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Abstract

To distribute large datasets over multiple commodity servers and to perform
a parallel computation a Hadoop framework is used. A question that arises with
any program is efficiency of the program and its completion time. MapReduce pro-
gramming model uses the divide and conquer rule, the map (reduce) tasks consists
of specific, well defined phases for data processing. However only map and reduce
functions are custom and their execution time can be predicted by user. The exe-
cution time for the remaining phases is generic and totally depends on the amount
of data processed by the phase and the performance of underlying Hadoop cluster.
The optimization of I/O can contribute towards the better performance. Hence in
this paper, we will look into such I/O bottlenecks that Hadoop framework faces and
a possible solution to overcome the same. We have introduced an approach that
will help to optimize I/O, the combining at a node level. This design has taken the
traditional combiner to a next level wherein the number of intermediate results are
reduced with the help of combiner at a node level which results in reduced network
traffic between mappers and reducers.

1 Introduction

Hadoop is an open-source framework developed for storing data and running applications
on clusters of commodity hardware. Hadoop is being a popular in the field of Big Data
because of its unique features. First of all, Hadoop provides massive storage that can
store nearly any kind of data, followed by its massive processing power and finally comes
the ability to handle concurrent tasks.

MapReduce programming model (Dean and Ghemawat; 2008) is considered as a heart
of Apache Hadoop, pioneered by Google especially for data intensive and large-scale data
analysis applications. MapReduce programming model is actually based on two simple
functions map and reduce that can be used for the functional programming. Map function
processes an input data and generates a key-value pair and generates a set of interme-
diate key-value pairs while reduce functions takes that intermediate key-value pairs and
merge them to create a final desired output. In short, Map functions takes the input data
and creates s key-value pair and pass this output further, these output is then taken as
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an input for reduce function and merged together to provide final output(?). A typical
MapReduce programming model comprises of three simple steps.

(i) Map Phase : Name node is the one responsible to retrieve locations of input data
nodes that are distributed over multiple data nodes. These input blocks are loaded from
local disk into memory then corresponding blocks are processed by each mapper task.
The main function of the Map task is to take the input process it and split it into smal-
ler pieces and assign key-value pair. These intermediate results from each map task are
happened in map output buffers.

(ii) Shuffle and Sort Phase : Once map task completed, the output of map tasks is
merged and shuffled to corresponding reduce tasks across the network.

(iii) Reduce Phase : Received key groups are processed by each reduce task. As map
phase stores its output into map buffers similarly reduce phase stores the input into re-
ducer output buffers temporarily. Final output is written to HDFS once all groups are
processed.

The figure below shows the three phases of MapReduce Figure 1

Figure 1: MapReduce three phases

Performance is becoming a key issue with increasing demand for both non-batch and
real-time processing with Hadoop for MapReduce applications. An acceptable job com-
pletion time is an important aspect for performance-based jobs. Therefore to minimize
the number of I/O must be an ultimate goal for an efficient MapReduce job in each
I/O focused phases as given above. This work helps to understand How an aggregating
intermediate results locally using the combiner can optimize the overall performance of
a MapReduce job?



2 Related Work

The main purpose of the literature review is to evaluate work done so far in the area of
performance improvement for the Hadoop MapReduce in order to understand the research
gap. Section 2.1 describes the basic working of Hadoop MapReduce. The evolution of
the existing technologies that contributed towards the performance enhancement of both
Hadoop and MapReduce is covered under section 2.2.

2.1 Background

To process large dataset in a distributed environment MapReduce framework is con-
sidered to be a powerful model. Each MapReduce phase

2.1.1 MapReduce

For simplified data processing on large clusters Google developed a MapReduce program-
ming model (Dean and Ghemawat; 2008). As per name, Map and Reduce form a pretty
simple structure. The overall logic for the processing of the MapReduce is when MapRe-
duce function is called, MapReduce programs divides user input data into smaller chunks
and starts with many copies of program with one chunk each. Among these copies one of
the copies becomes the master program that manages the complete execution. First, map
tasks read the input that is divided into smaller chunks and generates (key/value) pairs
from data. Further reduce tasks reads those values with same keys, process values and
create output. The master program returns the desired output based on reduce tasks. In
case of failure of any workers master re-executes failed tasks on another worker node.

2.1.2 Combiner

The Combiner provided as a Hadoop API that performs partial merging of intermedi-
ate data before sending them to reducers. In a case where intermediate results contain
significant number of repetitions and that are meant for the same reducers, then the
combiner can considerably reduce the intermediate results thus save on communication
cost without even altering the final output.

