~

National
College
Ireland

Elastic SDN Based Switch Migration
Algorithm to Dynamically Update Map

Tables with Minimum Latency and Achieve
High Throughput

MSc Research Project
Cloud Computing

Chaitanya Balakrishna Deshpande
x17102146

School of Computing
National College of Ireland

Supervisor: Mr. Vikas Sahni

National College of Ireland . National

Project Submission Sheet — 2017/2018 Col]ege of
School of Computing Ireland
Student Name: Chaitanya Balakrishna Deshpande
Student ID: x17102146
Programme: Cloud Computing
Year: 2018
Module: MSc Research Project
Lecturer: Mr. Vikas Sahni
Submission Due | 13/08/2018
Date:
Project Title: Elastic SDN Based Switch Migration Algorithm to Dynamic-
ally Update Map Tables with Minimum Latency and Achieve
High Throughput
Word Count: 5357

[hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students
are encouraged to use the Harvard Referencing Standard supplied by the Library. To
use other author’s written or electronic work is illegal (plagiarism) and may result in
disciplinary action. Students may be required to undergo a viva (oral examination) if
there is suspicion about the validity of their submitted work.

Signature:

Date: 16th September 2018

PLEASE READ THE FOLLOWING INSTRUCTIONS:

1. Please attach a completed copy of this sheet to each project (including multiple copies).
2. You must ensure that you retain a HARD COPY of ALL projects, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer. Please do not bind projects or place in covers unless specifically
requested.

3. Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if
applicable):

Elastic SDN Based Switch Migration Algorithm to
Dynamically Update Map Tables with Minimum
Latency and Achieve High Throughput

Chaitanya Balakrishna Deshpande
x17102146
MSc Research Project in Cloud Computing

16th September 2018

Abstract

Software Defined Networks is proving to be the future of networking world and
is here to stay. The traditional networks are getting replaced by SDN which mainly
improves the flexibility of routing the packets. SDN emerged with an idea of having
a separate network control plane from its forwarding plane. The control plane is
the one which controls the entire network with its centralized controller residing
in it. Its main task is to monitor the network behaviour and implement the net-
work policy. Coming to the forwarding plane, i.e, the data plane, it just forwards
the packets as indicated by the controller. This paper is focused on building a
switch migration algorithm which migrates the switches to the controllers which
are not fully loaded and thus having a balanced traffic in the network when the
traffic is at its peak. Having a single centralized SDN controller increases the prob-
lems with scalability as it takes more time to respond back to the switch. This
problem gave way to have a logically distributed multiple controllers which allowed
switches to have a better communication and response time with the controllers.
But this approach faces problems with static mapping between the switch and a
controller which is unable to adapt to traffic variations. Hence multiple controllers
at times, are over loaded and eventually causes delay resulting in less throughput.
Therefore, to solve all the above problems, this paper showcases the use of Elastic
SDN controller which dynamically scales the controller pool depending on the net-
work behaviour. With this approach, latency issue is minimized with much better
improvement in the throughput giving 80% efficiency after migrating the switches.

1 Introduction

The growth of data has been increasing rapidly over the past few years with a demand for
the expansion of the network which makes it more faster and widespread. The traditional
IP networks are complex and hard to handle, which makes it both difficult to configure and
reconfigure them to respond to any occurrence to changes, fault and load etc. The main
reason to head towards a better network topology is because of the vertically integrated
networks concept. In other words, the control plane and the data plane reside in a
single bundle which makes the network inflexible and non-reliable. Hence there is a shift

from the conventional networks to a programmable platform called as Software Defined
Networks which is more flexible, scalable and highly reliable. The words Software Defined
refers to the fact that it uses virtual switches that can be configured programmatically
instead of having a dedicated hardware which is inefficient to changing network conditions.
The main feature of SDN is that the control plane and the data plane are decoupled from
one another and form a separate entity. The Control Plane provides a centralized control
by means of controllers and manages the whole network topology which involves the
processing rules to be set up for each and every packet that enters the network whereas
the Data Plane just forwards the packets to the required destination as defined by the
control plane. A strong secure communication channel called the OpenFlow Protocol
exists between the centralized SDN controller in the control plane and the switches or
the routers in the data plane to communicate with one another efficiently without any
delay (McKeown et al.; 2008).

SDN controller

Control Plane

OpenFlow
protocol
Control Plane
Data Plane Data Plane
Traditional switch OpenFlow switch

Figure 1: Traditional Network View Vs SDN View

Sezer et al|(2013)) has stated that the conventional network style of approach had the
control plane and data plane combined together in a single network node. Programming
the paths and configuration of the node were the two main responsibilities of the control
plane that were being used for data flows. Later on, the packets were forwarded to data
plane once the path was known. It is based on this control information, the forwarding of
the data takes place at the hardware level. In this approach, once the forwarding policy
has been defined, the only way the policy can be balanced is through the changes to
the device configuration. This can be a tedious job for the network operators to scale
the networks whenever the traffic in the network demands. Therefore, as observed in
Figure [l the control plane is moved out as a separate centralized controller whose main
responsibility is to manage the entire network. This in turn enables to have a Dynamic
topology control by adjusting the usage of the switches or the routers depending on the
traffic load in the network.

