
Classification of Malicious Web Code Using
Deep Learning

MSc Research Project

Data Analytics

Manoj Kumar Selvam
x17115663

School of Computing

National College of Ireland

Supervisor: Vikas Tomer

www.ncirl.ie



National College of Ireland
Project Submission Sheet – 2017/2018

School of Computing

Student Name: Manoj Kumar Selvam
Student ID: x17115663
Programme: Data Analytics
Year: 2018
Module: MSc Research Project
Lecturer: Vikas Tomer
Submission Due
Date:

13/08/2018

Project Title: Classification of Malicious Web Code Using Deep Learning
Word Count: 5,793

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students
are encouraged to use the Harvard Referencing Standard supplied by the Library. To
use other author’s written or electronic work is illegal (plagiarism) and may result in
disciplinary action. Students may be required to undergo a viva (oral examination) if
there is suspicion about the validity of their submitted work.

Signature:

Date: 13th August 2018

PLEASE READ THE FOLLOWING INSTRUCTIONS:
1. Please attach a completed copy of this sheet to each project (including multiple copies).
2. You must ensure that you retain a HARD COPY of ALL projects, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer. Please do not bind projects or place in covers unless specifically
requested.
3. Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if
applicable):



Classification of Malicious Web Code Using Deep
Learning

Manoj Kumar Selvam
x17115663

MSc Research Project in Data Analytics

13th August 2018

Abstract

As the world moves towards web, there have been a lot of attacks which was
carried out in web applications. Among those, we have the XSS(Cross-site script-
ing) attack which is considered as one of the top attack as per OWASP (Open
Web-Application Security Project). The attacker uses a sophisticated method of
injecting malicious code into the web application through web forms or request
parameters, which is the stored in the server and later executed when the user
visits the vulnerable page. In this paper we are using deep learning approach to
identify the stored XSS vulnerabilities and to detect them, in order to prevent such
malicious attacks. The paper discusses in detail the methodology used to apply
deep machine learning methods and helps us identify malicious and non malicious
web code. The experiment conducted using 11,000 labelled samples, provided the
accuracy of 98% for the proposed architecture.

1 Introduction

In today’s interconnected world, everything and everyone around the globe is connected
through the internet. This gives access to a world of opportunities and businesses to
thrive and grow, providing a global presence. Hence, there is a requirement of emerging
web application development across all domains. These days there is an increase in the
number of web-applications across the market. Any such demand also has to be dealt with
improved security, and for such surge in web applications, the developers have an increased
responsibility to secure these developed web applications. The web applications are at
the risk of hidden vulnerabilities. According to OWASP (Open Web-Application Security
Project), cross-site scripting attacks, rank highest among all other attacks. Cross-Site
Scripting (XSS) is a sophisticated attack done by hackers, where a malicious script is
injected into the web applications through web forms or web request and later, saved on
the server. As soon as end-user access the infected webpage on the web-application, the
attacks get actuated and user-data is stolen. The attacks are commenced by the attacker
using Javascript and HTML. What makes XSS attacks hard is due to their peculiar
hidden presence. The malicious Javascript remains undetected for longer to an unknown
time.

1



Web applications in general are prone to different kind of attacks. However, trying
to prevent these attacks may just not stop hackers from utilising any existing or new
loopholes to inject these attacks on the web applications. When security is developed to
tackle these attacks, it becomes imperative to keep revising the current methodologies
and to keep the web applications secure. These web applications, if hacked may prove
a costly affair. One such example, though not a web application security attack, but a
loophole where data of millions was leaked from Facebook and available at a 3rd party
company without the user’s consent. This keeps the end user on a constant lookout for
the security of the webpage, to know know how secure and trusted a webpage is by other
users, and hense are hesitant to provide or give out any information online on these web
applications.