Theoretically combiners should improve performance of MapReduce job considerably
by intermediate combinable results which will help to cut down the network communic-
ation cost. However, combiners have a downside.

1) Combiners execution cannot be guaranteed at a times :
This means, there could be a case that Hadoop may choose not to execute the combiners
if it identifies that the execution of the combiners is inefficient for the system. A known
case is when number of spill files does not exceed the configurable limit. Other case might
be where developers did not systematically control it.

2) Map output size is not optimized :
The output from maps is stored in in-memory buffers temporarily and combiners function



on the same before spilling further to local disk. Therefor it is clear that combiners do
not reduce the number of output from maps.

2.1.3 In-Mappers combiners

The two problems associated with the traditional combiners are resolved by the of in-
mapper combiner. In-mapper combiner is a concept where the combiner is introduced
at the map method and to minimize volume of the intermediate results yield by it. In-
mapper combiner stores and aggregate results in an associative array, that is indexed
by output keys and produce the at the end of the map task. It is clear that with this
approach a substantial reduction in the total number of emitted map output is observed.
Figure shows the pseudo code for the word count MapReduce job using in mapper com-
biner.The total number The figure below shows the thre phases of MapReduce Figure 2

Figure 2: WordCount algorithm for In-mapper

The figure below shows the thre phases of MapReduce Figure 3

Figure 3: MapReduce job design with In-mapper



2.2 Literature Review

Hadoop is designed to handle large data and with its increasing use there is always a
demand for increasing volume of data storage and analysis. That often results into a
degraded performance. We have looked into some work that has been done in order to
improve Hadoop performance. There are always been various approaches that had been
taken to tackle this performance issue.

Gu et al. (2013)proposed a data prefetching mechanism in which data can be fetched
in advance to corresponding compute node that will improve the MapReduce perform-
ance in heterogeneous or shared environment. Yao et al. (2015) came up with a new
approach for the efficiency improvement wherein they developed a new scheduler, this
scheduler will understand the workload patterns and tune the shared resources among
users and the scheduling algorithms for each user dynamically for the performance im-
provement. Another study that has been carried out by Islam et al. (2016) shows data
access strategies that can improve the read performance of Hadoop Distributed File Sys-
tem. Results based on this study shows that the HDFS read performance is improved
by up to 33 compared to the default locality aware data access. In Babu (2010)the au-
thors have compared MapReduce with parallel database system where on the other hand
Dean and Ghemawat (2010) described the affect of the job configuration parameters on
the Hadoop performance. The focus on architectural issues and their possible solutions
which will help to improve the overall performance is given by (Jiang et al.; 2010)

During recent years, much attention is given to MapReduce environment, to per-
formance modeling and workload management and (Herodotou, Dong and Babu; 2011;
Herodotou, Lim, Luo, Borisov, Dong, Cetin and Babu; 2011; Verma et al.; 2011b,a)are
some of the different approaches to predict of MapReduce application performance were
offered.

Apart from this there is a need to develop a practical performance model that will give
estimation about the performance and help to analyze the bottleneck for the MapReduce
job. Literature has evidences that clearly show many work has already been done for the
modeling of the MapReduce jobs and their performance. However, existing performance
models are likely to ignore some of the important factors such as I/O congestion, tasks
failure over clusters that will ultimately contribute towards the execution cost of the
MapReduce jobs.

Hadoop Distributed File System is a best suitable for data-intensive applications due
to its extensive scalability and fault tolerance schema.Ye et al. (2016) ported an MPI-
SVM solver, which was originally developed for HPC environment to the HDFS which
actually improved the pre-processing of data that requires huge amount of I/O operations
by a deterministic scheduling. Thus, this design successfully eliminates the overhead lead
by remote I/O operations, with the help of SVM algorithm and which will be beneficial
to many other algorithms when trying to copy large scale of data.

I/O optimization becomes a discouraging work sometimes as applications source code
is not always available. To understand the I/O behavior in such cases where source code
is unavailable the traces of Hadoop plays very important role. With this method we can



not only understand the bottlenecks but also help to improve the performance. Feng et al.
(2015) introduced a tool suite which is quite transparent tracing and analysis tool. This
can be plugged into Hadoop system. This tolls also help to realise different approaches
with tracing; can release the tracer, without any source code modification of target can
trace the I/O operations. Additionally this work introduced an analyzer which provides
new approaches to address I/O problems depending upon their access patterns. The
experimental results from this study prove its effectiveness and the overhead can also be
observed as low as 1.97.

