
1

National College of Ireland

BSc in Computing

2017/2018

Deniss Strods

X14100398@student.ncirl.ie

Project Complete in Partial Fulfilment of the

BSc (Hons) in Computing.

Supervised by DR. Keith Maycook

CMS Lite Web Hosting

Platform

Technical Report

2

Contents

Executive Summary ...4

1 Introduction ...4

1.1 Solution ...4

1.2 Background ...4

1.3 Technologies ..5

2 System ..7

2.1 Project Overall Scope ..7

2.2 Requirements ...8

2.2.1 Requirements gathering stage..8

2.2.2 Functional requirements..9

2.2.3 Non-Functional Requirements ..41

2.2.4 User requirements ...42

2.2.5 Environmental requirements ...42

2.2.6 Application Programming Interfaces (API) ...42

2.3 System Architecture ...43

2.3.1 High Level System diagram ..43

2.3.2 Class Diagrams ...43

2.4 Implementation ...45

2.4.1 Cloud Infrastructure description ..45

2.4.2 Application Component functionality description46

2.4.3 GUI ...49

2.4.4 Design Patterns used ..61

2.5 Evaluation ...62

2.6 Testing ..62

2.6.1 Unit Testing ..62

2.6.2 User acceptance testing..64

2.6.3 System Testing ..64

2.7 System Evolution ..66

3 Bibliography ..67

4 Appendix ...67

4.1 Project Proposal ...67

3

4.2 Other Documents ...67

3

Executive Summary

We have developed software solution CMS – Lite Web Hosting Platform that

provides facility to build and host private web sites on the internet.

Platform allows to simplify website development and hosting for business owners

that want to build fast, dynamic and beautiful websites themselves.

System consists of three main software components, Platform that facilitates all

user applications, user container API Server and CMS Web Application (this part

will be multiplied by number of users and the fact that one user can have even

more than one app).

We have constructed web applications by utilizing power of Angular 2 for the front

end, Node.js for the back end and Docker technology to separate instances of the

user applications from one another. Nginx reversed proxy is used to redirect all the

traffic to the appropriate user container instances.

Platform component of the system can facilitate any web application that can be

docker containerized. To demonstrate this, 3rd party CMS was added to our project

in order for the users to have more flexibility when choosing web builder solution.

Requirements Specification

4

1 Introduction

1.1 Solution

We have developed PaaS - hosting platform where end user can host and build

web sites. Hosting Platform is place holder of user’s applications that are based

on our own CMS web application, but not limited to it as 3rd party CMS is available

as well.

Platform allows to simplify website development and hosting for professionals that

want to build fast, dynamic and beautiful website themselves. As target user base

we can consider GP’s, Mechanics, Barbers and theoretically any small business

owners that have limited knowledge about web page development and

deployment.

Users can register on Platform Portal and acquire their own subdomain name.

Application instance will be launched under that subdomain. User will customize

their own web page application instance non-complicated and unpainful way by

using intuitive in page interface, that will be complemented by simple guidelines

trough interactive demo. Users are able to develop a fast, dynamic one-page

application that allow high customization level with various skins and style themes

and highly customizable title page. We are using WYSWYG editing approach and

combining it with the smart templating system ensures that even novice users are

able to use it for their needs most efficiently. CMS component of the system has

dynamic code base that would change based on the user content addition and

configuration. Dynamic code helps to achieve faster performance of the running

web sites and allows to assemble front end part of the application from prewritten

modules that simplifies development and are tweaked by user configuration input.

In order to extend user options, it is possible to select what CMS to use when

acquiring subdomain name by selecting desired application type. User can choose

between CMS Lite (developed by us) or Grav CMS that is 3rd party Application.

1.2 Background

After performing preliminary research of the market, it is clear that Internet is

already saturated with different kind of hosting platforms and niche in the market

seems to be already taken by some well-known Platforms like Bluehost.com or

Wix.com or squarespace.com. But after closer examination it was discovered that

these solutions are far from perfect and there is an opportunity to develop software

solution better and more efficient than currently the ones available on the market.

Requirements Specification

5

Bluehost.com allows its users to host WordPress applications on their platform

with some minimal control of the running application entity. WordPress is well

known CMS with huge community, and they are developing extra functionality for

the platform daily, but this CMS is not really designed for average users, we even

can consider that WordPress is more developer oriented CMS. As well as

WordPress is written in PHP, it is resource demanding and slow, user heavy

websites are quite demanding on resources. (wordpress.com, 2017)

Wix.com allows its user to host their own CMS app that has nice drag and drop

capabilities. Problem with this solution is that it is not very flexible and is quite

expensive if we are talking about nice customized web pages, if website becomes

user heavy this solution does not scale well. (wix.com, 2017)

Squarespace.com similarly to wix.com are providing their own CMS that has drag

and drop interface, but the problem with this one is that all web pages developed

in squarespace.com look exactly the same way, the only distinction I could find

was the content of the pages. Styling was the same, title pages were look alike

e.c.t. (squarespace.com, 2017)

Our solution is average user oriented and allows even novice internet users to

build and deploy desired web sites with high degree of the customization. As

Platform and web application is written using node.js and Angular.js, applications

are very efficient and fast and are not requiring as much resources as WordPress

application typically would from the server. This allows reduction of expensiveness

of each instance and allows to host more instances on one VM than we could with

WordPress.

1.3 Technologies

Docker Daemon is installed on top of VM, this piece of software allows us to create

standard images for the CMS web application and then run these applications in

separate isolated containers on top of the same VM. Container is created and

assigned to subdomain name, this functionality is achieved by environment

variables configuration for the docker container. One of the nicest benefits of using

Docker is that if needed it will be possible to scale this System horizontally by just

adding extra VM’s, and transferring containers to other VM.

