
Detection and Re-routing of elephant flows in
a Software Defined Networking to avoid

traffic congestion

MSc Research Project

Cloud Computing

Sainath Bavugi
x17110319

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

www.ncirl.ie



National College of Ireland
Project Submission Sheet – 2017/2018

School of Computing

Student Name: Sainath Bavugi
Student ID: x17110319
Programme: Cloud Computing
Year: 2017
Module: MSc Research Project
Lecturer: Vikas Sahni
Submission Due
Date:

13/08/2018

Project Title: Detection and Re-routing of elephant flows in a Software
Defined Networking to avoid traffic congestion

Word Count: 5548

I hereby certify that the information contained in this (Detection and Re-routing of
elephant flows in a Software Defined Networking to avoid traffic congestion) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students
are encouraged to use the Harvard Referencing Standard supplied by the Library. To
use other author’s written or electronic work is illegal (plagiarism) and may result in
disciplinary action. Students may be required to undergo a viva (oral examination) if
there is suspicion about the validity of their submitted work.

Signature:

Date: 16th September 2018

PLEASE READ THE FOLLOWING INSTRUCTIONS:
1. Please attach a completed copy of this sheet to each project (including multiple copies).
2. You must ensure that you retain a HARD COPY of ALL projects, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer. Please do not bind projects or place in covers unless specifically
requested.
3. Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if
applicable):



Detection and Re-routing of elephant flows in a
Software Defined Networking to avoid traffic

congestion

Sainath Bavugi
x17110319

MSc Research Project in Cloud Computing

16th September 2018

Abstract

Software Defined Networking (SDN) is widely used in datacenters because it
makes the network topology flexible. It is very crucial to monitor and manage both
incoming and outgoing traffic in order to utilize the resources that are available
and avoid congestion. In a network, a large/elephant flow absorb more network
bandwidth as well as takes time to get processed which impacts QoS. In this paper,
a variety of approaches are discussed for detection of elephant flows and routing
algorithms. The proposed routing algorithm scans the network to find all the
paths available between source and destination and calculates the link bandwidth
of different paths available. This research paper used mininet as network emulator,
sFlow for traffic analysis and POX controller along with the OpenFlow protocol to
identify the network paths. The algorithm has been tested on a fat tree topology
and evaluated against different scenarios. In all the test scenarios, it was possible
to detect elephant flows and the algorithm finds first and second best path out of
available paths. Ultimately, the second best routing path is displayed which could
be opted for the large flow.

1 Introduction

In today’s world, datacenters play a key role in many business operations as the data is
directly saved to cloud. This huge amount of data is frequently carried to datacenters
via network lines that have immense bandwidth. This data is originated from different
sources such as web applications, backups and many more. In order to traverse the data
smoothly, along the network lines, there are many other components that need to be
managed in between source and destination with complex architectures. The amount
of time required to configure these devices and capital investment is reduced by using
virtual devices which can be provisioned and configured quickly to optimize the network
performance. Nowadays, network virtualization is a popular technology that offers easy
interface to create topology, monitor the components and managing the resources.

One of the well-known techniques of network virtualization is Software Defined Net-
work (SDN). According to Farhady et al. (2015), SDN is built using three key pillars:
Control plane, Data plane, and Controller.

1



In traditional networking, there were same number of controllers and routers/switches
in a network whereas this is not the scenario in the SDN. Before SDN, a switch was firmly
connected to both control and data plane which seemed like a closed system. Hybrid SDN
is a combination of both centralized and distributed controller which has the ability to
serve the inquires within no time compared to traditional systems. Data plane in the SDN
handles the actual packets where switches/routers resides depending on the configuration
noted in the controller. The control plane where controller functions discovers the network
graph, communicates with data plane and keep the switches/routers flow table updated
about the network. Therefore, modern datacenters utilize these features and execute
SDN in their datacenter for managing network.

As stated by Hakiri et al. (2014), most of the datacenters often observe huge traffic
because many packets of large size get into the network in no time affecting mice flows.
Eventually, this increases the latency and impacts the Quality of Service (QoS). As the
elephant flows are huge, majority of the bandwidth is eaten up and mice flow starve due
to this behaviour. As per Pettit et al. (2017), most of the mice flows end up in same queue
waiting for the large flows to get processed. Due to this behaviour, mice flows reach late
to the destination. These latency-sensitive mice flows face trouble due to elephant flows.
Therefore, it is important to identify the elephant flow and handle the routing path in
order to avoid traffic congestion.