Park (2016) proposed a new framework named HDFS-AIO. This will enhance HDFS
with Adaptive I/O system. It basically supports various I/O methods for upper applica-
tion, making it enable to select optimal I/O routines for the platform without even having
the knowledge of the source code modification and re-compilation.

Furthermore, looking into the HDFS performance issue, it is observed that most com-
mon cause behind the HDFS performance degradation is poor I/O performance. To
handle such situation we need to categorize this into two such as merging stored files into
forms of databases or modification of the existing I/O feature of HDFS (Zhang et al.;
2012). Although first approach is successful in a way to improve throughput by indexing
data blocks but does not take care of the I/O performance. The second approach will
require a complete redesigning of the entire Hadoop system which sounds risky.

To reduce the intermediate result size (Dean and Ghemawat; 2008)suggested to use
combiners in MapReduce jobs. The in-mapper combining design, which is actually con-
sidered as a improvement of the traditional combiner was introduced by (Lin and Schatz;
2010). This design executes the combining function under the map method.

Therefore the research done in this area can be conclude as given in below table. The
table helps to understand the related work done so far to improve the performance of the
MapReduce however we do realise that there is still a gap that encouraged us to work
further towards the performance improvement of the same.

Related Paper Work Done
(Dean and Ghemawat; 2008) Introduced combiner, minimized the intermediate results
(Lin and Schatz; 2010) Introduced In-mapper combined design, improved traditional design
(Zhang et al.; 2012) Improved throughtput by indexing data blocks, poor I/O performance

Table 1: Summery of Related Work

3 Methodology

In this section we would like to look into the tools that are required to evaluate the
performance of the MapReduce application, dataset that we used to check our approach
of the performance optimization.



3.1 Proposed Solution

Step 1 : Input data is processed by Map

Step 2 : Map tasks divides data into smaller chunks and intermediate data is gener-
ated by assigning (key, value) pair

Step 3 : Intermediate result is from each map is then processed by in-node combiner

Step 4 : In-node combiner combines the intermediate result from each map from the
same node and passes the output further to process to reduce

Step 5 : Shuffle and sort phase takes these as a input before passing it further to final
reduce phase

Step 6 : Reduce phase takes the output from shuffle and sort and depending upon
the key put the data together for final desired output.

However we cannot just trust combiner as a solution because we implement the same
in any MapReduce job it is not always the case that will get executed. In-mapper design
pattern may improve the execution speed of the MapReduce job by just reducing the
number of intermediate results yield by mappers to reducers. As combiners may or may
not run at all therefore in-mapper design is the best option to be sure that it will run
once it is implemented. There are different ways in which in-mapper combiner can be
implemented such as local and global implementation. In-Node Combiner (INC)

The idea to introduce In-node combiner is to combine results from map within a
particular node. The advantage of this approach is that we do not have to manage the
each and individual array of intermediate results from every mapper, intermediate arrays
are merged into single result locally at that particular node.

Figure 4: In-node Combiner Approach

The benefits that we can obtain from such approach are as below: 1) Minimized
number of total results yield by node:
This local margining of results from mapper at the node level reduces the total number
of intermediate results that passed further to reducers. Such output requires less amount
of space in the map output buffer and last mapper sends the merged output further to



process. This also leads to less generation of spill files. Eventually with this approach we
can achieve a reduced communication cost.

2) Function that takes care of the combining is executed separately:
In-mapper compromises between performance and parallelism by introducing combining
function into map method. However in-node combiner the task such as merging output
is done into a separate thread.

3.2 Tools and software involved

To evaluate the MapReduce performance in our experiment we have considered Amazon
Elastic Compute Cloud (Amazon EC2) provided by amazon web services. We created
our instances using EC2 which is a web service that provides secure, resizable compute
capacity in the cloud. This simple web service interface from Amazon, allows obtaining
and configuring capacity with minimal friction. The main reason that we chose to carry
our experiment using EC2 is due to its easy configuration of instances that reduces the
time required to obtain and boot of any server instance. Additionally, its elastic web-scale
computing makes it unique choice for the experiment. Furthermore, its pay policy of pay
as you go makes it clear and simple in terms of economics of computing where we just
have to pay for capacity that we have actually use making it inexpensive choice. Also it
is a very reliable and secure way of building our environment as Amazon EC2 provides
not only failure resilient applications but also isolate them from common failure scenarios
tool for the developers.