Google could is used as IaaS provider, they provide all necessary facilities for the

project and are providing 250Eur credit for their year trail. 250Euro budget for cloud

infrastructure was sufficient for the development of the System and it fits all the

requirements of the project.

Ubuntu 16.0 Linux is used as the operating system for the VM’s, this seems to be

a good pick from Linux flavors as is not hardest to use and is easy to maintain.

Requirements Specification

6

Server-side programming is conducted by means of Node.js (powered by

JavaScript ES5 and chrome JS engine V8) and some additional bash scripting.

Node.js is used as it provides good, maintainable way to write a code and has a

lot of modules that make development less time consuming. For instance, these

modules are used:

 For rapid server-side coding express Node.js module.

 Passport Node.js module will be utilized for authentication and

authorization.

 Mongoose module will be used to define Mongo Database schemas

As database management system, MongoDB is used. Mongoose Node.js module

is providing abstraction when programming for database layer, and reduces

complexity of the code.

Client-side programming is done by utilizing power of Angular 2 framework that

uses TypeScript as the main programming language (subset of JavaScript and has

similar features as ES6). This way our web applications is component based

follows MVC architecture. For smoother frontend JS programming jQuery library is

used as well, as it is mandatory component when using bootstrap. For the look

and feel of the application we are using bootstrap 4 Alpha CSS framework and

mertro.css. Additional styling and animation are coded by utilizing animate.css

library. For the editing page part of the application medium.js is utilized, this is

editor module for the front-end text editing and text editable content change.

Comments sections for blogs are utilizing SaaS DISQUS that provides facility to

add dynamic and manageable commenting sections into our page.

For unit testing purposes Karma and Jasmine unit testing framework is utilize and

all the tests written for application are following Jasmine and Karma dictated

coding rules.

As additional feature 3rd party CMS Grav is offered as alternative to our own built

CMS. Grav is modern static file open source CMS that allows easy and interesting

way to develop websites as it is static file based CMS that does not require

database.

Requirements Specification

7

2 System

2.1 Project Overall Scope

The scope of the project was to develop a PaaS system that consists of multiple
components. The system consists of a Docker control API component, Platform
portal component and CMS Web Application Component.

Docker control API component has direct access to the host VM and Docker
Daemon. This component does not have any security verification, just simple
google infrastructure firewall security that will ensure that all outer traffic is blocked.

Platform portal component consists of:

• Login / Signup System

• Web GUI interface

• Docker container control mechanisms by utilization of Docker control API
component

• User domain / subdomain name control

Platform portal component does not have control over the user web applications
content.

CMS Web Application Component has:

• Login / Signup system connected to same account as platform

• Initial application build facility

• Dynamic code base that is generated based on component addition

• WYSWYG editing approach

• Title page templating engine with pre-set multiple templates

• Facility to insert new pages

• Facility to add items to the navbar

• Navbar customization functionality from pre-set styles

• Footer addition and customization functionality

• New page templating engine with pre-set multiple templates

• Facility to upload and insert Images and files into the pages

• Commenting system

• Blogging section with blog addition capabilities

CMS Web Application Component does not have facility to create new templates
for the title pages and new user pages.

Requirements Specification

8

System is limit to 500 instances of the user applications in order to not exceed
resources of VM that it is running on.

2.2 Requirements

2.2.1 Requirements gathering stage

As the system that we are developing is purely my own initiative, standard
elicitation techniques cannot be applied to requirement gathering process as there
are only couple or stake holders, and project owner is actually a developer
himself(me). At initial stage we have generated some core requirements that we
specified below and after we have iterating through them on the development
stage in order to implement features in real life.

Requirements Specification

9

2.2.2 Functional requirements

2.2.2.1 Use Case Diagram

2.2.2.2 Requirement 1 <User Registration>

2.2.2.2.1 Description & Priority
User registers for the service in the

main platform portal. High Priority

2.2.2.2.2 Use Case

Requirements Specification

10

Scope User shall acquire the account on

platform

Description User is asked to enter his registration

details

Precondition User has valid registration details

 User has valid e-mail address

 There is no other accounts with the

same e-mail

Activation User selects registration button

Main flow 1. User enters his registration details

and hits register button.

2. System creates account for the

user

Alternate flow

Exceptional flow E1 (Server goes offline):

1. User enters his registration details

and hits register button.

2. System goes offline before user

finishes registration, error

message is returned

E2 (User tries to use already used

user details):

1. User enters username that already

exists, or User enters email that

already was used

2. System returns error message with

error explained

Post Condition The User has subscribed for

service and has account created

 The user is logged in to the system

 The user has access to the

functions of the system

Requirements Specification

11

Use Case Diagram

2.2.2.3 Requirement 2 <User Login>

2.2.2.3.1 Description & Priority
User is able to login with his

credentials. High Priority

2.2.2.3.2 Use Case

Scope Scope of the requirement is for the

user to login.

Description User is asked to enter his login details

Precondition User has valid login details

 User have account on system

Activation User selects login button

Main flow 1. User enters his login details and

hits login button.

2. System authenticates User

Alternate flow

Exceptional flow E1 (Wrong login details entered):

1. User enters wrong username or

password

Requirements Specification

12

2. System returns error message with

error explained

E2 (Server is offline):

1. User enters his login details and

hits login button.

2. System goes offline before user

finishes registration; error

message is returned

Post Condition The user is logged in to the system

 The user has access to the

functions of the system

Use Case Diagram

2.2.2.4 Requirement 3 <Acquire application instance>

2.2.2.4.1 Description & Priority
High Priority

2.2.2.4.2 Use Case

Scope The scope of this requirement is, for

user to acquire CMS application

instance by selecting it from existing

pool of start images and specifying

subdomain.

Requirements Specification

13

Description User acquires application instance on

the platform.

Precondition User is logged in.

 User has not exceeded limit of

instances.

 Activation User presses Add Virtual Machine

button.

Main flow 1. User clicks Add Virtual Machine

button.