The Research Problem: - ‘Can the elephant flow be automatically detected and
rerouted through less utilized paths in software-defined networks using a sampling based
method? ’. This question is crucial to study because most of the mice flows are affected
and majority of day-to-day transactions are taken care by the short flows. Therefore, the
main objective of this research is to identify the elephant in a network and suggest new
network path using routing algorithm.

Further, this paper is structured as follows. The Related Work sections 2 describes
the reason for identification of large flows is a SDN network and provides a gist on pre-
vious works executed by other researchers for large flow detection along with routing
schemes. Following section 3, the Methodology discusses the proposed design approach
for achieving the research objectives along with detailed explanation on architecture and
block diagrams. Next section 4, the Implementation provides a technique to build the
algorithm using different software components and packages. Subsequently, the Eval-
uation 5 section validates the routing algorithm and large flow detection by executing
different scenarios on the mininet network.

2 Related Work

The increase in the amount of data being processed these days needs more and more
processing power and a network with higher and higher bandwidth to handle the trans-
mission. As datacenters are huge, there are a variety of flows that enter the network
among which elephant and mice flows are common. This section defines the elephant
flows and discusses the importance of their detection in a network, different approaches
used and various algorithms applied to route them through available network paths.

2



2.1 Definition of flows

McKeown et al. (2008) described the flow as a number of packets which are sent and
received between source and target that have common properties like IP header and
protocol. As per Afek et al. (2018), large flows can be classified and can be defined into
three types listed below by observing different parameters like time, a number of packets
and the size of the packet throughout its life cycle.

Additionally, Al-Fares et al. (2010) said that majority of flows (approximately 80%)
that appear in the network are mice and they eat less bandwidth whereas most of the
bandwidth is utilized by elephant flows event though they are less in number (20% con-
sumption). Therefore, it is crucial to identify the flow and take appropriate action to
avoid traffic congestion.

• Heavy Flow

“Given a stream of packets S, a heavy flow is a flow which includes more than
T percent of the packets since the beginning of the measurement.” - Afek
et al. (2018)

• Bulky flow

“Given a stream of packets S, and a length of time m, a bulky flow is a flow
that contains at least B packets in the previous m time units.” - Afek et al.
(2018)

• Elephant flow/Large flow

“Given a stream of packets S, and a length of time m, an interval heavy flow
is a flow that includes more than T percent of the packets seen in the previous
m time units.” - Afek et al. (2018)

2.2 Different approaches of Elephant flow detection

After looking at the definitions and detection importance, this section compares and
contrasts various techniques used by different researchers for large flow detection.

Packet Sampling:

Afek et al. (2015) proposed and implemented an algorithm named as Sample and
Hold. This approach works on the packet sampling technique where an agent or ap-
plication is used to sample packets randomly using a switch that keeps the controller
informed about the types of flows which takes further action. A similar approach
was used by Mallesh (2018), where the packet analyzer reads the incoming packets
and then pass it on to python script which displays the route information and the
source and destination.

Statistics Gathering:

As the name suggests, this approach collects statistics like time duration, number
of packets, size, etc. There are two different types of techniques named pull-based
and push-based used in statistics gathering as per Curtis et al. (2011). DevoFlow
was proposed by Curtis et al. (2011) based on this approach which scans all the
incoming flows and finds the large flow.

3



Host or Application based detection:

In this approach, a sniffer is used for detection purpose. This is set up at the source
and scans all the flows that are being sent to target. If any large flow is found
then it is marked before sending to the destination. Benson et al. (2011) proposed
Mahout where a buffer of TCP sockets are monitored and calls in the OS are cut
off using the library to mark the flow as large.

Swtich Trigger:

As its name suggests, the flows are taken care at the data plane layer instead of a
control plane. Yu et al. (2010) proposed a system named DIFFANE that uses the
controller to update the policies and route tables of a switch on the regular basis
so that most of the flows are managed without control plane involvement. Switches
were capable of building wildcard rules by matching the packet destination IP with
approaching controller for flow rule.

Counters based detection:

This approach uses software implementations in which the switch flow table entries
are updated/created based on each flow that is looked by the peer depending on
the counter set. Recently Basat et al. (2017) proposed this approach using two
algorithms IM-SUM and DIM-SUM that maintain two different tables to calculate
the traffic volume for a particular flow and detects if it is large or mice.

The table 1 summarizes various techniques used for elephant flow detection.

Figure 1: Comparison of Elephant Flow Detection Schemes (Bavugi (2018))

2.3 Routing Elephant flows in a Network

Routing of large flows is equally important in a network as they might block mice flow
which are in the queue to reach destination. This section discusses the significance of
routing the large flows and various algorithms that were proposed by other researchers.