Hadoop an open-source implementation is a very popular choice of the Googles
MapReduce model which was primarily developed by Yahoo. 1. Yahoo servers use Ha-
doop, where at least 10,000 cores are responsible to generate hundreds of terabytes of
data.[ Yahoo! launches worlds largest hadoop production application. 2 On the other
hand, Facebook uses Hadoop every day to process their more than 15 terabytes of new
data. Along with Yahoo and Facebook there is huge number of other websites as well that
uses the Hadoop implantation to manage their massive amount of data such as Amazon
and Last.fm, to name a few.Pike et al. (2005) Hadoop is not only popular for web intens-
ive applications it is also a preferred choice among scientific data-intensive applications
and make maximum out of the Hadoop systems.Olston et al. (2008) (Pike et al.; 2005)

This popular implementation uses MapReduce programming model along with Ha-
doop Distributed File System to process massive amount of data. Its an easy deployment
by configuring some variable that defines the paths and required nodes. Hadoop cluster
supports master slave architecture where there is one master node that takes care of
the management of all systems and jobs, and other worker nodes. Google proposed the
MapReduce programming model to support data-intensive applications running on par-
allel computers like commodity clusters. With the help of the MapReduce framework
simplifies the complexity of running distributed data processing functions across mul-
tiple nodes in a cluster. This approach of MapReduce enables a programmer to write
their MapReduce functions to run in parallel across multiple nodes in the cluster with

1http://lucene.apache.org/Hadoop
2http://tinyurl.com/2hgzv7

http://lucene.apache.org/Hadoop


no specific knowledge of distributed programming knowledge (Dean and Ghemawat; 2008)

3.3 About dataset

The dataset used for the experiment is a stock exchange data which contains 500,000
records about the stock rates for different countries and schema of data is as below.

id,exchange stockname
sector country
date open
high low
close volume
adjcloseid exchange
stockname sector
country date
open high
low close
volume

3.4 Wordcound Algorithm

For the performance evaluation we have implemented a simple MapReduce algorithm.
The word count algorithm counts occurrences of every word in the given dataset and
provides results in the separate file.

4 Implementation

Implementation is an important part of any research. In this section we discuss the im-
plementation in detail that we did for to carry out our research. Section 4.1 gives an idea
about the Hadoop implementation on the amazon EC2, followed by section 4.2 gives the
details about the input. Finally, under section 4.3 the various solutions that we required
to fine tune our Hadoop /MapReduce implementation are described.

4.1 Implementation of Hadoop

For the Apache Hadoop implementation we created our instances on Amazon EC2. The
instances are built using Ubuntu Server 16.04 LST with instance type t2.large. We have
done the multi node cluster setup for our experiment wherein we have considered a mas-
ter and 2 datanodes.

Before we start with the actual Hadoop implementation we have to take care of the
runtime environment.
The figure below shows the per process runtime environment Figure 5



Figure 5: Per process runtime environment

The file Hadoop-env.sh is sourced by entire Hadoop core scripts and it is under conf/
directory To setup the multi node cluster we have to edit below files: 3

1) core-site.xml
This is necessary for Hadoop daemons to understand where Namenode runs in the cluster.
Additionally, it contains the configuration settings for Hadoop Core that are common to
both HDFS and MapReduce for example I/O setting.

2) hdfs-site.xmln
This file contains the HDFS configuration settings that is NameNode, Secondary NameN-
ode and the DataNodes.

3) mapred-site.xml
It consists of the MapReduce daemons such as the job tracker and the task-tracker.

4.2 Input to the Hadoop

As we are working on Amazon EC2 instances where we work on command line, thus to
transfer the input dataset from local machine to AWS instance we have used Winscp.

4.3 MapReduce Implementation

The listing below gives the main components of MapReduce jobs. To execute any logic
for MapReduce application it is required to have two Java classes namely Mapper and
Reducer which is done by job.setMapperClass( ) and job.setReducerClass( ) respectively.
The execution flow goes like this: First mappers output is written into the disk, before
this execution, this intermediate output is processed by the shuffle and sort process and
passed further to reducer to have the desired output. The figure below indicates the clas
implementation of Map and Reduce Figure 6

5 Evaluation

We have carried out our experiment on Hadoop version 2.7.3 installed on Ubuntu 16.4
LST operating system and created our instances on Amazon EC2.

