon represents the bus stop
position and the star represents the
bus’s position.

Figure 7 Map Screen GUI

4.1.2 Options Menu

To navigate the app, the user will
have to tap the hamburger menu on
the top-right of the app screen.

This will open a dropdown menu
containing the links to the Alerts
screen and the Bind SP screen.

When the user taps one of these
links, the app will transition to that
screen.

This hamburger menu will persist
throughout the entire app and its
contents will change depending on
what the current active screen is.

Figure 8 Options Menu GUI

26

-72 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

4.1.3 Bus Info Panel

The bus info panel is displayed when
the user taps on a bus icon on the
map.

Essential information on that bus is
displayed on the top of the panel,
along with an info button that will

replace the panel content with Generic Company Name®
ROUTE-5X

miscellaneous information.
Generic Stop Nome & *
ETA 12.00 (3m late)

The lower panel is the bus’s current

route timetable. These timeslots exwoomam O ®
display the bus stop name, ETA et K
(including lateness), a ‘Hail’ / ‘Alert’ O Setome (1
button and a ‘Select Bus Stop’ Seildiukl
button.

Figure 9 Bus Info Panel GUI

4.1.4 Bus Stop Info Panel

The bus stop info panel is displayed
when the user taps on a bus stop
icon on the map.

The bus stops’ name and timetable
is visible on this panel. An info button
is placed beside the bus stop name.
When pressed, extra information will
be displayed about the bus stop in

Generic Route Name @ * "'

place of the timetable. ETA 1200 3 ote)

Like the bus info panel, the timetable e w0 O ®
displays the bus name, ETA e (D) e
(including lateness), a hail, alert and G ot e (1

‘Select Bus’ button. Sl

Figure 10 Bus Stop Info Panel GUI

27

-73-

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

4.1.5 Search Bar

The search bar will begin to populate
results from the map as the user
types, using a fuzzy search
algorithm.

The search results will contain the
name of the result, the distance to
that result from the user and an icon
representing the result type.

When the user taps on a result, the
search box will be cleared and the
map will select that item, following it
and displaying its information pane.

Figure 11 Search Bar GUI

4.1.6 Create Alert

The create alert dialog box is
displayed when the user taps the
‘Create Alert' button on either the
bus or bus stop info panels.

The alert displays the name of the = Nmm& X
time slot and bus stop to set the alert e
for, and allows the user to select Bun top: Bun Sop Nrme
days to repeat the alert for. et
_ 0o0o0gdg
The alert can be closed by tapping MO vkr Lo
cancel or the top-right X button. The
alert is saved when the user taps the St oo eme. T) ¢

‘Confirm’ button. G R (1

ETA 12.00 (3m late)

Figure 12 Create Alert GUI

28

-74 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

4.1.7 Modify Alerts

The alert settings screen can be
accessed from the options menu.

This screen lists all the currently
active alerts. Each alert displays the e =T
name of the bus stop it is currently Rlpadt o, o P
assigned to, and the time slot. It also ey i

displays the days that the alert
should repeat.

Tapping on an alert will open its
configuration menu, like the ‘Create
Alert’ Ul. From here, the user can
confirm the changes or delete the
alert.

Figure 13 Modify Alerts GUI

4.1.8 Bind Simulated Person

The dialog to configure the SP
binding is accessed through the
options menu.

When the ‘Bind SP’ dialog is
displayed, the user should fill in the
SPID field and then tap the ‘Confirm’
button to finish the binding.

Once the binding is complete, the
GPS co-ordinates on screen will
match the dialog co-ordinates of the
SP.

The dialog can be dismissed by
tapping the ‘Cancel’ or the X button.

Figure 14 Bind Simulated Person GUI

29

-75-

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

4.2 Application Programming Interfaces (API)

The app and simulation will interact heavily with the web service's API. As
explained before, there are two different API types hosted on the web service.
The Standard API is for interfacing with the simulation and providing the basic
features of the app that would be used in production. The Developer API is for
connecting the binding feature to the simulation and for any other non-critical
functionality such as logging.

