~

N\ National
College
Ireland

End-to-End dialogue systems with Dynamic
Memory Networks and FastText

MSc Research Project
Data Analytics

Sukanya Hanumanthu
x17103886

School of Computing
National College of Ireland

Supervisor: Dr.Pramod Pathak,Dr.Paul Stynes,Dympna O’Sullivan

National College of Ireland . National

Project Submission Sheet — 2017/2018 College of
School of Computing Ireland
Student Name: Sukanya Hanumanthu
Student ID: x17103886
Programme: Data Analytics
Year: 2018
Module: MSc Research Project
Lecturer: Dr.Pramod Pathak,Dr.Paul Stynes,Dympna O’Sullivan
Submission Due | 13/08/2018
Date:
Project Title: End-to-End dialogue systems with Dynamic Memory Networks
and FastText

Word Count: 5291

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students
are encouraged to use the Harvard Referencing Standard supplied by the Library. To
use other author’s written or electronic work is illegal (plagiarism) and may result in
disciplinary action. Students may be required to undergo a viva (oral examination) if
there is suspicion about the validity of their submitted work.

Signature:

Date: 16th September 2018

PLEASE READ THE FOLLOWING INSTRUCTIONS:

1. Please attach a completed copy of this sheet to each project (including multiple copies).
2. You must ensure that you retain a HARD COPY of ALL projects, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer. Please do not bind projects or place in covers unless specifically
requested.

3. Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:
Penalty Applied (if
applicable):

End-to-End dialogue systems with Dynamic Memory
Networks and FastText

Sukanya Hanumanthu
x17103886
MSc in Data Analytics
National College of Ireland

16th September 2018

Abstract Conversational dialogue systems act as the foremost layer of contact of an Al
system while making machine-human interactions. Traditional dialogue systems incor-
porate a modular approach which demand for handcrafting of each module thus increasing
the chances of propagating errors from one module to the other. To overcome this, an end
to end dialogue system with Dynamic memory Network(DMN) for Question Answering
was constructed. This project thrives to improve the performance of DMN by using Fast-
Text word to vector conversion technique and compares it with the DMN implemented
using global vectors. Results obtained after testing on five different types of Question
formats prove that FastText performs well with at least 4% increase in the accuracy. If
the same technique was implemented for all dialogue systems prior to building a model,
then a gradual shift in the improvement conversational systems can be observed.

1 Introduction

The process of enabling machines to converse with humans in a natural way is one of
the key problems in today’s Artificial Intelligent systems. In the past few years, models
were built based on the features designed by hand engineering given by a set of business
rules, thus are domain specific and stereotypical. Advancements in deep learning have
added a new twist allowing the models to be built directly from a massive amount of
conversational data capturing hidden feature interactions though they have not reached
perfection (Goodfellow et al.| (2016)).

1.1 Background and Motivation

Dialogue systems will become indispensable with their wide variety of use cases including
recommender systems integrated with text to voice conversion, computer vision, inform-
ation retrieval, robotics according to Milhorat et al.| (2017). Non-task-oriented models
can also be used for features that does not consist a measurable goal for example, enter-
taining, language learning or for gaming purposes(Young and Williams| (2013))). Existing
systems are still in their infancy which are far from passing the Turing test of not identi-
fying whether the conversation is handled by a machine or human (Ram et al| (2018)).

Even the question answering (QA) aspect require deeper Language Understanding (LU)
involved with critical Natural Language Processing (NLP) providing a response generated
over relevant facts gathered (Kumar et al.| (2016)).

The motivation for moving towards an end to end building approach is that the state
of the art modular approach demand a lot of hand-crafting, time and cost. The tradi-
tional approach has various components including Automatic speech recognizer, Natural
language interpreter, Dialogue state tracker, Dialogue response selection, Language gen-
erator and a text to speech converter as shown in the figure 1.

- ™

Automatic Speech .| Natural Language Dialogue State
Recognizer Interpreter Tracker

r-Il

Y

r

Text-To-Speech Natural Language | Dislogue

— . € Response
Synthesizer Generator .

Selection

o _/

End-to-End Dialogue System

Figure 1: Traditional vs End-to-End dialouge systems
(Lowe et al,| (2017))

Each of the mentioned modules have their specific functions trained individually and are
evaluated accordingly, for example a state tracker is used for predicting slot filling pairs
which measured using cross entropy whereas a response generator is measured using log-
likelihood based on the relevancy of output response(Serban, Lowe, Henderson, Charlin|
and Pineau| (2015)). Also, the modular approach tends to propagate errors from one level
to the other and the system is not robust to the overall error scenario(Li, Chen, Li and|
\Gao| (2017)), |Zhang et al. (2018])). On the other hand, an end to end approach has been
used which directly takes the input generating a response instead of passing through all
the modules. The main motivation is to improve a Dynamic Memory Networks Question
Answering model by changing its existing word to vector strategy that communicates
naturally understanding the scenario, so that it can be integrated with any task-oriented
systems (Ritter et al.| (2011))).

1.2 Research Formulation

Dialogue system is a computer which can handle meaningful conversations with humans
and they are categorized into two types including task-oriented and non-task-oriented

dialogue systems. Task-oriented systems are built to fulfil a pre-defined set of tasks,
examples include personal assistants like Microsoft Cortana, Apple Siri, Amazon Alexa,
Google assistant etc., (Ram et al.| (2018)) for finding products, restaurant table booking
or for general search. A Dynamic Memory Network (DMN) is an end to end Question
Answering (Q/A) system for Natural Language Processing (NLP).

The model was built on Facebook dataset having human-human conversations collected in
text format which is further sent to word to vector models for extracting the relationship
between the words in the vector space. This paper compares the model performance by
using fast Text and global vector (gloVe) word to vector conversions that support non-task-
oriented systems using memory networks which can hop back to remember a conversation.
This paper stresses on Question Answering (QA) aspect of non-task-oriented systems
using DMN.