To evaluate the performance of the MapReduce task we have carried out three differ-
ent approaches compared for a given input with for wordcount algorithm and HDFS as
the source of Input for all three combining approaches. We have observed that number of
Map tasks varies depending upon the input data size. In the experiment we have input
the data set with 5 lacs records which is a stock exchange data for different countries

3https://www.edureka.co/blog/explaining-hadoop-configuration/



Figure 6: Per process runtime environment

comprising of both number and text in it.

5.1 Experiment 1

In our first experiment, we executed a wordcount program with a traditional combiner
and received results as below.

In Table 2 Traditional Combiner.

Approach MapOutput Reduce output
Traditional Combiner 7050905 676247

Table 2: Results for Traditional Combiner



5.2 Experiment 2

For experiment 2 we considered executing the wordcount program with In-mapper ap-
proach and the results of the same are as given in table below. The output of the same
is given in table below.

In Table 3 Traditional Combiner.

Approach MapOutput Reduce output
In-Mapper Combiner 6003898 54279

Table 3: Results for In-mapper Combiner

5.3 Experiment 3

In this experiment we executed the wordcount program with our new approach that is
In-node combiner. The output of the same has given in table below.

From the given results below is is observed that we have successfully reduced the
number of map intermediate results at the node level. Additionally we have seen that
when the time it taken to complete the execution is comparatively faster than the rest of
the two approaches. As there are less number of intermediate results from map.

Approach Map Output Reduce output
In-node Combiner 573910 7

Table 4: Results for In-node Combiner

The table above shows the results we got in experiment 3. In this experiment, the
dataset we considered in this experiment has 50 lacs records. When the wordcount pro-
gram was executed, as per the table below we can see that 573910 Map output was
generated and passed it further to the in-node combiner. In-node combiner processed
573910 records and merged these intermediate results locally that is at node level before
passing it to Reduce phase.

Approach Map Output Reduce output
Traditional Combiner 7050905 676247
In-Mapper Combiner 6003898 54279
In-node Combiner 573910 7

Table 5: Results for all approches

Results showing execution time all approaches and completion time
In Table 6 Results from all the approaches.
Results that we received in our experiment with in-node approach shows that we are

quite successful meeting our goal of reducing the number of intermediate results at node
level.



Approach Map Reduce
Time
Traditional 7050905 676247 27
In-Mapper 6003898 54279 14
In-node 573910 7 10

Table 6: Overview of all results

5.4 Discussion

With the introduction of the combiner at node level we tried to aggregate all intermediate
map results at the node level. This extended approach to the traditional combiner has
improved the performance in aspects of network I/O as there are less number of interme-
diate results shuffled across the network resulting in the reduced network communication
cost. Additionally this approach made the execution of the wordcount algorithm faster.
That is we gradually observed the reduction in the execution time. The less number of
intermediate results made the algorithm execution faster therefore it would be possible
that we can use the same approach for the big datasets in future to see the reduced
execution time with better performance.

Therefore we can say that with in-node combiner we are able to improve the Ha-
doop/MapReduce performance.

6 Conclusion and Future Work

Tuning Hadoop/MapReduce
The only issue we faced during implementation and while starting up all Hadoop services
is below errorFigure 7

Figure 7: Per process runtime environment

In order to solve this error we had to follow the workaround as below:
sudo rm -rf /usr/local/Hadoop/Hadoop data/hdfs/datanode/*

In this thesis we have proposed a new designing approach that will help developer
to develop their very own applications. As seen in earlier section, the main factors re-
sponsible for the degradation of the Hadoop performance are Hadoop MapReduce job
execution workflow and bottlenecks. Main factor to affect the performance is I/O per-
formance. Thus, to achieve the better performance disk as well as network I/O through
all the MapReduce execution phases should be maintained properly to have a significant
results.

Our approach, we introduced the combiner at node level and to aggregate all the
map results at the node level. This approach can be considered as an extension to the



traditional combiner. As it improves the performance of the traditional combiner. Thus
it seems to be a better way of dealing with the network overhead as with this approach we
are aggregating the map results at node level and then passing it further to the reducer for
further processing of the final result. The experiment results show that in-node combiner
is quite successful in order to reduce the number of intermediate results obtained from
each map. As there are less number of map results shuffled over the network we can
say that we have also successfully managed to reduce on the communication cost of the
same. With the new approach of in-node mapper we aimed to improve the performance
of the MapReduce tasks and with our findings we can say that the performance has been
increased as we look into the job completion time of all the three approaches.

With our new approach we are able to say that we have the better I/O performance
and in the future we would like to focus on the caching the results from the memory.
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A Source Code

Figure 1: Word Count Algorithm



Figure 2: In Node Word Counr Algorithm
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