
A single access platform for different
structural NoSQL and SQL databases

MSc Research Project

Cloud Computing

Abhilash Roy
x17109141

School of Computing

National College of Ireland

Supervisor: Manuel Tova-Izquierdo

www.ncirl.ie

National College of Ireland
Project Submission Sheet – 2017/2018

School of Computing

Student Name: Abhilash Roy
Student ID: x17109141
Programme: Cloud Computing
Year: 2017
Module: MSc Research Project
Lecturer: Manuel Tova-Izquierdo
Submission Due
Date:

13/08/2018

Project Title: A single access platform for different structural NoSQL and
SQL databases

Word Count: 4286

I hereby certify that the information contained in this (A single access platform for
differentstructural NoSQL and SQL databases) is information pertaining to research I
conducted for this project. All information other than my own contribution will be fully
referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students
are encouraged to use the Harvard Referencing Standard supplied by the Library. To
use other author’s written or electronic work is illegal (plagiarism) and may result in
disciplinary action. Students may be required to undergo a viva (oral examination) if
there is suspicion about the validity of their submitted work.

Signature:

Date: 16th September 2018

PLEASE READ THE FOLLOWING INSTRUCTIONS:
1. Please attach a completed copy of this sheet to each project (including multiple copies).
2. You must ensure that you retain a HARD COPY of ALL projects, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer. Please do not bind projects or place in covers unless specifically
requested.
3. Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if
applicable):

A single access platform for different structural
NoSQL and SQL databases

Abhilash Roy
x17109141

MSc Research Project in Cloud Computing

16th September 2018

Abstract

Today, many applications access both SQL and NoSQL databases as per data
size, storage, structure and access requirements. Partial data sets reside on both
SQL and NoSQL databases and becomes a tedious task to access databases at
different times and also problem lies in concatenation. It is problematic for both
end user and developers as query syntax and access interfaces are different for
different databases. This paper aims at an approach to uniformly access data from
both SQL and NoSQL systems. This approach called as Common Access Platform
(CAP) allows users to query and interact with the database of their choice by
abstracting depth details of various structural databases. The major goal of the
platform is to help users and developers to store and access data in different SQL
and NoSQL databases at ease and saving time by accessing data simultaneously
from them on a click.

1 Introduction

Mostly relation databases like MySQL, Oracle etc are used as the back-end for web applic-
ations. Still, as SQL databases don’t scale evenly and perform inadequately in distributed
condition (Bansel et al.; 2016), application designers are thinking about other database
alternatives. With the growth of application size and user, applications demand scalab-
ility. NoSQL databases like MongoDb, Cassandra, Neo4j etc provides better scalability
and performance along with storing a voluminous amount of storage with worrying about
structure. They prove to be helpful to store large data generated by social platforms,
census, user information, stock markets etc.

Big data is booming along with cloud computing giving importance to storage provided
by nonrelational systems. Considering the size of big data, NoSQL databases are of
primary choice. RDBMS is powerful, easy and secure but lags when it comes in terms
of handling huge amount of NoSQL data. As recent day applications consist of enorm-
ous unstructured data but relation systems become trivial in this case. Data without
structure is useless if there is an absence of any rules or framework (Yafooz et al.; 2013).
In order to deal with similar data, NoSQL systems were born. Nonrelation systems are
indifferent to RDBMS in terms of data models, structure, access methods, drivers and
interfaces. Even all types of SQL databases are not similar and vary as per their service

1

provider. Considering the advantages and disadvantages of both SQL and NoSQL data-
bases, both are essential at times to take care of fully structured, partial structured or
structureless data.

So, Cloud vendors are supplying different Cloud databases as a Service in terms of
both SQL and NoSQL databases to handle all sorts of requirements. In many scenarios,
data is required to access simultaneously from SQL and NoSQL where both relational
and no relational properties are required (For example, querying a user record where user
basic info is stored in MySQL and work details is stored in MongoDB) In such condition,
the output from each source database must be collected as one document or collection
though they are stored on multiple heterogeneous databases.

The Initial idea of accessing different system by SQL was given by (Su and Swart;
2012) where SQL queries where used and processed to perform map-reduce operations.(Shirazi
et al.; 2012) further illustrates the flexibility between graph and columnar types of data-
bases. This formed the basis of idea that nuances between relational and non relational
systems can be reduced by reducing the variant factors among them.