XSS attacks executes javascript code on client’s browser through which the attackers
steal user information. There are different types of XSS attacks. One such type is
Reflected XSS, where the malicious code will be passed in the request URL. This gets
executed when user access those infected URLs. DOM-based XSS is another form where
the vulnerability originates from client side instead of server side.In Persistent XSS attack
which is also called as Stored XSS attack, the malicious code is injected in website’s
database or file system. When user accesses the page which is affected, the code gets
executed. This paper deals with Stored/Persistent XSS attack and methods to classify
vulnerable and non-vulnerable code using machine learning approach.

Lot of existing work has been done to identify the XSS vulnerability from web code.
Static analysis of code is one of them, where the source code is reviewed before the
execution. This technique can guarantee the prevention of existing vulnerability but the
identification process takes much time. Sometimes its slow, which fails to provide the
accurate result. Dynamic analysis is another method where the system understands the
behaviour of existing malware. In this method the rules were defined by understanding
the existing attacks and a system is developed to prevent the vulnerability using those
rules. However, this method fails to identify any new attacks because of the system
design. Whenever a new vulnerability is found, the system is modified to block certain
attacks by defining new rules.

Machine learning method of identifying the vulnerability is another method, Where
the machine learning classifier is trained to identify vulnerable and non-vulnerable code.
The features are extracted from vulnerable and non-vulnerable code by using different
NLP techniques like TFID, Bag of words, etc. The extracted features are used to train
the model for classification using various algorithms like KNN and Random Forest. This
method has improved the capability of identifying vulnerable code with higher accuracy
and precision rate. However, in this technique the feature extraction method used is
not reliable as we are handling the program code written in HTML and Javascript. A
program code will have lot of repeated keywords using techniques like word frequency,
Bag of words, etc., resulting in a feature vector of all the keywords and its frequency,
Which is not a viable method for extracting the features.

The proposed approach deals with a new way of extracting meaningful features from
the web code for training the classifier. The collected features were tested with Convolu-
tion Neural Network (CNN) classifiers and its performance is compared with K-Nearest
Neighbors (KNN), Naive Bayes and Random Forest (RF). The Cross Industry Standard
Process for Data Mining (CRISP-DM) methodology is used for this study. The rest of the
research report is as follows: Literature Review forms the second part of the project. The
methodology is then discussed along with the architectural design. Later the models are



developed, designed and implemented presenting the results of the research experiment.
Finally, the research is concluded with the aforementioned model experiment findings
and any future work.

2 Related Work

Security anomaly detection through machine learning is not new. There has been ex-
tensive research done on how we can detect such anomalies in the form of java scripts,
html scripts etc., within the web code. However, the approaches and methodologies used
were particularly with the problem the researchers were trying to solve. One such re-
search is where a static malicious javascript is detected through SVM (Support Vector
Machine) by Likarish et al. (2009). In this research, it was proposed to use the non-linear,
static, SVM (Support Vector Machine) based analysis method. The accuracy attained
was quite high at 94.38% for the experiment conducted on the static script with a low
false alarm, as compared to other models. However, the author Rathore et al. (2017)
falls short in providing reasoning for using a non linear SVM (Support Vector Machine)
approach, mentioning it as a complex data set. Along with this, we are unaware on why
the dynamic script analysis was not a part of the research.

The cross site scripting (XSS) attack detection using machine learning by Fawaz and
Jacob (2018) and Gupta et al. (2015) explains how a combination of language syntax and
behavioral features provide a greater accuracy on testing datasets. The author explains
how the XSS and SQL injection attacks are one of the top most and popular choice
for stealing information. It also showcases how obfuscation occurs and the code can be
changed or modified in the form of both benign and malicious intents. The study boasts
of being the first to use Random Forests as a classifier to detect the cross site scripting
(XSS) attacks. Malviya et al. (2013) proposed a method where structural features, beha-
vioral features and classifiers were implemented by converting them into binary measures
instead of the traditional approach of the weighted measures being taken into considera-
tion. This provided a very high rate of accuracy with almost all models. But at the same
time, we do not have a reasoning for this particular approach being taken to obtain this
high accuracy of more than 95% across models such as k-NN, Random Forests, Linear
and Polynomial SVM. Except the Linear SVM model, all other models reach an accuracy
of or more than 99.50% on the testing data sets.