The aim of this research is to investigate if fastText word to vector conversion
technique on an end to end DMN approach can improve the performance
compared to global vector technique.

This research contributes to Question Answering aspect of non-task-oriented systems.
This data driven approach cannot rely on the traditional modular way of building dialogue
systems using business rules. A significant research can be seen in the field of task-
oriented systems towards building personal assistant models using neural networks, long
short-term memory, encoder-decoders built using recurrent networks. But the research
towards non-task-oriented systems is comparatively less as they are hard to model with
no specified goal to achieve and of not having a defined evaluation system which is still
an open question and further be discussed in the evaluation section(Ritter et al. (2011))).

1.3 Structure of the paper

The structure of the paper includes the next section with a research on related work
focused on the machine learning techniques that have been implemented in building
dialogue systems. The later section explains the core methodology of the problem domain
and on how the data was extracted, cleaned, pre-processed before sending it to the
model. The fourth section explains the implementation part including the explanation
of important functions and packages followed by the evaluation of the model. Later, a
discussion on the results obtained will analyze the overall scenario of this project and
observe key strengths and pitfalls. The final section provides a conclusion and future
work aspects.

2 Related Work

This research stands on different pillars including methodologies depending on deep learn-
ing, end to end architecture, attention-memory, question answering. Fortunately, there
is enough research that has been done in each of these individual aspects which will be
further discussed in this section.

Deep learning: Deep learning recently gained attention in the field of dialogue systems
with the increased hardware support which made data-driven neural network models to
be built. Also, the data required to support these models was made available through a
survey on available corpora which was initiated to gather dialogue corpus from various

researchers (Serban, Lowe, Henderson, Charlin and Pineau| (2015)). Various deep learn-
ing techniques were applied in designing different components of dialogue systems. For
example, Recurrent Neural Network (RNN) has been used for intent classification and to
fill slots to label the domain(Liu and Lane| (2016)). Slot filling is a challenging task per-
taining to language understanding which aims to fill certain labels to derive and achieve a
task(Deng et al. (2012)). Slot ID and deep belief networks (DBN) have performed well in
this compared to RNN (Deoras and Sarikaya/ (2013))). While RNN was used for sentiment
analysis (Socher et al. (n.d.)), response generation (Serban et al.| (2016))), parsing (Socher
et al.| (2015)) 2011, inferencing (Bowman et al. (2015)) and for implementing attention
mechanism (Xing et al.|(2017)). But the above models do not have any memory modules
and were not able to deal with question answering as all the tasks cannot be solved with
one neural network even though RNN was arranged in a Hierarchical Encoder-Decoder
(HRED) (Serban, Sordoni, Bengio, Courville and Pineaul (2015)).

RNN was proved to be efficient in speech recognition (Hinton et al. (2012))), image recog-
nition (Lecun et al.| (1998)) and context modeling (Mikolov and Zweig (2012)). Huwaei
technologies have introduced a neural responding machine built using RNN with latent
representation for short text and context classification which showed 75% accuracy in
generating responses with no grammatical errors (Shang et al.| (2015)). RNN has been
used in sequence to sequence models focused on machine translation where one-layer acts
as an encoder which takes the input in one language and sends it to the other layer for
converting it to another language(Kalchbrenner and Blunsom| (2013)). The approach used
is like the one used for language modeling which was implemented to overcome the prob-
lem of vector conversions at every level of deep neural network (Sutskever et al.| (2014)).
These models combine Long Short-Term Memory (LSTM) mechanism with RNN which
seems like DMN approach except that they do not have episodic memory module to store
recently used dialogues but they tend to generate variant answers handling the issue of
duplicate answer generation(Wen et al.| (2015), [Mikolov et al.| (2010)).

End-to-End: The aim to process interdependence between the individual components
in a traditional dialogue system architecture is hard to achieve which demand significant
human effort. On the other hand, these modular systems are not robust to errors, thus
transmitting them to consecutive modules degrading the overall system performance. The
above-mentioned points made the researchers to switch to an end to end paradigm where
a complete model is trained from inputs till the output using a huge corpus instead
of building one module after the other(Zhao and Eskenazi (2016)). The end to end
models mostly rely on deep learning techniques which can handle huge data. An end
to end encoder decoder was implemented on the ubuntu dialogue corpus having binary
conversations trained based on a single objective function. This method needs a lot of
pre-processing before feeding the model with the corpus(Lowe et al. (2017))). Other end
to end systems include negotiation dialogue management by decoding the inputs and
training further instead of depending on just the likelihood which showed better results.
This approach is different in the aspect where the language agents work individually on
negotiations making the model to learn reasoning and language skills in an unsupervised
manner(Lecun et al. (1998))).

Another approach which did well with language understanding engulfs both Reinforce-
ment Learning (RL) and RNN forming a Deep Recurrent Q Network (DRQN) belonging
to task-oriented systems to amplify the learning speed in gaming applications trained on
supervised data. This model outperformed the state-of-the art approach and replaced

three modules including Dialogue State Tracking (DST), Dialogue Policy and Natural
Language Understanding (NLU)(Zhao and Eskenazi (2016)). But the DRQN cannot be
generalized to other domains as it was trained to handle only short binary questions.
To overcome this, a new model was built by Microsoft researchers using a neural dia-
logue mechanism with a user simulator to understand the goal using slot filling by NLU
and Dialogue Management (DM) with the use of reward-penalty approach of RL (Li,
Chen, Li, Gao and Celikyilmaz| (2017)). Most of the RL based models focus on dialogue
policy learning and are used in task-oriented applications such as online shopping integ-
rated with recommender systems (Yan et al. (2015)) but none of these models hold any
mechanism to use the past and recent scenarios to answer the upcoming questions.