SDN is being promoted by the user driven non profitable association called, Open
Network Foundation (ONF). Many SDN based architecture with OpenFlow based net-
works have been deployed (Ku et al.; [2014). The main feature of ONF is to promote
and provide a networking environment that implements OpenFlow protocol so that the
control plane can respond to the data plane. With enormous traffic in the network now
a days, any kind of network drop or the delay has to be recorded and tested efficiently as
it would have large volume of hosts, switches and controllers.

According to De Oliveira et al.|(2014), this can be addressed by making use of proto-
types and simulating them in virtual mode which can be tested through a software called
as Mininet. Mininet is a network emulator which is used for deploying large networks on
a simple single computer or virtual machine. Its main feature is to easily create, share,
customize and test the SDN networks as seen in the Figure 2] Mininet contains number
of different default typologies that emulates OpenFlow devices and the SDN controllers
as well.

® - controllers

hosts

Figure 2: Emulating Real Networks in mininet

1.1 Research Question

Research Question: 7"Can the packets be transferred from one switch to another by dy-
namically updating the map table without any delay and thus enhance the efficiency of
throughput?”

1.2 Research Objective

The research question will be addressed in detail by following the below specified object-
ives. Section [2| is focused on providing a brief over view on the literature in the SDN
domain which describes its worth in the networking field and how it is different from the
older networking features. Section |3| describes the methodology which involves the pro-
posed idea of showing how the controllers scale dynamically. Section [4| describes about
the implementation and design part, involving the proposed topology with existing and
proposed design with facts and figures. Section [5] compares and evaluates the results with
existing and proposed scenarios. Section [6] speaks about conclusion and the future work
in this field.

2 Related Work

2.1 Three Layered Architecture of SDN

SDN has proved its worth by providing an all in one solution in the networking environ-
ment in terms of scalability, efficiency and experiencing an enhanced throughput. A high
level overview of Software Defined Architecture is presented by the Open Network Found-
ation (ONF) for its development and standardization, dividing it into three main layers
namely the Application Layer, Control Layer and the Infrastructure Layer. As mentioned
by Kreutz et al.| (2015)), the network infrastructure has been changed drastically which
tears the vertical integration by dividing the network’s control plane which stores in the
control logic of the entire network environment from the data plane which stores routers
and switches that transfer the packets. A simplified view of the architecture is shown in
Figure[3] Here, the controller can interact with the switches or routers with a well defined
application programming interface (API), example OpenFlow. The Southbound Interface
simply means, having a link between the control layer and the data layer (infrastructure
layer) which should always remain open and secure for communication. The Northbound
Interface means, having a link between the control layer and the application layer which
would be having applications running on virtual or physical hosts that reserve resources
like controllers as a backup by sharing policy information that makes easier for developer
(Nunes et al.; [2014)).

Application layer .

\ Network Applications

Northbound interface ‘
Control layer I
| Network Services _u
Southbound interface ‘
Infrastructure layer __..q-l————,-f
.'d‘ !’ ”—';— \\\
/ ="
J"J‘-" P

Figure 3: 3 Layered SDN Architecture

2.2 Controllers-Switch Interaction

The basic work-flow of how the packets are forwarded from one host to another is depicted
Figure 4] with the interaction between a controller and a switch with the OpenFlow
protocol. Here we see, packets P1, P2, P3 and P4 of a single flow F1 arrive at the switch
one by one. The flow of packets is explained through the following steps in detail by Atli
et al.| (2017)

1. Consider the first packet P1 of Flow F1 enters the OpenFlow Switch.

2. Now the switch checks if any flow rule is installed in the flow table and finds out that
no FlowTableEntry matching for packet P1 in table 0, so a table-miss entry matches and
the basic action here to be carried out is to forward its packets to the controller.

3. The switch wraps packet pl inside a packet-in message and forwards it to the controller
using an OpenFlow API to generate a new flow. The packet-in message contains the
header details such as the source_id, buffer_id, destination_id etc.

4. The controller picks up this packet P1 and sets up a new rule which includes the
decision to route with a packet-out and flow modification message indicating that the
packet P1 knows how it has to be routed and to which destination it has to be forwarded
to.

5. Once the rule is known, the switch updates the flow table as per the flow_mod message.

6. Through the packet_out message the packet P1 would be forwarded to the next switch
and the cycle repeats until the packet reaches the destination.

7. After P1, the next packets P2 arrive at the switch.

8. The switch checks if any rule is installed in the flow table about next packet P2 and
eventually finds the rule associated with P2. This means that the P2 need not travel to
the controller as the rule is known.

9. At last packet P2 would be forwarded to the next switch without the consent of the
controller and so is for the packets P3 and P4.

