

National College of Ireland

BSC (HONOURS) IN COMPUTING

2016/2017

Bobo

Final Year Project: Technical Report

10th May 2017

YOUCEF O’CONNOR

INTERNET OF THINGS

X13114557

X13114557@student.ncirl.ie

 - 2 -

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name:

Youcef O’Connor

Student ID:

X13114557

Supervisor:

Dr Dominic Carr

SECTION 2 Confirmation of Authorship

The acceptance of your work is subject to your signature on the following

declaration:

I confirm that I have read the College statement on plagiarism (summarised

overleaf and printed in full in the Student Handbook) and that the work I have

submitted for assessment is entirely my own work.

 - 3 -

Signature:___

Date:____10/05/2017________

NB. If it is suspected that your assignment contains the work of others falsely

represented as your own, it will be referred to the College’s Disciplinary Committee.

Should the Committee be satisfied that plagiarism has occurred this is likely to lead

to your failing the module and possibly to your being suspended or expelled from

college.

Complete the sections above and attach it to the front of one of the copies

of your assignment,

 - 4 -

What constitutes plagiarism or cheating?

The following is extracted from the college’s formal statement on plagiarism as

quoted in the Student Handbooks. References to “assignments” should be taken

to include any piece of work submitted for assessment.

Paraphrasing refers to taking the ideas, words or work of another, putting it into

your own words and crediting the source. This is acceptable academic practice

provided you ensure that credit is given to the author. Plagiarism refers to copying

the ideas and work of another and misrepresenting it as your own. This is

completely unacceptable and is prohibited in all academic institutions. It is a

serious offence and may result in a fail grade and/or disciplinary action. All sources

that you use in your writing must be acknowledged and included in the reference

or bibliography section. If a particular piece of writing proves difficult to

paraphrase, or you want to include it in its original form, it must be enclosed in

quotation marks

and credit given to the author.

When referring to the work of another author within the text of your project you

must give the author’s surname and the date the work was published. Full details

for each source must then be given in the bibliography at the end of the project

Penalties for Plagiarism

If it is suspected that your assignment contains the work of others falsely

represented as your own, it will be referred to the college’s Disciplinary Committee .

Where the Disciplinary Committee makes a finding that there has been plagiarism,

the Disciplinary Committee may recommend

• that a student’s marks shall be reduced

 - 5 -

• that the student be deemed not to have passed the assignment

• that other forms of assessment undertaken in that academic year by the

same student be declared void

• that other examinations sat by the same student at the same sitting be

declared void

Further penalties are also possible including

• suspending a student college for a specified time,

• expelling a student from college,

• prohibiting a student from sitting any examination or assessment.,

• the imposition of a fine and

• the requirement that a student to attend additional or other lectures or
courses or undertake additional academic work.

 - 6 -

ABSTRACT

The goal of the Bobo app was to develop an Android application that will help make taxi usage
safer. The app will be used to identify whether a taxi is registered or not by entering the registration
plate number or the license number. Once the taxi is validated and the user decides to use it, the
user can send their contacts the taxi driver details and the pickup location. The pickup location is
generated automatically by using Google Play Services and Google Maps to produce the current
address of where the user sent the message. This information is helpful in the case of an emergency
and if the police will need to know the last location of the user and last person who was in contact
with him/her.

This application is using Firebase to store taxi and user data and runs part of the authentication
procedure. WhatsApp is used to send the taxi driver details and the pickup location to the users
WhatsApp contacts.

 - 7 -

Acknowledgements

This work would not have been possible if it wasn’t for the help and the great levels of

support from my academic supervisor Dr Dominic Carr. Your help and advice throughout
my final year project has been greatly appreciated.

To my mother, thank you for all the advice, support, patients and for feeding me these

last four years.

To my family, thank you for supporting me through these difficult years.

To my IKEA manager, Desmond Shelly and team leaders Seamus McGann, Sean Cushen
and Jenny O’Neill. Thank you for your support, understanding and giving me the time off

that was needed to get me through these last few difficult months.

Table of Contents

Introduction.. 10

1.1 Background... 10

1.2 Aims ..11

1.3 Description of technologies used .. 12

System ... 14

2.1 Introduction ... 14

1.4 Requirements Definition ... 14

1.4.1 Functional requirements.. 14

1.4.2 Non-Functional Requirements ... 29

1.5 System Architecture .. 33

1.6 Implementation... 34

1.6.1 FIREBASE ... 34

1.6.2 LOGIN .. 35

1.6.3 SIGNUP ... 36

1.6.4 USER FORM... 37

1.6.5 VALIDATION ... 39

1.6.6 CONTACTS... 42

1.6.7 PERMISSION ... 42

1.6.8 LOCATION .. 43

1.6.9 HISTORY ... 44

1.7 Graphical User Interface (GUI).. 46

LOGIN SCREEN: ... 46

SIGNUP SCREEN: .. 46

ACCOUNT FORM: ... 47

VALIDATION SCREEN: .. 47

VALIDATION REGISTERED SCREEN: ... 48

VALIDATION NOT REGISTERED SCREEN: ... 48

HISTORY SCREEN: .. 49

CONTACTS SCREEN (WHATSAPP): ... 49

MESSAGE LAYOUT (WHATSAPP): .. 50

1.8 Testing ... 51

 - 9 -

FIREBASE TEST LAB ... 51

USEABILITY TESTING ... 54

2 Evaluation .. 57

3 Conclusion ... 59

4 Further development or research .. 60

5 References .. 61

6 Appendix .. 66

6.1 Project Proposal... 66

6.1.1 Objectives .. 66

6.1.2 Background ... 67

6.1.3 Technical Approach ... 68

6.1.4 Special Resources required: .. 68

6.1.5 Project Plan: .. 69

6.1.6 Technical Details .. 69

6.1.7 Evaluation .. 70

6.2 Monthly Journals.. 70

6.2.1 Reflective Journal #1 (Sep) .. 70

6.2.2 Reflective Journal #2 (Oct) ... 72

6.2.3 Reflective Journal #3 (Nov) .. 74

6.2.4 Reflective Journal #4 (Dec) .. 74

6.2.5 Reflective Journal #5 (Jan) ... 76

6.2.6 Reflective Journal #6 (Feb)... 77

6.2.7 Reflective Journal #7 (Mar)... 78

 - 10 -

Introduction

1.1 Background

The concept of this app was developed when a situation personal to myself was

revealed. The app concept would be constructed in a way that would allow users

of the app to feel safe whilst taking a taxi as a mode of transport.

I began starting to think of different scenarios of what could go wrong and what I

could have done to prevent it. I came to the realisation that if I am in a taxi with a

driver that plans to do me harm, then the driver would have assumed I have a

phone and would go to use at the first sign of trouble. What would stop a driver

from randomly pulling over, demands my mobile phone by threatening and then

continues to drive? There would be no way for me to contact anyone. And then I

would be left wishing I have told someone the taxi number sooner, when I had the

chance.

That’s when the idea hit me! What if there was an app that I can use to check if the

taxi is registered and let my friends and family know the taxi driver details and

pickup location all before or at the start of the taxi journey. This was just an idea at

the time but now, two years later it will be in development. The name Bobo has no

meaning, it was chosen simply because it sounds good and better than something

like “The Safety Travel app”.

Mobile applications are great help when looking for currency rates, booking flights

or information on a location one would like to travel to and that is all you will get

when you are looking up traveling apps on Google Play and Apple’s App Store.