Attention and Memory: The backbone for DMN is memory networks with its func-
tion of storing the input words or sentences. This section compares other architectures
which hold memory and attention mechanisms to analyse similar models further. Atten-
tion mechanism was first applied in translation (Bahdanau et al| (2014)) and the same
approach was applied to response generation in single turn (Shang et al.| (2015),Vinyals
and Le (2015)). A hierarchical recurrent attention network (HRAN) was recently pro-
posed to extract important vectors within the utterances. This model does well with
attention on both word and utterance level having one level for word to vector conversion
over utterances getting the context of conversation and the resultant being sent to atten-
tion level of utterance and context to decode the response(Xing et al.|(2017)). Another
hierarchical attention model was developed by(Yang et al. (2016)), [Yan et al.| (2015))) is
designed for document classification, a similar model was made for image classification
(Stollenga et al.| (2014))), phrase representation (Cho et al. (2014)), caption tagging (Li,
Chen, Li and Gao| (2017)) and object identification(Seo et al. (2016])), These models
were implemented for response generation under specified perspectives like classification,
diversity and response generation and were not integrated with memory modules like
DMN.

Memory mechanism was implemented in Turing memory machines to solve algorithmic
expressions and recently proposed memory networks have added a memory component to
deal with Question Answering(Weston et al.| (2014])/Weston et al.| (2015)). This memory
component is divided to individual parts handling input, response, generalization and
mapping. But this model must be trained with sentences individually but not in a
sequence manner and need to use n-gram feature vector along with mechanism to align
sentences in an order. Whereas DMN has a sequential processing that captures the
position of a sentence so that it can be applied to a broader range of applications without
any further processing.

Question-Answering and word to vector conversions: Popular approaches to im-
plement this model include the use of a connected database and slot filling, Knowledge
base with online access to search engines, dependency trees or just neural networks and
sentences. Several web-based Question Answering engines were developed on open and
closed domain specific ontology(Kakar and Kandpal (2013),Kwok et al.| (2000),Katz et al.
(2002) ,Kwok et al. (2000),Etzioni et al.| (2008)) another set includes question-based mod-
els which are designed with specific strategies to locate the answers(Hovy et al.| (2000))).
A mix of neural logic reasoning was implemented over a knowledge base for visual an-
swering based on images (Andreas et al.| (2016)). These QA systems are hard to debug
when a right answer is not produced as they do not have a repository of facts. The above
QA models have not made emphasis on the word to vector conversion part of the model.

Most of these models use word embeddings which are formed using a skip-gram model
consisting of updates held in the word embedding matrix. These word vectors present in
the embedding matrix have semantic and syntactic details that are captured (Mikolov, Le
land Sutskever| (2013),Bengio et al.| (2017)) Mikolov, Chen, Corrado and Dean! (2013)). A
process called WECOSim was introduced to transform a question to a bag of embedded
words in which the word representation is previously analysed using bag of words and
a cosine similarity between the questions will be taken into consideration to compare
with the existing questions set(Othman et al| (2017))). This approach works well with
a repository of less questions and cannot be generalized where as it can be done using
DMN along with fastText word to vector conversion.

3 Methodology

This section describes the overall approach followed to build and evaluate an End-to-End
DMN model. Deep learning is used for designing the model by following knowledge data
discovery in databases (KDD) to convert data to knowledge (1996))). The pro-
cess of KDD is as shown in the figure 2. It includes an explanation of data extraction,
processing, transformation and interpretation techniques which are detailed further. Ma-
chine learning can be performed in two ways, one with labelled data (Supervised) and
other with no labels (Unsupervised). Supervised data has been used to train the model
in this project.

Inte:pxetatmn /
Data Mining
Tﬁm[m-mattnn
Prepmcesm]g I
Patterns
Transformed
Preprocessed Data Data

Ta rget Date

Figure 2: KDD overview

(Fayyad| (1996))

3.1 Data Selection and Extraction

The first step of KDD is to select and extract data from the source for further processing.
The corpus to build conversational dialogue systems are scarce until they were made
available to the public in 2015 by Serban’s team (Serban, Lowe, Henderson, Charlin and|
(2015))) encouraging the current progress in dialogue systems. Large datasets
are required to build a perfect dialogue system, such corpus from various researchers
were collected and open-sourced on Git after a survey on available data from which the
bADbI tasks dataset was selected for QA model. This data set is released by Facebook Al

research which has 20 different subsets each having 1000 dialogues to test the language
understanding of a model(Othman et al. (2017))). This dataset is ideal as it was proved
to be significant in several experiments to test the model’s logical reasoning for building
an end to end systems (Bordes et al.| (2016),Madotto et al.| (2018)).

3.2 Pre-processing

The dataset extracted has conversations along with questions, answers and facts. The
data was randomly arranged, and it was sent for a sanity check to make sure that there
are no racist comments or unwanted hate speech. The sanity check was done by sending
each of the train, test and fact sets data to a python code which tests for a list of words
to be removed. This was done by parsing through every line to check for the bad words
given. This filtering mechanism again has two functions, one for enabling the word to be
deleted entirely or with a second function to replace the bad word with any other word
or blank. Fortunately, there were not many bad words or hate speech in this dataset but
still followed this procedure to make it perfect.