...... ¥ pathofpy ., Controller
=== path of p,

= = gontrol link ""- | packet-outipy]
;" I flew-mod|p;)

s | s packet-outip;)

i : 3 flow-mod{pg)

ket- | " I ! 1

im-::;ﬂ : o | a 1 packet-outip,)

packet-in|p: _.: i : flow-mod{py)

% update-tableip;)
update-tabledp,)
(SEUR R, update-table{p;)
Switch

. rt-outip,)
"0, [0 | o | o, ebaimy el 0. | o, | o |0,

port-in]p:) * * port-gukip,)
f, packets F *
Fl 5
' ‘o
part-infpy) port-aut{py]

Figure 4: Packets Flow Scenario

2.3 The OpenFlow Switch

For an open software platform to exist, commercial routers and switches are typically not
the ones which are adapted for the networking environment, as the external interfaces
and standardization was narrow. This became a setback for researchers as they were
running out of ideas to set up standard platform so that switch’s internal flexibility is
not hidden. In other words, flow-tables differed from vendor to vendor. To have a set
of common functionalities, OpenFlow came into picture that can be run in many routers
and switches. McKeown et al.| (2008) said that, an open protocol is inherited to program
the flow table in various routers and switches provided by the the OpenFlow. For every
packet that enters through the switch, determines if any Header Details are matching
which defines the flow. Actions, that describes as to how the packets must be traversed.
Statistics, which keeps the count of number of packets which entered and left the switch
and the time since the matching of the last packet.

OpenFlow Switch
Packet +
packet | "7 ingress port + erooe || Packet
Packet 3
In Table "”w’r Table e Table | “Acion 8 Qut >
0 1 n Action

Action Action Set - Set

Set={} set| | | e

Figure 5: OpenFlow Switch

An OpenFlow switch is mainly composed of 3 different types of tables namely FlowTable,
wherein for each specific flow, incoming packet is to be matched that in-turn specify the
actions to be performed on each of the packets. There is something called as Group
Table whose task is to activate actions that affect one or more flows. Also Meter
Table can activate actions that are performance-related with respect to each of the flows.
Stallings (2013)) has said that ” A flow is a sequence of packets traversing a network that
share a set of header field values. For example, a flow could consist of all packets with the
same source and destination IP addresses, or all packets with the same VLAN identifier”.
As seen in the Figure [5] packets are being matched against multiple tables one after
another to find out for a highest priority matching flow entry. Specific instructions are
added to modify the packet and for the updating the match field. The Ingress port is the
one where the packets arrive in the switch with the action to be performed by carrying
data from one table to another which is called as metadata.

2.4 Controllers in the Software Defined Networks

In SDN;, controllers act as a brain of the entire network topology which contains all the
policy information and hence is responsible for selecting the right path for the packet
to traverse. |Kreutz et al| (2013)) has stated that the controller in the control plane
is centralized with its overall view of the network environment, as a result of which
development of more advanced network function is simplified. Also, any specious changes
to the network state is automatically configured by the control program by maintaining

high-level policies. Depending upon the traffic in the network, controllers will be added
or removed. Hence it can be said that, the controllers are centrally located but logically
distributed to ensure better network capacity utilization. A single controller is used only
when there is a single domain and multiple controllers are required when multiple domains
are created (Yao et al.; |2015).

In a small scale network, Single SDN Controller was utilized to manage the traffic,
as the load on the controller is enough to deal with the packets entering and leaving
the switch. But, when the switch receives large number of flow requests, only one single
controller is not able to serve and control the load on it. This proved out to be a serious
concern with respect to network’s scalability and reliability as it involved more delay
and incurred high response time between the switch and the controller. To solve the
above problem, Multiple Controllers emerged which were logically distributed over
the network. By using this, load was uniformly distributed and latency was reduced with
switches being allocated to controllers dynamically (Rath et al.; [2014]).

According to |Sridharan et al.| (2017), flow setup requests were distributed to multiple
controllers instead of it being mapped with only single controller. By doing this, the
controller with least load on it, accepts the request and serves it. Hence, achieving more
stability in dynamic traffic conditions with the availability of controller at any point of
time to avoid single point of failure. If the controllers fail, it is obvious that any one
of the controllers will overloaded. Strategy has to be made beforehand to have backup
controllers in place all the time which will be in passive mode. A failure of a controller will
automatically activate back up controller from passive mode to active mode and ensures
there is no network drop.

Table 1: Comparison between different SDN controllers-(RIC proposal)

4. minimum latency

Technique Advantages Disadvantages N/W Load
1. used mainly if packets ; n.Ot ls calablf £ fail

Single SDN Controllers input is low SISIC point Of fal ure High
2. easy to implement 3 load on the controller

would be more

1. if one controller fails,
another controller would carry . .
the load of that controller static mapping between

Multiple SDN controllers . . o the switch an the Moderate
2. no single point of failure.
3.enhanced control layer controller
and better performance
1.controllers would
dynamically scale up and down. | resource utilization for

. 2. load balancing shrinking and expanding

Elastic controller performed periodically. the controllers might low

3. increase in throughput be a concern

The multiple controller approach had the limitation with the switch mapping tech-
nique, hence emerged with Elastic SDIN controllers where in controllers dynamically
scales depending on the traffic to balance the load.