There is one app found through Google search that helps to make traveling safer

by letting a user’s contact track their movements. It’s call Companion (Companion,

2017).

There is an app in Ireland that lets the user to check is a taxi driver is registered or

not but that is it. It will let the user inform friends and family. I was also surprised

 - 11 -

to see that the big taxi apps like Uber do not have this feature. This shows that

user safety is not a primary goal for apps on the traveling app market.

During the Bobo app development, a new app called mytaxi has been launched in

Ireland that has a feature that allows the user to share their taxi journey, but it only

works if the user is using mytaxi taxis (GmbH, 2017). This shows that the Bobo

idea is in demand.

1.2 Aims

The aim of this project is to create a fully functioning mobile application that will

focus on making traveling safer for its user. This app will be developed for Android

portable devices, mobile, tablet and smartwatch (Android Wear).

The main goals of this project are:

1. Use taxi verification feature to make taxi usage safer by allowing the user

to enter the taxi license or registration number and then returning a

message indicating whether the driver is registered or not.

2. The user will be able to message their friends and family the taxi driver

details and the location of the pickup automatically.

3. The app will automatically send an email to the user’s emergency contacts

if the user is under eighteen.

4. Try to get real taxi data from Transport Ireland

 - 12 -

1.3 Description of technologies used

The Bobo app has different types of functions and as a result the app requires

different types of technologies. For Example, the login function uses Firebase

Authentication and the function for getting the current location uses Google Play

Services. In this section there is a brief description on each type technology used.

How Bobo uses these technologies will be explained in the System Architecture

and Implementation sections of this report.

Android

Android is Google’s Linux based mobile operating system

(OS). It powers a lot of devices such as tablets, phones, smart

TV’s and smart watches (Karch, 2017).

Android Studio

Android Studio is an integrated development environment

(IDE) that has been developed specifically for Android

application development and requires the programming

language to be Java (Eye, Tek). Alternatives to using the

Android Studio IDE are IntelliJ IDE and Eclipse IDE. The reason why Android

Studio was chosen over the other IDE’s was because it is primarily focused on

Android development and is ready to be used as soon as it is installed. Unlike the

other IDE’s where you will have to install Android software development kits (SDK)

separately.

Firebase

https://www.jetbrains.com/idea/features/
https://www.eclipse.org/downloads/

 - 13 -

Firebase is an online service that lets you run, test, store and deploy mobile

application. In other words it is a mobile platform that has many features to suit

development and business needs. The features used for the Bobo App are:

• Realtime Database: This is a NOSQL (Not Only

SQL) database that lets users send and receive

data at rapid speeds. This database only works

with text.

• Authentication: Is used to make login and signup

safe, fast and easy to apply to applications.

• Analytics: Allows businesses to monitor the usage of their applications and

helps them with making

WhatsApp

WhatsApp is a social media messaging mobile application that

allows users to send data to one another through the internet

(WhatsApp Inc., 2017). This can be done in a one-to-one or

one-to-many relationships (called group chats). WhatsApp can be used for sending

text messages, images, video or audio. And it can make online phone calls.

Google Maps

Google Maps is a web service by Google that gives users

information about locations and regions around the world

(Margaret Rouse, 2017). It offers different types of views for

many locations. These views are:

• Satellite view gives a geographical birds eye view of an

area.

• Aerial view is showing the locations as if they are on a map, displaying

features in different colours. For Example, rivers are blue, fields are green

and roads are white. This is to help the user tell the difference between

different types of terrain.

• Street view lets the user see an area in panoramic view at a height that

gives the impression they are standing on the street themselves. This is

only available in some cities.

 - 14 -

System

2.1 Introduction

This sections purpose is to describe what the Bobo app needed and what was

done throughout the development.

1.4 Requirements Definition

The user will want to feel safe while traveling and the requirements of the Bobo

app will help do this. The two requirements that will make this happen for the user

will be the Verification and Contacts requirements that will check if the taxi is

registered and then inform their contacts of the taxi they are using.

1.4.1 Functional requirements

1. Signup – lets the user create an account by allowing them to enter a valid
email address and password.

2. Login – this is the primary security of the user’s details. The user cannot

access their account if they don’t have the details that were added when
creating an account in the signup.

3. Validation – Lets the user know if the entered number is registered or not.
4. Contacts – The user can send their journey details with their WhatsApp

contacts.

5. Contacts (Arrived): Let the users contacts know that the user got to his/her
destination safely.

6. History – Allows the user to view their previously used taxi’s in the History
screen.

7. Smartwatch – This allows the user to receive the Bobo message to their

watch

 - 15 -

1.4.1.1 Use Case Model

The use case model is used to give a visualization of how all the requirements

(oval shapes inside the box) work together with the services and contacts. The

arrows indicate the flow of data. Each requirement is explained in more depth in

the next sections. You can click on the number that represents a requirement if

you wish to go straight to that particular requirement.

Figure 1: Use Case Model

1

2

3

5

4

 - 16 -

1.4.1.2 Requirement 1 - Signup

Description & Priority

Signing up is necessary to start the application as there will be no way to tell the

difference between the users without it. The user will also be required to fill in a

form during the signup process to give extra details. For Example, first and last

name. Some details entered by the user in this requirement will be needed to login.

Use Case

Scope

The scope of this use case is to demonstrate how the user can sign up or create

an account on Bobo.

Use Case Diagram

Figure 2: Signup Use Case

1, 2

3
6

7

4, 5

8

 - 17 -

Flow Description

Precondition

The user will need to be connected to internet and download the app from

Google play to their android device.

Activation

This use case starts when the user choses to launch the Bobo application.

Main flow

1. User will be taken to the login page

2. The user selects the Signup link on the login screen
3. System takes user to the Signup page
4. The user enters their signup details.

5. Once entered the, the user will press the Register button.
6. The system stores the user details and takes the user to the user

form screen where the user is asked to enter more details.
7. Once entered the, the user will press the Continue button.
8. The system stores the user details and takes the user to the user

Validation page.

Alternate flow

A1: Unfilled fields.

1. System displays message pointing out that specific needs to filled.
2. The user enters / re-inputs their details.

3. The use case continues at position 5 of the main flow

Termination

The user can exit their account by signing out or closes the application.

Post condition

The user now has an account on the Bobo app and is now on Login page

 - 18 -

1.4.1.3 Requirement 2 - Login

Description & Priority

The login of an app is very important, as it is the apps primary security of the users

account and private details. The user must create an account by signing up to use

the login function.

Use Case

Scope

The scope of this use case is to demonstrate how the user can start / launch the

Bobo application.

Use Case Diagram

Figure 3: Login Use Case

Flow Description

Precondition

The user will need to be connected to internet and have signed up an

account.

1

2

3 4

 - 19 -

Activation

This use case starts when the user choses to launch the Bobo application.

Main flow

1. User will be taken to the login screen

2. Here the user will enter login details

3. System verifies login details

4. Once successfully logged in, the user will be taken to the verification

page

Alternate flow

A1: Username or password is incorrect

1. System displays “invalid email or password entered” message.
2. The user re-enters their login details.

3. The use case continues at position 3 of the main flow
A2: Forgotten Password?

1. System displays wrong “username or password entered” message.

2. The user selects the Forgotten Password button
3. The system asks user to enter their email address.

4. The system sends the user an email with a link to change password.
5. The user changes their password.
6. The use case continues at position 1 of the main flow

Termination

The system goes to the main page (verification page). User can delete their

account in the account page.