3.3 Transformation

At this stage, the data is completely clean which is ready to get transformed to vec-
tors. The model is highly dependent on the vector representations that are obtained and
trained. These vectors are used to find the Euclidean distance or cosine similarity which
shows meaningful relationships between sentences. The base model will be constructed
using glove pre-trained vectors which was obtained by scraping Wiki pages to draw word
to vector representations. The cleaned data was first trained using the glove data to
form vectors within. The same procedure was again performed using fastText which is
a novel method in any QA model to get vector representations. FastText is popular for
word classification, topic modelling and word representations which was developed by
Facebook research [28]. FastText is considered more efficient than glove because of the
following reasons:

1. FastText is better at finding vector representations (word embeddings) even for rare
words.

2. Efficient in producing vector representations that are not in the input dataset
by breaking the word to character n-gram which glove cannot do (Joulin et al.
(2016),Bojanowski et al.| (2017))).

3. The FastText calculates character n-grams which are then taken average for a com-
plete word. This approach with character n-gram performs better than word2vec
and glove(Bojanowski et al.| (2017)).

Based on the above reasons, FastText was implemented for vector conversions. A pre-
trained 6GB of FastText data obtained from scraping through Wiki news and articles
was collected to perform conversions for the bAbI dataset.

3.4 Data Mining

DMN model was constructed for the transformed data in this step. DMN is previously
implemented for question answering (QA) using glove vectors in 2015 (Kumar et al.

(2016)) which was later modified and used for object identification in images for QA
purposes (Xiong et al. (2016])). DMN takes the vectors as inputs to generate a proper
response. It is a neural network-based approach which is even applicable for text/image
classification. The DMN was later modified in the year 2016 by adding input fusion
layers for image analysis which showed 60.3 percent accuracy for image QA. This section
gives an overview about the DMN modules with their functionality to understand the
implementation part explained in the next section.

DMN has fours modules as shown in the figure 3 which include input, answer, question
and episodic memory. Each of these modules are explained as below:

Episodic Memory * Answer
Iy r A F Y
= == == S =
Input Text Sequence Question

Figure 3: DMN overview
(Kumar et al. (2016))

Input Module: The project is based on natural language processing, so the input could
be any form of text either an article, book, dialogue set or a review. The basis is all
dependent on the vector representation of the text. A recurrent neural network (RNN)
takes the inputs as word embeddings that are generated after the transformation stage
in which each sentence consists a set of word vectors.

1. At every step of given input, the hidden state of the network gets updated with the
new embedding matrix.

2. In case, if the input is just one sentence, then the output equals the hidden states
of the network.

3. If a sequence of sentences is given as input, then the hidden state is updated with
all the word tokens sequentially.

A gated recurrent network (GRU) has been used as LSTM is computationally expensive,
time taking, prone to overfitting (Xiong et al.| (2016)),Hochreiter and Schmidhuber|(1997)).

Question module: This is similar to input module which take vectors for further
processing. A given question is first encoded to vectors but in this project, a test set
was created which has vector representations and was directly given to question module.
The question module also has a GRU which updates on the hidden state for every new
question producing the embedding matrix for every word. The embedding matrix is
shared between question and input modules with the only difference that the output of
question module is equivalent to the last hidden state of GRU.

Episodic memory module: This module iterates over the input vectors which are
needed for the questions based on the attention mechanism.

1. It observes the previous questions and stores the vectors that are important in the
episodic memory.

2. Memory updates are managed by recurrent network and attention mechanism. Fach
episode ei is formed by considering attention mechanism over facts ¢, questions q
and memory of the previous iteration mi-1.

3. Episodic memory is updated in GRU for every iteration. Initial memory state of
GRU is assigned to the first question q.

4. The final episodic memory serves as the answer after certain iterations over the
input vectors.

Due to these multiple iterations, various input vectors will be visited during each pass
allowing to extract indirect inference.

Attention and memory update mechanism: The attention mechanism is implemen-
ted using a gate function that is derived from fact, given question and previous memory
with a scoring function. A scoring function takes feature vector set as an input that
captures similarities between input, question and memory vectors. Memory updates de-
pend on input vector and gates function having the episodic memory vector given to the
answer module in the final state of GRU as explained in the DMN. After building the
End to End DMN as discussed above, the input vectors will be sent to get the relevant
output.

This deep learning approach takes significant processing time and data to make the
model perform well in various scenarios using Google cloud, tensorflow but in this case,
the project was completely run on the CPU.

3.5 Interpretation

The constructed model is tested against various scenarios and types of questions using the
bADbI dataset. The data was divided into training and testing with which it was tested
through random shuffling of the data up to 10 iterations with the accuracy captured.
Further discussion regarding the evaluation and results has been given in the next sections.

4 Design and Implementation

This section shows the procedure followed to make the DMN model with FastText and
make it run. The project mostly used python and a little of bash while extracting the
data. For this project, three CPU’s were used in which PyCharm, Python 2.7 interpreter
and a bash console were used.

4.1 Extraction

The data is extracted using a simple bash command to hit a URL to download the bAbI
tasks dataset consisting of 20 types of question files each of which having their own
testing, training and fact data.

4.2 Sanity filter

After downloading the data, a sanity filter was made in Python 2.7 version by using re
and random packages. This sanity filter accepts a list of words that needs to be filtered.
The call for the sanity class has been made after taking the text file as input and parsing
each line by making a call to the clean function. There are two functions in the sanity
class including cleaning and replace which were built to replace bad words with another
word or to just remove the word without replacement upon the user selection. A regular
expression was used to find the occurrence of the word in the text in any form.

4.3 Vector conversion

To perform this task, few packages named Theano, NumPy, Lasagne and Pickle must
be downloaded. Tensor package should be imported from theano before starting with
the vector conversions. The cleaned text was sent to be trained with the use of glove
and fastText. It starts with downloading the pre-trained wiki data vector set for both.
Then a code has been written to split each line in the data to capture words and their
corresponding vectors which are further added to a function which makes a call for the
bADI dataset. The inputs from the bAbI tasks are then converted to vectors based on
the vector set given. The main vector conversion calls for other functions which can deal
with missing words in glove and fastText. The vectors were extracted using the tensor
function of theano by getting normalized or constant vectors by passing the dimension,
word vector size. The same procedure is followed for all the modules including episodic
memory, input, question and answer.

