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Abstract

Hadoop’s MapReduce framework was developed to process large datasets in a
distributed environment. Performance of MapReduce job is driven by large number
of settings and configuration parameters. Manual configuration of these parameters
and identification of optimal values is an error prone and tedious task. Improving
Performance of MapReduce framework is important in order to effectively utilize
the resource. In this work, existing research methodologies has been evaluated to
understand the impact of these configuration parameters and approaches to identify
their optimal values. In this research, we propose Performance Tuning Component
for Auto-Tuning of configuration parameter with optimal values of ‘o0.sort.factor
and mapreduce.job.reduces parameters. Prediction model has been developed in
order to find the optimal values of these parameters using Ridge Regression Al-
gorithm. Prediction model has accuracy of 91.26% for predicting values of con-
figuration parameters. TeraSort and WordCount have been used as benchmark for
evaluation of performance for MapReduce job. Experiments results show that the
proposed solution provided about 6-48% improvement in execution time for differ-
ent MapReduce jobs executed. Cost of MapReduce in cloud is associated with the
time spent and resources utilized by MapReduce job. Hence, our proposed solution
will not only save time, but also cost associated by reducing the execution time of
the MapReduce job.

Keywords: MapReduce, Hadoop, Configuration Parameters, Ridge Regression

1 Introduction

MapReduce is distributed programming framework which was initially developed by
Google, allowed processing of huge datasets in parallel and distributed mode. Apache
provided open-source implementation of MapReduce framework available for commercial
use. As unstructured data has increased significantly over last few years, new technical
implementation has come into existence to perform analytics on these large datasets and
MapReduce has been one of the popular frameworks for processing these large datasets.

MapReduce implementation has been deployed in various environmental settings such
as datacentres and cloud to be more cost effective. MapReduce cluster have perform-
ance impact due to various settings, data placement and configuration parameters as



explained by |[Rabkin and Katz (2013). Identification of these parameters requires ex-
pertise in MapReduce framework and configuration of them with optimal values is error
prone task because values are driven by the type and data size of the job executed in
MapReduce framework.

The research problem: What is the impact of Auto-tuning of configuration parameters
on ezecution time of MapReduce job using Ridge Regression ¢

MapReduce framework consists of more than 200 configuration parameters on Job-
level and Task-level combined. Job-level parameters affect the performance of overall
cluster and require restarting for new parameter settings to take its effect. Task-level
parameters can be modified without impacting other nodes within the cluster and this
provide an opportunity for improving performance of MapReduce framework using con-
figuration parameters which will be focus of our paper.

In this work, we propose a Performance Tuning Component that auto-configures the
parameter of MapReduce framework as predicted by the Ridge Regression model. Tuning
the configuration parameters is accompanied with challenges which will be address in our
work. Major challenge of adopting this approach is determining optimal configuration
which is daunting and error prone task. Previous work has used various approaches to be
as efficient as possible. We will use regression based approach to predict optimal paramet-
ers and choose the configuration parameter values which has minimal makespan. In this
work we hypothesize, dynamic configuration of MapReduce parameters value predicted
by Ridge Regression using Performance Tuning Component will decrease execution time
significantly than default parameters.

Paper is organized as follows. Section 2, discusses previous related work done in re-
lated areas and provide contrast with our proposed solution. Section 3 presents details
about the design of the performance tuning component. Section 4 will provide about
configuration and implementation details of PTC tool. In Section 5 we will evaluate per-
formance of MapReduce job using PTC tool and will compare with default configuration
settings and finally, in Section 6, we concludes the paper and discuss future work.

2 Related Work

MapReduce implementation provided by Apache assumes homogeneous nodes within the
cluster. [Lu et al| (2015) proved with experiments that MapReduce have performance
implication while performing under different configuration. In recent few years, config-
uration parameters has been area of interest for researches such as |Li, Zhuang, Lu, Sun,
Zhou, Dai and Zhou| (2014)) and Li, Zeng, Meng, Tan, Zhang, Butt and Fuller| (2014) to
exploit and tune parameters in order to enhance the performance of MapReduce. Dy-
namic configuration is another challenge which has been addressed in these approaches.
In our next sub-sections, we will discuss about different approaches used in previous
works for improving performance of MapReduce framework by automatic configuration
of parameters.



2.1 Cost-based Approaches for optimising configuration para-
meters

Cost based performance modelling has been popular since early days and has been im-
plemented across different software applications. Cost based modelling uses white box
approach to predict the optimal configuration by using the system internals information.
Since it uses analytical approach to find optimal parameters, it performance was better
than default configuration. However as technology evolved and new software paradigm
came into existence such as machine learning, new algorithms and approaches have been
implemented in order to accurately predict optimal configuration parameters.

Sampling is one of the processes used in cost-based approach to predict the perform-
ance of job in terms of Execution time, CPU and Disk I/O. |Song et al.| (2013)) used similar
approach in its sampling algorithm to predict the execution time. Prediction had huge
difference for grep and dedup job but the prediction was under permissible error range.
It was also concluded during his experiments that the jobs were sensitive to format of
input data used for processing. To improve the approach used by Song et al. (2013),
Lu et al.| (2015) provided feedback mechanism which enable higher computing node to
process more data using configuration parameters. Another approach Wang et al.| (2017)
used changes in implementation strategy of MapReduce to improve shuffling and sorting
process of framework which eventually improved the performance of MapReduce frame-
work.

Few approaches uses combination of adaptive learning and mathematical model to
improve the accuracy of tool proposed Li, Zhuang, Lu, Sun, Zhou, Dai and Zhou (2014])
. Similar approaches has been contrasted by Kalavri and Vlassov| (2013)) which consent
that in order to develop these mathematical model one require deep understanding of
system internals and these models needs to updated if system configuration is changed
within the cluster. Hence mathematical model would not be good choice for cluster with
frequent on demand scaling.