4



A routing algorithm was proposed by Cui et al. (2016) and named it as DiFS system.
In this algorithm, a threshold of 100KB is configured and if the flow is discovered which
exceeds the limit then it is declared as large flow. Upon detection, the system transmits
the flow to the destination by switching from an existing path to the network path which
has an ample amount of bandwidth. Another approach proposed by Dixit et al. (2013)
uses ECMP routing called Random Packet Spraying. This algorithm divides the flow into
a configured size and sends them via different shortest paths available. Wu and Yang
(2012) built a system named DARD which works with available hosts in the network. All
the hosts in the network are taught about the loads on the available links and hosts are
configured in such a way that they are efficient to decide which path would be suitable
for transmission of large flow. The decision is left on the host/sender. Additionally, this
approach uses the same threshold limit as DiFS system i.e 100KB. Another algorithm
explained by Chiesa et al. (2017) uses ECMP with algorithmic perspective. It uses a
static hash function where every link mentioned on the packet headers are matched with
the elements of the network and with the paths that are shorter to its destination.

The approaches such as Random Packet Spraying are not suitable in real-world be-
cause they can cause packet reordering. As the packets are split into equal size and are
combined at the destination, there is a risk of data shuffling due to different reasons
like the arrival of packets at the destination might get late due to network slowness on
a particular path. Other proposals like DARD might also not work as they work with
each host and it would be difficult to update about the network which consumes time
and bandwidth to communicate. Also, there could be an issue with scalability due to
replicating the logic on to the network devices.

2.4 Importance of SFlow Management Tool in Elephant Flow
Detection

Most of the researchers have used flow management tools such as NetFlow, SFlow, IPFIX,
etc. for analyzing flows, classify them as per the threshold and definitions configured.

Hong and Wey (2017) explained the working of flow management tools and compared
well-known tools as part of the research. Unlike NetFlow, sFlow uses less network band-
width and consumption of resources is also low because packets are sampled randomly
for analysis. Peter (2011) said NetFlow works on layer 3 network connections which allow
limited vision whereas Sflow focuses on layer2 which help to sample the packet quickly.
When there is an incoming flow at the switch, the packets are sampled and data is col-
lected using sflow agent. The collected data is compiled into UDP datagram and sent
over to sFlow-RT for further analysis in every 1000 milliseconds.

sFlow-RT (sFlow-RT (2018)) is a real-time traffic analyzer that listens continuously to
the sflow agents which monitors the network and transforms it into meaningful metrics to
understanding the network. Whenever sFlow notices large flows, the controller is notified
about it and a temporary flow rule is entered specifying the switch Datapath ID (DPID)
and destination IP address as a packet. As Sflow is very quick in sampling and classifying
the flows, this tool plays a key role in the detection of elephant flow.

5



2.5 Network Emulators

Network emulators play a key role in research projects as they help the researchers save
time, space and money than to buy and set up hardware components like switches,
routers etc. They are very easy to build and perform similarly to hardware components.
Emulators assist the end user to deploy virtual network within minutes that consists of
hosts, switches, controllers, and links. These emulators mostly run standard Linux OS
and support a variety of switches and controller. One such emulator is Mininet which
supports research, development, and learning. The Mininet can create SDN elements,
customize them, share them with other networks and perform interactions.

In most of the networking research projects, Mininet emulator is opted due to interface
provided for easy management of resources and ability to virtualize different networking
elements such as hosts, switches, routers, and links. Researchers de Oliveira et al. (2014)
and Keti and Askar (2015) had conducted various experiments such as scalability, cre-
ating large topologies, prototyping, etc and recommended mininet emulator than other
emulators in the market. Another researcher Wang (2014) matched mininet with EstiNet
and advised that mininet is suitable to execute small network whereas it starts using
memory and generating strange results if used in large networks. As mininet performs
well in smaller networks, this is suitable for the research project because the datacenters
topologies can be replicated very easily and quickly giving the opportunity to test the
algorithm. Therefore, this research project had used mininet as a network emulator to
perform networking operations.

After looking at various types of large flow detection approaches and routing al-
gorithms, subsequent section explains the methodology to implement the proposed ap-
proach.

3 Methodology

Many researchers had proposed numerous solutions in order to detect large flows and
route them in a datacenter. This section provides a summary of the application which
complies with the research objective. After looking at the detection, another important
aspect of research is, to begin with routing the large flow via an available path to its
destination.

Further, the figure 2 represents the overall architecture of the solution which displays
crucial components that assist in identification and routing of large flow.

3.1 Large Flow Detection and Routing approach

The goal of the research is to discover the large flows in a datacenter network and send
them to the destination via an efficient network path. The solution shown in figure 3
explains both identification and routing of flows from origin to destination. Let’s look at
each element and its objective.