2. User selects start image to use.

3. User specifies subdomain name.

4. User presses create button.

5. System creates new application

instance

6. System launches application

instance under selected

subdomain

Alternate flow A1(Subdomain is taken):

1. User clicks Add Virtual Machine

button.

2. User selects start image to use.

3. User specifies already existing

subdomain name.

4. User presses create button.

5. System returns error with

message.

6. User specifies different subdomain

name

7. User presses create button

8. System creates new application

instance

9. System launches application

instance under selected

subdomain

Requirements Specification

14

Exceptional flow E1(Application server goes offline):

1. User clicks Add Virtual Machine

button.

2. User selects start image to use.

3. User specifies subdomain name.

4. User presses create button.

5. System returns error with

message.

E2(VM limit is exceeded):

1. User clicks Add Virtual Machine

button with exceeded VM limit.

2. System returns meaningful error.

Post condition System creates new application

instance

 System launches application

instance under selected

subdomain

 Running Web application under

subdomain

Use Case Diagram

2.2.2.5 Requirement 4 <Initial application instance build>

2.2.2.5.1 Description & Priority
User selects what features to be added

to the application. High Priority

Requirements Specification

15

2.2.2.5.2 Use Case

Scope When logging in first time on to web

application instance, user shall select

what elements to include in the

application before building frontend.

Description User shall select what elements are

required for his web application before

initializing and building frontend

Precondition Application instance is running

 User is logged in to running

instance under subdomain.

 Application is at initiation stage

 Activation User loges in to the running instance

under subdomain.

Main flow 1. User loges in to the running

instance under subdomain.

2. User selects what features to

include in application.

3. User presses initialize button

4. System builds frontend based on

User selection

Alternate flow A1(User does not select any features):

1. User loges in to the running

instance under subdomain.

2. User skips feature selection

stage

3. User presses initialize button

4. System builds frontend based

on Default feature set

Exceptional flow E1(Application server goes offline):

1. User loges in to the running

instance under subdomain.

Requirements Specification

16

2. User selects what features to

include in application.

3. User presses initialize button

4. System returns error with

message.

Post condition Frontend is configured and ready to

be edited

 System builds frontend based on

feature set

Use Case Diagram

2.2.2.6 Requirement 5 <Modification of the page content WYSWYG>

2.2.2.6.1 Description & Priority
Simple in page text modification. High

Priority

2.2.2.6.2 Use Case

Scope User can modify in page content,

everything is modifiable except navbar

itself

Description User is modifying content

Precondition Application instance is running

 User is logged in to running

instance under subdomain.

 Application is post initiation stage

Requirements Specification

17

 Activation User presses global edit button under

the menu bar

Main flow 1. User loges in to the running

instance under subdomain.

2. User clicks on the text he wants to

modify

3. User types in the new text content

4. User presses save button under

the menu bar

Alternate flow A1(User tries to switch the page before

he saves content):

1. User loges in to the running

instance under subdomain.

2. User clicks on the text he wants to

modify

3. User types in the new text content

4. User tries to switch the page

without saving

5. System prompts if changes should

be saved before switching page

6. User answers affirmative to the

prompt

Exceptional flow E1(Application server goes offline):

1. User loges in to the running

instance under subdomain.

2. User modifies content

3. User save button

4. System returns error with

message.

Post condition Web application has different text

content

Use Case Diagram

Requirements Specification

18

2.2.2.7 Requirement 6 <Selection of title page template>

2.2.2.7.1 Description & Priority
This feature will allow to add

uniqueness to the user website. High

Priority

2.2.2.7.2 Use Case

Scope User can select style of the title page

based on the multiple templates

provided

Description Selecting what template to use for title

page

Precondition Application instance is running

 User is logged in to running

instance under subdomain.

 Application is post initiation stage

 Activation User clicks change template button

under title page

Main flow 1. User loges in to the running

instance under subdomain.

2. User clicks change template button

under title page

3. User selects template

Requirements Specification

19

4. System switches template based

on User selection

Alternate flow

Exceptional flow E1(Application server goes offline):

1. User loges in to the running

instance under subdomain.

2. User clicks change template button

under title page

3. User selects template

4. System switches template based

on User selection System returns

error with message.

Post condition Web application has different

template selected

Use Case Diagram

2.2.2.8 Requirement 7 <Adding new page based on template>

2.2.2.8.1 Description & Priority
Core requirement for any CMS

System. High Priority

2.2.2.8.2 Use Case

Scope User creates new pages based on the

templates provided by system

Requirements Specification

20

Description Creating new page based on template

Precondition Application instance is running

 User is logged in to running

instance under subdomain.

 Application is post initiation stage

 Activation User presses add new page button

Main flow 1. User loges on the running instance

under subdomain.

2. User presses add new page button

3. User selects template

4. System creates new page based

on User selection

Alternate flow

Exceptional flow E1(Application server goes offline):

1. User loges on the running instance

under subdomain.

2. User presses add new page button

3. User selects template

4. System returns error with

message.

Post condition Web application has new page added

based on selected template

Use Case Diagram

Requirements Specification

21

2.2.2.9 Requirement 8 <Upload and add images to the page>

2.2.2.9.1 Description & Priority
Supporting image insertion. High

Priority

2.2.2.9.2 Use Case

Scope User adds images to the page

Description Uploading and adding images

Precondition Application instance is running

 User is logged in to running

instance under subdomain.

 Application is post initiation stage

 Activation User presses add new image button

Main flow 1. User presses add image button

2. User selects image from the list

3. System adds image to the page

Alternate flow A1(Adding image with upload):

1. User presses add image button

2. User uploads image from file

system

3. System adds image to the list

4. User selects image from the list

5. System adds image to the page

Exceptional flow E1(Application server goes offline):

1. User presses add image button

2. User selects image from the list

3. System adds image to the page

4. System returns error with

message.