Post condition

The user is now logged into the Bobo app and is now on the Verification page.

1.4.1.4 Requirement 3 – Validation

Description & Priority

 - 20 -

This requirement shows how the user can validate a taxi license and how the

validation procedure works.

Use Case

Scope

The Scope of this requirement is to describe how the validation requirement works.

Use Case Diagram

Figure 4: Validation Use Case

Flow Description

Precondition

The user is connected to the internet, has created an account and has

successfully logged in

Activation

This use case starts when a user enters the taxis registration / license number

and hits the Verify button.

Main flow

1

2, 3

4

5

 - 21 -

1. The system verifies the taxi number.
2. The system displays that the taxi is registered and the driver’s details

3. The system asks the user is they will use this taxi, Yes or No?
4. If the user chooses YES, the system will take the user to the

contacts page.
5. If the user chooses NO, the system will take the user to the

Validation page.

Alternate flow

A1: Yes! To a non-registered taxi number
1. System displays “number not is not registered! Are you going to use

this unregistered taxi Yes or No?” message.
2. The user chooses Yes!

3. The use case continues at position 4 of the main flow

Termination

The user chooses not to use an unregistered taxi. This will stop the validation

procedure and the user will remain on the Validation page. Or the user closes

the application.

Post condition

The user is now on the Contacts Page.

1.4.1.5 Requirement 4 – Contacts

Description & Priority

This requirement describes how the Contacts procedure works by sending an

email to the user’s contacts of choice containing taxi driver details, the pickup

location and the user’s name.

Use Case

Scope

 - 22 -

The scope of this use case is to demonstrate how the user can let their contacts

know what taxi they are using and where they were picked up. WhatsApp is used

to send the details to the users WhatsApp contacts

Use Case Diagram

Figure 5: Contacts Use Case

Flow Description

Precondition

The user will need to be connected to internet and have said Yes to using a

taxi, which will let the system take the user to the Contacts page on

WhatsApp. The user will also need a WhatsApp app installed on their device

and have an active account.

Activation

This use case starts when a user selects the “YES” button.

Main flow

1. The user selects the contacts they would like to inform.

1

 - 23 -

2. The user presses the “On the way” button
3. The system sends an email containing taxi driver and location details

to selected contacts.
4. The system stores taxi details.

5. The user is sent to the contacts <arrived> page.

Alternate flow

A1: Under eighteen skipping
1. The user is under the age eighteen.
2. The system sends an email containing taxi driver and location details

to the user’s parent/guardians
3. The use case continues at position 4 of the main flow

Termination

This process is terminated closes the application.

Post condition

The system waits on the Validation page.

1.4.1.6 Requirement 5 – Contacts (Arrived)

Description & Priority

This requirement describes how the “Arrived” procedure works by sending an

email to the user’s contacts of choice containing taxi driver details and the drop off

location. If the user is under eighteen, then the system will automatically add

his/her parents/guardians to the list of contacts that the user would like to inform.

Use Case

Scope

The scope of this use case is to demonstrate how the user can let their contacts

know they have arrived safely and where they were dropped off. The contacts were

added to the contact list by the user when signing up. Users can also add or

remove contacts from the view Contacts page.

Use Case Diagram

 - 24 -

Figure 6: Contacts <Arrived> Use Case

Flow Description

Precondition

The user will need to be connected to internet and have pressed the On the

way button on the contacts page, which will let the system take the user to

the Contacts page.

Activation

This use case starts when a user selects the “Arrived” button.

Main flow

1. The user selects the contacts they would like to inform.

2. The user presses the “Arrived” button
3. The system sends an email containing an automated message

informing them that the user has arrived safe along with the drop off

location.
4. The user is then sent back to the Validation page.

Alternate flow

A1: Skip
1. The user does not want to inform contacts and presses the “Skip”

button

1 2

1

3

4

 - 25 -

2. The use case continues at position 6 of the main flow
A2: Under eighteen

1. The system automatically selects the parent/guardian contacts
2. The use case continues at position 1 of the main flow.

A3: Under eighteen skipping

1 The user does not want to inform contacts and presses the “Skip”
button

5. The system sends an email containing an automated message
informing them that the user has arrived safe along with the drop off
location.

6. The use case continues at position 6 of the main flow

Termination

This process is terminated if the user decides to close the Bobo application.

Post condition

The system takes the user back to the Validation page.

1.4.1.7 Requirement 5 - History

Description & Priority

This requirement will describe how the history feature will work and how the user

can use it to view previously used taxis.

Use Case

Scope

The scope of this use case is to demonstrate how the user can view their taxi

history.

Use Case Diagram

 - 26 -

Figure 7: History Use Case

Flow Description

Precondition

The user will need to be connected to internet and have successfully logged

in.

Activation

The system will display a list of taxi numbers that the user has used with

times and dates.

Main flow

1. The user Selects the History option on the main menu.

2. The system retrieves the taxi history data from the database
3. The system displays a list of taxi driver’s numbers with time and dates.

Alternate flow

A1: No Taxis!
1. The system displays an empty screen.

 - 27 -

Termination

This process is terminated if the user choses to go back to the Validation

page or closes the Bobo application.

Post condition

The system goes into a wait state

1.4.1.8 Requirement 6 – Smartwatch

Description & Priority

This requirement will describe how the user’s contacts can receive a Bobo

notification on their Android Wear smartwatch. The notification will display the

users taxi driver details and pickup or drop off location.

Use Case

Scope

The scope of this use case is to demonstrate how the user contacts can receive a

Bobo notification on their Android Wear smartwatch.

Use Case Diagram

Figure 8: Smartwatch Use Case

1

3,4

2

5

 - 28 -

Flow Description

Precondition

The users contacts will need their phone and smartwatch to be connected to

internet.

Activation

This use case starts when a contact receives a Bobo notification via “On the

way” or “Arrived” to a contact who has an Android Wear smartwatch.

Main flow

1. The system receives the notification on the smartphone
2. The system reads that the smartphone is paired to a smartwatch

3. The system reads that the smartwatch is within Bluetooth range
4. The system forwards the notification on to the smartwatch using

Bluetooth

5. The system notifies the contact (User) on the smartphone and on the
smartwatch.

Alternate flow

A1: Too far apart

1. The system reads that the smartwatch is out of the Bluetooth reach
2. The system checks to see if the smartwatch is connected to the

internet

3. The system forwards the notification to the smartwatch through the
internet.

4. The use case continues at position 5 of the main flow

Termination

The user’s smartwatch is out of Bluetooth range and is not connected to the

internet.

Post condition

The system waits for the user to react to receiving the notification

 - 29 -

1.4.2 Non-Functional Requirements

In this section we will be describing the functions that are not mentioned or are in

the functional requirements.

Performance/Response time requirement

The Bobo application will be made with simplicity in mind, so the user can move

quickly from one screen to the next. This means navigation amongst pages within

the app will be easy and fluid. The speed of retrieving data will depend on the

user’s internet coverage and speed. Also, the app is using Firebase’s Real-time

database which has a really fast response time that can send data in milliseconds

(Firebase Realtime Database, 2017).

Availability requirement

The Bobo app is not available on the Google Play Store at the moment, as it is not

ready for launch. The reasons why the app isn’t ready is mentioned in the

evaluation.