The motivation from many such scenarios urges to have a environment where relational
and non relation databases can be evenly queried by any platform or system. Mostly, pre-
vious work focuses on the transformation of one model into another while CAP keeps the
core back-end data models intact with quick and effective solution. CAP along with
MySQL experiments with MongoDb (document-based), Cassandra (Columnar-based)
and Neo4j (Graph-based) databases. These databases are loosely coupled in CAP and
can be replaced by any other database or also any new database can be added. This ap-
plication does not have to bother regarding the storage type, location, schema or memory
demands.

The Research Problem: Can there be a uniform interface to access one or more
different structural SQL and NoSQL databases?

2 Related Work

There have been many astounding advancements in the ever emerging field of database
technologies, but no approach, that is helpful enough for running complex queries over
composite data stores, has been put forth. One major reason for this is the non-existence
of a standard data model for nosql databases. Due to this constraint, the developers have
to migrate from one database to other and rework on the source coding and implement-
ations. One more challenge that is faced while translating databases is that it is difficult
and lengthy process. Though few attempts of research was already done in this area, no
major breakthrough was profound enough to handle numerous databases and shed some
light into data division techniques.
Knowledge about the structure of databases plays a vital role in evaluating various ap-
proaches in this field. Structure of four important type of nosql databases can be discussed
as,
Key Value: It has a very plain structure of key-value pair.
Document type: This type also consists of data in form of key value pairs but stored in
JSON/XML format. One more distinguishing factor from key value databases is that
document data stores consist of a secondary index -(Han et al.; 2011).
Columnar data stores: They have a tabular structure but do not practice relational table

2

interrelations. Data is persisted in individual columns distinctly.
Graph data store: Data model is graph consisting of nodes as entities and association
between nodes is represented by edges.
Relational data store: These databases are commonly known as SQL databases with the
structure of rows and columns.

The main objectives of accessing the data from multiple variant databases are:
(i) To capture identical elements in source databases
(ii) To build a consistent database access functionality that conveniently handles the di-
versity of source systems.
Each data store will exhibit its own query language, APIs and access methods. More
the diversity more the complexity for developers to achieve a uniform access platform.
Each database access api/interfaces needs to be taken care in a disparate manner. These
differences leads to wastage of resources and time. In order to simplify things in this
field, many pieces of research have been done and they can majorly classified in following
sections.

2.1 SQL interface above non relational databases

Mostly work done for this approach states use of sql to interact with one of the relational
databases. An SQL engine was integrated on top of HBase by -(Vilaça et al.; 2013),
which successfully processed various transactions that involved joins as HBase doesnt
provide advanced query capabilities. This SQL engine depended on Apache Derby ,
which provides embedded drivers of JDBC as well, thereby facilitating indexes and joins
as they are not supported in HBase. This technique works by transforming relational
data models and secondary indexes to HBase data model. One primary advantage of
using this approach is that all forms of congestion or load that occurs between the HBase
and the query engine are lessened by indexing and filtering. It further enhances the result
by dealing with complications related to latency and scalability by adding more number
of nodes. Still, the drawback of this approach is that it is inadequate with respect to
general solution of having SQL Engine for multiple variant nosql databases.

Work in (Tatemura et al.; 2012) states a framework called Partiqle, where a Key
value data store has SQL interface above it. Partiqle deals with entity-group related
transactions above key-value stores and it basically comprises of two major parts : (i)A
component that reads input queries and generates key-value store respective query, (ii)
A component that deals with caching all the key-value pairs. One more approach to con-
solidate the key-values and sql was undertaken by (Tahara et al.; 2014) through Sinew .
Sinew is basically a SQL platform which stores documents encompassing key-value pairs
into columns, both physically and virtually. By using binary serialization techniques, this
methodology tries to query on partially structured data like JSON. It is efficient enough
in random field access. If additional attributes are added to a query, then fetching virtual
columns become a lengthy process.