Post condition Image is inserted into the page

Use Case Diagram

Requirements Specification

22

2.2.2.10 Requirement 9 <Change subdomain name>

2.2.2.10.1 Description &

Priority

In case if user decides to change his

domain, medium priority

2.2.2.10.2 Use Case

Scope User changes subdomain name

Description Changing subdomain name

Precondition User is logged in to the platform

portal

 User has application instances

 Selected Application instance is

stopped

 Activation User presses change subdomain

button

Main flow 1. User goes to the instance

properties section

2. User selects required instance

3. User presses change subdomain

button

4. User types new subdomain name

Requirements Specification

23

5. User presses save button

6. System changes instance

subdomain name

Alternate flow A1 (User selects running instance):

1. User goes to the instance

properties section

2. User selects required instance

3. User changes subdomain name

4. User presses save button

5. System prompts if it is ok to stop

the instance

6. User responds ok

7. System changes instance

subdomain name

Exceptional flow E1(Application server goes offline):

1. User goes to the instance

properties section

2. User selects required instance

3. User presses change subdomain

button

4. User types new subdomain name

5. User presses save button

6. System returns error with message

E2 (Subdomain is already in use):

1. User goes to the instance

properties section

2. User selects required instance

3. User presses change subdomain

button

4. User types new subdomain name

5. User presses save button

6. System returns error with message

Post condition Domain name of the instance is

changed.

Use Case Diagram

Requirements Specification

24

2.2.2.11 Requirement 10 <Add comment section>

2.2.2.11.1 Description &

Priority

Enable Guest user feedback, Medium

priority

2.2.2.11.2 Use Case

Scope User adds comment section to one of

the pages

Description Adding comment section

Precondition Application instance is running

 User is logged in to running

instance under subdomain.

 Application is post initiation stage

 User is editing content not on title

page

 Activation User presses add comment section

from menu

Main flow 1. User presses add comment

section button

2. System adds comment section

Alternate flow

Requirements Specification

25

Exceptional flow E1(Application server goes offline):

1. User presses add comment

section button

2. System returns error message

Post condition Comment section is added to the page

Use Case Diagram

2.2.2.12 Requirement 11 <Add Blog section>

2.2.2.12.1 Description &

Priority

Enable user to add blogs to this

section, High priority

2.2.2.12.2 Use Case

Scope User adds blogging section to the web

page

Description Adding blogging section

Precondition Application instance is running

 User is logged in to running

instance under subdomain.

 Application is post initiation stage

 User is editing content

 Activation User presses add blog section from

menu

Requirements Specification

26

Main flow 3. User presses add blog section

button

4. System adds blog section

Alternate flow

Exceptional flow E1(Application server goes offline):

3. User presses add blog section

button

4. System returns error message

Post condition Blog section is added to the page

Use Case Diagram

2.2.2.13 Requirement 12 <Add Blog>

2.2.2.13.1 Description &

Priority

Add blogs to his blog section, High

priority

2.2.2.13.2 Use Case

Scope User creates new blog

Description Creating Blog

Precondition Application instance is running

 User is logged in to running

instance under subdomain.

 Application is post initiation stage

Requirements Specification

27

 User is editing content

 User has added blogging section

 Activation User presses add blog in blogging

section

Main flow 1. User presses add blog button

2. System adds blog

Alternate flow

Exceptional flow E1(Application server goes offline):

1. User presses add blog button

2. System returns error message

Post condition Blog is added to the blog section page

Use Case Diagram

2.2.2.14 Requirement 13 <View Blog>

2.2.2.14.1 Description &

Priority

Guest user has ability to view and read

blog

2.2.2.14.2 Use Case

Scope User / Guest user views blog

Description View Blog

Requirements Specification

28

Precondition Application instance is running

 User is logged in to running

instance under subdomain.

 Application is post initiation stage

 User has added blog

 User has added blogging section

 Activation User presses on desired blog from the

list

Main flow 1. User presses view blog button

2. System displays blog

Alternate flow

Exceptional flow E1(Application server goes offline):

1. User presses view blog button

2. System returns error message

Post condition Blog is displayed to the user

Use Case Diagram

2.2.2.15 Requirement 14 <Update Blog>

2.2.2.15.1 Description &

Priority

Update blogs in his blog section, High

priority

2.2.2.15.2 Use Case

Requirements Specification

29

Scope User updates new blog

Description Updating Blog

Precondition Application instance is running

 User is logged in to running

instance under subdomain.

 Application is post initiation stage

 User is editing content

 User has added blogging section

 User has added Blog

 Activation User presses edit blog in blogging

section

Main flow 1. User presses edit blog button

2. System enables blog editing

Alternate flow

Exceptional flow E1(Application server goes offline):

1. User presses edit blog button

2. System returns error message

Post condition Blog is edited in the blog section page

Use Case Diagram

Requirements Specification

30

2.2.2.16 Requirement 15 <Add footer section>

2.2.2.16.1 Description &

Priority

Adding footer to the selected page.

Medium priority

2.2.2.16.2 Use Case

Scope User adds footer section to all

Description Adding footer section

Precondition Application instance is running

 User is logged in to running

instance under subdomain.