7

When the request made to the controller is greater than the threshold it can handle,
a new controller is dynamically added into the network pool to have a balanced traffic.
If request to the controller is lesser than the threshold, then controller would be removed
from the network pool. In other words, controllers can contract and relax depending upon
the traffic conditions so that there is no congestion in the traffic. To sum it up in short,
with three controllers and their respective roles, here is a Table 1 with its advantages and
disadvantages as mentioned in the research proposal.

3 Methodology

In this project, routing of the packets is successfully carried out from source to destination
without any traffic loss and thus avoiding congestion in the network. As depicted in Figure
[0, a simple flowchart explaining the flow of packets is described. Seeing that no rule is
installed at the switch, switch sends the packets to the controller and a new flow rule is
designed. At the controller, the traffic burden is monitored by a monitor in the backend
to know if the controller is loaded with more packets or not. If the controller crosses the
load threshold, proposed algorithm works to migrate the switch from one controller pool
to another with the controllers dynamically shrinking and expanding with respect to the
traffic load in the network. Once the flow rule is found out for a particular packet, it is
then delivered to the switch with packet_out message added onto it. With this approach
latency will be reduced between the controllers and switches and thus improve overall
scalability and reliability of the network.

=

Y

Figure 6: Proposed Flowchart

3.1 Migration Protocol with balancing the load among control-
lers

Balancing the traffic load amongst the controllers is the main factor to be considered to
have a congestion free network and to have that, migration protocol is the one where
the migration of switches takes place whenever there exists an unbalanced network. It
is the key feature of Elastic SDN controller which helps in providing a better network
environment.

Controller Pool Controller Pool

)) Balancing
nghtly Heavily — Balanced

_____________ Connects Equal/Slave controller and switches

Connects Master controller and switches

Figure 7: Load Balancing among controller

To improve network performance and to avoid controller crash, packets need to be
evenly distributed among the controllers. Load balancing is achieved by migrating the
switch from master controller to the slave controller. Two main concepts have to be kept
in mind when migrating a switch: 1) when the slave controller is named to become a new
master controller, it should not be overloaded. 2) there must be balanced load on the
controller after migration. To decide how the switches can be migrated, we need to see if
the controller is overloaded, and check is there any feasibility for each switch connected
to that particular controller to migrate to other controller which is lightly loaded. If yes,
shift that switch to the lightly loaded controllers so that no delay is encountered between
the controller and the switch, then proceed the action of transferring of packets. The
Figure [7] depicts a clear picture of the migration of switches. Here the left part specifies
network before balancing the traffic load and right part of the network after balancing
the load. Switch S1 is connected to a lightly loaded left controller and the other five
switches, from S2 to S6 are connected the heavily loaded right controller which makes it
imbalance. Hence to balance the network (after migration), two switches S2 and S3 from
the heavily loaded controller is connected to the lightly loaded controller to have even
distribution of traffic (Chen et al.; 2015]).

3.1.1 Shrinking of Controller Pool

The controller pool is shrunk when the traffic at the controller is average and is less
than the given capacity to handle the load. The switches that are connected to the master
controller is migrated to the slave controller using the proposed algorithm. To make any
controller to go in the inactive state, none of the switches should be connected to the that
particular controller. Checking the controller that is in the inactive state is the important
step to be considered. Here, we see the minimum loaded controller in the network which
has the packets in it, and confirming that it has not yet crossed the average controller
capacity. Next, feasibility is checked, if all switches connected to the master controller
can be connected to the slave controller, if yes then all the switches are migrated and the
other controller becomes idle. Hence increasing the efficiency and reliability to minimize
the latency and thus improve the throughput.

Controller Pool Controller Pool

Shrinking

—

_____________ Connects Equal/Slave controller and switches

Connects Master controller and switches

Figure 8: Shrinking of a controller pool

For example, as observed in the Figure [two scenarios exist.
e Before shrinking- where, the pool has two lightly active controller (left part).

e After Shrinking- where the controller has shrunk, with the Switch S4, S5, S6 mi-
grated to the left controller and the right controller is made inactive (Right Part)

3.1.2 Expanding of Controller Pool

The controller pool is expanded when the traffic at the controller is overloaded and
is greater than the given capacity to handle the load. More number of controllers are
added in the network topology dynamically so that network works smoothly without any
breakdown to make sure that no single point of failure occurs. When a controller is
overloaded, proposed algorithm activates controllers and allows migration of switches to
the newly added controllers. In other words, migration form a heavily loaded controller
to the inactivated or the slave controller.

The controller which is overloaded needs to be found out and in turn check the feas-
ibility of migrating the switches from that particular controller to the slave controller in
the inactive state.

10

If yes, switches are migrated to the slave controller from the master controller. By
doing this, traffic is balanced on both the controllers instead of one, which again increases
the efficiency and reliability to minimize the latency and thus improve the throughput.