4.4 DMN construction

Constructing DMN: DMN was constructed using all the components described earlier
using the vectors and dot product between them forming the correct formula with softmax
activation function to minimize the cross entropy. The vectors are then fed to the DMN
model for final testing. The input is given using the training, testing and fact dataset.
The data is shuffled continuously after every epoch and was trained again.

5 Evaluation

The Facebook bAbI dataset has been always tested using their testing dataset provided.
There are no fixed evaluation methods yet designed for dialogue systems which is a huge
problem and is stillan open question. Other techniques like Bilingual evaluation score
Galley et al. (2015), next utterance classification(Landeghem, (2016)) have been used in
different cases but the results do not match human evaluation. So, based on the previous
experiments on QA, accuracy obtained from training and testing is considered(Lowe
et al| (2017))). In this project, five different questioning scenarios were taken in which

the training, testing and facts data were collected and converted to vectors. Two models
were built with glove and FastText which were tested against the corresponding testing
dataset. Only 10% of training data was used to train the model. The processing times
were also captured along with the accuracy and confusion matrix. The base model is
proposed in DMN having glove with which the results will be compared with fastText
DMN. Below figure shows the output confusion matrix and accuracy for the bAbI task 1
with glove and fastText.

test loss = 0.70616 cest loss = 0.26736

confusion mMAaTrix: confusion matrix:

[[112 4 11 & 10] [[128 9 3 € 7 5]

[& 110 12 5 11 8] [4 120 =] 5 10 3]

[7 10 136 8 11 15] [7 4 153 e 2 9]

[12 2] 9 138 7 71 [= 8 4 123 5 1]

[= T 14 9 127 6] [& 2 8 g 109 2]

[7 3 7 14 5 121]]) [4 7 5 14 g 13311
accuracy: 74.40 percent accuracy: 79.21 percent
==> saving ... states/dmn_b: ==> saving ... states/dmn batch
epoch 9 took 2939.737s o epoch 9 took 190832.203=

Figure 4: Confusion matrix and accuracy of DMN for one supporting fact data with glove
on the left and FastText on the right side

The above figure for taskl with only one fact given after testing and training the data.
The accuracy of the model has increased by over 5% with fastText compared to the
base model. The time taken for training and testing in one iteration is 2939.737 seconds
for glove which is equal to 49 minutes and there are 8 more iterations before the final
accuracy has computed. The processing time for fastText is even more as pre-trained
fastText vectors are much larger in this case.

test loss = 0.26736 te=st lo==s = 0.44155
confusion matrix: confu=sion macrix:
[[120 12 5 8 5 2] [ri0s 1 = 2 10 8]
[2 103 8 10 2 12] [8 128 3 3 T 1]
[© S 110 3 S 3] [2 8 121 7 & 12]
[3 2 5 109 8 1] [e 6 2 144 = 71
[11 3 4 1 1z2s g1l [8 3 7 3 113 4]
[8 7 2 2 5 12311 ¢ o2z 6 12 8 8 12111
accuracwv: S5B8.24 perce::_n: accuracy: 62.78 percent

Figure 5: Confusion matrix and accuracy of DMN for two supporting fact data with glove
on the left and FastText on the right side

A similar experiment was done by using two supporting facts which showed that the
DMN'’s accuracy is 58.24% with glove and has just increased to 62.78% with fastText. In
figure 6 shows the result from testing task 3 with three supporting facts was able to easily
iterate over input and facts to give a decent number of correct answers. The accuracy

with fastText is more in this scenario by 4.1% but it was not performing as well as with
the one supporting fact which is unexpected.

confusion matrix: confusion macrix:

[[132 4 4 5 1 6] [[113 14 3 5 6 2]
[9 110 & 2 & 71 [10 107 &8 4 4 7]
[7 g8 135 5 2 1] [7 1 125 13 5 5]
[1 12 1 112 5 11] [& 18 5 117 3 10]
[& 3 11 15 147 3] [4 3 6 15 122 6]
[3 9 7 2 1 12811 [2 5 7 1l 6 134]]

accuracy: 62.22 percent accuracy: 66.32 percent

Figure 6: Confusion matrix and accuracy of DMN for three supporting fact data with
glove on the left and FastText on the right side

confusion matrix:
[[116 7 9 11 5
[12 136 5 8 4 10]

[5 14 127 g8 14 G [3 2 102 2 12 23

[9 5 8 134 6 4] [12 9 g 132 3 7)

[13 5 11 1 121 4] Q 7 3 6 108 5]

[4 9 14 7 7 132)] [44 4 5 3 o 101]]
accuracy: 76.60 percent accuracy: £82.22 percent

confusion matrix:
[[124 3 3 15 5 3]
[@ 111 12 & 5 111

Figure 7: Confusion matrix and accuracy of DMN for two argument relations data with
glove on the left and FastText on the right side

In figure 7, it shows that the accuracy is 82.22% for DMN and fastText for bAbl task4
having two arguments which gives a relation to the question asked in the conversation.
This performed 6% better than the DMN glove.

confusion matrix: confusion matrix:

[[12¢4 =2 7 10 2 g) [[105 7 S 7 &8 7]
[32106 5 3 7 11 [11130 & & 2 10]
[2 5110 7 12 1] [1 18 128 7 9 8]
[13 2 €101 6 33 [&8 1 111¢ &8 4]
[& 15 5 6 124 6] [2 g & g 104 3]
[8 9 11 7 11s52]1 [2 4 17 5 12 118]]

accuracy: 77.33 percent accuracy: 83.21 percent

Figure 8: Confusion matrix and accuracy of DMN for three argument relations data with
glove on the left and FastText on the right side

Figure 8 below depicts the accuracy obtained for the last task handling three argument
relations with glove which is slightly more than its previous accuracy attained with two
arguments equaling to 77.33% and with the fastText it has reached to 85.21%.