 Application is post initiation stage

 User is editing content not on title

page

 Activation User presses add footer section from

menu

Main flow 1. User presses add footer section

button

2. System adds footer section

Alternate flow

Exceptional flow E1(Application server goes offline):

1. User presses add footer section

button

2. System returns error

Post condition Footer section is added to the page

Use Case Diagram

Requirements Specification

31

2.2.2.17 Requirement 16 <View Platform User Web page content>

2.2.2.17.1 Description &

Priority

Guest users can view the Web sites

hosted on the platform. Medium

priority

2.2.2.17.2 Use Case

Scope Guest User can view web pages

hosted on the platform

Description Viewing page content

Precondition Application instance is running

 Activation Guest user broses to subdomain

Main flow 1. Guest user broses to subdomain

2. System returns website under that

subdomain

Alternate flow

Exceptional flow E1(Application server goes offline):

1. Guest user broses to subdomain

2. System returns error

Post condition Website is returned upon request

Use Case Diagram

Requirements Specification

32

2.2.2.18 Requirement 17 <Add comments>

2.2.2.18.1 Description &

Priority

Comments can be left by guest users

and owner

2.2.2.18.2 Use Case

Scope Guest User adds comment to one of

the pages, owner of the website can

leave comments

Description Adding comment

Precondition Application instance is running

 Comment section exists on the

page

 Activation Guest user adds comment

Main flow 1. Guest user adds comment

2. System adds comment to the

database

3. System sends review request to

the page owner

Alternate flow 1. Owner adds comment

2. System adds comment to the

database

Requirements Specification

33

3. System adds comment to

comment section

Exceptional flow E1(Application server goes offline):

1. Guest user adds comment

2. System returns error

Post condition Comment is added to the database

 Review request is sent

Use Case Diagram

2.2.2.19 Requirement 18 <Review comments>

2.2.2.19.1 Description &

Priority

Website owner reviews guest user

comments

2.2.2.19.2 Use Case

Scope Website owner reviews Guest user

comments

Description Reviewing comment

Precondition Application instance is running

 Comment section exists on the

page

 Guest users have published the

comments

Requirements Specification

34

 Activation User Goes to review comment section

Main flow 1. User goes to review comments

section

2. User reviews and selects

comments

3. User accepts comments

4. User presses confirm button

Alternate flow A1 (User rejects the comment):

1. User goes to review comments

section

2. User reviews and selects

comments

3. User rejects comments

4. User presses confirm button

Exceptional flow E1(Application server goes offline):

1. User goes to review comments

section

2. User reviews and selects

comments

3. System returns error

Post condition Comments cleared from the review

comments section.

 Comments added or removed from

the page

Use Case Diagram

Requirements Specification

35

2.2.2.20 Requirement 19 <Stop application instance>

2.2.2.20.1 Description &

Priority

User stops running docker instance,

Medium Priority

2.2.2.20.2 Use Case

Scope The scope of this requirement is, for

user to stop running instances

Description User stops application instance on the

platform.

Precondition User is logged in.

 User has running application

instances.

 Activation User selects instance from the list and

presses stop button

Main flow 1. User selects instance from the list

2. User presses stop button

3. System stops selected instance

Alternate flow

Exceptional flow E1(Application server goes offline):

1. User selects instance from the list

2. User presses stop button

3. System stops selected instance

E2(Instance already stopped):

Requirements Specification

36

1. User selects instance from the list

2. User presses stop button

3. System returns error with

message.

Post condition Selected application instance is

stopped

Use Case Diagram

2.2.2.21 Requirement 20 <Start application instance>

2.2.2.21.1 Description &

Priority

User starts running docker instance,

Medium Priority

2.2.2.21.2 Use Case

Scope The scope of this requirement is, for

user to start application instances

Description User starts application instance on the

platform.

Precondition User is logged in.

 User has stopped application

instances.

 Activation User selects instance from the list and

presses start button

Main flow 1. User selects instance from the list

Requirements Specification

37

2. User presses start button

3. System starts selected instance

Alternate flow

Exceptional flow E1(Application server goes offline):

1. User selects instance from the list

2. User presses start button

3. System returns error with message

E2(Instance already stopped):

1. User selects instance from the list

2. User presses stop button

3. System returns error with

message.

Post condition Selected application instance is

started

Use Case Diagram

2.2.2.22 Requirement 21 <Restart application instance>

2.2.2.22.1 Description &

Priority

User restarts running docker instance,

Medium Priority

2.2.2.22.2 Use Case

Scope The scope of this requirement is, for

user to restart application instances

Requirements Specification

38

Description User restart application instance on

the platform.

Precondition User is logged in.

 User has running application

instances.

 Activation User selects instance from the list and

presses restart button

Main flow 1. User selects instance from the list

2. User presses restart button

3. System restart selected instance

Alternate flow

Exceptional flow E1(Application server goes offline):

1. User selects instance from the list

2. User presses restart button

3. System returns error with message

E2(Instance already stopped):

1. User selects instance from the list

2. User presses restart button

3. System returns error with

message.

Post condition Selected application instance is

restarted

Use Case Diagram

Requirements Specification

39

2.2.2.23 Requirement 22 <Remove application instance>

2.2.2.23.1 Description &

Priority

User removes docker instance,

Medium Priority

2.2.2.23.2 Use Case

Scope The scope of this requirement is, for

user to remove application instances

Description User removes application instance on

the platform.

Precondition User is logged in.

 User has application instances.

 Activation User selects instance from the list and

presses remove button

Main flow 1. User goes to manage instance

section

2. User selects instance from the list

3. User presses remove button

4. System removes selected instance

Alternate flow

Exceptional flow E1(Application server goes offline):

1. User goes to manage instance

section

2. User selects instance from the list

3. User presses remove button

4. System removes selected instance

System returns error with message

Post condition Selected application instance is

removed

Use Case Diagram

Requirements Specification

40

2.2.2.24 Requirement 23 <Dynamic navbar section>

2.2.2.24.1 Description &

Priority

Navbar changes based on the user

interaction with CMS

2.2.2.24.2 Use Case

Scope Navbar changes based on user

interaction with system automatically

Description Navbar changes

Precondition Application instance is running

 User is logged in to running

instance under subdomain.

 Application is post initiation stage

 User is editing content not on title

page

 User is adding or removing items

from pages

 Activation User is adding or removing items from

pages

Main flow User is adding or removing items

from pages

 Navbar model changes

Alternate flow

Exceptional flow E1(Application server goes offline):

Requirements Specification

41

1. User presses add footer section

button

2. System returns error

Post condition Navbar model have changed

Please note that low priority requirements that were related to commenting section

were dropped in favour of core requirements.