Controller Pool Controller Pool

Overloaded

Expanding

_____________ Connects Equal/Slave controller and switches

Connects Master controller and switches

Figure 9: Expanding of a controller pool

For example, as observed in the Figure[J] two scenarios exist.

e Before expanding- where only one controller is in the active state which is overloaded
and the other controller is in inactive state(left part).

o After expanding- where the last two switches namely S5 and S6 are migrated to the
right controller by making it active (Right Part)

3.2 Flow Diagram for Shrinking and Expanding of Controllers

4 Implementation And Design

4.1 Technology
4.1.1 Mininet

To simulate large network of virtual hosts, links, switches, controllers in a single
linux system, mininet is used, which acts as a network emulator to emulate the network
environment using light weight virtualization. (Mininet; 2018)) has stated that ”Mininet
hosts run standard Linux network software and its switches support OpenFlow for highly
flexible custom routing and Software-Defined Networking. Mininet supports research,
development, learning, prototyping, testing, debugging, and any other tasks that could
benefit from having a complete experimental network on a laptop or other PC”. In this
project, we have installed Ubuntu 14.04 in the Virtual Box and in that mininet has
been installed for simulation and to run various test scenarios. Figure [I0] depicts the
installation of mininet.

chaitanya@chaitanya-virtualBox:~/Downloads$ cd Elastic-Controller-master/
chaitanya@chaitanya-vVirtualBox:~/Downloads/Elastic-Controller-master$ sudo ./pyt
hon/mn.py test
[sudo] password for chaitanya:
*** Creating Switches and Hosts
Creating Switch: 51
Creating Switch: 52
Creating Switch: S3
Creating Switch: 54
Creating Switch: S5
Creating Switch: s6
Creating Switch: 57
Creating Switch: 58
***% |Linking Switches in a cube manner
Linking Switch 1 and Switch 2
Linking Switch 1 and Switch
Linking Switch 2 and Switch
Linking Switch 2 and Switch
Linking Switch 3 and Switch
Linking Switch 3 and Switch
Linking Switch 3 and Switch
**% Starting network
***** Starting Controller
*** Configuring hosts
S1_H1 S2_H1 S3_H1 S4_H1 S5_H1 S6_H1 S7_H1 S8_H1
***%%* Starting Switches
*** Testing network
*** Running CLI
**%*% Starting CLI:
mininet=>

Figure 10: Connection Of Mininet

4.1.2 RYU Controller

Asadollahi et al| (2018) has stated that "RYU is an open source component based
software defined networking framework under the Apache 2.0 license, written completely
based on Python, supported and deployed by N'T'T cloud data centers”. Main source code
can be found in GitHub, provided and supported by Open Ryu community. It supports
NETCONF and OF-config network management protocols, as well as OpenFlow.

12

(Dnt.r:)ller 1 for Switches 1,2,3,4,5\“ haitanya@chaitanya-VvirtualBox:~/Downloads/Elastic-Controller-master$ echo "Cont

loading app ./python/controller.py Foller 2 for switches 6,7,8\n" && ryu-manager --wsapi-port 8681 --ofp-tcp-listen
. . o -port 6633 ./python/controller.py

l:)adu_lg app ryu.c:)ntf:)llcr.:)fp_handlc-r ontroller 2 for Switches 6,7,8\n

creating context wsgi oading app ./python/controller.py

- : s . o oading app ryu.controller.ofp_handler
instantiating app ./python/controller.py of OurControlle reating context wagl

instantiating app ryu.controller.ofp_handler of OFPHandl| instantiating app ./python/controller.py of OurController
131 i i - : 1 instantiating app ryu.controller.ofp_handler of OFPHandler

(?_131) ESQI starting up on http://0.6.0.0:8081 (7007) wsgi starting up on http://6.6.6.0:8081

switch info has been sent to controller!! rriii e G (e hmom S G eemereiaT L

Figure 11: Switches connecting to Controller Figure 12: Switches connecting to Controller

C1 C2

RYU controller has plenty of libraries and packages, handles events related to the
packets flow nd helps in processing the packets. The main executable is RYU Manager
which has to be connected to the OpenFlow switch before which it will by default be
connected to ip address 0.0.0.0 and port 8081 by default as shown in Figure[11]and Figure
12l RYU has several built in application such as tenant isolation, topology discovery,
firewalls, routers, VLan etc.

In this project, wireshark analyzer tool has been used to analyze the traffic in the network
as seen in the Figure (13|

Capturing from S1-eth1, S1-eth3, and S2-eth3 [Wireshark 1.12.1 (Git Rev Unknown from un

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

© m A Q < ¥T 4 B g

Filter: | ip.addr==10.0.0.4 ~ | Expression.. Clear Save

No. Time Source Destination Protocol Lengtl Info
s T susu LY auLuLu PRV s e e sy
163 5.762958000 10.0.8.1 le.e.e.4 IcMP 98 Echo (ping
164 5.765215600 10.0.8.4 le.e.0.1 IcMP 98 Echo (ping
168 5.759706000 10.0.8.1 le.e.e.4 IcMP 98 Echo (ping
169 5.766788000 10.0.8.4 10.0.0.1 pue, 98 Echo (ping
171 6.761011000 10.0.8.1 10.0.0.4 ICMP 98 Echo (ping
173 6.763447000 10.0.0.1 10.0.0.4 IcMP 98 Echo (ping
174 6.765513000 10.0.8.4 10.0.0.1 IcMP 98 Echo (ping
176 7.762905000 10.0.8.1 10.0.0.4 IcMP 98 Echo (ping
177 7.779235000 10.0.8.4 10.0.0.1 IcMP 98 Echo (ping
178 7.768227000 10.0.6.1 10.6.8.4 IcMP 98 Echo (ping
179 7.773794000 10.0.8.4 10.0.8.1 IcMp 98 Echo (ping
181 8.765507000 10.0.6.1 10.0.8.4 IcMp 98 Echo (ping
182 8.772765000 10.0.8.4 10.0.8.1 IcMP 98 Echo (ping
1R 8 7RG732[AA 1A A A 1 maaa Teup AR Echn ininn