2.2 Migration from sql to nosql

Research performed in this areas focusses on migrating SQL databases into one or more
NoSQL databases. A new framework was implemented in (Rocha et al.; 2015) which com-

3

prises two components: the First one automatically transcribes the relational structure
into a non-relational structure; The other module performs data mapping model ensuring
effortless compatibility between MySQL to MonogoDB database. The main objective of
this work is to persist the data in the NoSQL database and to build queries in SQL.
This is accomplished by fetching the relational (MySQL) metadata using Java Database
MetaData API. A new data model is generated using metadata and mapping the tables
with respect to documents. MySQL Proxy, acting as a middleware software along with
the Mapping class, generates indexes in the documents. But, this work restricts itself
with only one NoSQL database i.e Mongodb. Further, the translation procedure banks
completely on the theoretical model of the source database and may be noncompliant
with some applications.

(Schreiner et al.; 2015) proposes a framework to migrate the relational schema to any
of the key oriented NoSQL databases. This architecture transforms a relational model
to a canonical model which acts as a middleware. This middleware model also have data
in key-value form and it is mapped to document, key-value and columnar models using
REST api’s. But, the drawback is that it is unable to process all SQL transactions and
also fails to deal with graph systems. This architecture has constraints of exibility and
scalability for new databases.

The approach in (Lee and Zheng; 2015) develops a framework to translate relation
data model HBase data model. For data model denormalization, DDI standards are
considered where identical sql tables are categorized into single huge nosql table. Also,
every row is recognized distinctively using a row key. Later, using SQL schema a linked
list is generated which comprises of primary key and foreign keys. It has a major role in
helping to analyze and relationships of tables in context of attributes. This analysis helps
in development of nosql datasets. One short-come of this approach is that duplicates are
not discarded from the table . Also, another constraint is flexibility for multiple nosql
databases.

2.3 Single interface to multiple nosql databases

Framework in (Curé et al.; 2011) facilitates developers to query both SQL and NoSQL
systems using SQL. The methodology has two components: translating SQL to BQL
(Bridge Query Language), an intermediate stage. The other component helps to convert
this BQL to respective NoSQL queries. A better approach was showcased by (Atzeni
et al.; 2014) where a uniform interface is developed for Key value, columnar and document
systems. A general data structure is created and then mapped to specific nonrelational
data structures. (Atzeni et al.; 2012) deals with common access to HBase, Redis and
MongoDb. The platform here works by using meta layer and various nosql database
drivers. But, the author does not specify the project configurations and also merging of
data collected from variant databases.

2.4 Uniform Access to both relational and non relation data-
bases

As relational systems have schemas and non-relational system are schema-less, to fix this
gap, (Liu et al.; 2016), proposed a json model of Oracle by adding extra features. This json
is in a binary format making it lightweight and cater the performance difference between

4

SQL and NoSQL databases. Moreover, metadata is extracted at run time which helps to
achieve this. However, the methodology transforms the primitive value types to one array
for compatibility. This creates problems for apps which have already imported previous
primitive values. (Liao et al.; 2016) by its work proposed a data adapter to query between
SQL and NoSQL systems. Architecture depicts three variations in querying which differs
in terms of filters and intermediate values. Along with query modes, their framework
does following: 1) An SQL access interface for HBase and SQL supporting databases.
2)Maintaining synchronization, migrating MySQL system to HBase.

Figure 1: Summarizing Approaches

5

3 Methodology

As previously discussed, the motive is to access and perform operations on different SQL
and NoSQL systems without knowing in prior about them by single application. We will
detail about the characteristics of such interface in this proposal. The major goal lies in
how data is modelled and accessed and not on scalability or throughput performance of
NoSQL systems. The architecture of CAP framework can be seen in Figure 2.

Figure 2: System Architecture

MySQL, Mongodb, Cassandra and Neo4j is chosen for this proposal. Each The frame-
work designed would have input from user through GUI in form of SQL Query and
Database option to work on. Then SQL query has to be mentioned in a way where it
determines specific information about the shards on which the user wants to work on,
which parameter the user wants to target and perform the operation. It is expected that
user would have basic knowledge of sql query. The database selection option determines
on which particular database operation would be taking place. The different subparts of
architecture can be explained as following sections

3.1 Project Components

1)SQL Query Parser:
The SQL Query Parser is developed with the help of General Query Parser (GQP) which
internally uses JavaCC . JavaCC written in java is an open source jar which helps in
parsing specially SQL queries. The parser also verifies weather the query is syntactically
and semantically proper. The parser breaks down SQL query into following important