Another approach Wasi-Ur-Rahman et al.| (2016)) leverage the advantage file system
along with divide and conquer algorithm to improve the performance of job. Optimal
configuration for MapReduce framework has been obtained using divide and conquer ap-
proach to find the local minima. Sampling data could be explored in various ways to filter
relevant information, one such approach Kim et al. (2015) make use of top five paramet-
ers which greatly influence the execution time of MapReduce job. Parameter selection
criteria might depend on read/write speed which is different from previous approach
Wasi-Ur-Rahman et al.| (2016) of total execution time. Selecting top five parameters
and using analytical approach to find best combination of parameters was able to reduce
upto 32% job execution time. However selection and identification of sampling para-
meters used in Kim et al| (2015) approach requires expertise and in-depth knowledge of
Hadoop framework to filter irrelevant parameters such as dnsname and datanode.dir etc.

Sequential Sampling and random sampling are two primary approaches which have
been majorly used across different methodologies Kim et al.| (2015) and [Song et al.| (2013)).
Random sampling with Monte Carlo simulation is another approach Kim and Park! (2015])
for sampling to reduce the noise and improve prediction model developed. During the
analysis Monte Carlo sampling proved to come out with best configuration parameters
across Sequential sampling [Kim et al.| (2015 and Correlation Coefficient approach. Figure
summarises different approaches.



Approach

Possible Weakness

Li, Zhuang, Lu,
Sun, Zhou, Dai
and Zhou| (2014)

Combination of adaptive
learning and mathematical
model

Mathematical model requires
deep understanding of system
internals such as Java Runtime
Environment and Disk 1/0O speed
etc.

Wasi-Ur-
Rahman et al.
(2016)

Divide and Conquer Al-
gorithm using system and
user parameters

Requires deep understanding
of user-space and system-space
parameters

| [Kim et al.(2015)

Feature selection based on
expertise

Based on experience, require
framework expertise. Not good
for Novice Users.

Song et  al
(2013)

Propose custom sampling
algorithm based on cost
based model

Parameter value predicted will al-
ways be same for homogeneouse
node.

Figure 1: Comparison between different approaches

2.2 Machine learning Approaches for optimising configuration
parameters

Machine learning is classified into supervised and unsupervised learning. Regression is
supervised learning based approach used for prediction of feature or a variable. Multiple
Linear Regression has been widely used for creating learning models Yigitbasi et al.
(2013). While analysing among different regression algorithms such as MLR, ANN;,
M5Tree and SVR ete. in [Yigitbasi et al.| (2013) paper, SVR outperformed the with
39% improvement in execution time than the default parameters.

KMeans clustering algorithm allow segregation of data into clusters and then try to
search for optimal parameter within the cluster. One of the drawback of this approach Wu
and Gokhale| (2013)) is that the result could provide features which could not be mapped
into MapReduce framework, hence it requires to modified to correctly map to range to
values permissible within the MapReduce framework. Other approaches |Li, Zhuang, Lu,
Sun, Zhou, Dai and Zhou| (2014) follow same methodology to extract data from differ-
ent sources and then develop learning model. However in our approach we have filtered
sample data hence we don’t require analyser component. Testing against different types
of job is import aspect is another aspect which has been tested in |Li, Zhuang, Lu, Sun,
Zhou, Dai and Zhou| (2014)) and Wu and Gokhale| (2013) approaches.

Apart from linear regression, tree based regression has also been used |Chen et al.
(2015)) to classify and predict the optimal configuration parameters for MapReduce frame-
work. Hill climbing is another approach which could be used for search for best possible
parameters. However one might stuck to local minima, if data has more than one local
minima. Using tree based regression and combination of random sampling along with
Hill climbing algorithm reducecd the execution time around 20% of execution time. Hill
climbing algorithm has been popular in (Chen et al. (2015), |Li, Zeng, Meng, Tan, Zhang,
Butt and Fuller| (2014) approaches to search for optimal parameters. Along with Hill
climbing algorithm Ding et al.| (2015)) approach uses tuning and resource allocation tech-
niques to improve the performance of the MapReduce framework. Elastic container has
been used for resource allocation mechanism which allows dynamic scalling of resources.



It has been majorly divided into two process just like Li, Zhuang, Lu, Sun, Zhou, Dai
and Zhou| (2014)), however in this approach second step is used for resource allocation
mechanism to effectively distribute these resources. Another distinguish feature of this
approach is that it make use of real-time statistics Ren et al| (2012) which is collected
from MapReduce framework and used for predicting tuning parameters. Implementation
of lLi, Zeng, Meng, Tan, Zhang, Butt and Fuller| (2014) uses configuration parameters of
YARN to improve the performance of MapReduce framework with heterogeneous nodes.
Parameters have been broadly classified into memory and CPU which are optimised using
HillClimbing search for desirable configuration.

Cheng et al.| (2017)) approach complements Li, Zhuang, Lu, Sun, Zhou, Dai and Zhou
(2014)) self adaptive tuning of MapReduce configuration parameters. However Cheng et al.
(2017) and |Zhang et al.| (2015]) approach considers both homogeneous and heterogeneous
clusters for parameter optimisation. Experiments demonstrated that the approach is
effective on both homogeneous and heterogeneous clusters.