0000 16 e5 51 @6 e6 7c 8e fe dl 99 a7 83 @8 0@ 45 60 Q.

0616 00 54 62 73 66 00 40 01 04 32 Ba 00 00 04 0a 60 .Tbs..@. .
0620 00 61 60 @0 88 a4 35 6e @0 94 3d 78 70 5b €6 60 .
0030 00 66 c6 b2 6e 60 60 80 66 66 10 11 12 13 14 15

OF si-ethi, Si-eth3, s2-eth3: <livec... Packets: 604 - Displayed: ... Profile: Default

Figure 13: Traffic In Wireshark Analyzer

4.2 Topology Generation

As depicted below Figure [14] proposed topology consists of eight switches interconnected
to one another with two controllers A and B connected to all the switches respectively.
Each switch is associated with X hosts, where X can be configured according to our re-
quirements. This topology is generated using Mininet Python Application Programming
Interface. Here, monitor’s main job is to monitor the controller’s performance for all
the switches. Monitor and controller communicate with each other through the HTTP
requests. As there are series of information exchanging between them, monitor mainly
concentrates on two important information sent by the controllers.

e The Package-In number of every controller in the network

e Once the migration is performed, controller sends a notification message.

13

Also monitor will send one type of information to the controller

e If the controller is overloaded, it advises the controller to begin the migration pro-
cess.

Monitor

Figure 14: Proposed Topology

To decide if the switch has to be migrated, a command for the migration is to be
issued which determines the recent collected traffic information for every 10 seconds.
The reason behind using HTTP request is that, by default RYU controller framework
provides HTTP server API for controller. As the controller delivers information on the
traffic to the monitor for every 10 second, there will not be any performance related
issues.

There are three main roles that the controller needs to do when the flood of packets has
been transferred by the switch.

e Here the last 10 packets that has entered the controller is noted and in turn forward
it to monitor and clear the cache.

e The basic forwarding of the Packet_messages from the switch to the controller is
delivered which helps us in generating various test scenarios.

e Conduct migration

4.3 Architectural Design

4.3.1 Existing scenario for Routing of Packets

As explained in the research proposal by Deshpande (2018), ”Consider the below
Figure 15, where in there exists Hosts H1 to H5, Switches S1 to S8, Controllers C1 and
C2. Let us see how SDN behaves in the following two scenarios. Here the Host H1 having
a new flow F1 arrives at the switch S1. As it is a new flow, its obvious that the rule is not
installed at the switch in the Flow Table. Hence the packet from Host H1 is forwarded

14

as a packet-in message to the controller C1. The controller C1 installs the flow rule at
the switch S1 and S3. Next the flow arrives at S5, and sees that no rule is associated
with this flow as the S5 is considered to be connected to controller C2 and not C1. Again
the packet-in message is provided to C2 by S5 to install the rule. Therefore, rules on Sb
and S7 gets installed. Considering large number of flows in the network with many hosts
connected to different switches when traffic fluctuations arises.

Figure 15: Existing Design

e say host H1 triggers 40 new packets to H4 and the flow is routed through S1-S2-H4.

e say host H2 triggers 50 new packets to H3 and the flow is routed through S3-S5-
S7-H3.

e say host H5 triggers 30 new packets to H2 and the flow is routed through S8-S6-
S4-S3-H2.”

We need to determine the computational burdens on each of the controllers when ever
new flows are instantiated. Let us consider 'x” unit of load at the controller for each and
every single flow for path calculation whereas a single switch requires 'y’ units of load at
the controller for installation of rules of a single flow.

At Controller C1, when H1 triggers 40 packets, it generates 40x units for path calculation
and for rules getting installed at S1 and S2 is (40-+40)y units.

When H2 triggers 50 packets, it generates 50x units for path calculation and for rules
getting installed at S3 is 50y units.

When H5 triggers 30 packets, it generates 30x units for path calculation and for rules
getting installed at S4 and S3 is (30+30)y units.

At Controller C2, when H2 triggers 50 packets, it generates 50x units for path calcu-
lation and for rules getting installed at S5 and S7 is (50+-50)y units.
When H5 triggers 30 packets, it generates 30x units for path calculation and for rules
getting installed at S8 and S6 is (30+30)y units.