Source & Target:

Use of computing devices that are effective for communicating with each other and
interface in order to originate the traffic in the network.

Switch:

6



Figure 2: Architecture of Detection and Routing System. (Bavugi (2018))

Figure 3: Large flow detection and Routing (Bavugi (2018))

Switches are the entrance for the flows to get into the network. They handle the
incoming packets by matching the header with rules configured in flow tables. Once
matched, they are routed to the next switch or to the destination. The incoming
packets are sampled by a daemon based on the rules that are configured and it
resides at the switch. When the threshold is exceeded then an event is triggered to
the packet sampler i.e. sFlow tool along with the data that is gathered by sampling
the packet.

SDN Application:

Once the flow is identified, the application helps in network path identification. It
discovers all the network paths that are available in the topology with the controller
from source and destination and calculates the efficient path.

SDN Controller:

All the switches are connected to this network component. Switch and controller
are in constant touch and an update to the flow table of the switch can be performed
from the controller. SDN application works with the controller to learn the topology
that is built and particular links can be identified using LinkEvent.

3.2 Routing Algorithm

The goal of the routing algorithm is to discover all the network paths that are available in
the topology and identify the second best path in order to route the large flow. Usually,

7



elephant flows are sent via shortest paths without looking at the bandwidth utilization
of that particular link. This will slow down the transmission rate of the link impacting
other flows that are in the queue. Instead, alternative network paths can be utilized for
sending the large flows. By implementing this, mice flows are transmitted quickly and
overall network performance improves.

Algorithm 1: Routing Elephant Flow (Bavugi (2018))

Condition: Flow should be a large flow
Input : srcip, dstip
Output : Second Best Path

1 firstbestpath← null
2 secondbestpath← null
3 network ← getnetworktopology(srcip, dstip)

/* Paths are fetched using controller API and discovery module of POX

*/

4 foreach path in network do
5 bandwidthpath ← iperfsrcip, destip

/* bandwidth calculation of each network path */

6 Tptr ← readtheavailablebandwidthfromoutputfile

7 if bandwidthpathofpath1>bandwidthpathofpath2 then
8 secondbestpath← firstbestpath
9 firstbestpath← path

10 else if bandwidthpathofpath1>secondbestpath bandwidthpathofpath1 6=
firstbestpath then

11 secondbestpath← path
12 end

13

The algorithm 1 uses the bandwidth of a link in order to choose the path. Using iperf
(bandwidth testing tool between source and destination B and R (2018)), it is possible
to calculate the amount of data that can be transmitted through a particular network
path. Once the network paths are identified from the topology, iperf is executed in order
to decide the efficient path for the large flows. After execution the bandwidth of each
link is saved to a output file. Post analyzing the bandwidth file, the application decides
the path to be taken based on the available bandwidth and the suitable shortest path.
The algorithm complexity is O(N).

Following section describes the modeling technique implemented to identify the ele-
phant flow in a network and route them via efficient path towards the target.

4 Implementation

This particular section discusses the approaches used for implementation and develop-
ment of routing algorithm in detail which helps in finding the efficient path. This elephant
flow routing algorithm is built using Application Programming Interfaces (APIs) supplied
by mininet, POX controller, OpenFlow, sFlow-RT and NetworkX is a software package.

8



Mininet as an emulator supports a wide range of network components including POX and
OpenvSwitch (OVS) which are suitable for this research. Additionally, it provides a Py-
thon API for interacting with network elements. Therefore, it is important to understand
how these components contribute in finding the efficient network path.

4.1 Communication between POX controller and Switch

According to Kaur et al. (2014), POX is an open source controller which is mainly used in
building SDN networks and moreover it supports most popular communication protocol
called as OpenFlow. As per Open vSwitch Manual (2018), OpenFlow switches are just a
dumb forwarding element in a network. All the instructions are passed on to the switch
from the controller in order to perform any action in the network. They are programmed
by the controller for each and every action taken in the network.

When the controller and switches are created in the topology, there are many Open-
Flow messages transmitted in between to establish the connection. As said by Soeurt
and Hoogendoorn (2018), there are symmetrical message (SM), asymmetric message
(CSM), Set config, Feature Request CSM, and Feature Reply messages that are exchanged
between the controller and the switch. Once the SM packet is sent to switch, it identifies
the controller and its compatible OpenFlow version number. After the establishment of
the connection, other messages are sent to continue the communication. Additionally,
the SM message is sent every 15 seconds in order to keep track of connection between
controller and switches. In an OpenFlow protocol, all the flows have the idle timeout
configured to 60 seconds by default. The figure 4 explains the communication between
controller and the switch.