MapReduce framework performance significantly degrades in heterogeneous cluster.
AROMA |[Lama and Zhou (2012)) address this issue with automatic allocation of resources
along with configuration parameters. SVM machine learning algorithm similar to Wasi-
Ur-Rahman et al.| (2016) approach has been used to construct model for automatic job
provisioning. Data collection technique makes use of historical logs generated by MapRe-
duce framework similar to |Yigitbasi et al. (2013) approach. However, it uses dstat (third
party tool) to extract relevant information such as execution time, data size and resource
allocation etc. while other approaches uses custom implementation for data extraction.

MapReduce job executed creates log entries about the execution of job and relates
information such as execution time, no of mapper tasks and total bytes transferred etc.
Data about the jobs executed within the MapReduce framework could be exacted from
different sources|Yigitbasi et al.| (2013)). Data extracted from log entries (Historical data)
is useful when we don’t want to sample the data or cluster is already into production.
Historical data about Job performance has been prominent source in |Li, Zhuang, Lu,
Sun, Zhou, Dai and Zhou (2014)) approach for modelling. Historical data might not be
useful if cluster used performs similar task multiple times. Sampling method allow to
execute task with variable file size and parameters.

2.3 Need for Auto-Tuning of configuration parameters

MapReduce framework is widespread adoption of distributed data processing during past
few years. But since MapReduce consists of large number of configuration parameters,
parameter selection is quite a daunting task for a novice. Moreover, configuration para-
meters might have impact on other parameter as well which night either significantly
improve or degrade the effectiveness of related configuration parameter as demonstrated
in Lu et al.| (2015) and Rabkin and Katz (2013) approaches. For dynamic tuning of
configuration, Yigitbasi et al| (2013) paper provides machine learning approach to get
optimal parameters for MapReduce job. It was found that machine learning approach
has better results in predicting these parameters.

Experiments performed by |Cheng et al. (2017) proved significant improvement in
MapReduce framework performance by tuning the task-level parameters. However, iden-
tification of optimal parameter is error prone task and moreover manual tuning of these
parameters over large cluster is time consuming process and impractical. Hence, we re-
quire to dynamically configuring these parameter to values for which MapReduce frame-



work could provide optimal performance. Wasi-Ur-Rahman et al.| (2016)) also agrees to
the fact that configuration parameters of MapReduce framework have different optimal
values under different HPC cluster. Hence, set of values for configuration parameters
cannot be generalized to provide optimal parameters and we need to find the optimal
values of configuration for each cluster deployed. Table [2| provide summary of closest

approaches to our proposed solution.

Auto-Tuning Approaches

Similarity

Difference

By [Babu] (2010)

Similar configuration para-
meter has been chosen to
get data about MapReduce
job

Approach uses Database
Query Optimization tech-
nique, while PTC uses Re-
gression based prediction
model.

By [Wul (2015

Search Algorithm to search
for optimal parameters has
been inspired by this re-
search

Hadoop version used in 'Wu
(2015) experiment is too old
(1.0.0), most of the para-
meters used in research are
now obsolete (in 2.7.2).

By [Bei et al.| (2016)

Similar approach used in
PTC for data collection

Random Forest Algorithm
has been used for creation

of Prediction model while
PTC uses Ridge Regression
Algorithm for prediction.

Figure 2: Similarity and Differences between PTC and previous works in same direction

3 Methodology

Configuration parameters provide numerous numbers of parameters which could be con-
figured by system administrator. However finding effective value of them could be error
prone task which might negatively affect the performance of MapReduce job. A perform-
ance tuning component has been proposed, to efficiently find optimal values of these para-
meters and dynamically configure these parameters. Section 1 will describe details about
environment details and tools required to implement solution. Section 2 will provide
glimpse of Overall Architecture of Performance tuning component. Furthermore, pseudo
algorithm to find optimal parameters is proposed. Section 3,4 would provide details of
software diagrams such as class integration diagram and sequence diagram respectively.

3.1 Environment Setup

In order to measure the performance our proposed solution we have constructed MapRe-
duce Cluster Environment as per the steps defined in configuration manual available as
a part of Appendix [A]

Cluster consists of 3 Nodes. One of them is MasterNode running NameNode and Re-
sourceManager processes and other two are slaves running DataNode and NodeManager
processes. All DataNode servers have the same hardware configuration, while NameNode
has been better RAM of 2048. Each Node has 1-Core CPU processor running Ubuntu



16.04 LTS 64-bit Linuz. RAM of each DataNode is 1 GB. NameNode is given higer
memory due to the reason that all the job are executed on NameNode and requires seam-
less interaction. Cluster is deployed with Java Development Kit 1.8.0-131 and Hadoop
2.7.2 . Hadoop configuration parameter has been kept at their default configuration
settings.

Node Type | Machine Name | IP Address | CPU Processor | Memory(MB)
Count

Master Node | hadoopmaster | 192.168.0.12 | 1 2048

Data Node hadoopslavel | 192.168.0.13 | 1 1024

Data Node hadoopslave2 | 192.168.0.14 | 1 1024

Figure 3: Cluster Configuration

Moreover, below tools has been used in order to develop and evaluate the solution:
1. Oracle Virtual Box 5.1.26

2. Spyder (Python 3.6)

3. IBM SPSS statistics

4. dstat (Resource Montioring Tool)

3.2 Proposed Performance Tuning Component Architecture

The proposed solution within this research works on finding optimal configuration para-
meter for MapReduce framework and dynamically update them to the MapReduce frame-
work. Overall Architecture of Performance Tuning Component is represented in Figure
. Performance Tuning Component is configured on NameNode. PTC is configured to be
called from MapReduce Job Tracker. PTC is subdivided into two components: Analyser
and Tuner. We will discuss more about subcomponents of PTC in upcoming sections.