The app will also interact heavily with the Google Maps API. When the app
receives data that must be transposed onto the map, the Google Maps API will
handle the rendering and the placement of the map icons. From this, the rest of
the app can function by interfacing with the Google Maps API.

The simulation should push position data to the Standard API. However, the
simulation elements must exist within a simulated real-world environment that
can overlay the Google Maps API data. The simulation will pull terrain and road
data from the OpenStreetMap project using a Unity package. By doing this, the
terrain and roads will be accurate to the real world; therefore, the co-ordinates
that are send back to the API and to the app are accurate on Google Maps.

Simulation

Figure 15 Three-Tier Architecture

30

-76 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification
5 System Architecture

5.1 Mobile App

<< InfoPanel >>
infoPanelData: Object

+ Show()
+ Hide()

3

r—Exten eods——]
BusinfoPanel TimeSiotinfoPanel
- infoPanelData: Bus - infoPanelData: TimeSiot
BusAppWebService MapActivity
CreateAlertDialog
- lastReceivedData: byte[] - map: SAPI ‘
- lastSentData: byte{] - api: BusAppWebService - CreateAlert()
+ ListenForNewData() + Updateicons()
+ OnNewDataReceived() + OniconPressed()
Mransitions
to
GoogleMapsAPI ConfigureAlertsActivity
Extends
- mapitems(]: Mapitem + alerts: List<Alert>
+ MoveMap() + EditAlert()
+ RenderMap() + DisplayAlerts()
+ GetCoordinates() + GetAlerts()
+ CreateNewMapltem()
<< AlertDialog >>
dialogTitle: String
& . i il
EditAlertD ur{> : :iln imeS! D(} :melot
= # alertRepeatingDays(): Day
- UpdateAlert() # positiveButton: Button
- DeleteAlert() # negativeButton: Button
+ Show()
+ Hide()
OnPositiveResponse()
OnNegativeResponse()

Figure 16 Mobile App Class Diagram

This is a class diagram of the Android mobile application. | chose this
architecture because it is the most straight-forward way to build the app. The
Alert Dialogs and Info Panels both inherit from their abstract classes, which
means that if extra types of panels or dialogs need to be implemented, they can
just inherit from their abstract parents. The MapActivity is the main activity of the
app, and essentially acts as a wrapper for the Google Maps APl and the
BusAppWebService.

31

-77 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

5.2 Web Service

5.2.1 Get Map Data
Endpoint: GET /api/map

Description: Downloads formatted data of all busses and bus stop co-ordinates to
be placed into the map view.

Parameters: None
Returns: Formatted Map Data

5.2.2 Put Map Data
Endpoint: PUT /api/map

Description: Uploads formatted data of all busses and bus stop co-ordinates to
be placed into the map view.

Parameters: Formatted Map Data
Returns: None

5.2.3 Get Bus Data

Endpoint: GET /api/bus/{busReg}

Description: Downloads all data relevant to the passed in bus object.
Parameters: Bus Registration Number

Returns: Formatted Bus Data

5.2.4 Put Bus Data

Endpoint: PUT /api/bus/{busReg}

Description: Uploads formatted data belonging to the bus.
Parameters: Bus Registration Number

Returns: None

5.2.5 Get Bus Stop Data

Endpoint: GET /api/stop/{stopld}

Description: Downloads all data relevant to the passed in bus stop object.
Parameters: Bus Stop ID

Returns: Formatted Bus Stop Data

32

-78 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

5.2.6 Put Bus Stop Data

Endpoint: PUT /api/stop/{stopld}

Description: Uploads formatted data belonging to the bus stop.
Parameters: Bus Stop ID

Returns: None

5.2.7 Get New Commands
Endpoint: PUT /api/dev/changes

Description: Downloads a formatted list of commands to be executed from the
developer mode.