Figure 4: POX Mechanism with an OpenFlow Switch (Kaur et al. (2014))

For every incoming packet, the switch should have the rule to forward the flow to next
switch or the destination. If the switch is not aware of flow rule for the incoming flow, it
reads the packet headers and then passes them to the controller for further action.

4.2 Topology Specification:

A network topology is an arrangement of nodes and relating lines in order to communicate
with each other achieving fault tolerance. The performance of the network and cabling

9



cost is directly dependent on the topology. Mininet is used for the creation of fat tree
topology where the link bandwidth is specified and OVS is used as a switch.

Network links are emulated by the emulator along with the network elements. Ac-
cording to Requena et al. (2008), most of the datacenters are opting for fat tree as a
network topology which helps achieve better network performance and fault tolerance.
Additionally, this topology requires many switches, but flow can reach the destination
via different efficient paths without worrying about latency.

The fat tree topology code is developed by Andreas (2016) which creates the topology
as shown in figure 5 has the following components.

• Fat tree topology

• 20 switches

• 16 hosts

• POX controller

Figure 5: Network Topology

In fat tree topology, POX controller is created and connected to 20 OpenvSwitches
along with 16 hosts connected to 8 edge switches. By default when the topology is
connected to any remote controller in mininet, flow tables are empty. It needs to be
manually added to communicate with each element in the network. The links between
the switches and the hosts are configured to be 10 Mbits/sec to transmit any data. Also,
the hardware address of the components is configured in number sequence instead of junk
characters using -mac arguments.

10



Usually, the large flows create hindering in the network due to which smooth trans-
actions are affected and cause mice flows to arrive late at the destination. One of the
benefits of using mininet for creating network topology is that they are static which means
it helps in testing and analyzing the flows without any change. Post creation of fat tree
topology, sflow is notified and details are sent in order to replicate it on the mininet
dashboard.

4.3 Configuring sFlow-RT and Mininet Dashboard

Mininet-dashboard (Phaal (2016)) is a real-time dashboard which displays the traffic
flowing between the network elements. This helps in understanding the network path
taken by the flow to reach the target. The topology is configured to handle ICMP, TCP,
and UDP flow types and these are generated from a Linux environment.

As per Al-Fares et al. (2010), the size of large flow are generally 10% of the network
bandwidth. As given by Phaal (2016), this range can be defined in the sFlow-rt which
is capable of detecting elephant flow. If the flow enters into the network, the size of the
flow is checked by the agent and reports it to sFlow-RT as a large flow.

The dashboard can be modified as per the user requirements. Adding the code written
in figure 6 to the end of the metrics.js file under sFlow-rt will identify the elephant flow by
the analyzer at switch and reports to sFlow-rt. This will display links that are involved
in transmitting the large flow between hosts.

Figure 6: sFlow javascript code to detect large flows on dashboard (Phaal (2016))

4.4 Topology Discovery and Network Path Identification

In order to find the efficient network path, it is important to understand the network
topology and find all the possible routes in between source and destination. There are
different modules and packages used for finding the topology and network paths.

One of them is openflow.discovery which is responsible for topology discovery. It keeps
the track of the change in topology and communicates via the listeners of network path
program. According to Xu (2018), the module identifies the topology on the basis of
Link Layer Discovery Protocol (LLDP) messages which are sent to OpenFlow switches
for discovery. Additionally, linkevents are triggered when a link is up or down and an

11



attribute is added as .addded or .removed as per the link status. This link event is read
at the listeners and update the network topology in its graph.

Another package used is NetworkX which is responsible to find all the network paths
between source and destination. It is a python software package written by Hagberg
et al. (2014). This particular package helps in studying the structure of the network
topology, analyze the models, design new networks and draw networks. This package
is used for listening to the events from openflow.discovery and analyze the network for
further calculations. Once the graph of the network is analyzed, the controller calls the
network path algorithm to compute all the paths between source and destination and
load it to the output file.

Additionally, there are two more modules l2 learning and spanning tree which are
used for installing the flow rules in a network and avoid flooding on switch ports. The
l2 learning reads the l2 address in the network and inserts flow rule that matches exactly
to the flow header. The spanning tree module is responsible to stop the flooding on ports
of switches when they are connected and obstruct updating of flood before discovery
module is executed.

The routing algorithm that is developed learns the output file which is loaded with
the number of network paths and finds the path with fewer hops between the source and
the destination. Post obtaining the second best shortest path, the bandwidth of the path
is calculated using iperf command. It tests the link bandwidth between network elements
by sending a large flow in the network and notes the bandwidth used for transmitting
the flow. Based on this calculation, the path can be said to be the second best path for
transferring the elephant flows leaving the shortest path for the mice flows.