'fName Nade i

Resource
Manager Performance Tuning
Component

MR Driver

—| Analyser
b

~

Reduce

L& [ -
¥ ¥

DataNode DataNode

MNode Manager Mode Manager

Figure 4: Overall Architecture of Performance Tuning Component (PTC)



3.2.1 Analyser

Analyser is subcomponent of PTC and is responsible for finding optimal parameter val-
ues. Analyser uses Ridge Regression algorithm to predict the values of configuration
parameters. Aim of Analyser is to find the parameter values which results into least exe-
cution time of MapReduce job. Analyser is prediction model is developed from Training
dataset as shown is figure [5

Machine
Learning
Algorithm

I

Prediction

Magl — | o
Query Instance o Prediction

Figure 5: Steps of developing prediction model

Previous methodologies emphasised on |Li, Zhuang, Lu, Sun, Zhou, Dai and Zhou
(2014) , Li, Zeng, Meng, Tan, Zhang, Butt and Fuller| (2014)) and Babu| (2010)) uses
different parameter in order to optimize the MapReduce job. Similar to Babul (2010
approach, in our research we have used two configuration parameters : io.sort.factor and
mapreduce.job.reduces which are dependent on inputDataSize of MapReduce job. Default
Configuration value of MapReduce framework has been described in Figure [6] .

Parameter Name Description Default Values
Value | Considered
mapreduce.task.io.sort.factor | The number of streams to be | 10 [10,500]
merged at once while sorting files.
mapreduce.job.reduces The default number of reducer | 1 [2,300]
tasks per job.

Figure 6: Job Configuration parameters in Hadoop

Information about the MapReduce job is gather using sampling which uses differ-
ent combination of MapReduce parameters in order to train our prediction model using
bash script. Secondly we train our prediction model, as per the standards 80 percent of
sampling data is used to train the prediction model and accuracy of the model is tested
against the 20 percent.

Once we have our prediction model capable of predicting the configuration parameter
values, we can use search algorithm to find the configuration values with least execution
time. Search algorithm is inspired by the |Wul (2015)) approach to find the optimal values.
Pseudo Alogirthm has described in Figure [7] .

In this research, we have selected three parameters for regression i.e. the input data
size (denoted as is), the number of reducers (denotes as r) and the io.sort factor (de-
noted as sf ). Regression equation is represented as et=PredictionModel(is, sf, r), where



N

m_time=intMax ;
for (sf in 10..m_sortfactor)
for(r in 2..m_reduce)
if (m_time>PredictionModel (is ,sf 1))
m_time=PredictionModel (is ,sf ,r);
O _sf=sf;
O_r=r;
end if;
end for;
end for;

Figure 7: Pseudo code for searching optimal parameters

et represents the execution time. Based on the predicted value we will choose the para-
meter values of io.sort factor and number of reducers which are able to provide least job
execution time.

Algorithm uses range of values from [1,m_sortfactor] and [1,m_reduce] in order to find
optimal parameters O_sf and O_r (where m_sortfactor and m_reduce are maximum values
of sort factor and number of reducers respectively). In line 5, m_time is compares with
predicted values against different parameter values and if we found parameter configura-
tion resulting into less execution time, it consequently becomes our optimal configuration
which configuration values as O_sf and O_r.

3.2.2 Tuner

Tuner, a subcomponent of PTC updates the optimal parameter provided by the Analyser
to the MapReduce framework. All the details about the parameter and their value are
provided by the Analyser to the Tuner. Once the parameters have been updated, Job
Tracker takes the ownership of the job and distributes the MapReduce job across the
cluster with the configured parameters.

3.3 Class Interaction Diagram of Proposed Solution

PerformanceTuning
MR_Driver
[—=uses>>— L performTuning *—“usespbj
+main -Analyse

-Tune

PredictionModel.py

<zlmplernents=>

|
=<|nterface»=

IPerformanceTuning

+PerformTuning
-Analyse
-Tune

Figure 8: Class Diagram with dependencies for Proposed Solution

MapReduce framework consists of Driver, Mapper and Reducer classes to executed




MapReduce job. MR_Driver (MapReduce Driver) class is responsible for initial setup
of MapReduce job such as Data Input Source, configure parameters and provide details
about Mapper and Reducer Classes. MapReduce Driver will be interacting classes in
order effectively call PTC component. IPerformTuningComponent provide skeleton for
implementing classes. Analyse method is responsible for analysing the optimal parameter
by executing PredictionModel.py script. PredictionModel.py is dependent module which
returns optimal parameter values after performing Ridge regression as shown in Figure
. Tune method would also be responsible to update these parameters to the MapReduce
framework.

3.4 Sequence Diagram with Data Flow of the Proposed Solution

Q

W
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Client NodeManager | | Map/Reduce
‘ Manager Model g P
T T T T T
iR ! [ | |
| | | |
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| | |
| | |
| | |
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| |
. | |
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| | |
| | |
| | |
| | |
| | |
| | |
& — — — — Resultystring — — — — | | |
BT | | |
st o
Data blocks : : :
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|
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|
|
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Figure 9: Sequence Diagram of Proposed Solution

The main aim of this diagram is to capture the sequence of events and interaction
of proposed solution with MapReduce framework. PTC component is installed and con-
figured on Namenode. When a client requests for job execution, Resource Manager
perform initial setup for job. Our poposed solution would be called during this phase
to help in configuration with optimal parameters values. Hence, Resource Manager calls
our component to perform tuning. PTC internally calls Analyser to predict paramaters
values and tuner to update these value to MapReduce framework. After parameters has
been updated, MapReduce traditional workflow continues to fetch the data from HDFS
and execute the MapReduce job on Datanode with the parameters configured using PTC
component as shown in figure [9]



4 Implementation

In this section we would be discuss about the environment configuration used for research.
We would also discuss about the Data Collection and implementation used for creation
of prediction model. Furthermore, the implementation details about the components of
PTC would be explained at the end of this section.