Parameters: None
Returns: A formatted list of developer commands

5.2.8 Put Bind SP

Endpoint: PUT /api/dev/bind/{spid}

Description: Uploads a bind command to the web server.
Parameters: The ID of the Simulated Person to bind the app to.
Returns: None

5.2.9 Put Unbind SP

Endpoint: PUT /api/dev/unbind

Description: Uploads an unbind command to the web server.
Parameters: None

Returns: None

5.3 Simulation

Development in the Unity engine is done with the entity-component programming
paradigm. Instead of being strictly Object-Oriented, game object behaviour in
Unity is defined by composition over inheritance. Each game object in Unity
follows this architecture design pattern:

GameObject

| Renderer | ‘ Collider | ‘ Other Component

Figure 17 Unity Entity-Component Architecture

33

-79 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

6 System Evolution

At the end of the development cycle for this proof-of-concept, the next logical
step would be to make the project production-ready. This would require building
a hardware device to be installed on busses to send data to the Standard API. It
would also require developing an online web application for bus companies to
manage their fleet. However, some changes will have to be made to the web
service to make it scale better for thousands of users and busses at once. The
simulation would be abandoned, as the Standard API should be almost
production ready.

From the passenger’s point of view, the app should be updated to include more
features, making it more enjoyable to use. For example, a journey planner could
be worked into the app after the 1.0 release. This would further enhance the
app’s ability to make public transportation easier to use and more ubiquitous in
our lives.

Social Media scraping could also be a future feature. Looking at social media
pages for events could allow the app to determine when there’s going to be an
extraordinary amount of traffic in the future. This could then be factored into the
estimated ETA and a push notification or email could be sent days prior to the
traffic delay to inform the user of the delay ahead of time.

Of course, with these extra features, the system requirements increase as well.
The web service may eventually have to be refactored into a distributed system,
depending on the workload. A large portion of the potential userbase is also
being left out by not developing an app for iOS. Developing an iOS app should
be made a priority and should be released alongside or soon after the Android
application. Once the web application is built for the bus companies, a consumer
facing web application would also be a good way to improve the user experience.

Distributed
Web Service

—_—
Distributed

In-Memory
Database

Web Application

Figure 18 Future System Architecture

34

-80 -

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification
7 Appendix

7.1 Survey Results
Do you take the bus as part of your daily routine?

16 responses

@ Yes
@® No

Which days do you usually take the bus?

11 responses

Monday 11 (100%)
Tuesday 11 (100%)
Wednesday 11 (100%)
Thursday 11 (100%)
Friday 11 (100%)
Salurday 4(36.4%)
Sunday 1(9.1%)

0 2 4 6 8 10 12

| don't like waitin.... 6 (54.5%)
It takes too long. .. 2(18.2%)
| don't like sitting... 4(36.4%)
Icantrely onth... 4(36.4%)
Bus overpacked 1(9.1%)
A lot of the time... 1(9.1%)
| don't like people 1(9.1%)
Constant breakd 1(9.1%)
o 1 2 3 4 5 6 7
35

-81-

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

What would make taking the bus more enjoyable?

Alert when | sho 7 (63.6%)

Alert whenI'm a 3(27.3%)
Real-time data t 9 (81.8%)
4 (36.4%)

5(45.5%)

Being able to se.

Being able to au

Accurate reak-ti 10 (90.9%)
Nothing, the bus
A personal bus 1(9.1%)
People playing 1(9.1%)
0 2 K} 6 8 10 12

How do you usually get around?

5 responses

Walking 2 (40%)
Cycling

Car 1(20%)

Motorcycle 1(20%)

Train 2 (40%)

LUAS 3 (60%)

Why don't you usually take the bus?

esponse

| don't usually n

2 (40%)

| don't like waitin
It takes too long 3 (60%)
| don't like sitting 2 (40%)
| cantrely on th 2 (40%)
There's no bus s

Far too busy

36

-82-

Bus Stop! — Aaron Meaney — 14326016

Requirements Specification

What would convince you to take the bus more often?