Overall view of results: Below is the overall result summarized after testing with
various question types.

Question type DMN glove DMN FastText
one supporting fact 74.40% 79.21%

two supporting facts 58.24% 62.78%

three supporting facts 62.2% 66.32%

two argument relations 76.60% 82.2%

three argument relations 77.33% 85.21%

Table 1: Results of DMN with glove and FastText

It is evident that there is an improvement of around 4-6% with the use of FastText but
this would be more accurate when tested with huge corpus. The overall accuracy ranged
in the case of DMN with fastText ranged from 62 to 85 in five of the cases. It performed
extremely well with three argument relations but more analysis has to be done to improve
the accuracy for two supporting facts.

6 Discussion

The results obtained show that there is at least 3-6% increase with fastText in the ac-
curacy over five different question types including single supporting fact, two supporting
facts, three supporting facts and with two and three argument relations tasks. As expec-
ted, there is certainly a raise compared to glove but this could be made even better with
the increase in data that is being tested and trained. An interesting fact is that, with
the increase in the number of facts provided, the performance of DMN model has raised.

The dataset has ten thousand dialogues per task each for test, train and facts which does
not have many rare words and are not in the overall vector space. Whereas if the approach
tested on an extremely large corpus having at least ten hundred thousand dialogues with
rare words like biological and medical terms which were not used frequently, then DMN
with fastText will serve its best. Therefore, the null hypothesis which states that the
fastText cannot improve the DMN QA performance can be rejected in this research.
This proved to be better than the results obtained with glove (DMN).

The use of fastText has improved the performance of DMN but the processing time is
extremely slow taking over 7.35 hours for glove per task and is double in case of fastText.
So, the overall time spent just for testing 5 different tasks in glove and fastText took days
on a CPU. This problem can be avoided by setting up TensorFlow on a GPU or setting
up a cloud environment on Google Cloud or AWS. These two approaches were tried and
were not easy to implement as the existing GPU type did not match the TensorFlow
configuration and the cloud setup consumes time.

7 Conclusion and Future work

FastText has been mainly used for text classification and is not used in any of the dialogue
systems for word to vector conversions. The end to end models are sensitive and should
be carefully built considering every aspect including the word embeddings. It was clearly
mentioned in DMN that the model is highly dependent on the input vectors, if that is the
scenario then it is always efficient to use the best possible methods for it which was done
in this research. The key findings show that there is a definite increase in the accuracy by
at least 4% tested on five different question answering scenarios. This work contributes to
the improvement of dialogue systems by replacing the vector conversion techniques and
to thrive to find any other vector conversion methodologies which will further improve
this domain.

A web user interface with DMN and fastText on the backend can be built to test on real
human users asking for a rating on different aspect of the system including the grammar,
relevancy, context maintenance, uniqueness of the answers etc. This will further give a
real experience on the system performance raising various questions to make the model
even more powerful. Secondly, a large dataset can be used to train the system even on
rare words which will certainly perform well with fastText. Thirdly, the same model can
be built using big data on distributed systems, cloud environment and high-performance
computing systems for faster processing and for making an efficient conversational system.
Lastly, there is no data available with facts, questions and answers that is much larger
to test the model. So, data in large volumes should be gathered to make it available for
this kind of research.

8 Acknowledgements

I would like to thank my supervisor Dr.Paul Stynes for steering me in the right direction
by giving interesting strategy classes on thesis writing and implementation which acted
as a backbone for my project. I thank Dympna O’Sullivan for giving her valuable time
and feedback in reviewing the document, code and results every week with patience. I
thank Dr.Pramod Pathak for his motivational support throughout this project. I must
express my profound gratitude towards my parents and my college friends for continuous
encouragement throughout my research.

References

Andreas, J., Rohrbach, M., Darrell, T. and Klein, D. (2016). Learning to Compose
Neural Networks for Question Answering, Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Association for Computational Linguistics, San Diego, Califor-
nia, pp. 1545-1554.

URL: http://www.aclweb.org/anthology/N16-1181

Bahdanau, D., Cho, K. and Bengio, Y. (2014). Neural Machine Translation by Jointly
Learning to Align and Translate, arXiv:1409.0473 [cs, stat] . arXiv: 1409.0473.
URL: http://arziv.org/abs/1409.0473

Bengio, Y., Ducharme, R., Vincent, P. and Jauvin, C. (2017). A Neural Probabilistic
Language Model, p. 19.

Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T. (2017). Enriching Word Vectors
with Subword Information, Transactions of the Association for Computational Lin-
gquistics 5: 135-146.

URL: https://transacl.org/ojs/index.php /tacl/article/view/999

Bordes, A., Boureau, Y.-L. and Weston, J. (2016). Learning End-to-End Goal-Oriented
Dialog, arXiv:1605.07683 [cs] . arXiv: 1605.07683.
URL: http://arziv.org/abs/1605.07683

Bowman, S. R., Potts, C. and Manning, C. D. (2015). Recursive Neural Networks Can
Learn Logical Semantics, Proceedings of the 3rd Workshop on Continuous Vector Space
Models and their Compositionality, Association for Computational Linguistics, Beijing,
China, pp. 12-21.