Ghaffarian and Shahriari (2017) discuss about various methods of discovering XSS vul-
narablity. Where Word frequency methoed (TFID), identification using strurcural and
functional behaviour and Abstract syntax tree methods are popuplar methods used for
classify vulnerable and non-vulnerable codes. However these methods are not good in
understanding the pattern. which makes the classifier ineffective to classify new attacks.

A similar research was carried out earlier by Vishnu and Jevitha (2014), where the author
used the URL and JavaScript-based features to train the algorithms specific to these.The
models built were the Naive Bayes, Support Vector Machines and J48 Random Forest.
However, the results for these experiments were evaluated based on the FPR (False Posit-
ive Rate), TPR (True Positive Rate) and Precision values. These models were evaluated
separately for URL and JavaScript based features. The experiment gave better results



for the J48 Random Forest with better FPR (False Positive Rate) values. However, the
research does not explain the performance evaluation metrics chosen to evaluate the ex-
periment.

Automatic cross site scripting (XSS) detection experiment by Nunan et al. (2012), Ko-
miya et al. (2011) used features extracted from the URL and web document content to
apply classification techniques to malicious web pages. The feature selection in this re-
search is varied and vast ranging from obfuscation based, suspicious pattern based and
Html/JavaScripts schemes based methods, etc.

The models used in the research were Naive Bayes and SVM (Support Vector Machine)
and the performance measures used were the Detection Rate, False Alarm Rate and
Accuracy Rate. As per the experiment the SVM (Support Vector Machine) with a poly-
nomial kernel achieved a higher performance. However, the aim of the project was not
to just measure the results and evaluate it against the metrics, but also to compare it
against another research by Likarish et al. (2009). This research was more focussed on
feature or aspect based model comparison and performance. However, the research does
not provide assurance of the model being capable of detecting all types of scripting at-
tacks, though automated.

We see multiple models created to classify these malicious web codes and one of them
which uses a deep learning framework was developed by Wang et al. (2016). This re-
search was conducted to build a model on deep learning to detect malicious JavaScript
code. This paper uses stacked denoising autoencoders (SDA) feature selection method
to classify the malicious and benign web codes. This research involved multiple models
such as Logistic Regression and SVM (Support Vector Machine) which used the stacked
denoising autoencoders (SDA) for feature selection. This type of feature selection was
concluded to be better than PCA (Principal Component Analysis), ICA (Independent
Component Analysis) and FA (Factor Analysis). This research was on the model SDA-
LR which was a neural net with logistic regression which had better statistical output
than other models. The issue faced with this research objective and goal was that, the
training time of this particular model was more due to the training of neurons at different
layers. Not only this, but the drawback is mentioned that the classifier fails to detect or
identify the benign scripts from malicious one’s effectively.

Research on server side scripting has been done by Kamtuo and Soomlek (2016), describ-
ing the use of compiler platform with data mining algorithms to detect SQL (Structured
Query Language) injections vulnerability within incorrect queries. The models varied
from SVM (Support Vector Machine), Boosted Decision Tree, Artificial Neural Network
and Decision Jungle. Here, Decision Jungle performed better than other models. How-
ever, this paper deals with server side scripting, and does not yet confirm if it works for
the detection and prediction of the SQL (Structured Query Language) injection, requir-
ing future work.

Hence, for the detection and prediction of such type of (SQLIA) Structured Query Lan-
guage Injection Attacks, we have the research done by Uwagbole et al. (2017). 2017 which
deals with the addressing of predictive analytics in the field of (SQLIA) Structured Query
Language Injection Attacks, on a larger scale with reference to Big Data Analytics. The



methodology involved text pre-processing, feature hashing, filter-based feature selection
for top relevant vectors and then splitting the data to train and test the models, later
evaluating them for the results. Shar and Tan (2013) empirically evaluated the model at
98.6% reaching a good accuracy level. However, the scope of multi class classifier was not
delved into, in order for us to understand if the same can be applied to different classes,
as big data may not involve a separation of just one class.