5 responses

Alert when | sho 1(20%)

Alertwhen I'm a 1(20%)
Real-time data t 3(60%)
Being able to se
Being able to au 1(20%)

1(20%)

Accurate real-ti
Iftherewas a b

There's nothing 2 (40%)

Would you use this app if it were available now?

@ Yes
® No

What Operating System is on your phone?

6 responses

@ Android

@®ios

@ Windows Phone
@ None of the above

37

-83-

Bus Stop! — Aaron Meaney — 14326016

6.4 Monthly Journals

6.4.1 September

| spent most of this month coming up with an idea for my software project. While |
had a lot of time to come up with an idea over the course of my internship, |
hadn’t really given it much thought, as fourth year felt months away. Coming up
with a viable idea in a short amount of time was quite stressful. There were a few
moments where | regretted picking 10T, since | felt that choosing Software

Development would have given me a broader range of projects to come up with.

Since | have a keen interest in game development, | sometimes wanted to make
a game related project. In fact, specialising in game development was my plan
since before college. However, | heard a few people say that making a game for
your final year project is generally not a good idea since recruiters in normal
software companies use it as a filter for potential candidates. | wanted to keep my
options open, and specialising in software development sounded a bit too
familiar, so | opted to choose loT. Game development didn’t run this year
anyway.

| spoke with some of my colleagues during my internship and they gave me some
great advice for choosing a final year project. Taking their advice into account, |

chose some criteria for my final year project:

» The project must be interesting enough to keep me working on it for the whole

year.
» The project scope must be scalable depending on the project schedule.

» The project must investigate solutions to a problem, or improve a service.
* The project must be marketable.

» The project must not include robotics, since they’re too hard to deal with.
» The project must not be a video game.

After a few weeks of thinking, it was the day before the pitch and | had two ideas

on my shortlist. One was a robot that links up with video services like YouTube,

-84 -

Bus Stop! — Aaron Meaney — 14326016

Twitch and Skype. Essentially a video camera on a remote-control car. The other
idea was a sensor platform in busses to give bus companies the ability to plan

their routes more efficiently and to give more information to their customers.

| spoke to my friend Dan about this idea and he helped me narrow it down to just
focusing on the passenger functionality of the app. My final idea included using
sensors on the bus to find out data like how many seats were available, the bus
location, etc. Using this data, users could automatically hail a bus based on their
distance to the bus stop, they could calculate their ETA based on multi-trip
journeys, and a lot more functionality could be extruded from this idea of putting
sensors on a bus. My project idea filled out all the criteria, except for one. | still
didn’t find it interesting enough, and my desire to do game development work
was still strong. There was another problem still, | don’t have a bus to develop
the app on. My solution was to build the ‘real world’ implementation of the project
in a simulation using the Unity3D game engine. It would be just like making a

game!

The next day, my project idea was accepted.

6.4.2 October

This month | spent my time working on the project proposal. At the start of the
month, | worked on the Objective and Background sections of the proposal. On
the 12th of October, | sent in my first draft of the proposal to Dominic and | had a

proper meeting with him on the 18th of October.

During the meeting on the 18th, Dominic gave me feedback regarding the
Objective and Background sections of the project proposal. | also got some
suggestions regarding the Requirements Specification document. | made some
changes over the next few days and | returned it for more feedback. On the 22nd

of October, | got the greenlight on my proposal and | uploaded it that day.

| haven’t started working on the Requirements Specification yet, I'll begin that

once | take care of other module assignments.

-85 -

Bus Stop! — Aaron Meaney — 14326016

6.4.3 November

| began work on the Requirement Specification document on Thursday, 16th of
November as | was very busy with other modules this month. | spent the next few
days filling out the Requirements Specification document until | had a first draft
ready on the 18th of November. Once | had completed the first draft, | sent it

Dominic to get some feedback.

From the 19th of November to the 21st, | began working on my project prototype.
| set up a Unity simulation, a Sinatra web server and an Android test application
to begin the development of the prototype. By the 21st | had a basic prototype
working between the three systems, however a few minor changes had to be

made for it to be ready for the mid-point presentation.