After studying how to implement and find the second best shortest path in a network
for routing elephant flows, let us look at the evaluation section which describes the testing
approach.

5 Evaluation

In this section, the evaluation is performed by executing and capturing the test results
to verify the behavior of the routing algorithm and other packages involved for network
topology discovery. Since the routing algorithm needs to be compared against regular
network paths, the research reveals an applicable evaluation method. Thus, the evaluation
is performed using iperf which is a benchmark tool for finding the bandwidth between
links and generate traffic in the network.

5.1 Experiment

In order to validate the shortest path routing algorithm, it is first important to note the
route taken by the large flows so that comparison can be done. And before comparing
the routes, it is crucial to identify the elephant flow. Therefore, the strategy chosen to
transmit flows from hosts h1 to h16 and note the route traveled by the flow. Moreover,
the experiment strategy can be repeated by generating a breakage between the switches
by bringing down one of the links in the network to verify the algorithm working.

12



By utilizing sFlow-RT and mininet dashboard, the large flow or the elephant is detec-
ted and visualize the network path. Simultaneously, the routing algorithm is executed in
order to find the second best network path that could be used by the flow instead of a
first shortest path.

5.1.1 Experiment Setup:

To verify the algorithm, the POX controller is started which listens for the SM messages
from the OVS switches. Also, the threshold is configured to the sflow which identifies
the large flows based on the size. The source and target is set in the topoDiscovery.py
file in order to find the paths in between. The shell script ./start.sh is executed to start
the sflow on localhost with 8008 port. This configured threshold is compared with the
incoming flows and mark it as large flow. Once the listener is started, the custom fat
tree topology is created using mininet and include sflow-rt.py in the topology so that
the topology data is sent to the sFlow-RT (as shown in figure 7), dashboard and POX
controller.

Also, the bandwidth link is created with 10 Mbits/sec and controller is mentioned as
remote to connect to POX controller.

Figure 7: Mininet sends the topology information

5.2 Finding the Second Best Path

Post-execution of all the listeners and mininet topology, the traffic can be generated
using iperf between h1 and h16 in order to find the normal route that is being taken
by the large flow. The real-time traffic flow generated between h1 and h16 using iperf
is displayed in the mininet dashboard. The path traversed by the elephant flow was
h1->s31->s22->s14->s28->s38->h16 as presented in figure 8.

In order to reach the destination in this topology, the flow must traverse at least 5
hops and it is confirmed that elephant flow is taking the best shortest path available in
the network. After looking at the path traversed by large flow, the routing algorithm is
executed in order to calculate the second best path from 1360 network paths which can
be opted by the elephant flow.

The figure 9 is the second best shortest path which is calculated by the routing
algorithm after looking at the bandwidth of the path. This can be said to be second best
because it has 7 hops and the first path has 5 hops.

5.3 Finding the Second Best Path When Link Between Switch
is Down

The experiment is repeated by breaking a few links in between the switches to validate
if the routing algorithm will work in this scenario. The links between switches s14 and
s22, s32 and s24 are brought down to create a rupture scenario. Similar to the previous

13



Figure 8: Mininet Dashboard real-time traffic - Test 1

Figure 9: Second-Best shortest path - Test 1

experiment, the traffic is generated between hosts h1 and h16 and this time the shortest
path that is taken is h1->s31->s22->s13->s28->s38->h16 as presented in figure 10.

Figure 10: Mininet Dashboard real-time traffic - Test 2

The execution of the routing algorithm detected new paths from the topology and
update the links removed from the topology. Once the topology is read, the shortest
path (as shown in the figure 11) is calculated from the available paths after looking at
the bandwidths.

14



Figure 11: Second-Best Shortest path - Test 2

Figure 12: Mininet Dashboard Elephant flow Detection

The figure 12 is shown in the mininet dashboard when the elephant flow is in the
network along with the source and destination details.

5.4 Discussion

This paper has taken two scenarios for validation purpose and verified the routing al-
gorithm output. In both the scenarios, the routing algorithm had performed the calcu-
lations and displayed the second best shortest path that is available leaving the first one
for the mice flows.

Looking at both the tests 5.2 and 5.3, the default routing path through which the
large flow traversed is already the shortest path because there is no other path in the
topology which has less than 5 hops. If the mice flows are sent via the same route, they
get stuck behind large flow and wait for its turn for processing. Additionally, the topology
discovery module is finding the new paths to destination when any of the link is brought
down. By looking at graph 12, its evident that large flows carry huge data and they enter
the network within no time. Therefore, the elephant flow can be sent via the resultant
path to avoid traffic congestion and improve network performance.