Dimensionality techniques have long been used in different mathematical complex prob-
lems to simplify them. Some of it may be due to the fact that it is highly dimensional or
some data being redundant. Even in machine learning algorithms, during preprocessing
a dimensionality reduction is applied to make it more apt for the model to get the desired
output. A research carried out by Sorzano et al. (2014) had a survey done for the dimen-
sionality reduction techniques. Thereafter, finding a plethora of available techniques but
addressing the same problem of reducing complexity. Hence, dimensionality reduction is
a concept which is user based but more of data based as well. Since, the user is required
to understand the data effectively to understand its dimensions and hence reducing it
for better computation performance. Therefore, its a subjective matter. The research is
available at length with the available techniques to reduce the dimensionality. By and
large an issue dimensionality is referred to a curse of dimensionality rather. Due to the
fact that certain dimensions in data are very important to get rid of. Data inconsist-
encies can be another factor which can be looked into further to check about the data
dimensionality.

A simple classification technique was used by Needell et al. (2017) from binary data
proposing a framework with reduced resource costs and low framework. They have used
a supervised learning algorithm for classification which functions on binary data. How-
ever, at this stage only a theoretical use case was available.

However, A research carried out by Landgraf and Lee (2015) proposed a novel idea for
the Logistic Principal component analysis (PCA) used for binary data. They extended
the Pearsons formulation of a low represented dimensional data to binary data with min-
imum error. This new method does not require any factorization, but natural parameter
projection from the saturated model. Hence, the principal component scores on the new
data along with the number of observations are simply computed by matrix multiplica-
tion. Therefore, LSVD shows a lower deviance than LPCA.

Research done by Gilbert et al. (2017), Yan et al. (2018) shows Convolutional Neural
nets are invertible and shows reasonable constructions. Convolutional networks have
been used on image and text classification for quite some time now. Usage of these deep
learning algorithms has been useful in many terms as they are more efficient than matrix
multiplication, though being mathematically equivalent.

3 Methodology

The methodology used in this research is the CRISP-DM approach. CRISP-DM specific-
ally means Cross Industry Process for Data Mining. It is a structured approach with
a proven methodology with being robust and practically powerful. The usefulness and



flexibility helps to take all aspects of data mining into consideration.

Figure 1: CRISP-DM Cycle Flow

Business understanding In this stage we understood the project requirements and
the objectives undertaken. We also considered the feasibility of the project based on the
research question posed. We identified the missing factors in the project undertaken,
which in our case the objective was to classify malicious and non-malicious web code us-
ing new way of feature extraction technique. We then assessed and evaluated the project
details and timeline for applying the necessary data mining techniques.

Data understanding - The data was extracted from web pages, where there were
two web code scripts. One was the benign script and the other being the malicious. We
understood the requirements of the data and the values and how it shall fulfill the pro-
ject requirements going forward to pre process it and data mine it, to gain the necessary
insights and build the required models.

Data preparation- In this stage of the research the cleaning of the data was carried out
using the necessary technologies and programming languages using Python, We assess
both malicious and non-malicious data in terms of length and other factors and convert
from text to binary matrix. During the conversion 0 is appended with the dataset to
have consistent length in each row. We also try to eliminate the null or void cells and
convert most of the data to the binary format based on the project requirements. As the
resulting number of features was high, we also perform a dimension reduction to get the
desired dataset which was ready to be trained and modelled accordingly, based on the
requirements.

Modeling- In this stage, we split the data set into training and testing, building the



Naive Bayes model first to assess the data performance on how it is getting trained. Go-
ing further, additional models like KNN, Random Forest, CNN are trained by tuning the
appropriate parameters.

Deployment- In this stage the models are deployed, trying to configure and tune them
for the desired results. We also analyse if the models created are suitable, also to check if
the data used is helping us with the outlined project objectives and successful deployment.