Data requirement

This app will be using Firebase’s Real-time database to store the data. This

database is a NOSQL database. NOSQL was developed to meet the demands for

modern applications as relational databases are not designed to handle todays

demand. The NOSQL provides a better performance and is more scalable than

the relational database (mongoDB, 2017).

The Real-time database stores and sends data in a JSON (JavaScript Object

Notation) format. JSON is made up of keys with values. The key has to be a name

or sting type. With value you can store numbers, an object, an array or a string

(Squarespace, 2017).

Unfortunately, the Bobo app is using mock data generated from mockaroo, as a

result of not been able to retrieve real data. Phone calls were made to the Taxi

https://mockaroo.com/

 - 30 -

regulators who told me to ring the Transport of Ireland. Transport of Ireland told

me that givng out this data would be a breach of the data protection act.

There will be two NOSQL datasets. One called users, this is for user details and

the other is called taxi_details, this for taxi driver details which will be used by the

validation function.

Here is snippet of the taxi driver details in the database:

Figure 9: taxi_data

Security requirement

The Bobo app focuses on safety for the user, not just when traveling but also in

protecting their data. The user can only view the details of that user ID. This

 - 31 -

prevents a user from accessing other user’s data. This is done by setting rules in

the Real-time database. In figure eight you can see that:

• Rules has datasets “users” and “taxi_data”.

• Within “users” it shows that “$uid” (user ID) is needed for the user to be able

to read and write user data.

• And “historId” is needed by the user to view their history data.

• Within “taxi_data” there is “taxi_details”, and its rule says anyone can view

the data but cannot write to it.

Figure 10: Database rules

This app will also have a login page that will require the user’s details that only the

user will know.

Reliability requirement

The connection reliability to the database and the speed of the data being

transferred will depend on the signal strength and coverage of the user. Whatever

 - 32 -

plan the user is on, to get a more reliable connection they will need to contact their

network provider.

Using the Real-time database optimises the apps offline use. What this means is

that if the user loses connection after validating a taxi and then presses YES. The

history data will be stored using a local cache on the device until the connection

has being restored and the data will be sent to the database.

 - 33 -

1.5 System Architecture

In this section, figure 9 is used to explain how the Bobo app works with all the

services and devices. It also illustrates the direction of the data flow and that the

devices are communicating wirelessly. The received devises are shown to have

the Android and Apple logo, this means the received user can have an Android or

Apple OS. This is one of the benefits of using WhatsApp. The Cloud Services show

all the services used by the app and how they are used. Please note that the PC

can run on any OS as long as it can access the Firebase website.

Figure 11: System architecture

 - 34 -

1.6 Implementation

This section will explain how each function was implemented into the Bobo app

with the aid of snippets containing code relevant to the function. There are 9

function implemented and they are:

• FIREBASE – How the Firebase features added to the app

• LOGIN – Explains how the user’s details are authenticated for access

• SIGNUP – Describes how the user creates an account with Bobo

• USER FORM – How it gets additional information from the user and stores

it in the Real-time database.

• VALIDATION – Explains how a taxi in checked and how the results is

handled.

• CONTACTS – Describes how WhatsApp was implanted to use for contacts.

• PERMISSION – How the app asks the user for permission to use the

location feature on their device

• LOCATION – Is the function that retrieves the user’s current location.

• HISTORY – To display previously used taxi’ for the user.

1.6.1 FIREBASE

In December 2016, it was decided that Firebase features will be used on this app

after it was recommended by Lecturer Dr Dominic Carr. The features were

researched and it was found to be very helpful with Android application

development (Firebase, 2017).

To install features for the app, you only needed to copy and paste the library

compile code given. There is a different library for each feature, so once the right

libraries are added under dependencies in the build Gradle (app level), press Sync

Now. This will install the SDK’s (Software Development Kit’s) needed to run the

Firebase features. Firebase has great documentation that takes you step by step

through the installation process.

The only issue I had with implementing Firebase, was the versioning issues of

incompatible releases amongst Android OS, Android Studio and Firebase.

https://firebase.google.com/docs/android/setup

 - 35 -

Whenever an issue like this occurs and a feature like authentication stops working,

it is best to start looking for updates after checking the code, rather than Googling

the specific problem. This method was useful in the Bobo development.

1.6.2 LOGIN

There are different approaches in Android when it comes to implementing a login

function to an app. The first approach was using Firebase’s AuthUI (Authentication

User Interface). There wasn’t much code needed for this approach and Firebase

takes you through the steps. You can see the steps and code for the AuthUI on

Firebase. It was believed at the time that this approach was a good idea as it saved

a lot of time, but It was found later that it wasn’t the best approach. Here is why:

1. Couldn’t retrieve any user details, as this was needed for displaying

the user name in the message that is sent to the users contacts.

2. It didn’t look secure as it would sometimes at lunch still display the

validation page even when the user is signed out.

3. It wasn’t flexible and had no layout XML file (couldn’t customise

layout).

It was decided to code the login and signup functions without using UI librarys.

This will bring more benefits to the Bobo apps security, flexibility and gives us the

ability to run a user application form which we will go through later in the Application

Form section 1.7.4. Firebase was still used for authentication, we were are just no

longer using the authentication UI (authUI).

After it was decided what was needed, the xml layout was the first part of

implementing the Login function. Once that was done the LoginActivity.Java class

was created and coding began. The main part of this code would be the

authentication method, also the most important part.

https://firebase.google.com/docs/auth/android/password-auth

 - 36 -

The authentication method in figure 9 uses a Firebase authentication instance

(declared fireAuth). The signInWithEmailAndPasswod is used so that Firebase

knows what type of authentication we are using and what type of input it is dealing

with. This method also uses an on complete task. This means it will listen out for

the authentication to complete. If authentication was a failure then a Toast

message will notify the user “Password is not valid” or “Email address was not

valid”. If authentication was a success, then open the Validation page.

1.6.3 SIGNUP

The Signup function needs to take in the users details and make sure they are
valid before sending them off to Firebase Authentication services.

The main features of the signup process are:

1. Making sure the password saved follows a certain pattern of having a minimum
of eight characters, one uppercase letter, one lowercase letter and one number.
The reason this was done, was to direct the users to make a more complex and

secure password.

Figure 12: Firebase Authenticate

 - 37 -

This was done with the aid of a regular expression (developer, 2017). The
regular expression is used to make sure the password is using the right pattern.

This is done by using Androids matcher method to compare or match the
entered password with the regular expression.

Here are two snippets, the first one shows the regular expression and the
second one shows how the regular expression and the password are matched.

2. Using Firebase authentication method just like the Login function but instead of

signInWithEmailAndPasswod, the registration function uses
createUserWithEmailAndPassword. This checks to make sure the email address is
valid and creates the user account.

1.6.4 USER FORM

This was a function that I had added to the registration procedure so the app can
get more data about the user. The main parts of the User Form activity was getting

the date of birth to match the regular expression and sending the data to the
firebase Database.

Figure 13: Matching password with Regular Expression

Figure 14: create user with email and password

 - 38 -

1. The date of birth was being taken from three different edit text field and then

put together to create a date pattern dd/mm/yyyy. The reason the date of
birth had to be put together like this, was so it can be matched with the date

of birth Regular Expression.