4.1 DataCollection

We have collected 480 samples of the execution information as the training set. The
input dataset has been generated using teragen program provided by the Hadoop frame-
work. It was ensured that hadoop is configured with default parameters and during the
sample collection no other program was executed in background apart from dfs and yarn
services. Moreover, updates were turned off to ensure all resources are fairly avaiable for
MapReduce job only.

Correlations
ReducerCoun | ExecutionTim
InputDataSize | SortFactor t a
InputDataSize FPearson Correlation 1 oo oo 452
Sig. (2-tailed) 1.000 1.000 .000
M 480 480 480 480
SortFactor Pearson Correlation .0oo 1 .0oo -015
Sig. (2-tailed) 1.000 1.000 745
il 430 480 430 480
ReducerCount  Pearson Correlation .0oo0 .00o 1 178
Sig. (2-tailed) 1.000 1.000 .00o
M 480 480 480 480
ExecutionTime  Pearson Correlation 952 -018 178 1
Sig. (2-tailed) .00o 745 .000
il 480 480 430 480

** Correlation is significant at the 0.01 level (2-tailed).

Figure 10: Correlation Matrix provides details about the correlation across different
features

Bash script has been created to get the details about the MapReduce job under different
parameter settings. All the results are collated into the text file and after each job exe-
cution, its output file is deleted to keep hdfs clean. The size of the input data varies from
5 MB to 1GB. The regression model has been developed in Python using this training
dataset.

As shown in Figure [10| Execution Time is highly dependent on InputDataSize and Redu-
cerCount. However as per the results, SortFactor doesnot influence ExecutionTime. To
validate this we will dig deeper into the data. As shown in Figure[I1]over certain value of
number of reducer tasks, changing io.sort factor has least impact on job execution time.
Therefore we get non-significant value between Execution Time and SortFactor in Correl-
ation matrix. It also proves that the parameter i0.sort.factor and mapreduce.job.reduces
are inter-related thus resulting into multicollinearity. Multicollinearity is another reason
for choosing Ridge Regression as it supports multicollinearity features.

From Figure [12| it could be concluded that these features has great impact on jobs with
larger data size and since MapReduce framework is mostly used for BigData analytics
it provide us opportunity to optimize these parameters with minimal execution time.



It allow supports our hypothesis, to find optimal parameter values in order to reduce
execution time.
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Figure 11: Visualization of MapReduce job for impact of io.sort.factor on Reducer Tasks
count.
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Figure 12: Scatter Plot for io.sort.factor and mapreduce.job.reduces under different data
size.

4.2 Implementation of Performance Tuning Component

Performance Tuning Component has been written in Java programming language. Re-
gression Model has been developed in Python programming language. Python provides
open source libraries which helps in building and testing the Ridge Regression Model.
Regression Model act as a Analyser of PTC, which is responsible for predicting the op-
timal values of configuration parameters. Java component act as Tuner of PTC, which is
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responsible for fetching the results from Analyser and update the parameters to MapRe-
duce job execution environment.

4.2.1 Analyser

Training Model

Analyser uses Python programming language to train the prediction model. Sampling
data set has been divided into two subsets. First subset is 80% of total sampling data
which is used to train the model. Rest 20% of data set would be used to check the
accuracy of the model, which has been performed using below code :

silm . fit (X_train , Y _train)

X _train, X_test, Y_train, Y_test = train_test_split (X, Y,
test_size=0.20, random_state=27)
Im = linear_model.Ridge(alpha=1.0)

Once that the data has been splitted, 80% of the data could be used to train the
model. X_Train and Y_Train have been used as training data in our case. In our next
section we will try to find best value of alpha.

Finding Best fit

Ridge Regression Model provide straight line which best represents the data points in
the training set. Position of straight line is driven by tuning knobs (value of alpha in
our proposed model). We have used GridSearchCV as cross validation utility which pre-
dict the best possible fit over the training set. Once we have identified the best fit, we
can use the value of parameters provided by GridSearchCV results and test the model
for its accuracy. GridSearchCV provided best_score as 94.21% under alpha=1.0 and
thats the reason for choosing value of alpha=1.0 during initialization of Ridge Regression.

Ridge Regression has been chosen among various regression algorithms because sampling

data provide evidence that the features are multicollinearity. Ridge Regression provides
coefficient estimates as non-zero while in other approaches such as LASSO one of the
coefficients will be equal to zero. Another reason for not choosing LASSO is that it
recommended for strong correlated predictors. Since, our predictors are correlated after
large values of reducers hence Ridge Regression perfectly aligns with our requirements
for prediction.

Testing Model
Accuracy is tested against the remaining 20% of data from the original dataset. Accuracy
provides an idea about how accurately model is able to predict the value of test data set.
Accuracy of the model is tested using below code:.

Once the model is efficient enough to predict the optimal parameters, We created a
pickle file which would be used to predict the parameters.

Pickle file will remove the necessity to train the model again and again. It will also
allow prediction over the scaled environment, since it would only requires changing of
trained pickle file.



N

N

accuracyRidge=lm.score (X _test , Y _test)
print (”Model Accuracy :” ,accuracyRidge)

In [8]: runfile{'C:/Users/HP/Desktop/PredictionModel.py’,
Model Accuracy : ©.912684799935

Figure 13: Accuracy of Prediction Model (91.26 %)

with open(’linearregression.pickle’ ’wb’) as f:
pickle .dump(lm, f)

4.2.2 Tuner

Tuner subcomponent of PTC is developed to update the optimal parameters into the
MapReduce framework. Tuner component is installed and configured under hadoop lib-
raries. It will allow every MapReduce job to access the PTC component whenever re-
quired.