URL: http://www.aclweb.org/anthology/W15-4002

Cho, K., van Merrienboer, B., Bahdanau, D. and Bengio, Y. (2014). On the Properties of
Neural Machine Translation: Encoder-Decoder Approaches, arXiv:1409.1259 [cs, stat]
. arXiv: 1409.1259.
URL: http://arziv.org/abs/1409.1259

Deng, L., Tur, G., He, X. and Hakkani-Tur, D. (2012). Use of kernel deep convex networks
and end-to-end learning for spoken language understanding, IEEE, pp. 210-215.
URL: http://iecexplore.iece.orq/document /6424224 /

Deoras, A. and Sarikaya, R. (2013). Deep Belief Network based Semantic Taggers for
Spoken Language Understanding, p. 5.

Etzioni, O., Banko, M., Soderland, S. and Weld, D. S. (2008). Open information extrac-
tion from the web, Communications of the ACM 51(12): 68.
URL: http://portal.acm.org/citation.cfm?doid=1409360.1409378

Fayyad, U. (1996). From Data Mining to Knowledge Discovery in Databases, p. 18.

Galley, M., Brockett, C., Sordoni, A., Ji, Y., Auli, M., Quirk, C., Mitchell, M., Gao,
J. and Dolan, B. (2015). BLEU: A Discriminative Metric for Generation Tasks with
Intrinsically Diverse Targets, p. 6.

Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning, MIT Press. http:
//www.deeplearningbook.org.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P.; Sainath, T. N. and Kingsbury, B. (2012). Deep Neural
Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four
Research Groups, IEEE Signal Processing Magazine 29(6): 82-97.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory, Neural Comput.
9(8): 1735-1780.
URL: http://dz.doi.org/10.1162/neco.1997.9.8.1735

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Hovy, E., Gerber, L., Hermjakob, U., Junk, M. and Lin, C.-y. (2000). Question Answer-
ing in Webclopedia, In Proceedings of the Ninth Text REtrieval Conference (TREC-9,
pp. 655—664.

Joulin, A., Grave, E., Bojanowski, P. and Mikolov, T. (2016). Bag of Tricks for Efficient
Text Classification, arXiw:1607.01759 [cs] . arXiv: 1607.01759.
URL: http://arziv.org/abs/1607.01759

Kakar, V. K. and Kandpal, M. (2013). Techniques of Acoustic Feature Extraction for
Detection and Classification of Ground Vehicles, 3(2): 8.

Kalchbrenner, N. and Blunsom, P. (2013). Recurrent Continuous Translation Mod-
els, Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, Association for Computational Linguistics, Seattle, Washington, USA,
pp. 1700-1709.

URL: http://www.aclweb.org/anthology/D13-1176

Katz, B., Felshin, S., Yuret, D., Ibrahim, A., Lin, J., Marton, G., Jerome McFarland,
A. and Temelkuran, B. (2002). Omnibase: Uniform Access to Heterogeneous Data
for Question Answering, in G. Goos, J. Hartmanis, J. van Leeuwen, B. Andersson,
M. Bergholtz and P. Johannesson (eds), Natural Language Processing and Information
Systems, Vol. 2553, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 230-234.
URL: http://link.springer.com/10.1007/3-540-36271-1,3

Kumar, A., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, 1., Zhong, V., Paulus,
R. and Socher, R. (2016). Ask Me Anything:Dynamic Memory Networks for Natural
Language Processing, p. 10.

Kwok, C., Etzioni, O. and Weld, D. S. (2000). Scaling Question Answering to the Web,
p- 22.

Landeghem, J. V. (2016). Sequence-to-Sequence Learning for End-to-End Dialogue Sys-
tems, p. 75.

Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998). Gradient-based learning applied
to document recognition, Proceedings of the IEEE 86(11): 2278-2324.

Li, X., Chen, Y., Li, L. and Gao, J. (2017). End-to-end task-completion neural dialogue
systems, CoRR abs/1703.01008.
URL: http://arziv.org/abs/1703.01008

Li, X., Chen, Y.-N., Li, L., Gao, J. and Celikyilmaz, A. (2017). End-to-End Task-
Completion Neural Dialogue Systems, arXiv:1703.01008 [cs] . arXiv: 1703.01008.
URL: http://arziv.org/abs/1703.01008

Liu, B. and Lane, I. (2016). Attention-Based Recurrent Neural Network Models for Joint
Intent Detection and Slot Filling, arXiv:1609.01454 [cs] . arXiv: 1609.01454.
URL: http://arziv.org/abs/1609.0145/

Lowe, R., Pow, N., Serban, I. V., Charlin, L., Liu, C.-W. and Pineau, J. (2017). Training
End-to-End Dialogue Systems with the Ubuntu Dialogue Corpus, p. 35.

Madotto, A., Wu, C.-S. and Fung, P. (2018). Mem2seq: Effectively Incorporating Know-
ledge Bases into End-to-End Task-Oriented Dialog Systems, Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Association for Computational Linguistics, Melbourne, Australia, pp. 1468
1478.

URL: http://www.aclweb.org/anthology/P18-1136

Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013). Efficient Estimation of Word
Representations in Vector Space, arXiv:1301.53781 [cs] . arXiv: 1301.3781.
URL: http://arziv.org/abs/1301.3781

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J. and Khudanpur, S. (2010). Recurrent
Neural Network Based Language Model, p. 4.

Mikolov, T., Le, Q. V. and Sutskever, 1. (2013). Exploiting Similarities among Languages
for Machine Translation, arXiv:1309.4168 [cs] . arXiv: 1309.4168.
URL: http://arziv.org/abs/1309.4168

Mikolov, T. and Zweig, G. (2012). Context dependent recurrent neural network language
model, 2012 IEEE Spoken Language Technology Workshop (SLT), pp. 234-239.

Milhorat, P., Lala, D., Inoue, K., Zhao, T., Ishida, M., Takanashi, K., Nakamura, S.
and Kawahara, T. (2017). A conversational dialogue manager for the humanoid robot
ERICA, p. 12.

