

National College^{of} Ireland

DISCRETE MATHEMATICS FORMULAE AND TABLES UNDERGRADUATE

Compiled by National College of Ireland, Mathematics Support Working Group Mr Jonathan Lambert, Mr Michael Bradford, Mr John McKeever

CONTENTS

Important Symbols	.3
Set Theory Operations	.4
Number Systems	.5
Boolean Algebra Identities	.6
Propositional and Predicate Logic	.7
Logic Gates	. 8
Quadratic Roots	. 9

Copyright © 2018

IMPORTANT SYMBOLS

Terms	Meaning	
8	A collection of objects	
<i>A</i> Δ B	Objects that belong to A or B but not their intersection Symmetric difference	
$A \cap B^{c}$	Set Difference	
(A)	Power Set of A All subsets of A	
(a , b)	Ordered Pair or Couple Collection of two elements	
A×B	Cartesian Product Set of all ordered pairs from A to B	
Ø	Empty Set	
U	Universal Set Set of all possible values	
aRb	Equivalence relation a and b of a set are equivalent with respect to a relation R	
f o g	f after g or f composed with g	

SET THEORY OPERATIONS

Terms	Meaning	Terms	Meaning
$x \in A$	$m{x}$ is an element of the set $m{A}$	$A \subset B$	A is a proper subset of B
<i>x</i> ∉ <i>A</i>	$m{x}$ is not an element of the set $m{A}$	<i>A</i> ⊄ B	A is not a proper subset of B
A = B	Sets <i>A</i> and <i>B</i> are equal	A∪B	A union B
<i>A</i> ⊆ B	A is a subset of B	$A \cap B$	A intersection B
<i>A</i> ⊈ B	A is not a subset of B	$A \oplus B$ alternatively $A \Delta B$	Symmetric difference of <i>A</i> and <i>B</i>
A - B alternatively $A \setminus B$	Elements of A not in B Difference of B in A	A' alternatively A ^c	Compliment of <i>A</i>
℘(A)	Power set of <i>A</i>	#A alternatively A	Cardinality of <i>A</i>

Principle of Inclusion- Exclusion for Two Sets	$ \mathbf{U} = \mathbf{A} + \mathbf{B} + (\mathbf{A} \cup \mathbf{B})' - \mathbf{A} \cap \mathbf{B} $
Principle of Inclusion- Exclusion for Three Sets	$ \mathbf{U} = \mathbf{A} + \mathbf{B} + \mathbf{C} + (\mathbf{A} \cup \mathbf{B} \cup \mathbf{C})' $ $- \mathbf{A} \cap \mathbf{B} - \mathbf{A} \cap \mathbf{C} - \mathbf{B} \cap \mathbf{C} + \mathbf{A} \cap \mathbf{B} \cap \mathbf{C} $

NUMBER SYSTEMS

Number System	Definition
Natural Numbers	$\mathbb{N} = \{1, 2, 3,\}$
Integer Numbers	$\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3,\}$
Rational Numbers	$\mathbb{Q} = \left\{ egin{smallmatrix} m{a} & m{b} \in \mathbb{Z} \ m{and} \ m{b} eq 0 ight\}$
Real Numbers	$\mathbb{R} = \{x: -\infty < x < +\infty\}$
Complex Numbers	$\mathbb{C} = \left\{ a + bi : a, b \in \mathbb{R}, i = \sqrt{-1} \right\}$

BOOLEAN ALGEBRA IDENTITIES

Terms	Boolean OR	Boolean AND
Commutative	A+B=B+A	A.B = B.A
Associative	$(\boldsymbol{A}+\boldsymbol{B})+\boldsymbol{C}=\boldsymbol{A}+(\boldsymbol{B}+\boldsymbol{C})$	$(\boldsymbol{A}.\boldsymbol{B}).\boldsymbol{C}=\boldsymbol{A}.(\boldsymbol{B}.\boldsymbol{C})$
Distributive	$\boldsymbol{A} + (\boldsymbol{B}.\boldsymbol{C}) = (\boldsymbol{A} + \boldsymbol{B}).(\boldsymbol{A} + \boldsymbol{C})$	$\boldsymbol{A}.\left(\boldsymbol{B}+\boldsymbol{C}\right)=\left(\boldsymbol{A}.\boldsymbol{B}\right)+\left(\boldsymbol{A}.\boldsymbol{C}\right)$
Identity	A + 0 = A	A.1 = A
Idempotent	A + A = A	A.A = A
Universal Bound	A + 1 = 1	<i>A</i> . 0 = 0
Negation	$A + \overline{A} = 1$	$A.\overline{A}=0$
Absorption	$\boldsymbol{A} + (\boldsymbol{A}.\boldsymbol{B}) = \boldsymbol{A}$	$A.\left(A+B\right)=A$
DeMorgan's Law	$\overline{(A+B)}=\overline{A}.\overline{B}$	$\overline{(A.B)} = \overline{A} + \overline{B}$
Complements of 1 and 0	$\overline{1} = 0$	$\overline{0} = 1$
Double Negation	$\overline{\overline{A}} = A$	

PROPOSITIONAL AND PREDICATE LOGIC

Terms & Operators	Meaning
p,q,r	Propositions
p	Negation
٨	Logical AND
v	Logical OR
⇒	Implication
\$ ≡ ↓	Equivalence
A	Universal Quantification: "for all"
Э	Existential Quantification: "there exists"
P(x)	Predicate or Propositional Function

Meaning	Symbolic Representation
The not gate	
The or gate	a b
The and gate	a b a.b

QUADRATIC ROOTS

	Given a quadratic equation $ax^2 + bx + c = 0$ its roots are given by
Roots of a Quadratic Equation	$x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}$

NOTES

NOTES

•	

NATIONAL COLLEGE OF IRELAND

Mayor Street, IFSC, Dublin 1 Telephone: 01 449 8624 Web: https://myncistudent@ncirl.ie