Tuner fetches the result from Analyser component and parses the result into the con-
figuration parameter values. Once the result has been parsed, these parameter values are
assigned to Job class of MapReduce framework for performing subsequent tasks. Tuner
component is compiled using javac compiler and jar is created as shown in figure.

hduser@hadoopmaster: s/Terasort$ javac -classpath ${HADOOP_CLASSPATH} -d PerformanceTuning/ PerformanceTuning.java
hduser@hadoopmaster: S jar -cvf PerformanceTuning.jar -C PerformanceTuning .

= @) (out= 0)(stored
ing: org/apache/(in = 8) (out= 0)(stored 6%)

: org/apache/hadoop/(in = 8) (out= 0)(stored 0%)
ing: org/apache/hadoop/examples/(in = 0) (out= 0)(stored 0%)
: org/apache/hadoop/examples/terasort/(in = 68) (out= 0)(stored 0%)
ing: org/apache/hadoop/examples/terasort/PerformanceTuning.class(in = 4255) (out= 2286)(deflated 46%)

Jar file is configured into hadoop environment and placed under hadoop installation
director i.e. $HADOOP_DIR /share/hadoop/mapreduce/lib . It allows every MapReduce
job to have accessibility over PTC component and PTC component could be integrated
with any MapReduce job whenever required.

4.3 Execution of Performance Tuning Component

PTC component has been designed hassle freeway in order to effective use the PTC in
user friendly manner. PTC component simply uses one tag AutoConfigON to use the
component features of job optimization and AutoConfigOFF to execute job with default
configuration settings. PTC component can be turned ON as below for TeraSort job :

hduser@hadoopmaster:~$ hadoop jar ~/Documents/TeraSort/hadoop-mapreduce-examples-PTC.jar TeraSort

Juser/hduser /TBDInput1824 Juser/hduser/TBDOutput1024 AutoConfigON

PTC component also provide logs for easy debugging and allowing user to track the
steps performed by the PTC component as shown below :

Also, MapReduce could be executed without the optimization under default settings
using AutoConfigOFF.




17/08/11 21:03:57 INFO TeraSort: starting

17/08/11 21:03:58 INFO TeraSort: Executing Performance Tuning Component.
17/08/11 21:03:58 INFO performancetuning.PerformanceTuningComponent: Auto-Tunin
g of Configuration parameters is ON

17/08/11 21:03:58 INFO performancetuning.PerformanceTuningComponent:

Reading Configuration File ...

17/68/11 21:04:00 INFO performancetuning.PerformanceTuningComponent: Reading /us
r/local/hadoop/share/hadoop/mapreduce/PTC/PredictionModel.py

17/08/11 21:04:03 INFO performancetuning.PerformanceTuningComponent: Script Resu
1ts :mapreduce.task.io.sort.factor:15 , mapreduce.job.reduces:500

17/068/11 21:04:03 INFO TeraSort: Performance Tuning Component execution Complete
d

17/68/11 21:04:03 INFO TeraSort: No of Reducers :500
17/08/11 21:04:03 INFO TeraSort: Sort Factor: 15

5 Evaluation

TeraSort and WordCount are two major benchmarks provided by Hadoop framework, in
order to evaluate the performance of MapReduce job. Performance of proposed solution
has been evaluated against the traditional system with default configuration parameters.
TeraSort program measures the amount of taken to sort large data set. TeraGen is
another program to generate large data set. WordCount counts the words over the
large data set and both of these benchmarks uses both Mapper and Reducer phases of
MapReduce framework. In this section we will evaluate the performance of these two
benchmarks after integration with PTC component.

5.1 Evaluation of TeraSort performance

Performance of TeraSort job has been evaluated against different data sizes ranging from
512 MB to 1.25 GB. Table [14] presents the results against different data size and under
PTC and default configuration settings. The results has been collated across three Tera-

PTC AutoConfigOn | Default

512 MB 0:01:32 0:02:01
1 GB 0:03:44 0:04:49
1.25 GB 0:04:58 0:07:20

Figure 14: Camparison of TeraSort job’s execution time under PTC AutoConfigON and
Default configuration settings

Sort job execution i.e. for 512 MB we ran three execution under default settings and
calculated the average execution time and similarly the process was repeated for different
data size and configuration settings. Main idea behind doing average is to get un-biased
result. Figure [15] provide visualization of the results obtained. We can conclude from
the figure that there is significant reduction of execution time under PTC AutoConfigON
configuration. Another interpretation of the result could be increase in CPU utilization
which has been proved as shown in figure [16]

5.2 Evaluation of WordCount performance

Similar to TeraSort performance evaluation, we have collected the execution time of
WorCount job over three execution and calculated the average execution time of the job
for same settings. Results have been compiled under Table [I7 Figure [I8] and [I9| provide
visualization of the results obtained. In our next section [5.3] we will discuss the results
in detail.
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Figure 15: Visualization of TeraSort performance under different Data Input.
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Figure 16: CPU Utilization of TeraSort

PTC_AutoConfigON | Default

512 MB 0:02:19 0:02:28
1 GB 0:05:49 0:06:24
1.25 GB 0:07:04 0:07:59

Figure 17: Camparison of WordCount job’s execution time under PTC AutoConfigON
and Default configuration settings

5.3 Discussion

As seen in TeraSort experiment, PTC was able to reduce execution time up to 48 percent
(for 1.25 GB ). Also, it could be interpreted from the experiments that PTC has less
impact for job with smaller data set ( 31.5% improvement ) as compare to larger data
set (48% improvement).