2.2.3 Non-Functional Requirements

2.2.3.1 Performance/Response time requirement

Website builder solution will have low response rate, all time-consuming

operations will be transparent to the user and will be performed in background in

asynchronous fashion.

Start and Stop of the instances will be completely transparent to the user and from

user’s perspective will seem instant.

2.2.3.2 Availability requirement

Up time of the System shall be 99% of the time to ensure that user accessibility

would not be interrupted.

2.2.3.3 Recover requirement

User docker containers will be backed up and stored in the container repository, in

case of system failure containers can be carried over to the backup instance of the

system and restarted. There shall be disaster recovery database that will be copied

over from the production environment every week (this will only be available if

system will be launched for users in real world).

2.2.3.4 Security requirement

System shall only allow the owner of the application to modify the content of

instance. Database will not be reachable outside of google infrastructure network,

docker container API shall not be reachable outside of the google infrastructure

network.

2.2.3.5 Reliability requirement

Application shall be stable and crush resistant, or in case of the crush shall have

mechanism that will restart it automatically.

Requirements Specification

42

2.2.3.6 Portability requirement

All web application GUI interfaces shall support mobile device, tablet and pc views

and will be optimized to use with various devices.

2.2.3.7 Extendibility requirement

Solution shall be scaled up horizontally in case if need arises by adding VM

instances that will be spinned up based on VM image, this will not be automatic

process.

2.2.3.8 Reusability requirement

CMS component of the system shall use templates for the user website page build

and title page.

2.2.4 User requirements

Application will allow user to create web pages that fits requirements of modern

internet users. It will be achieved by utilizing modern frontend frameworks and fast,

dynamic backend languages plus unique coding techniques.

System shall be designed for novice users that have limited knowledge regarding

development and hosting of the websites. To support these novice users, we will

develop in page edit system with utilization of content editable HTML5 elements

(what you see, you can edit right away - WYSWYG).

In order to train user on how to use the system, system shall have automated

functionality walkthrough that user will be able to familiarize themselves with the

system specifics.

After simplistic manipulations, user will have modern looking web site that would

fit his requirements.

2.2.5 Environmental requirements

We will deploy system to the Google Infrastructure, that will ensure wide network
access for our platform and scaling capabilities if necessary. Initially VM with 4 GB
of memory and 2 core CPU will be created. This VM will facilitate our System.
Mongo DB will be facilitated on separate VM that will allow to achive higher
efficiency.

2.2.6 Application Programming Interfaces (API)

System component that will be responsible for controll of the docker containers will

be running directly on the host VM and would provide API interface to control these

Requirements Specification

43

containers. API will include interface to start, stop, restart and create containers,

this shall not be RESTfull API.

Platform portal and CMS components of the system shall be using Angular 2 as a

frontend, so backend will have to be developped in form of API to support all

frontend functionality, this shall not be RESTfull API.

2.3 System Architecture

2.3.1 High Level System diagram

Figure 1, High level system architecture diagram

2.3.2 Class Diagrams

Detailed class diagrams for backend components were generated automatically

by utilizing Wavi utility.

2.3.2.1 Docker API Component

High level diagram:

Requirements Specification

44

Figure2, High level class diagram Docker API

Full Diagram Source file:

container-server-api.

svg

Full Diagram: (please open the above SVG, as emending diagram had impact on

MSWord performance)

2.3.2.2 Platform Portal Component

High Level diagram:

Figure 3, High level Platform portal diagram

Full Diagram Source file:

platform-portal.svg

Full Diagram: (please open the above SVG, as emending diagram had impact on

MSWord performance)

2.3.2.3 Web CMS Component

High Level Diagram of database models:

Requirements Specification

45

Figure 4, High level CMS Component diagram database side

Full Diagram Source file:

cms-system.svg

Full Diagram: (please open the above SVG, as emending diagram had impact on

MSWord performance)

2.4 Implementation

There is currently working application instance running on google cloud under
domain http://deniss-strods.com

Please feel free to check it out. I will leave all system components running until
2018.06.30

2.4.1 Cloud Infrastructure description

Implementation was conducted on Google Infrastructure. SSH Connection to c9
IDE was used to utilize all benefits of cloud-based IDE’s on development phase.

Infrastructure consists of Google Virtual Private Network that encapsulates VM
with all the applications. VPN is configured in a way that only port 80 is exposed
to facilitate HTTP/HTTPS protocol communication. Database component of the
application is hosted on separate VM instance and is hosting MongoDB, this
provides flexibility of scaling database if such need occurs.

http://deniss-strods.com/

Requirements Specification

46

2.4.2 Application Component functionality description

Please refer to figure 1 for graphical representation.

This section can be mapped directly to initial requirements, we can see how high
lever requirements have become features in the application trough the iterative
development and analysis process.

2.4.2.1 Nginex Reverse proxy load balancer

Nginex is crucial component of our system that reroutes traffic based on the
domain name in the request headder to appropriate docker containers with running
applications. This element was created from jwilder/nginx-proxy Docker container
that stores routing tables and reroutes traffic to the container with appropriate
environment variable as host name. Container is launched on host VM.

2.4.2.2 Node Docker API Server

Node server was developed to enable docker container control. Server has
multiple API Entry points that allow to control docker containers. Server utilizes
linux bash scripting language and runs native linux commands on host machine.
Appropriate environment variables are initialized in the docker containers and track
of all created and running containers is stored in the DB.

GitHub deployment: https://github.com/DenMantm/container-server-api.git

Application accumulative code base combined is 23,489 lines of code.