Evaluation- This is the last stage of the process where the model is being tested and
evaluated for the results it produced. We match these results with the project objectives
to check if it meets the required standards or if they may require some hyperparameter
tuning. We also check and verify if it specifically answers the research question posed in
this research project paper, clearly understanding the goal of the project.

4 Implementation

Data Extraction

Data Pre-
processing

Dimension
Reduction

Final FeaturesTraining Dataset Testing Dataset

Training Fea-
ture Vectors

Testing Fea-
ture Vectors

Classifier

Evaluation

Figure 2: Decision Model



4.1 Dataset

The dataset contains 10500 rows with the combination of both benign and malicious
code samples. Each row consist of text samples of different HTML tags which has tag
attributes in it. These code samples are scrapped from various websites and stored in
two different .csv file as malicious and benign. The composed dataset contains nearly
around 5000 rows of malicious code and 5500 rows of benign code samples.

The malicious XSS tag vectors are collected from different websites which are exposed
by the hackers for training purpose. These codes contain both regular and encrypted text
contents. Whereas, the benign codes were collected from different trusted websites. To
ensure that the websites are trusted, a list of top 100 websites list were used, from which
code samples from these randomly selected websites were obtained.

Class Level Name Training Set Testing Set
0 Benign Code 3399 1477
1 Malicious Code 4295 1821

4.2 Data Preprocessing

In most cases if there is any textual data NLP technique were used to convert text into
meaningful data metrics. In our case the text is composed of HTML tags and attributes
in it. In the malicious code samples there are existence of unicode symbols and other
meaningless strings. Therefore the dataset is not suitable for any NLP techniques.

The entire dataset is converted into ASCII code matrix to obtain feature vectors.
At first, we took a character from the dataset converted into lower case character and
generated ASCII value for it. This process is repeated for each and every character in
the entire dataset and the resulted ASCII characters are stored in CSV file where each
character is separated by a delimiter. The length of the text in each row is different
from each which makes the obtained ASCII matrix to have a different length. zeros are
appended at the end of each row to have consistent length across the row matrix.

< ———> 0111100 S ———> 1010011
I ———> 1001001 R ———> 1010010
M ———> 1001101 C ———> 1000011
G ———> 1000111 = ———> 0111101

4.3 Dimension Reduction

The processed data will produce 2,902 featuresT the data usually possess a higher num-
ber of features. For experiment purpose, we have used dataset of limited text length
as the processing time will be higher. Since the length is limited the outcome dataset
has less number of features. This 2,902 features are further reduced using dimension
reduction technique to the lessen the processing time and to get rid of unwanted features.
Different dimension reduction techniques like PCA, ICA, Factor analysis can be used
for reducing the dimension. Considering the dataset which is sparse, Numerics Sparse
Dimension Reduction technique is used. The resulting reduced dimension dataset will
have 446 dimensions. The reduction rate varies depending upon the EPS(Parameter to



control the quality of the embedding) value.

We took a CNN as a baseline classifier and trained the model with original dataset.
Further the dimension is reduced using Sparse Dimension Reduction technique. The re-
duced dimension is used to train the CNN and the accuracy is calculated. The process is
repeated using different EPS parameters and accuracy is plotted to check how accuracy
is varying based on the number of components used. From the graph we can see that the
accuracy gets reduced when the number of components (features) is reduced than 340.

Figure 3: Accuracy of Sparse Projection on Digits

4.4 Classifier

The reduced dimension data is used as an input for various Supervised learning al-
gorithms. We have used Deep learning algorithm as our major classifier. Other clas-
sifiers like KNN, Random Forest, Naive Bayes classifier were also used to compare the
performance of the model. Considering the features which were extracted from text, we
have used Convolution Neural Network as our deep learning algorithm for classification.
CNN is capable of handling large number of features and mainly the feature selection is
done automatically by the algorithm itself. CNN use multiples of convolution layers to
identify the patterns from the test and training dataset.