15

Assuming traffic Path Calculation > rule that is being installed, eg x=1
and y= 0.13
Load Of C1 =(40+50+430)x + (80+50+60)y = 120.19 units per second.
Load Of C2 =(50+30)x + (1004+60)y = 80.16 units per second

From the calculations, it an be seen that the controllers C1 and C2 are not rightly
balanced because of its static mapping behaviour.

4.3.2 Proposed scenario for Routing of Packets

In the above figure, we see that S3 and S4 are not a part of C1 and its been connected
to Controller C2. The computation burden for the flows from H2 and H5 is controlled
by C2. Hence load traffic on controllers’ would be :-

Load of C1= (40)x + (40+40)y = 40.08 units per second.
Load of C2 =(30+50)x + (50450+50+30+30+30+30)y = 80.27 unit per second.

C1 c2

Figure 16: Proposed Design

Therefore, after the migration of switches S3 an S4, traffic (load) has been reduced
to almost 80% at controller C1. and a small increase of 0.11% at controller C2 is seen as
shown in Figure

5 Evaluation

Throughput of the controller and the time taken to respond back to the switch are the
two main scenarios compared and evaluated before and after migration of the switch.
Packets are sent from Host H1 to Host H2 which has been written in Python script as

16

depicted in the Figure The path through which packets are being routed is from Host
H1 To Host H2 indicated with the yellow lines. In this scenario, both the controllers
C1 and C2 has four switches each, connected to one another. But in this scenario, the
packets will be routed through all the four switches that is connected to controller C1.
As the traffic is flooding more into Controller C1, there exists traffic imbalance in the
network and eventually cause congestion. In other words, Controller C1 has four times
traffic load than that of controller C2. Monitor observes this imbalance and migrates one
switch from controller C1 to C2 which accounts to five switches with controller C2 and
three switches with controller C1. Now, it can be said that, distribution of traffic and
overall threshold of the controller are equal.

5.1 Before Migration
5.1.1 Throughput and Response Time

In the Figure it has been clearly depicted that Controller C1 is loaded with heavy
traffic and controller C2 is not, which in turn has more bandwidth which is not being
used at all. The performance of Controller C1 has crossed the threshold capacity after
sending at the rate of 1500 packets/sec because of which there is an imbalance in the
traffic.

Response Time

PacketIin Number ThrouEhPUt Response Time (s)
0.018
3500 0.016
3000 0.014
2500 0.012
0.01
2000
0.008
1500 0.006
1000 T 0.004 e —
500 / “\. 0.002 ¢
U 0

o 0 500 1000 1500 2000 2500 3000 3500
0 500 1000 1500 2000 2500 3000 3500
Sending Rate

i) Sending Rate —&— Controller C2, 4 Switches Controller C1, 4 Switches
—®— Controller C2, 4 Switches Controller C1, 4 Switches

Figure 17: Throughput Of Controllers C1 Figure 18: Response Time Of Controllers C1
and C2 and C2

Also in Figure Controller C1 takes higher response time when compared to that
of C2 as C1 is loaded with high traffic.
5.2 After Migration
5.2.1 Throughput and Response Time

In this Figure [I9] there is significant improvement in throughput. The capacity of
sending rate of the packets is more (around 2500 packets/sec) when compared to that of
packets sent before migration.

Also in the Figure 20 to have a balanced traffic, the response time of Controller C2
is increased tremendously and Controller C1 reduces to have a balanced network.

17

Response Time After Migration

Packetin Number Throughput
3500

Response Time (s) Response Time

0.02

3000 0.018
0.016

0.014

2000 0.012

0.01
1500 0.008
1000 0.006
0.004 ¢
500 / 0.002

0
0
0 500 1000 1500 2000 2500 3000 3500

2500

0 500 1000 1500 2000 2500 3000 3500

Sending Rate) i Sending Rate
—&— Controller C2, 5 Switches Controller C1, 3 Switches J —®— Controller C2, 5 Switches Controller C1, 3 Switches

Figure 19: Throughput Of Controllers C1 Figure 20: Response Time Of Controllers C1
and C2 and C2

6 Conclusion and Future Work

In this paper, based on SDN technology, an algorithm is proposed to migrate the switch
whenever congestion exists in the network due the overload that controllers possess. That
is the reason, the controllers shrink and expand dynamically depending on the network
traffic. After the migration, the results shows the load being uniformly balanced between
the controllers C1 and C2. The throughput increases drastically when the packets are
flooded into the network and the response time the controllers take is a bit slow which
might be because of the more traffic flow in the network as only a restricted bandwidth
is allocated by the mininet. Therefore, by implementing the algorithm it is evident that
throughput of the networks can be increased, which is the proposed objective in this
project.

One of the future works could be deploying the system in a large scale network en-
vironment and evaluating the throughput and response time with real world network
application being run on top of it. Secondly, the packets need to wait at the ingress
switch, until the previous packets get processed by the controller even if the flow rule
is known by that particular packet. Hence,the response time and the throughput could
be more. An algorithm can be developed to transmit the the packets if the flow rule is
known without depending on other packets to complete its transmission.