6 Conclusion and Future Work

The aim of this research is to route the large flows via second best shortest path in order
to allow mice flows to flow using first shortest path and optimize network performance.
This improves the network performance as 80% of the flows are small such as insert, select
and update queries to the databases. The routing algorithm had detected all the network
paths that are available and opted the second best path in both the test scenarios for the
large flow to traverse. Also, the detection was successful and the path opted by large flow
was visualized in real-time to compare it with the routing algorithm results. There were
many solutions already proposed by different researchers for detection of routing flows,
but each have their own pros and cons. For instance, a popular routing algorithm such
as ECMP routes the large flow via same path and overload the network which adversely
affect mice flows. Majority of the research paper have concentrated on detection and
routing of large flows but very few have looked at mice flow handling. As majority of

15



flows are small, it is important to investigate a better approach of handling mice flows in
order to process them quickly and decrease the drop rate.

While the research outcome proved the feasibility of routing algorithm, the commu-
nication traffic between switch and controller is still an issue which enforces latency in
the network such as find the routing for new mice flows. The controller is sometimes over-
loaded with requests from the switch in order to find the flow rule for mice flows. Due
to frequent requests from switch to controller, performance degradation can be observed
which might impact the network efficiency. In future, the routing path implementation
can be investigated and suitable approach can be implemented to handle controller de-
gradation.

References

Afek, Y., Bremler-Barr, A., Feibish, S. L. and Schiff, L. (2018). Detecting heavy flows in
the SDN match and action model, Computer Networks 136: 1 – 12. Core Rank A.
URL: https://doi.org/10.1016/j.comnet.2018.02.018

Afek, Y., Bremler-Barr, A., Landau Feibish, S. and Schiff, L. (2015). Sampling and large
flow detection in SDN, Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM ’15, ACM, London, United Kingdom,
pp. 345–346. Core Rank A*.
URL: https://doi.org/10.1145/2829988.2790009

Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N. and Vahdat, A. (2010).
Hedera: Dynamic flow scheduling for data center networks, Proceedings of the 7th
USENIX Conference on Networked Systems Design and Implementation, NSDI’10,
USENIX Association, San Jose, California, pp. 19–19. Core Rank B.
URL: http://ezproxy.ncirl.ie:3168/citation.cfm?id=1855711.1855730

Andreas, P. (2016). panandr/mininet-fattree.
URL: https://github.com/panandr/mininet-fattree

B, C. and R, K. (2018). Rfc 7640 - traffic management benchmarking.
URL: https://tools.ietf.org/html/rfc7640

Basat, R. B., Einziger, G., Friedman, R. and Kassner, Y. (2017). Optimal elephant flow
detection, IEEE INFOCOM 2017 - IEEE Conference on Computer Communications,
Atlanta, GA, USA, pp. 1–9. Core Rank A*.
URL: https://doi.org/10.1109/INFOCOM.2017.8057216

Bavugi, S. (2018). Routing elephant flows upon detection in a sdn to avoid traffic con-
gestion.

Benson, T., Anand, A., Akella, A. and Zhang, M. (2011). MicroTE: Fine Grained Traffic
Engineering for datacenters, Proceedings of the Seventh Conference on Emerging Net-
working Experiments and Technologies, CoNEXT ’11, ACM, Tokyo, Japan, pp. 8:1–
8:12. Core Rank A.
URL: https://doi.org/10.1145/2079296.2079304

16



Chiesa, M., Kindler, G. and Schapira, M. (2017). Traffic engineering with Equal-
Cost-Multipath: An algorithmic perspective, IEEE/ACM Transactions on Networking
25(2): 779–792. Core Rank A*.
URL: https://doi.org/10.1109/TNET.2016.2614247

Cui, W., Yu, Y. and Qian, C. (2016). DiFS: Distributed Flow Scheduling for adaptive
switching in Fat-Tree data center networks, Computer Networks 105: 166 – 179. Core
Rank A.
URL: https://doi.org/10.1016/j.comnet.2016.06.003

Curtis, A. R., Mogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma, P. and Banerjee, S.
(2011). DevoFlow: Scaling flow management for high-performance networks, Proceed-
ings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, ACM, New York, NY,
USA, pp. 254–265. Core Rank A*.
URL: http://doi.acm.org/10.1145/2018436.2018466

de Oliveira, R. L. S., Schweitzer, C. M., Shinoda, A. A. and Prete, L. R. (2014). Using
mininet for emulation and prototyping software-defined networks, 2014 IEEE Colom-
bian Conference on Communications and Computing (COLCOM), pp. 1–6.