2.4.2.3 Platform Portal Application

Platform Portal has Node.js backend and angular.js frontend. Node Server has
multiple API entry points that allow Angular.js frontend to exchange necessary data
with server side. Node Server is communicating with Docker API Server to allow
control and management of the docker daemon on the host machine. System
component itself is encapsulated into docker container, and traffic to it is rerouted
trough Nginx load balancer.

2.4.2.3.1 Acquiring account

To start using our service, user needs to create user account on the platform portal.
In order to do that he has to fill the form with required details.

2.4.2.3.2 Managing websites

After acquiring account user can start creation of the website. In order to do this,
he would be required to select website subdomain name and Website builder
solution type. Then after creating is clicked, Platform portal website makes API call
to the docker control API that takes care of the application creation and launch.

Website creation, starting and stopping is facilitated trough menu bar. User can
delete their websites if they want to do so.

https://github.com/DenMantm/container-server-api.git

Requirements Specification

47

Subdomain name can be changed trough the separate section in the application.
IF user wishes to acquire his own domain name, he would have to contact support
team.

GitHub deployment: https://github.com/DenMantm/saas-registration-portal.git

Application accumulative code base combined is 74,421 lines of code.

2.4.2.4 CMS Lite web builder solution

This system component is running node backend and angular.js frontend and was
most challenging to implement as it has dynamic JavaScript and HTML codebase.

2.4.2.4.1 Page Text editing functionality and element interaction

Title page and every subsequently added page in the Web CMS System is editable
in WYSIWYG (What You See Is What You Get) fashion. After user logs in to the
portal and presses edit button, all text in page becomes editable. Text properties
can be changed by double clicking the desired text by utilizing medium.js
functionality. IF component that is edited consists of multiple blocks, these blocks
can be dragged and dropped to change places between the block elements. There
is button to add additional block element into the section if user will wish to do so.

After save button is pressed page model is saved to the database.

2.4.2.4.2 Managing elements on page

Layout editor facility allows to manage existing elements and to add different
variety of new elements into the page based on pre-set element templates.
(Element templates were created from templates provided by
https://github.com/BlackrockDigital).

User can select from:

 creative-service

 agency-service

 creative-headder

 agency-headder

 blog-info

 blog-headder

 blog-body

 agency-portfolio

 creative-portfolio

 agency-about

 agency-amazing-team

It is possible to switch element places in layout editor by drag and drop
functionality. Elements can be removed from the page by clicking remove item, or
theme of the element can be changed to the otherer element theme of the same
class.

https://github.com/DenMantm/saas-registration-portal.git
https://github.com/BlackrockDigital

Requirements Specification

48

It is possible to select if user wants element to be visible in navbar or not for
simplified navigation to it on the page.

After user clicks save button, node server in background rewrites HTML template
code dynamically and changes database model in order to facilitate the change.

2.4.2.4.3 Managing pages and sections

In the page manager, user can add custom pages to the web application. User can
specify page name and template from which page should be generated. There is
facility to Enable or disable page sections like blogging section if user would wish
to do so. It is possible to delete created pages.

When generate page button is clicked, System dynamically generates HTML
Template and Dynamically generates TypeScript code for the additional page
element. TypeScript is transpiled to JavaScript after by transpiler and new page
becomes available for view and editing.

2.4.2.4.4 Changing backgrounds, images and icons

In enable edit mode each page block has button that allows to change block
background. Background can be selected from existing images, of new images
can be uploaded. As well if user do not wish to use background image it is possible
to select just background colour.

Each in page image has button to switch to the different image by invoking image
manager. Page icons can be changed to the desired icon from the list by invoking
icon manager.

After change and save buttons are pressed, page model information is changed in
database.

2.4.2.4.5 Selecting button actions

IF there is a button in the page section, it Is possible to change action of the button
trough button manager. User has option to point the button to existing website
pages or sections or add custom link.

2.4.2.4.6 Managing and creating blogs

User has ability to create new blog posts with options to add different kind of
elements into his blog page, starting with images and finishing with code blocks.
Each blog element after can be edited and elements in that blog can be moved
around.

GitHub deployment: https://github.com/DenMantm/nci-project-cms.git

Application accumulative code base combined is 154,401 lines of code

https://github.com/DenMantm/nci-project-cms.git

Requirements Specification

49

2.4.3 GUI

Please see the implementation of GUI below

2.4.3.1.1 Platform Portal

2.4.3.1.2 Login

2.4.3.1.3 Signup

Requirements Specification

50

2.4.3.1.4 Control VM instances

Requirements Specification

51

2.4.3.1.5 Create new instance

2.4.3.2 CMS Lite Web application

2.4.3.2.1 Initial title page

This is what user will see when he is logged in for the first time

2.4.3.2.1.1 Navbar

Dynamic navbar that changes based on extra section or page addition

2.4.3.2.1.2 Main page elements

After application initiation, user sees default Web application

Headder

Requirements Specification

52

Services

Portfolio

Portfolio item

Requirements Specification

53

About

Login

Requirements Specification

54

2.4.3.2.1 Page building and management elements

Page builder management elements are visible when user is logged in and has
enabled editing option

2.4.3.2.1.1 Management navbar

2.4.3.2.1.2 Management side navbar

2.4.3.2.1.3 Text editing control

This toolbar becomes visible if editing mode is enabled and text is selected

Requirements Specification

55

2.4.3.2.1.4 Layout editor

Layout editor can be opened by pressing button on management side navbar on
a side

Requirements Specification

56

2.4.3.2.1.5 Page manager

Page manager can be opened by pressing button on management side navbar on
a side

Requirements Specification

57

2.4.3.2.1.6 Icon manager

Icon manager can be opened by pressing on control button beside icons in
application

Requirements Specification

58

2.4.3.2.1.7 Button Manager

Button manager can be opened by pressing on control button beside buttons in
application

Requirements Specification

59

2.4.3.2.1.8 Background Manager

Background manager can be opened by pressing on control button beside
elements

Requirements Specification

60

2.4.3.2.1 Blog post section

Blogs can be viewed in the section, and if user is logged in, new blogs can be
created.