Under WordCount experiment, PTC was again able to reduce execution time. How-
ever, it was not as significant as that of the TeraSort experiment. WordCount experiment
provided reduction of up to 12.9% of execution time in job with large data set (1.25 GB
) and around 6.4% reduction of execution time for smaller data set (512 MB) .

Based on the trends of the graphs in figure and it could be concluded that
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Figure 18: Visualization of WordCount performance under different Data Input.
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Figure 19: CPU Utilization of WordCount

PTC doesnot have significant improvement on smaller data sets, although MapReduce
framework is majorly used for large datasets. Moreover the CPU ultization over proposed
solution is higher than that of traditional system. Results could be summarized as below:

1. PTC reduces the execution time of MapReduce job for about 6-48%.
2. PTC optimization over smaller data set is less significant.

3. PTC improves utilization of CPU resource.

6 Conclusion and Future Work

In this paper we proposed a Performance Tuning Component to improve the performance
of MapReduce job using Auto-Tuning of configuration parameters. Results explained in
previous section provide evidences that the proposed solution has significant improvement
in execution time of MapReduce job. Performance of MapReduce job has been evaluated
again the traditional Hadoop system with default parameters.

To evaluate the performance of Hadoop system with proposed solution, two bench-
mark TeraSort and WordCount were integrated with Performance Tuning Component.
The evaluation section provides elaborated results about the performance of Performance



Tuning Component as compared to traditional Hadoop system.

We can conclude from the results that there is significant improvement in execution
time of MapReduce job by implementing Ridge Regression using Performance Tuning
Component.

However, the performance of Performance Tuning Component could be improved by
using different Machine Learning algorithm apart from the Ridge Regression algorithm.
Our work complements the previous work |Chen et al.| (2015)), |Li, Zhuang, Lu, Sun, Zhou,
Dai and Zhou (2014), Wasi-Ur-Rahman et al. (2016) and Bei et al.| (2016)) done in similar
direction in order to Auto-Tune configuration parameters. One of the limitations of the
Performance Tuning Component is that under smaller data set we don’t find significant
improvements. Although MapReduce framework is mostly used for large dataset but in-
tegrating Performance Tuning Computing for processing small data set would not provide
significant improvement and would add nuisance to MapReduce job. Hence we would re-
commend integrating Performance Tuning Component with the MapReduce processing
large data sets.
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A Appendix Section

A.1 Configuration Manual
A.1.1 Hadoop Cluster setup using Virtual Machine

Prerequisites:

o Oracle VirtualBox (Open Source Software), available at https :;':",-""ww.virtualbox.
org/wiki/Downloads

e Ubuntu 16.04 LTS iso file, available at http://releases.ubuntu.com/16.04/ubuntu-16.
04.3-desktop-amd64. iso|

o At least 150 GB free Hard Disk or more

o At least 6 GB of RAM or more

All above requirement has to be fullfilled in order to setup Hadoop Cluster using
Virtual Machine.

Creating Virtual Machine

e Open VirtualBox application, click on "New".

o Create a VM by providing appropriate Name and resources.
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Figure 20: Create a VM

Click on "Create”, Provide appropriate file storage name and Size.

New Virtual Machine "Hadoop Master Node” would be created.

Now to install Ubuntu on this VM, Click on the newly created VM and select
"Settings” option from VirtualBox application.

Go to Storage tab and select Ubuntu .iso file.



e Click "OK" and Start the VML

e Install the Ubuntu Linux operating system into the Virtual Machine by providing
necessary information during the install.

e After the installation is complete set Storage Controller value to its default value:
"IDE Secondary Master”.

Creating Cluster
Now we will construct Virtual Machine cluster of two nodes.

Configure Network

1. Stop "Hadoop Master Node” Virtual Machine if it is running.

2. Choose " Settings” option and choose " Internal Network™ from Attached to: drop-
down list.

3. Provide relevant Name to the network.

4. Choose "Allow All" option in Promiscuous Mode.

ot

Network parameters would look like as below :

2} Hadoop Master Node - Settings ? *
JE" General Network ‘
System Adapter 1 Adapter 2 Adapter 3 Adapter 4
Display Enable Network Adapter
Storage Attached to: |Internal Network

. MName: | Hadoop MultiMode Network ~
i} Audio
W Advanced
@ Network Adapter Type: | Intel PRO/1000 MT Desktop (32540EM) -
@ Serial Ports Promiscucus Mode: | Allow All =
@ USE MAC Address: |080027EE49CD | ®
Cable Connected
E Shared Folders
Port Forwarding
E User Interface
Invalid settings detected Cancel

Figure 20: Network Parameters



Clone Virtual Machine
e Right click on "Hadoop Master Node” and choose " Clone” option.

¢ Provide name "Hadoop Slavel” as name and ensure " Reinitialize the MAC address”
is checked.

Click " Continue” .

Choose "Full Clone” option and click "Clone”.

Machine will be close within few minutes.

o Repeat steps 1-5 for another clone named "Hadoop Slave2”
Configure Node
e Login to "Hadoop Master Node” virtual machine.

¢ Go to Terminal, Execute below command:

sudo addgroup Hadoop
.|sude adduser —ingroup hadoop hduser

e Edit network connection and choose IPv4 Settings.

e Assign IP address such as 192.168.0.12 to "Hadoop Master Node™ VM.
| 055 edming Masterconnection |

Connection name: | MasterConnection
General Ethernet BOX 1x Security DOB W4 Setlings 1Pl Setltings
Metho: | Manisal -
addresses
Address Hetmask Calew iy Audd
TR T2 24
Delete
DMNS servers.