2. There were a few stages to implement in order to send the user’s details to

the database. First get the Firebase Authenticate and Firebase Database
instances. Next stage was to get the users ID and use it with the database

instance to create a reference that represents where the data is going to be
stored. Once the “user” node was referenced, three children nodes were
created for contacts, dob and name. A onComplete method was the last

stage, it sends the users first name as a data reference. The onComplete

method lets the user know whether it was a successful upload or was there

an error.

Figure 15: Matching dob and Regular Expression

Figure 16: On complete task

 - 39 -

1.6.5 VALIDATION

The Validation function is the most important part of the Bobo app and it is the
most complex. The Validation activity is the main activity that acts as the center of
the whole app, as seen in figure 9. The main parts of this class are:

1. The validation function is triggered when the user enters a license number

or car registration number and then presses the check button. Two queries
then run to check the child nodes of “taxi_details”. Query “a” checks for the
car_reg node and query b checks for the “license_no” node. The reason

there are two queries is to allow the user to enter the license number or the
car registration number to validate the taxi.
Each query has its own addChildEventListener that will pick up the data

that the queries have found (Firebase, ChildEventListener, 2017).

Notice in the code snippet above that there’s a timer at the bottom. This timer starts

when the button is clicked. It then creates a Task that will run when the timer is up
in six seconds. The reason for this is to stop the add child event listeners from

running constantly if the number entered isn’t in the database. The listeners will
keep looking for something that isn’t there so they have been given six seconds to
find the data, which is a lot of time for a real-time database. Once the six seconds

are up the Task will activate the run method that will cancel the child event listeners
and then start them again without the queries.

This method also displays the “NOT REGISTERED’ message to the user along
with the number entered and the option buttons.

Figure 17: Validation queries, add child event listeners, timer

 - 40 -

Here is a snippet of the run method:

If the data was found then the addChildEventListener will store the data
temporary as a snapshot. This will activate the onChildAdded method and then

the driver be sent to the Taxi Java class to be sorted. The data can then be
retrieved from the Taxi Java class so it can be set to text and displayed to the user

(Read and Write Data on Android, 2017). The driver details are also declared in
this method so they are ready to be stored in History. In the snippet below shows
how data is retrieved from the Taxi class, which then set to text .

Figure 18: Run method

Figure 19: On child added method

 - 41 -

Here is small if statement from the onChildAdded method. This if statement runs

when there’s a driver’s first name. It will cancel the timer. In other words, if data

has been found stop the timer displaying the not registered message.

There are two YES buttons in this app, the first one is the yesBtn that is shown to
the user when the taxi is registered and the second one is the yesBtn2 which is

shown to the user when the taxi is not registered.
The yesBtn method has two main functions. The first is to take the user to their

contacts using an intent. And the second function is to store the driver details,

current location of the user and the time and date to the history node in the
database. There is also an onComplete method to make sure the upload was

successful. The only difference the yesBtn2 has, is that it only stores the drivers

name as NOT REGISTERED and the number that has been entered.

Here is a snippet of how the data is stored in yesBtn:

Figure 20: Cancel Timer

Figure 21: yesBtn

 - 42 -

1.6.6 CONTACTS

An intent is used to send the username, taxi driver details and pickup location to

the user’s contacts through WhatsApp (WhatsApp Inc, 2017). This code is very
important. Without it, the user will not be able to send the information on to their
contacts which is on of the main reason of this project. The snippet below shows

how EXTRA_TEXT is used to send the information in a text layout.

1.6.7 PERMISSION

This asks for permission from the user to use a certain feature of their device. To
do this we need to declare our permission in the Manifest file (Android, Add

Permissions to the Manifest, 2017). Next, we need an
onRequestPermissionResult method that handles the permission request at
launch (Requesting Permissions at Run Time). The onConnected method will ask

for permission every time it tries to use the location (Marini, 2016).

Figure 22:Intent for WhatsApp

Figure 23: request Permission

 - 43 -

1.6.8 LOCATION

Adding location to the Bobo app at the start seemed to be easy to implement.

Getting the longitude and latitude was done within two - three hours. After spending
hours then trying to use the longitude and latitude to store the users location as a
Google Maps pointer and send it, could not be done. The aim of this was to allow

the user to send their location and the contact will be able to open the message
using Google Maps and see where the pointer is to indicate where the pickup

location was. The solution to this, is to send the users location an address, at least
then the contacts receiving will know where the pickup location is.

The implementation of location function became very difficult, especially with the
newest update that need you to install Google Play API’s. It took hours to get this

feature to work. It was finally accomplished thanks to a video tutorial (Marini, 2016)

Two Java classes had to be made for the location to work, Constants and
GeocodeServices.

• Constants class holds a set of constant values that the Main Activity will

use. It passes data between main activity and the service.
• The GeocodeService class uses the getfromLocation() method to pass

the longitude and latitude to the geocoder. The geocoder returns an array

of addresses. To convert a location to an address to is called reverse
geocoding. This is what the geocoder method does.

To get the get the address an onHandleIntent function has to be implemented

within the GeocodeService. This function is where all the geocoding takes place.

The snippet below shows how the onHandleIntent function gets the

RECEIVER_KEY from the Constants class. This is the package name that has
being returned from Google Play Service API. You can also see in the code below,
the Locale object being passed to the geocoder object. This is done to ensure the

returned address is localized to the user’s area.

When

the user clicks the Check button, this activates the getAddressFromLoc (get the

address from location) method is activated. If the user has a location, then this

Figure 24: Geocoder

 - 44 -

triggers an intent in the main activity to gets the Constants class to retrieve the
address from location and send to the GeocodeService class which will then

store the address which can then be used as a text and sent to the user’s
contacts using the Contacts intent.

This is the Intent code used to get the Address:

Figure 25: Get Address Intent

1.6.9 HISTORY

The History function needed to be able to display the stored details of the taxi’s

used, by the user along with when and where. This function is activated in the
History activity (HistoryActivity) and uses two other classes.

• History Data (HistoryData) sorts the data from the Snapshot and sorts it by
using setters and getters.

• History Adapter (HistoryAdapter) takes the data that is passed on from the

History activity using an Array List and displays the data using List View
(Firebase in a Weekend: Android). This is shown in figure 25:

Figure 26: History data Array List

 - 45 -

And here is the code that lets the History activity pass the data from History data
class to the History Adapter class:

Figure 27: Passing data to HistoryAdapter

 - 46 -

1.7 Graphical User Interface (GUI)

LOGIN SCREEN:

The Login screen consists two edit text field to allow the

user to input their login details. The details needed are the

email address and Password. There is also a Login button

and Signup link. When pressed, the button activates the

authentication procedure and the link open the Signup

screen.

SIGNUP SCREEN:

The Signup screen is where the users will create an

account. Just like the Login screen, the Signup screen has

two edit text fields, a button and a link. The Add Email and

Create Password edit text field allow the user to add their

details and the Register button will send these details to see

if they are valid. The Already Registered link will bring the

user to the Login screen. There is also a message that

outlines the password pattern that is needed for it to be

acceptable.

Figure 28:Login Screen

Figure 29: Signup Screen

 - 47 -

ACCOUNT FORM:

The Account Form takes personnel details of the user. There

is seven edit text fields, two messages and a button. The first

two fields require the users first and last name. The next

three edit text fields are for the user’s date of birth in the

dd/mm/yyyy pattern. And the last two are for the user’s

emergency contact details (Name and Email address). The

Continue button is checks to make sue the data entered is

valid before sending the data to be stored. The messages

just let the user know when to enter their own details or that

of their emergency contact.