The reason for choosing CNN among other deep learning classifier is because of its
design. The CNN performs good for image recognition where the image pixels are con-
verted to numerics and fed as input. It slides through the features to form different layer
of filters. Further these filters are used to understand the pattern in it. The images
are two-dimensional whereas the text is one-dimensional. Similarly in our case, the text
is converted into numeric values which is fed as an input to the CNN. The CNN slides
through the numeric vector to understand the pattern and forms multiple layer of filters.



These filters are further used for classification. Relu and Softmax functions are used as
activation function.

4.5 Experiment

For experiment purpose, 70% of the dataset is used as training dataset and 30% is used
as testing dataset. The training dataset is fed as input to different classifiers to train the
model. Appropriate tuning parameters were chosen for generating our model by using
different evaluation technique. Each algorithm has its own tuning parameter. For KNN
there are three different K-Value which are used based on the dimensions of the dataset.
For CNN different number of hidden layers are used ranging from 0 to 5, wherein for
each iteration the values are changed. As the dataset is one dimensional we have used 1D
convolution neural network. The epoch value is also an important parameter for model
to achieve higher accuracy. If the epoch value is too small, the accuracy will be affected.
For training the model we have used the epoch value to range from 200 to 600 with an
increment of 100 for each run. In the CNN, the number of hidden layers has direct impact
with the performance of the model. Due to the limitations in system requirements and
considering the processing time we have used 3 hidden layers for this experiment, where
increasing number of hidden layers has a direct impact with model performance.

5 Evaluation

5.1 Modelling Results

The experiment was conducted to mainly focus on deep learning models to better un-
derstand the performance in which various other classification algorithms were also used.
The entire dataset is divided into 10 different folds. The value for number of iteration is
chosen by considering the number of sample size. For each iteration there is a change of
1000 samples in the training dataset.

Naive bayes algorithm is suitable for any classification problem. Considering the dataset,
we have chosen Gaussian Naive Bayes as it performs well with normally distributed data.
From the K fold test result we can see there is a minimal change in the accuracy between
different folds. And so there is less possibility of model overfitting.

K nearest neighbours is one of the most widely used classification technique. Choosing
the optimal K value was a challenge. A random test was carried by increasing the
K value to understand the model performance by comparing accuracy, validation and
training error rate. Initially the error rate started to decrease wherein after a certain
minimum there was a slight change in error rate. When tested with the validation set,
the model performed well with higher accuracy for K value 10. Random forest is one
good algorithm for classification problems, where number of hierarchical decision trees
classifiers are constructed by using various sub samples of dataset for prediction. Since
its a classification problem, we are using AUC (Area Under Curve) as evaluation metric.
Number of trees and tree depth are the tuning parameter for decision tree. To find
legitimate N value, random series of values are used. Larger N value leads to higher
number of trees which slows downs the processing speed. For choosing the depth value,
different decision tree is fit with different depth value ranging from 1 to 30. We plotted
the test and training errors to check the overfitting of model.



Naive Bayes
CV Accuracy Precision Recall
Fold 1 0.459091 0.728311 0.504167
Fold 2 0.429091 0.712717 0.505512
Fold 3 0.4404 0.718148 0.506421
Fold 4 0.453139 0.724817 0.505757
Fold 5 0.454049 0.725526 0.50495
Fold 6 0.43949 0.718978 0.502423
Fold 7 0.463148 0.730594 0.503367
Fold 8 0.4495 0.723492 0.504098
Fold 9 0.459509 0.728022 0.505824
Fold 10 0.44768 0.720534 0.510484
Average 0.4495097 0.7231139 0.5053003

Table 1: K Fold CV performance metrics - Naive Bayes

KNN
Accuracy Precision Recall

Fold 1 0.965455 0.965513 0.964956
Fold 2 0.967273 0.967099 0.966743
Fold 3 0.965423 0.965557 0.96429
Fold 4 0.969973 0.969602 0.969383
Fold 5 0.968153 0.967098 0.9682
Fold 6 0.972702 0.972429 0.972684
Fold 7 0.968153 0.967675 0.967863
Fold 8 0.963603 0.961814 0.964669
Fold 9 0.963603 0.963156 0.962002
Fold 10 0.964513 0.965425 0.96308
Average 0.9668851 0.9665368 0.966387