Dixit, A., Prakash, P., Hu, Y. C. and Kompella, R. R. (2013). On the impact of packet
spraying in data center networks, 2013 Proceedings IEEE INFOCOM, Turin, Italy,
pp. 2130–2138. Core Rank A*.
URL: https://doi.org/10.1109/INFCOM.2013.6567015

Farhady, H., Lee, H. and Nakao, A. (2015). Software-Defined Networking: A survey,
Computer Networks 81: 79 – 95. Core Rank A.
URL: https://doi.org/10.1016/j.comnet.2015.02.014

Hagberg, A., Schult, D. and Swart, P. (2014). Overview — networkx 1.9.1 documentation.
URL: https://networkx.github.io/documentation/networkx-1.9.1/overview.html

Hakiri, A., Gokhale, A., Berthou, P., Schmidt, D. C. and Gayraud, T. (2014). Software-
Defined Networking: Challenges and research opportunities for future internet, Com-
puter Networks 75: 453 – 471. Core Rank A.
URL: https://doi.org/10.1016/j.comnet.2014.10.015

Hong, E. T. B. and Wey, C. Y. (2017). An optimized flow management mechanism in
openflow network, 2017 International Conference on Information Networking (ICOIN),
pp. 143–147.

Kaur, S., Singh, J. and Ghumman, N. S. (2014). Network programmability using pox
controller.

Keti, F. and Askar, S. (2015). Emulation of software defined networks using mininet
in different simulation environments, 2015 6th International Conference on Intelligent
Systems, Modelling and Simulation, pp. 205–210.

Mallesh, S. (2018). Automatic detection of elephant flows through openflow-based
openvswitch - trap@nci.
URL: http://trap.ncirl.ie/id/eprint/2873

17



McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S. and Turner, J. (2008). Openflow: Enabling innovation in campus networks,
ACM SIGCOMM Computer Communication Review 38(2): 69–74. Core Rank A*.
URL: https://doi.org/10.1145/1355734.1355746

Open vSwitch Manual (2018).
URL: http://www.openvswitch.org/support/dist-docs/ovs-ofctl.8.txt

Peter (2011). Comparing sflow and netflow in a vswitch.
URL: https://blog.sflow.com/2011/10/comparing-sflow-and-netflow-in-vswitch.html

Pettit, J., Casado, M., Koponen, T., Davie, B. and Lambeth, W. A. (2017). Detecting
an elephant flow based on the size of a packet. US Patent 9,548,924.
URL: https://patents.google.com/patent/US9548924B2/en

Phaal, P. (2016). Mininet dashboard.
URL: https://blog.sflow.com/2016/05/mininet-dashboard.html

Requena, C. G., Villamón, F. G., Requena, M. E. G., Rodŕıguez, P. J. L. and Maŕın,
J. D. (2008). Ruft: Simplifying the fat-tree topology, 2008 14th IEEE International
Conference on Parallel and Distributed Systems, pp. 153–160.

sFlow-RT (2018).
URL: https://inmon.com/products/sFlow-RT.php

Soeurt, J. and Hoogendoorn, I. (2018). Shortest path forwarding using openflow acknow-
ledgement.

Wang, S. Y. (2014). Comparison of sdn openflow network simulator and emulators: Es-
tinet vs. mininet, 2014 IEEE Symposium on Computers and Communications (ISCC),
pp. 1–6.

Wu, X. and Yang, X. (2012). DARD: Distributed Adaptive Routing for Datacenter net-
works, 2012 IEEE 32nd International Conference on Distributed Computing Systems,
Macau, China, pp. 32–41. Core Rank A.
URL: https://doi.org/10.1109/ICDCS.2012.69

Xu, Y. (2018). Discovery topology in pox.
URL: http://xuyansen.work/discovery-topology-in-mininet/

Yu, M., Rexford, J., Freedman, M. J. and Wang, J. (2010). Scalable flow-based networking
with DIFANE, Proceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM ’10,
ACM, New Delhi, India, pp. 351–362. Core Rank A*.
URL: https://doi.org/10.1145/1851182.1851224

18


	Introduction
	Related Work
	Definition of flows
	Different approaches of Elephant flow detection
	Routing Elephant flows in a Network
	Importance of SFlow Management Tool in Elephant Flow Detection
	Network Emulators

	Methodology
	Large Flow Detection and Routing approach
	Routing Algorithm

	Implementation
	Communication between POX controller and Switch
	Topology Specification:
	Configuring sFlow-RT and Mininet Dashboard
	Topology Discovery and Network Path Identification

	Evaluation
	Experiment 
	Experiment Setup:

	Finding the Second Best Path
	Finding the Second Best Path When Link Between Switch is Down
	Discussion

	Conclusion and Future Work