VALIDATION SCREEN:

Validation screen is in the unchecked condition (hasn’t

tried to validate). This screen consists of one edit text field,

one button and one message. The field allows the user to

enter a taxi’s registration number or license number. The

button activates the validation and the message lets the

user know what details are needed to verify the taxi.

Figure 30: Account Form

Figure 31: Validation Screen

 - 48 -

VALIDATION REGISTERED SCREEN:

The Registered screen is the Validation screen with

additions to indicate that the taxi is registered. The

additions are seven text views, used to display taxi driver

details, a heading highlighting “Registered” and a message

asking the user “Will you be using this taxi”. There are to

buttons YES and NO. These are the options to the user.

VALIDATION NOT REGISTERED SCREEN:

The Not Registered screen is the Validation screen with

additions to indicate that the taxi is not registered. The

additions are four text views, used to display the

registration number added by the user and a heading

highlighting “Not Registered” and a message asking the

user “Will you be using this taxi”. There are to buttons YES

and NO. These are the options to the user.

Figure 32Validation Registered Screen

Figure 33: Validation not registered

screen

 - 49 -

 HISTORY SCREEN:

The History screen displays the users previous taxi usage,

along with the date and time of the pickup. This is useful

in case’s such as the user has left something in the taxi

and would like to have the necessary taxi driver

information to find or get Gardaí to find the driver.

CONTACTS SCREEN (WHATSAPP):

Using the WhatsApp app, the users can send the taxi

detail and pickup location to their WhatsApp contacts.

Figure 34: History Screen

Figure 35: Contacts screen (WhatsApp)

 - 50 -

MESSAGE LAYOUT (WHATSAPP):

This is a message that has been sent to a contact

through WhatsApp. Notice that the two message sent

have two different names. That’s the users name of

whoever was signed into the Bobo app and sent it. The

name is taken from the user name, the taxi driver detail

are taken from the database and the location was taken

from Google play API at the time this message was sent.

Figure 36: message layout (WhatsApp)

 - 51 -

1.8 Testing

In this section, the testing is done using two methods. One method was using

Firebase’s Test Lab for Android and the other was a usability test. We are going to

go through each method separately and explain the outcome of the tests and what

was done solve any issues or errors.

Firebase Test Lab is a cloud-based platform for testing Android apps. In your

Firebase console the app can be uploaded and tested and there’s a Command

Line Interface for testing continuous integration servers. The test results can be

given as logs, screenshots and also video (Firebase Test Lab for Android).

FIREBASE TEST LAB

This process tests the app on different type of android devices and gives back a

report. After running the test on four devices and one virtual machine(VM), the

Bobo app failed all tests.

Figure 37: Firebase test lab

PROBLEM

After investigating these results, the main reason they all failed was due to a

problem with finding the location of the DexPathList. After researching this

problem, it was found that I needed to configure the Bobo app for multidex.

 - 52 -

Multidex is when an app needs more than one Dalvik Executable (DEX). DEX

contains the code needed for your app to work. It is a result of using the Google

Play Service API’s.

SOLUTION:

To solve this problem, multidex had to be enabled in the build gradle (app level)

file (Android Studio, 2017). The code below shows this:

RESULTS

This solution did not work, the same error is still appearing. After more

investigating, it was found on Stackoverflow that a user (Redman) has found a

solution. On the first step of this new solution, a new Java class needed to be

created and the contents from Redman’s solution added to the new class. Before

proceeding to the next stage, something stood out suspiciously. An import

automatically generated as seen in figure 37 and it was a Facebook SDK.

Figure 38: Adding multiDexEnabled

http://stackoverflow.com/questions/41478438/java-lang-classnotfoundexception-didnt-find-class-on-path-dexpathlist-after

 - 53 -

Figure 39: Suspicious import

Because this is from an unreliable source and looks suspicious, we will not proceed

with this method. This problem is still currently unresolved.

1. PROBLEM

Another error that has been found from the test, feedback shown below:

The

problem here was how a Map was used to temporarily store the Firebase data in

the onChildAdded method. After investigating the code, it was noticed that using

a Map was unnecessary. The Snapshot already does this.

Figure 40: Class Exception

 - 54 -

 On Child Added method before changes:

SOLUTION:

Remove the Map and create a Taxi Java class that can temporarily store and sort

the data from DataSnapshot. Then in the method the data Snapshot values have

been declared and now the values can be retrieved directly from the Snapshot

instead of needing to be stored in a Map (Read and Write Data on Android). This

problem has been solved.

USEABILITY TESTING

For this test two participants in their early twenties who identified themselves as

regular taxi users will test the app. Unfortunately they bought have the Galaxy S8

which is the same device used for development. This means we won’t get to see

Bobo app running on different android versions during the usability test.

Before we began, we sat down and they were a scenario. The scenario was: You

are on a night out and got separated from your friends so you decided to head

home alone.

Figure 42: Improved method

Figure 41: Using Map

 - 55 -

I also gave them two taxi registration and license numbers that are valid to the

Bobo App and one that is not. They were not shown how to use the app.

Feedback:

• Registering was easy, it didn’t ask for too much.

• It would be great to able to scan the register plate

• I like the way I can let my WhatsApp contacts know.

• I don’t like the way I have to type the taxi number in.

• The layout and look of the app is good, looks professional.

• Is there a way to say YES without sending to contacts?

• The main menu is straight forward.

• I like the message that’s being sent but it would be good to mention that it

is coming from the Bobo app.

Action:

After the usability test, action on the feedback has started immediately.

The first thing that was implemented from the test was adding “This message was

sent using the Bobo App” to the message

Figure 43: Updated message

 - 56 -

The next task to be taken from the feedback is to create a registration scanning

feature using Optical Character Recognition (OCR). The project supervisor Dr

Dominic Carr found a great solution to this on GitHub.

Unfortunately due to time constraints this function or any of the functions from the

feedback could not be implemented or even investigated.

https://github.com/SandroMachado/openalpr-android

 - 57 -

2 Evaluation

Positive Implications

As outcomes from the usability test the apps layout is good, the design is modern

and gives the Bobo app a professional look. It is easy to navigate between the

validation screen and the history screen. The signup procedure is straight forward

and didn’t ask for much. And the feedback to the user after validating a taxi is

direct, only gives the user what is needed and lets the contacts know what app is

used to send the message which was requested from the usability feedback.

Being able to forward the details to WhatsApp contacts has many benefits:

• 31% of social messaging users in Ireland use WhatsApp (Smith, n.d.)

• It can be used on Android and Apple devices

• WhatsApp has a smartwatch app for Android Wear and Apple watches

• The users contacts are already integrated

• The Smartwatch requirement is completed on the case that it is using the

WhatsApp for sending message.

There are also disadvantages to using WhatsApp, they are:

• No customization of how the contacts are displayed or used.

• Not being able to monitor who the user is sending the messages two or how

many messages they send. The Firebase analytics cannot monitor

WhatsApp as it is using its own servers.

The storing of the data is quick and fluid thanks to Firebase’s Real-time database.

The data in the History screen is clear and accurate. And the message that is sent

only has the information needed.

Negative Effects

• Couldn’t get real data, the workers at Transport Ireland said it would be a

breach of data protection (Data Requirement).