Table 2: K Fold CV performance metrics - KNN

Random Forest
CV Accuracy Precision Recall
Fold 1 0.966364 0.967414 0.965153
Fold 2 0.96 0.961319 0.957553
Fold 3 0.974522 0.976115 0.972511
Fold 4 0.966333 0.967062 0.964965
Fold 5 0.981802 0.98239 0.980932
Fold 6 0.959964 0.962278 0.956624
Fold 7 0.970883 0.972191 0.968695
Fold 8 0.967243 0.967371 0.965983
Fold 9 0.965423 0.968003 0.96262
Fold 10 0.969063 0.969243 0.967908
Average 0.9681597 0.9693386 0.9662944

Table 3: K Fold CV performance metrics - Random Forest



CNN provides slightly high accuracy when compared to other models. The model
performed well using 4 hidden layers and the accuracy of different folds has a little change
in the value when validated with testing dataset having less error rate which shows that
the model performs well.

CNN
CV Accuracy Precision Recall
Fold 1 0.982727 0.984397 0.980815
Fold 2 0.983636 0.984061 0.982837
Fold 3 0.984531 0.986422 0.982653
Fold 4 0.981802 0.983588 0.980129
Fold 5 0.984531 0.986462 0.982219
Fold 6 0.988171 0.988508 0.987849
Fold 7 0.988171 0.989617 0.986626
Fold 8 0.981802 0.98881 0.981057
Fold 9 0.989991 0.98219 0.988518
Fold 10 0.988171 0.990867 0.987248
Average 0.9853533 0.9864922 0.9839951

Table 4: K Fold CV performance metrics - CNN

To test the exact performance of the model we have used a separate set of validation
dataset which contains new malicious and benign code. The results of the test performed
are given in confusion matrix.

KNN Random Forest Naive Bayes
Malicious Benign Malicious Benign Malicious Benign

Malicious 2946 92 3046 34 37 0
Benign 83 2375 29 2387 3023 2436

Table 5: Confusion Matrix



Figure 4: Performance Comparison of models

The evaluation of models is presented by a bar graph which compares and plots
the percentage accuracy of Convolutional Neural Networks(CNN) with other models like
KNN, Random Forest and Naive Bayes. The Data is represented in two colours where
red colour stands for CNN and green colour stands for other models as shown in the
graph key. Here, we can see that CNN (98.54%) achieves significantly superior results
compared to Naive Bayes(44.95%). We can see a trivial enhancement to the accuracy
of the KNN(97.54%) and Random Forest Model(96.82%). Hence, CNN proves to be a
better contender among the other models for the detection of malicious code.

6 Conclusion and Future Work

This paper demonstrated the new approach of feature extraction for processing the web
code to classify malicious and non malicious webcode. The extracted feature was used
to train different classifier where the CNN performed well with the accuracy of 98.5%
when compared to other classifier like KNN and Random Forest. This proves that the
new technique proposed, which was an amalgamation of feature extraction method and
convolutional neural network gives state of the art results.

The accuracy resulted from the evaluation of this model can degrade if used with a
large dataset. We consider this limitation for the future work concerning the present
research objective. Hence, a novel technique of converting textual data to numeric data
for feature extraction and using convolutional neural network to classify the malicious web
code from the non-malicious web code proves to be a successful change to the conventional
methods.



References

Fawaz, A. M. and Jacob, M. H. (2018). Detecting Cross-Site Scripting Attacks Using
Machine Learning, Springer Berlin Heidelberg, New York, NY.

Ghaffarian, S. M. and Shahriari, H. R. (2017). Software Vulnerability Analysis and Dis-
covery Using Machine-Learning and Data-Mining Techniques: A Survey, ACM Com-
puting Surveys 50(4): 1–36.
URL: http://dl.acm.org/citation.cfm?doid=3135069.3092566

Gilbert, A. C., Zhang, Y., Lee, K., Zhang, Y. and Lee, H. (2017). Towards understanding
the invertibility of convolutional neural networks, arXiv preprint arXiv:1705.08664 .