Dominic replied to me on the 20th of November with good feedback. | was very
busy this week as well so | couldn’t make the changes to the document until
Wednesday the 22nd of November. | then uploaded the final version of the

Requirement Specification.

I'll finish the prototype on the weekend of the 1st of December, in time for the

mid-point presentation.

6.4.4 February

| didn’t have a lot of time to work on the project this month as | was focusing on
other Continuous Assessments within the degree. | did manage to fix some minor
bugs and | also cleaned up some code after the prototype from December. |
managed to add in some small easy to implement features such as a random
name generator for bus passengers and a quick refactor of the APl and Control

Input systems.

The main bulk of the work was attempting to set up the Travis CI service for my
project. This involved a lot of configuring and pushing to git to synchronise my
GitHub and Travis Cl accounts. | couldn’t get the service working correctly by the
end of the month, so | abandoned the CI requirement as | needed to start

developing features as soon as possible.

- 86 -

Bus Stop! — Aaron Meaney — 14326016

6.4.5 March

This month was spent focusing entirely on implementing the bulk of the project’s
functionality. In particular | designed and implemented the object model for the
simulation; for example, Busses, Bus Stops, Bus Routes, Timetables, Companies
etc. | also implemented a Scheduling System that allows the simulation to trigger
an event set at a certain time. For example, when a bus must start servicing a
stop according to the timetable, the Scheduling System will notify the Bus to

service this stop.

A large part of this month was also spent implementing the Timetable editor. This
allows the user to create and modify timetables using a custom build editor
window. The bus timetable can display multiple bus services/routes at once and
keeps the correct order of the bus stops by applying a topological sort to all of the

bus stops in the selected bus routes.

Passenger Boarding and Disembarking was also implemented, along with the
ability for the bus to drive along a route and stop at each stop once it's hailed.
Without getting into too much extra detail in this entry, the foundation of the
simulation was implemented in this month; however, a lot more work has to be

done to implement the web server and Android application.

6.4.6 April

Unfortunately, | was too busy working on other Continuous Assessments and |

didn’t have time to work on this project.

6.4.7 May

This month | began work on finishing my project by designing my poster’s initial
design. Once the design was done, | immediately started working on
implementing the Android application section of the project. This required the
development of a web server using Sinatra to store any long-term information
(such as Route and Bus Stop data), and an MQTT service for real-time
information (such as Bus Position and Capacity). | decided against using AWS

loT for this project as it is not supported by Unity.

-87-

Bus Stop! — Aaron Meaney — 14326016

| instead decided to use PubNub as it has a similar Publish/Subscribe
functionality as AWS IoT, a more straightforward setup process, is supported by

Unity and | also had experience using it to build a messenger app in 2" year.

Setting up PubNub was straightforward, however the servers went down on the
5t of May, which disrupted my plans to work on the app’s functionality. | then
decided to use this time to start work on the Sinatra web server. It took me a few
days to get this working as expected as | had to setup PostgreSQL on Heroku,
and to figure out a good way to store JSON in the database without it causing
any errors regarding character escapes. After some trial and error, | was able to
use base64 encoding to store the JSON.

While | was working on the web server, PubNub services were repaired and |
was able to start work on sending over the JSON data from the Unity simulation. |
also was able to start developing the Android app’s functionality. Not everything
went as expected, a lot of time was spent recoding the object model that was
present in the simulation. Due to time constraints, | had to make some sacrifices
in the design that would prevent some original features that were in the

requirements specification to be implemented in this project.

I's now the final day of development. | couldn’t implement as many of the
features that | was hoping to implement at the project. However, a solid
groundwork was implemented and I'm proud of what I've accomplished within
this academic year. The project was ambitiously scoped and while | couldn’t
implement everything, I'm happy that | was able to implement an MVP version
that can communicate the concept of the project, while also improving my skills

with the Unity engine, Sinatra framework, and Android Studio.

- 88 -