6

parts:

• DDL/DML Clauses

• Table names

• Column names

• Parameters

• Attributes

Also, the parser generates Abstract Syntax Tree (AST) which helps to understand the
relationship between attributes and parameters. A sample of generated AST from SQL
query can be seen as:

Figure 3: SQL to AST

7

2)Query Translator
The Query translator accepts input in the form of String and syntax tree. It generates
an intermediate output String which consists of:

• CRUD operation type

• Affected Objects

• Generated Database specific relationships

One of the important task of Query Translator is to find relationship between
the attributes and values. Also, it prepares all set of parameters for native query
builders to write database specific queries, as seen in Figure 4.

Figure 4: Query Translator

Query Translator helps Native Query Builders to build database specific queries.

3)Native Query Builder

The task of Native Query Builders are to develop native database specific queries
and interact with respective database drivers to execute them. Metadata are obtained
from different database drivers which helps Native Query Builders to have information
about database/collection/column family names, read/write formats, attributes present
etc. This information along with all query information together helps in formation of
database specific queries. Example of clauses can be seen which is Native Query builders
form: Clause describes the DDL statement. Currently clauses that are considered are

8

Clauses MongoDb Cassandra Neo4j
select db.find() SELECT keyspace.tablename MATCH nodes

insert
db.CollectionName.
insertOne()

INSERT into
keyspace.tablename

CREATE node

update

db.CollectionName.
updateMany(
{ },
{ $set: { } }
)

ALTER columnName
FROM
keyspace.tablename

MATCH node
and SET node

delete db.people.drop()
DELETE [column name (term)]
FROM
keyspace name.table name

MATCH node
and DELETE node

of following types: Select, Insert, Delete and Update. Clause is important in order to
understand which operation to run. The clauses of all databases are different and can be
presented as tabular format.

4)Concatenate Result

The interface helps in fetching information from multiple databases simultaneously.
Structure of connected databases are different and it is important to present the result
in a uniform form. This is achieved by Concatenate Result class.

3.2 Project Details

1)Algorithm:
The proposed CAP framework works with the help of a simple algorithm. The Input is of
Query and Database choice and output is database results. The algorithm can be seen as,

Algorithm 1 Common Access Platform

Result: Database output
Input: String Query, String Databases[]
SqlParser(query) parsedString return
forall Databases name do

if name = MongoDb or name = Cassandra or name = Neo4j then
QueryTranslator(clause, tableName, columnName,parameters,relations)
NativeQueryBuilder(operationType, databaseName, QueryDetails)

else
callSqlDriver(query)

end

end
Concatenator(MongodbOutput,CassOutput,Neo4jOutput,MySQLOutput)
unfiedOutput
return

9

2)Application Flow
The application flow starts with SQL query. The next step is check of database. If only
work on SQL requested, execute the query and show result. If not, then translate SQL to
AST, then AST to JSON and with help of metadata collected, build the native queries.
Execute these queries one by one, collect the result, concatenate them and show output.
The flow diagram can be seen in Figure 5.

Figure 5: System Flow Chart

4 Implementation

In order to demonstrate the CAP Framework, we have developed a web application. The
Web application is developed in Java (JDK 1.8) using Maven build. Database drivers
used are, Neo4j-java-driver 1.4.4, cassandra-driver-core 2.6, gsp, mongodb-driver-3.0.1
and mongodb-driver-core-3.0.1. The major components of web application are:
1. Application GUI:
Front end of application consists of 2 jsp pages. The first jsp page consists of a form
with two sections, Query part and database selection part. In Query part user has to
enter SQL query and in database selection part, user has to select one or more database
(MySQL, MongoDb, Cassandra and Neo4j). This can be seen in Figure 6.

The page consists of a user form to enter SQL query and list of databases available.
The user can select one or more databases. Both the input are very crucial for the system.
The inputs are received by the framework, the operation is performed and returned to
front end to another jsp page which is result page.

10

Figure 6: Application Home page

2. Back-end system:
The back-end system consists of request servlets, parsers, translators and general parser
jar. It can be broadly classified as:

SQL Query Parser:
The SQL parser is implemented using GSP parser. The GSP functionality can be under-
stood by Figure 7.

Figure 7: SQL Parser

11

The Data flow of parser can be seen in Figure 8.