Gupta, M. K., Govil, M. C. and Singh, G. (2015). Predicting Cross-Site Scripting (XSS)
security vulnerabilities in web applications, Computer Science and Software Engineer-
ing (JCSSE), 2015 12th International Joint Conference on, IEEE, pp. 162–167.

Kamtuo, K. and Soomlek, C. (2016). Machine Learning for SQL injection prevention on
server-side scripting, Computer Science and Engineering Conference (ICSEC), 2016
International, IEEE, pp. 1–6.

Komiya, R., Paik, I. and Hisada, M. (2011). Classification of malicious web code by
machine learning, Awareness Science and Technology (iCAST), 2011 3rd International
Conference on, IEEE, pp. 406–411.

Landgraf, A. J. and Lee, Y. (2015). Dimensionality reduction for binary data through
the projection of natural parameters, arXiv preprint arXiv:1510.06112 .

Likarish, P., Jung, E. and Jo, I. (2009). Obfuscated malicious javascript detection using
classification techniques, Malicious and Unwanted Software (MALWARE), 2009 4th
International Conference on, IEEE, pp. 47–54.

Malviya, V. K., Saurav, S. and Gupta, A. (2013). On Security Issues in Web Applications
through Cross Site Scripting (XSS), IEEE, pp. 583–588.
URL: http://ieeexplore.ieee.org/document/6805456/

Needell, D., Saab, R. and Woolf, T. (2017). Simple classification using binary data, arXiv
preprint arXiv:1707.01945 .

Nunan, A. E., Souto, E., dos Santos, E. M. and Feitosa, E. (2012). Automatic clas-
sification of cross-site scripting in web pages using document-based and URL-based
features, Computers and Communications (ISCC), 2012 IEEE Symposium on, IEEE,
pp. 000702–000707.

Rathore, S., Sharma, P. K. and Park, J. H. (2017). XSSClassifier: An Efficient XSS
Attack Detection Approach Based on Machine Learning Classifier on SNSs, Journal of
Information Processing Systems .

Shar, L. K. and Tan, H. B. K. (2013). Predicting SQL injection and cross site scripting
vulnerabilities through mining input sanitization patterns, Information and Software
Technology 55(10): 1767–1780.
URL: http://linkinghub.elsevier.com/retrieve/pii/S0950584913000852



Sorzano, C. O. S., Vargas, J. and Montano, A. P. (2014). A survey of dimensionality
reduction techniques, arXiv preprint arXiv:1403.2877 .

Uwagbole, S. O., Buchanan, W. J. and Fan, L. (2017). Applied machine learning predict-
ive analytics to SQL injection attack detection and prevention, Integrated Network and
Service Management (IM), 2017 IFIP/IEEE Symposium on, IEEE, pp. 1087–1090.

Vishnu, B. A. and Jevitha, P. K. (2014). Prediction of Cross-Site Scripting Attack Using
Machine Learning Algorithms, ACM Press, pp. 1–5.
URL: http://dl.acm.org/citation.cfm?doid=2660859.2660969

Wang, Y., Cai, W.-d. and Wei, P.-c. (2016). A deep learning approach for detecting
malicious JavaScript code: Using a deep learning approach to detect JavaScript-based
attacks, Security and Communication Networks 9(11): 1520–1534.
URL: http://doi.wiley.com/10.1002/sec.1441

Yan, R., Xiao, X., Hu, G., Peng, S. and Jiang, Y. (2018). New deep learning method to
detect code injection attacks on hybrid applications, Journal of Systems and Software
137: 67–77.
URL: http://linkinghub.elsevier.com/retrieve/pii/S0164121217302571


	Introduction
	Related Work
	Methodology
	Implementation
	Dataset
	Data Preprocessing
	Dimension Reduction
	Classifier
	Experiment

	Evaluation
	Modelling Results

	Conclusion and Future Work