Acknowledgements

Finally, I must express my heartfelt gratitude to my supervisor Mr.Vikas Sahni, Pro-
fessor in Computing at National College of Ireland who has been the driving force through-
out the course of this research. Without his encouragement, guidelines and continuous
support, this project would not have been possible. His valuable inputs and suggestions
have always been extremely helpful to me in improvising the idea in completion of the
the project.

I would also like to take this opportunity to thank Dr.Horacio Gonzalez-Velez who
helped me giving continuous feedbacks in the initial stages of research .

Lastly, I would also like to thank my parents for their continuous support and encour-
agement.

18

References

Asadollahi, S., Goswami, B. and Sameer, M. (2018). Ryu controller’s scalability experi-
ment on software defined networks, Current Trends in Advanced Computing (ICCTAC),
2018 IEEFE International Conference on, IEEE, pp. 1-5.

Atli, A. V., Uluderya, M. S., Tatlicioglu, S., Gorkemli, B. and Balci, A. M. (2017). Pro-
tecting sdn controller with per-flow buffering inside openflow switches, 2017 IEEE In-
ternational Black Sea Conference on Communications and Networking (BlackSeaCom),
Istanbul, Turkey, pp. 1-5.

Chen, Y., Li, Q., Yang, Y., Li, Q., Jiang, Y. and Xiao, X. (2015). Towards adaptive elastic
distributed software defined networking, Computing and Communications Conference
(IPCCC), 2015 IEEFE 34th International Performance, IEEE, Nanjing, China, pp. 1-8.
Core Rank B.

De Oliveira, R. L. S., Shinoda, A. A., Schweitzer, C. M. and Prete, L. R. (2014). Using
mininet for emulation and prototyping software-defined networks, Communications
and Computing (COLCOM), 2014 IEEE Colombian Conference on, IEEE, Bogota,
Colombia, pp. 1-6.

Deshpande, C. (2018). Elastic sdn based routing algorithm to dynamically update the
map tables with minimum latency and achieve high throughput, National College Of
Ireland.

Kreutz, D., Ramos, F. M. V., Verssimo, P. E., Rothenberg, C. E., Azodolmolky, S. and
Uhlig, S. (2015). Software-defined networking: A comprehensive survey, Proceedings of
the IEEE 103(1): 14-76. Core Rank A*.

Kreutz, D., Ramos, F. and Verissimo, P. (2013). Towards secure and dependable software-
defined networks, Proceedings of the second ACM SIGCOMM workshop on Hot topics
in software defined networking, ACM, Hong Kong, China, pp. 55-60. Core Rank A*.

Ku, I., Lu, Y. and Gerla, M. (2014). Software-defined mobile cloud: Architecture, services
and use cases, Wireless Communications and Mobile Computing Conference (IWCMC),
2014 International, IEEE, Nicosia, Cyprus, pp. 1-6. Core Rank B.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S. and Turner, J. (2008). Openflow: enabling innovation in campus networks,

ACM SIGCOMM Computer Communication Review 38(2): 69-74. Core Rank A*.

Mininet, T. (2018). Mininet overview - mininet. [online] mininet.org. available at:
http://mininet.org/overview/ [accessed 9 aug. 2018]., Mininet Overview 16(1).

Nunes, B. A. A., Mendonca, M., Nguyen, X. N., Obraczka, K. and Turletti, T. (2014).
A survey of software-defined networking: Past, present, and future of programmable
networks, IEEE Communications Surveys Tutorials 16(3): 1617-1634.

Rath, H. K., Revoori, V., Nadaf, S. M. and Simha, A. (2014). Optimal controller place-
ment in software defined networks (sdn) using a non-zero-sum game, Proceeding of
IEEE International Symposium on a World of Wireless, Mobile and Multimedia Net-
works 2014, Sydney, NSW, Australia, pp. 1-6. Core Rank A.

19

Sezer, S., Scott-Hayward, S., Chouhan, P. K., Fraser, B., Lake, D., Finnegan, J., Viljoen,
N., Miller, M. and Rao, N. (2013). Are we ready for sdn? implementation challenges
for software-defined networks, IEEE Communications Magazine 51(7): 36-43.

Sridharan, V., Gurusamy, M. and Truong-Huu, T. (2017). Multi-controller traffic engin-
eering in software defined networks, 2017 IFEE /2nd Conference on Local Computer
Networks (LCN), Singapore, Singapore, pp. 137-145. Core Rank A.

Stallings, W. (2013). Software-defined networks and openflow - the internet protocol
journal, The Internet Protocol Journal 16(1).

Yao, L., Hong, P., Zhang, W., Li, J. and Ni, D. (2015). Controller placement and flow
based dynamic management problem towards sdn, Communication Workshop (ICCW),
2015 IEEFE International Conference on, IEEE, pp. 363-368. Core Rank B.

20

	Introduction
	Research Question
	Research Objective

	Related Work
	Three Layered Architecture of SDN
	Controllers-Switch Interaction
	The OpenFlow Switch
	Controllers in the Software Defined Networks

	Methodology
	Migration Protocol with balancing the load among controllers

	Implementation And Design
	Technology
	Topology Generation
	Architectural Design

	Evaluation
	Before Migration
	After Migration

	Conclusion and Future Work