• Failure to create emergency contact feature for users under 18 for the

Contacts requirement.

• Failure to meet Contacts (Arrived) requirement for when the user arrives

safely, to let their contacts know that they got home safe and sound.

• The testing could have been more in-depth.

 - 58 -

With the exception of the real-time data acquisition, these in-complete elements

are a result of time constraints.

 - 59 -

3 Conclusion

The purpose of the Bobo app is to allow users to feel safe when using a taxi. This

is done by informing their contacts with the taxi driver details and the pickup

location. Using this app will allow users to see if the taxi driver is a registered driver

or not. However, during the construction of the app, the developer encountered an

obstacle of obtaining the real data deemed necessary to show how the application

could be used in real life situations. So therefore, the project is using mock data.

It is felt that obtaining the real data for the app, Bobo, could have real life

implications. This app could have the ability to ensure those using a taxi be it

someone who is travelling during the day or night can check the legitimacy of the

driver which would allow them to make an informed decision as to whether they

would prefer to use that taxi or not, and due to the ever-increasing demand for this

safety feature other apps have developed a similar feature that allows users to

share information about their taxi journey (GmbH, 2017).

 - 60 -

4 Further development or research

I see Bobo helping the user in numerous ways with other features like:

• “Travel Alarm” that uses GPS to set it off when the user is close to

location.

• “Did You Forget Me” feature that lets the user know that their phone has

being left behind.

• The smart phone will notice the distance from the smart watch is getting

bigger, so smart phone will send an alert to the Android Wear watch when

saying “Did you forget (Phone ID)?”. The user will be able to swipe left for

Yes and right for No. If Yes, then the user will be able to ring their phone

form the smart watch.

 - 61 -

5 References

Android. (2017). Add Permissions to the Manifest. Retrieved from Android

Developers:

https://developer.android.com/training/permissions/declaring.html

Android. (2017). Requesting Permissions at Run Time. Retrieved from Android

Developers:

https://developer.android.com/training/permissions/requesting.html

Android Logo. (n.d.). Retrieved from media cache: https://s-media-cache-

ak0.pinimg.com/originals/1b/62/a6/1b62a65f7e1afcd0fbe31e2a7af0310d.p

ng

Android Studio. (2017). Configure Apps with Over 64K Methods. Retrieved from

Android Studio:

https://developer.android.com/studio/build/multidex.html#testing

Android studio Logo. (n.d.). Retrieved from APK Android Blogspot: http://net-apk-

android.blogspot.ie/2016/02/android-studio-151-build-1412456560.html

anoop. (n.d.). Android Move cursor from one EditText to another one if click any

letter in field? Retrieved from StackOverflow:

http://stackoverflow.com/questions/12418324/android-move-cursor-from-

one-edittext-to-another-one-if-click-any-letter-in-fiel

Baradia, R. (2012, 08 18). email address validation in android on edittext.

Retrieved from Stack Overlow:

http://stackoverflow.com/questions/12947620/email-address-validation-in-

android-on-edittext

Companion. (2017, 05 09). Retrieved from Companion:

https://www.companionapp.io/

developer, A. (2017). Patter. Retrieved from Android Developer:

https://developer.android.com/reference/java/util/regex/Pattern.html

 - 62 -

Eye, Tek. (2017). List of IDEs for Android App Development, Which is Best for

You? Retrieved from Tek Eye: http://tekeye.biz/2014/list-of-android-app-

development-ides

Firebase. (2017, 05 08). Add Firebase to Your Android Project. Retrieved from

Firebase: https://firebase.google.com/docs/android/setup

Firebase. (2017). ChildEventListener. Retrieved from Firebase:

https://firebase.google.com/docs/reference/android/com/google/firebase/d

atabase/ChildEventListener

Firebase. (2017). Firebase Realtime Database. Retrieved from Firebase:

https://firebase.google.com/docs/database/

Firebase. (2017). Firebase Test Lab for Android. Retrieved from Firebase:

https://firebase.google.com/docs/test-lab/

Firebase. (2017). Read and Write Data on Android. Retrieved from Firebase:

https://firebase.google.com/docs/database/android/read-and-write

Firebase. (2017). Work with Lists of Data on Android. Retrieved from Firebase:

https://firebase.google.com/docs/database/android/lists-of-data

Firebase. (n.d.). Manage Users in Firebase. Retrieved from Firebase:

https://firebase.google.com/docs/auth/android/manage-users

GmbH, I. A. (2017, 05 08). Welcome to mytaxi, the new way to Hailo! Retrieved

from mytaxi:

https://ie.mytaxi.com/hailoisnowmytaxi?erid=1494286974573464203

Gojare, K. (n.d.). NoSQL Databases. Retrieved from Sandip Foundation's

Students' Blog.: http://itsitrc.blogspot.ie/2014/08/nosql-databases.html

Google. (2016). Android Wear. Retrieved from Android Developer:

https://developer.android.com/wear/index.html

Google. (2016). Firebase in a Weekend: Android. Retrieved from Udacity:

https://www.udacity.com/course/firebase-in-a-weekend-by-google-android-

-ud0352

 - 63 -

Google. (2016). List View. Retrieved from Android Developers:

https://developer.android.com/guide/topics/ui/layout/listview.html

Google. (2016). Meet Android studio. Retrieved from Android Studio:

https://developer.android.com/studio/intro/index.html

Google. (2016). Menus. Retrieved from Android Developers:

https://developer.android.com/guide/topics/ui/menus.html

Google. (2017). DateFormat. Retrieved from Android Developers:

https://developer.android.com/reference/java/text/DateFormat.html

Google. (2017). Firebase Logo. Retrieved from Firebase:

https://firebase.googleblog.com/2016/05/firebase-expands-to-become-

unified-app-platform.html

Google. (2017). Requesting Permissions at Run Time. Retrieved from Android

Developers:

https://developer.android.com/training/permissions/requesting.html

Google. (2017). Set Up Google Play Services. Retrieved from Google API's for

Android: https://developers.google.com/android/guides/setup

Google Maps logo. (2016). Retrieved from Vector Logo:

http://vectorlogo4u.com/google-maps-2015-vector/

Java Logo. (n.d.). Retrieved from https://www.quora.com/Which-are-the-most-

beautiful-logos-youve-ever-seen#!n=102

Karch, M. (2017, 05 08). What Is Google Android? Retrieved from Lifwire:

https://www.lifewire.com/what-is-google-android-1616887

koceeng. (n.d.). Using FirebaseUI to Populate a ListView. Retrieved from GitHub:

https://github.com/firebase/FirebaseUI-

Android/blob/master/database/README.md

Margaret Rouse. (2017). Google Maps. Retrieved from WhatIs.com:

http://whatis.techtarget.com/definition/Google-Maps

 - 64 -

Marini, J. (2016, 06 24). https://www.lynda.com/Google-Play-Services-

tutorials/Convert-lat-long-address-geocoder/474086/503689-4.html.

Retrieved from Lynda.com from LinkedIn: https://www.lynda.com/Google -

Play-Services-tutorials/Convert-lat-long-address-

geocoder/474086/503689-4.html

mongoDB. (2017). NoSQL Databases Explained. Retrieved from mongoDB:

https://www.mongodb.com/nosql-explained

ORACLE. (n.d.). What is Java technology and why do I need it? Retrieved from

Java: https://www.java.com/en/download/faq/whatis_java.xml

pjiojhgyuiojklm. (n.d.).