Figure 8: SQL Parser Data Flow

Query Translator:
The Query translator accepts input parameter as AST and has output depending on
which database to connect. Input and output both are String. For example,

SQL Model MongoDb Model Cassandra Model Neo4j Model
Database Database Keyspace - Cluster
Table Collection Column Family Node Labels
Row Document Super Column Nodes
Column Field Column Node property
Primary Key id partition key Node Id

Native Query Builder:
Native Query Builder has two inputs: One from Parsed query and one metadata from
databases. Database specific drivers as discussed, helps them to perform their task. Also,
meta data fetched from databases verifies weather the objects are appropriate or not. Us-
ing mapping standards defined in the project, Native Query Builder builds queries which
are executed using drivers. Functionality of Native Query Builder can be understood by
Figure 9.

12

Figure 9: Native Query Builder

Concatenate Result Class:
This class concatenates the result from different data stores selected by user. Concat-
enation of output proves to be important when multiple databases are queried. Each
database outputs result in different format and structure. So in order to present a uni-
form and clear output, the results obtained from individual databases are collected and
provided as an input to this class. The input and output format for this class is String. An
internal String parser performs the business here which filters the unwanted information
and binds together the relevant data.

5 Evaluation

This section details about experiments executed on developed framework in order to
verify appropriate results. The project is tested by multiple scenarios by altering queries
and database choices.

5.1 Access Single Database

This scenario tests with single Database. MongoDb is selected as database and SQL
query mentioned is an select statement for attribute name as ’Abhilash’. Data is inserted
in MongoDb database and the from front end SQL is given as input and output obtained

13

consists of the same data inserted in MongoDb database. The application page can be
seen of user selection and also the result returned.

Figure 10: First Page

Figure 11: Output

5.2 Access Multiple Database

For each of these databases, data is inserted and can be see in Figure 12. User selecting

Figure 12: Database Records of Cassandra, MongoDb and Neo4j

multiple database along with entering query can be seen in the Figure 13.

14

Figure 13: Selecting multiple Database

Result obtained for this scenario can be seen in Figure 14.

Figure 14: Result From multiple Database

5.3 Discussion

The two cases selected for the experiment verify that from a single interface multiple
different structural databases can be accessed. First case represents a simple case how
SQL can be used to interact with a NoSQL database (in this case MongoDb).Data inserted
in MongoDb database matches with the output returned and the search criterion attribute
was name of user. The query entered by user goes through lot of processing and is mapped
with a structure which is completely different from of relation one. The output justifies
that any attribute can be used to fetch data from document based database. In second
test, data inserted is a simple data of a user consisting of three attributes but slightly
varying in few attributes (eg, title, age) This test checks the flexibility of system with more
than one NoSQL database. For this scenario data is inserted in Mongodb, Cassandra and
Neo4j and is tested. All the database return appropriate result. Also, time taken is less
as there is no migration and translation.

6 Conclusion and Future Work

In this work, we proposed a uniform interface for heterogeneous NoSQL databases. We
developed a flexible mapping approach with use of meta data, sql parser and data map-
pers for accessing data from more than one SQL and NoSQL databases simultaneously.
The approach used is successfully evaluated with the help of simple operations which
ensures clarity for users and developers. It is observed that, this proposal is unique
and indifferent in many terms like, it is not developing an intermediate query language,
there is no migration of database and more databases can be added. Our approach

15

is not based on conceptual model and also does not conceals by adding an extra layer.
In fact, generalization is achieved by analyzing common features in different data models.

However, in future to add more databases, prior knowledge of database model or
structure is important for application developer as end mapping of query is done with
respective to destination database. The proposal handles basic CRUD operations and
hence, more complex SQL queries can be considered in future. Though, document data-
base having key value pairs has been tested using the application, key value database can
also be used and tested with the application.The framework proposed promises flexibility
to add or remove databases and this also can be tested in near future.

References

Atzeni, P., Bugiotti, F. and Rossi, L. (2012). Uniform access to non-relational database
systems: The sos platform, International Conference on Advanced Information Systems
Engineering, Springer, pp. 160–174, Core Rank A.

Atzeni, P., Bugiotti, F. and Rossi, L. (2014). Uniform access to nosql systems, Information
Systems 43: 117–133, Core Rank A*.