Create new blog form

Requirements Specification

61

Blog post itself

2.4.4 Design Patterns used

For rapidity of development of our software platform, following design patterns
were used

2.4.4.1 Adaptor Pattern

Docker API Server is transforming incoming http requests into native linux
commands that are then executed based on action that is required from the
requestor.

Requirements Specification

62

2.4.4.2 Singleton Pattern

Singleton pattern was used to initially configure docker containers with the
environment variables. In the angular system components app.module are
initialized just once during the runtime and follow singleton pattern as well.

2.4.4.3 Observer Pattern

Rx.js library is used in order to facilitate node.js and angular.js communication.
After http call is conducted, side that conducted the call is waiting for the response,
and this way is observing and following observer pattern.

2.4.4.4 Builder Pattern

Builder pattern is used to construct JSON object from multiple small elements. In
this way when layout editor in the application is used, and content is modified, it
extracts information of what was changed and rebuilds database JSON object from
smaller pieces that were selected by user.

2.4.4.5 Prototype Pattern

When the user acquires new instance of the application, it is created from the
prototype docker image that is kept in the repository. All the templates database
models are built from the prototypes as well.

2.4.4.6 Filter Pattern, Iterator Pattern

These patterns are used trough out the application, for example each loop can be
considered part of iterator pattern, each database call with where conditions can
be looked at ad filter pattern ascendant.

2.4.4.7 MVC Pattern

As our system is using Angular JS for the front end, it is following the framework
standard and is using MVC Pattern trough out the system components.

2.5 Evaluation

2.6 Testing

2.6.1 Unit Testing

System was developed using test driven coding practices combined with some
basic unit tests that were developed at the end of each component development.
Karma and Jasmine unit testing framework combination for JavaScript was utilized
in order to enable benefits of unit testing in our application. Now, if need arises for
additional development, it can be conducted without fear that extra functionality
and logic will cause uncaught problems in the application modules.

Requirements Specification

63

25 tests in total were developed in order to cover most of component initiation
validation and some custom tests for the array manipulation services were added
as well, please see the screenshot below.

Requirements Specification

64

2.6.2 User acceptance testing

Before system was finalized, user acceptance testing was performed. Test users
(In this case test user base were 5 people that I know) were given task to create
their websites by means of the system, afterwards they were required to give their
feedback by filling questionnaire.

As the result of the user feedback we can say that in general application is easy to
grasp and use. Please see summary of the questionnaires below.

Questionnaire summary

1. Do you consider UI of the application to be easy to use? (Yes, No)

5 out of 5 answered yes

2. Is it easy to subscribe to the hosting service of the platform? (Yes, No)

5 out of 5 answered yes

3. IS it easy to create your own website on the platform? (Yes, No)

5 out of 5 answered yes

4. Would this web platform be useful to you? (Yes, No)

2 out of 5 answered yes

5. Would you recommend this service to a friend? (Yes, No)

4 out of 5 answered yes

6. What else can be improved in the platform? (Open Question)

In the open question general feedback was that additional templates for

insertion need to be added in order to increase variety of use cases and looks

of the web pages created through the CMS Lite.

2.6.3 System Testing

System test was conducted at final stage of the application development. It was
verified that each functionality of the application is working as expected. Following
actions were tested in order to verify that key features of the system are working
correctly

Requirements Specification

65

2.6.3.1 Platform Portal System Test

Feature Description Status

Create new user New user creation Pass

User Login User logged in Pass

Create new web app Creating and Launching
new application

Pass

Managing App
instances

Start/Stop/Restart/Remove
actions

Pass

2.6.3.2 CMS Web Builder System Test

Feature Description Status

User Login User logged in Pass

Edit text on pages Checked if content is
editable

Pass

Saving content Check to see if changed
content on pages have
been saved

Pass

Add new sections to
page

Check if new sections can
be added to pages

Pass

Change section Theme Check if theme can be
switched

Pass

Change section
background

Check if background can
be changed

Pass

Add/ Remove blogging
section

Check if blogging section
can be added / removed

Pass

Add / Remove new
page

Check if new page can be
added / removed

Pass

Upload images Check if images can be
uploaded

Pass

Requirements Specification

66

Add blogs Check if new blogs can be
added

Pass

2.7 System Evolution

It is possible to extend the system beyond the one VM System model and

complement it with additional Nginx reverse proxy server with rooting table. It

would redirect traffic to additional VM’s based of the domain names in XML HTTP

request headers.

Figure 5, extended version of the system

Figure 5 draws out potential solution with scaling capabilities, main distinction

between this model and currently implemented model is that there is the load

balancer with the table of domains mapping them to specific VM IP addresses, this

Requirements Specification

67

way this solution can be scaled horizontally as long as additional VM resources

are available. And for example, in the use case when one of the user applications

becomes more user demanding thanks to Docker technology we can easily

migrate this app to the separate VM with additional resources.

Additionally, if our own built CMS solution will not succeed, platform can be easily

reconfigured and adopted to support other CMS Web Systems like WordPress or

Joomla to provide additional options for the users.

Additional element blocks can be added in order increase use cases of the built

websites on our platform.

System management controls for admins is something that was not developed for

this web hosting platform and admins at the moment need to be very skilled in

order to support functioning of the system. This means that for system to reach

good production level these administrative controls have to be developed in the

feature.

3 Bibliography

squarespace.com, 2017. squarespace.com. [Online].

wix.com, 2017. wix.com. [Online].

wordpress.com, 2017. wordpress.com. [Online].

4 Appendix

4.1 Project Proposal

Project-Proposal-x14

100398.docx

4.2 Other Documents

Project Gant

Chart.mpp

ProjectRequirements

Specification.docx

EthicsApprovalForm

_x14100398.docx