Othman, N., Faiz, R. and Smaili, K. (2017). A Word Embedding based Method for
Question Retrieval in Community Question Answering, p. 6.

Ram, A., Gabriel, R., Cheng, M., Wartick, A., Prasad, R., Liu, Q., Nagar, A., Pan, Y.,
Hwang, G., Khatri, C., Nunn, J., King, E., Song, H., Pettigrue, A., Venkatesh, A.,
Hedayatnia, B., Bland, K. and Jayadevan, S. (2018). Conversational Al: The Science
Behind the Alexa Prize, p. 18.

Ritter, A., Cherry, C. and Dolan, W. B. (2011). Data-Driven Response Generation in
Social Media, p. 11.

Seo, P. H., Lin, Z., Cohen, S., Shen, X. and Han, B. (2016). Progressive Attention
Networks for Visual Attribute Prediction, arXiv:1606.02393 [cs] . arXiv: 1606.02393.
URL: http://arziv.org/abs/1606.02393

Serban, 1., Sordoni, A., Bengio, Y., Courville, A. and Pineau, J. (2015). Hierarchical
Neural Network Generative Models for Movie Dialogues.

Serban, 1. V., Klinger, T., Tesauro, G., Talamadupula, K., Zhou, B., Bengio, Y. and
Courville, A. (2016). Multiresolution Recurrent Neural Networks: An Application to
Dialogue Response Generation, arXiw:1606.00776 [cs, stat] . arXiv: 1606.00776.
URL: http://arziv.org/abs/1606.00776

Serban, I. V., Lowe, R., Henderson, P., Charlin, L. and Pineau, J. (2015). A Survey of
Available Corpora for Building Data-Driven Dialogue Systems, p. 56.

Shang, L., Lu, Z. and Li, H. (2015). Neural Responding Machine for Short-Text Conver-
sation, Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), Association for Computational Linguistics, Beijing, China,
pp. 1577-1586.

URL: http://www.aclweb.org/anthology/P15-1152

Socher, R., Huang, E. H., Pennin, J., Manning, C. D. and Ng, A. Y. (n.d.). Dynamic
Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection, p. 9.

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y. and Potts,
C. (2015). Recursive Deep Models for Semantic Compositionality Over a Sentiment
Treebank, p. 12.

Stollenga, M., Masci, J., Gomez, F. and Schmidhuber, J. (2014). Deep Networks with In-
ternal Selective Attention through Feedback Connections, arXiv:1407.3068 [cs] . arXiv:
1407.3068.

URL: http://arziv.org/abs/1407.3068

Sutskever, 1., Vinyals, O. and Le, Q. V. (2014). Sequence to Sequence Learning with
Neural Networks, arXiv:1409.5215 [cs] . arXiv: 1409.3215.
URL: http://arziv.org/abs/1409.3215

Vinyals, O. and Le, Q. (2015). A Neural Conversational Model, arXiv:1506.05869 [cs] .
arXiv: 1506.05869.
URL: http://arziv.org/abs/1506.05869

Wen, T.-H., Gasic, M., Mrksi¢, N., Su, P.-H., Vandyke, D. and Young, S. (2015). Se-
mantically Conditioned LSTM-based Natural Language Generation for Spoken Dia-
logue Systems, Association for Computational Linguistics, pp. 1711-1721.

URL: http://aclweb.org/anthology/D15-1199

Weston, J., Bordes, A., Chopra, S., Rush, A. M., van Merriénboer, B., Joulin, A. and
Mikolov, T. (2015). Towards AI-Complete Question Answering: A Set of Prerequisite
Toy Tasks, arXiv:1502.05698 [cs, stat] . arXiv: 1502.05698.

URL: http://arziv.org/abs/1502.05698

Weston, J., Chopra, S. and Bordes, A. (2014). Memory Networks, arXiv:1410.53916 [cs,
stat] . arXiv: 1410.3916.
URL: http://arziv.org/abs/1410.3916

Xing, C., Wu, W., Wu, Y., Zhou, M., Huang, Y. and Ma, W.-Y. (2017). Hierarchical
Recurrent Attention Network for Response Generation, arXiv:1701.07149 [cs] . arXiv:
1701.07149.

URL: http://arziv.org/abs/1701.07149

Xiong, C., Merity, S. and Socher, R. (2016). Dynamic Memory Networks for Visual and
Textual Question Answering, p. 10.

Yan, Z., Duan, N., Chen, P., Zhou, M., Zhou, J. and Li, Z. (2015). Building Task-Oriented
Dialogue Systems for Online Shopping, p. 8.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A. and Hovy, E. (2016). Hierarchical Atten-
tion Networks for Document Classification, Association for Computational Linguistics,
pp. 1480-1489.

URL: http://aclweb.org/anthology/N16-1174

Young, S. and Williams, J. D. (2013). POMDP-based Statistical Spoken Dialogue Sys-
tems: a Review, PROC IEEE 101(5): 18.

Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D. and Weston, J. (2018). PERSON-
ALIZING DIALOGUE AGENTS: I HAVE A DOG, DO YOU HAVE PETS TOO?,
p. 14.

Zhao, T. and Eskenazi, M. (2016). Towards End-to-End Learning for Dialog State Track-
ing and Management using Deep Reinforcement Learning, Association for Computa-
tional Linguistics, pp. 1-10.

URL: http://aclweb.org/anthology/W16-3601

	Introduction
	Background and Motivation
	Research Formulation
	Structure of the paper

	Related Work
	Methodology
	Data Selection and Extraction
	Pre-processing
	Transformation
	Data Mining
	Interpretation

	Design and Implementation
	Extraction
	Sanity filter
	Vector conversion
	DMN construction

	Evaluation
	Discussion
	Conclusion and Future work
	Acknowledgements