Bansel, A., González-Vélez, H. and Chis, A. E. (2016). Cloud-based nosql data migration,
Parallel, Distributed, and Network-Based Processing (PDP), 2016 24th Euromicro In-
ternational Conference on, IEEE, pp. 224–231, Heraklion, Crete, Greece, Core Rank
C.

Curé, O., Hecht, R., Le Duc, C. and Lamolle, M. (2011). Data integration over nosql
stores using access path based mappings, International Conference on Database and
Expert Systems Applications, Springer, pp. 481–495, Berlin, Heidelberg, Core Rank B.

Han, J., Haihong, E., Le, G. and Du, J. (2011). Survey on nosql database, Pervasive
computing and applications (ICPCA), 2011 6th international conference on, IEEE,
pp. 363–366, Port Elizabeth, South Africa, Core Rank C.

Lee, C.-H. and Zheng, Y.-L. (2015). Sql-to-nosql schema denormalization and migration:
a study on content management systems, Systems, Man, and Cybernetics (SMC), 2015
IEEE International Conference on, IEEE, pp. 2022–2026, Kowloon, China, Core Rank
B.

Liao, Y.-T., Zhou, J., Lu, C.-H., Chen, S.-C., Hsu, C.-H., Chen, W., Jiang, M.-F. and
Chung, Y.-C. (2016). Data adapter for querying and transformation between sql and
nosql database, Future Generation Computer Systems 65: 111–121, Core Rank A.

Liu, Z. H., Hammerschmidt, B., McMahon, D., Liu, Y. and Chang, H. J. (2016). Closing
the functional and performance gap between sql and nosql, Proceedings of the 2016
International Conference on Management of Data, ACM, pp. 227–238, San Francisco,
California, USA, Core Rank B.

Rocha, L., Vale, F., Cirilo, E., Barbosa, D. and Mourão, F. (2015). A framework for
migrating relational datasets to nosql1, Procedia Computer Science 51: 2593–2602,
Scottsdale, Arizona, USA, Core Rank A.

16

Schreiner, G. A., Duarte, D. and dos Santos Mello, R. (2015). Sqltokeynosql: a layer for
relational to key-based nosql database mapping, Proceedings of the 17th International
Conference on Information Integration and Web-based Applications & Services, ACM,
pp. 74, Brussels, Belgium, Core Rank C.

Shirazi, M. N., Kuan, H. C. and Dolatabadi, H. (2012). Design patterns to enable
data portability between clouds’ databases, Computational Science and Its Applications
(ICCSA), 2012 12th International Conference on, IEEE, pp. 117–120, Salvador, Brazil,
Core Rank C.

Su, X. and Swart, G. (2012). Oracle in-database hadoop: when mapreduce meets rdbms,
Proceedings of the 2012 ACM SIGMOD International Conference on Management of
Data, ACM, pp. 779–790, Scottsdale, Arizona, USA, Core Rank A*.

Tahara, D., Diamond, T. and Abadi, D. J. (2014). Sinew: a sql system for multi-
structured data, Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, ACM, pp. 815–826, Snowbird, Utah, USA, Core Rank A*.

Tatemura, J., Po, O., Hsiung, W.-P. and Hacigümüş, H. (2012). Partiqle: An elastic
sql engine over key-value stores, Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, ACM, pp. 629–632, Scottsdale, Arizona, USA,
Core Rank A*.

Vilaça, R., Cruz, F., Pereira, J. and Oliveira, R. (2013). An effective scalable sql engine
for nosql databases, IFIP International Conference on Distributed Applications and
Interoperable Systems, Springer, pp. 155–168, Berlin, Heidelberg, Core Rank B.

Yafooz, W. M., Abidin, S. Z., Omar, N. and Idrus, Z. (2013). Managing unstructured data
in relational databases, Systems, Process & Control (ICSPC), 2013 IEEE Conference
on, IEEE, pp. 198–203.

17

	Introduction
	Related Work
	SQL interface above non relational databases
	 Migration from sql to nosql
	Single interface to multiple nosql databases
	Uniform Access to both relational and non relation databases

	Methodology
	Project Components
	Project Details

	Implementation
	Evaluation
	Access Single Database
	Access Multiple Database
	Discussion

	Conclusion and Future Work