Search domans:

Reguire IPvd sddresting for this connecison Bo complete

Roules

Figure 23: IP Address Configuration

o Edit fetc/hosts using below command:

i|sudo nano /fetc/hosts

o Update the file with following values :

.168.08.12 hadoopmaster
.168.08.13 hadoopslavel

.168.0.14 hadoopslave2



Press Ctrl4+0 to save changes to file.

Edit fetc/hostname using below command:

{sudo nano /etc/hostname

Provide "hadoopmaster” without quotes into the text file and save changes by
pressing Ctrl40.

Repeat steps 1-9 for "hadoopslavel” and "hadoopslave2” by assigning respective
hostname and incremental IPs such as 192.168.0.13 and 192.168.0.14 respectively.

¢ Reboot all machines.

S9H Access

e Login to "Hadoop Virtual Machine” and use below command to generate ssh keys:

ssh—keyvgen —t rsa —P 77

o Add generated keys to authorized key list using below command :
cat SHOME/.ssh /id—rsa.pub >> $HOME/.ssh /authorized _keys

e Login to "Hadoop Slavel” and copy master node keys to authorize keys to slavel.

ssh—copy—id —i SHOME/.ssh /id—ras.pub hduser@hadoopslavel

e Repeat step-3 for hadoopslave2.

A.2 Hadoop Environment Setup
A.2.1 Hadoop Installation

1. Login to "Hadoop Master Node™.
2. Download Hadoop from Apache release URL : http://hadoop.apache.org/releases. htm

3. Download and unzip the folder content using below command:

|sudo tar —xvzf hadoop—2.7.2.tar.g=z

4. Move the folder to "fusr/local’ folder using below command:

|sudo mv fhome/hadoopmaster /Downloads/hadoop—-2.7.2 '\
Jusr/local /hadoop




Change the ownership of folder using below command:

&n

sudo chown —R hduser:hadoop hadoop

6. Update bashre with java environment path using below command :

sudo nano ‘,/, bashre

7. Add below line into the file and press Ctrl4+0 to save changes.

&. Repeat steps 1-7 for hadoopslavel and hadoopslave2 virtual machines.
Master Node Configuration
1. Login to "Hadoop Master Node”.

2. Edit "hadoop-env.sh” file available at " /usr/local/hadoop/ete/hadoop/” and en-
sure the JAVA_HOME path is correct.

export JAVAHOME=/usr/lib/jvm/java—8—openjdk—1386

3. Edit "core-site.xml” file available at " fusr/local/hadoop/etc/hadoop/” and below
entries within jeconfipuration;, tag:

B</value=

5. Update "mapred-site.xml” on master node as below:

6. Format the namenode using below command on Terminal:

hdfs namenode —format

Slave Node Configuration

1. Login to "Hadoop Slavel”.



o

6.
:{sudo bash /fusr/local/hadoop/sbin/start—all .sh

Edit "hadoop-env.sh” file available at " /usr/local/hadoop/etc/hadoop/” and en-
sure the JAVAHOME path is correct.

{export JAVAHOME=/usr/lib /jvin/java—8—openjdk—1386

. Edit "core-site.xml” file available at " fusr/local/hadoop /etc/hadoop/” and below

entries within jeonfiguration;, tag:

<property=
<name>fs.defaultFS</name>

<value>hdfs://hadoopmaster:54310</value>
</property>

Update "hdfs-site.xml” and "mapred-site.xml”on slave nodes as per above config-
uration values:

ation</names

Figure 24: hdfs-site xml

<configuration=>

<property=

<name>mapreduce. jobtracker.address</name>
<value=hadoopmaster</value>

</property=

<property>

<name>mapreduce. job.tracker</name=
<value>=hadoopmaster:54311</value>
</property=

</configuration=

Figure 25: mapred-site.xml

. Repeat step 1-5 for "Hadoop Slave2” virtual machine.

Login to "Hadoop Master Node” and start the all services using below command.

. Ensure Hadoop MapReduce is online :

Namenode information %

€ ' hadoopmaster <]
Hadoop

Overview
Datanodes

Datanode Volume Failures

Snapshot

Startup Progress

Utilities




A.2.2 Performance Tuning Component Setup

PerformanceTuning component is installed on NameNode to perform optimization of
configuration parameters. Below are the steps required to configure PerformanceTuning-
Component successfully :

1. Unzip the PerformenceTuningComponent into directory as shown below:

sudo tar —xvzf PTC. zip

b

Move the PTC.jar to Hadoop Installation Librarv,as shown below;

{sudo mv /home/hduser/Downloads /PTC/PerformanceTuning . jar
|$HOME INSTALL/share /hadoop / mapreduce / 1ib

3. Move the PerformanceTuning configuration file to Hadoop configuration director
using below command :

|sudo mv /home/hduser /Downloads /PTC/PTC _Config.xml
SHOMEINSTALL /et /hadoop

4, Create folder "PTC” under $HOME_INSTALL /share/hadoop/mapreduce and move
the PredictionModel.py and linearregression. pickle file to newly created folder using
below commands:

sudo mv /home/hduser /Downloads /[PTC/PredictionModel . py
JSHOME INSTALL /share /hadoop / mapreduce [ pte /

|sudo mv /home/hduser/Downloads /PTC/ linearregression . pickle
SHOMEINSTALL/share / hadoop / mapreduce / ptc/

Update the path of PredictionModel. py within PTC_Confiz.xml file

iy |

P

PTC_Config.xml (fusr/local/hadoop/etc/hadoop) - gedit

Open ¥ M

<?xml version="1.0"?>
<Configuration>
<Parameters>
<Location>/hduser/local/hadoop/share/hadoop/mapreduce/PTc//PredictionModel.py</Location>
</Parameters>
</Configuration>
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