Smith, C. (n.d.). 57 Amazing WhatsApp Statistics (March 2017). Retrieved from

Expanded Ramblings: http://expandedramblings.com/index.php/whatsapp-

statistics/4/

Squarespace. (2017). What is JSON? Retrieved from Squarespace:

https://developers.squarespace.com/what-is-json/

Storey, J. (n.d.). Stopping timer events in Java. Retrieved from StackOverflow:

http://stackoverflow.com/questions/11775908/stopping-timer-events-in-

java

Tamada, R. (n.d.). Android Location API using Google Play Services. Retrieved

from Android Hive: http://www.androidhive.info/2015/02/android-location-

api-using-google-play-services/

Tamada, R. (n.d.). Android working with Firebase Realtime Database. Retrieved

from Android Hive: http://www.androidhive.info/2016/10/android-working -

with-firebase-realtime-database/

testmonk. (n.d.). 7 Testing Tips to Ready your App for Launch. Retrieved from

testmonk: https://blog.testmunk.com/7-testing-tips-to-ready-your-app-for-

launch/

 - 65 -

Udacity. (n.d.). Android Development for Beginners. Retrieved from Udacity:

https://www.udacity.com/course/android-development-for-beginners--

ud837

WhatsApp Inc. (2017). I'm an Android developer, how can I integrate WhatsApp

with my app? Retrieved from WhatsApp:

https://www.whatsapp.com/faq/en/android/28000012

WhatsApp Inc. (2017, 05 08). Simple. Secure. Retrieved from WhatsApp:

https://www.whatsapp.com/

WhatsApp Logo. (n.d.). Retrieved from

http://whatsapp.descargarapps.info/whatsapp-para-pc/

Yaseen, K. (n.d.). Photoshop Tutorial | Logo Design. Retrieved from Youtube:

https://www.youtube.com/watch?v=il_PCSQ-KME

 - 66 -

6 Appendix

6.1 Project Proposal

6.1.1 Objectives

The aim of this project is to develop a fully functioning mobile application that

will make traveling safer for the users. The name of this app is Bobo. The user

will be able to use this application on Android devices, including smart watches

(Android Wear).

Main objectives:

• Make traveling safer by using the taxi verification feature, which will

allow the user to enter a taxi’s registration or license number. Then

the application will display to the user if the taxi is registered or not.

• Allowing the user to send the taxi details and location of where the

user was picked up to selected contacts.

• If the user is under eighteen, then the application will automatically

send the details to parents or guardians.

• Using real taxi driver data.

I see Bobo helping the user in numerous ways with other features like a “Travel

Alarm” that uses GPS to set it off when the user is close to location. And a “Did

You Forget Me” feature that lets the user know that their phone has being left

behind. The smart phone will notice the distance from the smart watch is getting

bigger, so smart phone will send an alert to the Android Wear watch when saying

“Did you forget (Phone ID)?”. The user will be able to swipe left for Yes and right

for No. If Yes, then the user will be able to ring their phone form the smart watch.

 - 67 -

Unfortunately, I am very time restricted with this project and will need to focus on

the main taxi feature. I will make the other features if there is time after the main

objectives have been completed.

6.1.2 Background

The idea of the Bob application hit me two years ago, when my mother was worried

about my younger brother who was out one night with friends. My brother came

home later than usual when on a night out so the next day I asked him what took

him so long. He told me it was the taxi! His taxi driver was rude and clearly didn’t

know his way around Dublin or he just went the longer way on purpose to get a

bigger fair. I asked my brother “why didn’t you say anything?”, but he felt

intimidated by the driver. Also, the driver’s picture on his taxi license display was

OK but my brother had no way of checking the license number. I know my brother

can take care of himself but I can tell he felt un safe in that taxi.

 I said to myself, what if there was an app that can let family and friends know what

taxi I am in, is the taxi registered and where I have been picked up with a press of

a button. This was just an idea at the time and kind of skeptical that this idea was

made before. A guy I knew who was a fourth Computing student told me that odds

of having an idea that hasn’t been made yet is very rare. So, I really didn’t give it

that much thought, until a year later when a guy I worked with told me of a situation

he was in and my app idea would have been useful. My friend told me his wife was

on a night out when she got separated from her friends and decided to head home

without them. He hated it when she was in a taxi on her own and always told her

to send him the taxi license number in case something went wrong.

I took a chance and told an old colleague of mine about my app idea. He told me

he loved the idea and would definitely use it, getting a message with all that

information will relax me when she is in a taxi on her own he said.

Getting this type of reaction and feedback has got me thinking, maybe there really

isn’t an app that can do this yet. So I began researching. I found that there is an

app in Ireland that lets the user check a taxi registration and license number and

 - 68 -

that’s it! I also found that the big taxi apps like Uber to my surprise don’t have this

feature which I believe is so important. It shows they only care about money rather

than the well being of there users.

That’s where my Bobo app will come in. Focusing specifically on the user’s safety

when traveling.

6.1.3 Technical Approach

After three years of studying computer science I developed a lot of experience

with different types of coding languages, such as Java, HTML5, and C#. So, I

feel confident I will able to do this project solo.

Using Plurasight, YouTube and Udacity videos as guides.

It is possible that this application will also be available to Apple’s iOS but the

costs of buying a Mac that is capable of coding on and the €100 fee to get it up

on the App Store is too expensive. This just means if I was able to afford it in

the future then I will build this application for iOS too, but for now the Bobo app

will be developed for Android and Android Wear devices.

6.1.4 Special Resources required:

This is probably the worst part of the project as the college does not provide

Android Wear devices to students, which means I must buy one. It will

roughly cost me about €350. There are cheaper ones but I will need a high-

end smart watch that has GPS and Data Roaming. Also, if I’m paying that

much I might as well get the best. At the moment, the Huawei W1 looks to

be the best Android Wear device. It has great reviews but my problem is

that its nearly 2 years old. So, I decided to wait until the rage of Android

Wear devices are released before Christmas.

 - 69 -

6.1.5 Project Plan:

Gantt Chart.

6.1.6 Technical Details

So, I had put thought and careful consideration into how I am going to develop

the Bobo application and found that using Java and Android Studios is the best

option. I have been studying java every year in college and Android Studios is

user friendly.

Mobile App Development:

• The mobile app will be developed using Android Studios and my Android

smart phone (Samsung Galaxy S8).

• It will be able to run on the Android “Ice-Cream Sandwich” version or

later

• Will need permission to use Contacts (to send taxi driver info).

• Will need permission to use the Camera (to scan taxi license barcode).

• Will need permission to use Location (GPS to get picked up location).

• Will need permission to use Data (to receive taxi details).

• Will need permission to use Bluetooth (to link to a smart watch).

 - 70 -

Smart Watch Development:

• Will need permission to run an app on Wear device.

• Will need permission to run app from smart phone.

• Will need permission to use Data (to receive message).

6.1.7 Evaluation

I will use friends and family as testers of the Bobo app, to help me with the

evaluation. I will be hoping to be evaluating with real data. The test users

will be given a survey that will ask them to test specific parts of the app and

ask questions on how they feel about the UI and what would they

recommend will make the Bobo app better.

6.2 Monthly Journals

6.2.1 Reflective Journal #1 (Sep)

19th September 2016

Day one of my final year in college and feeling ready. The first class of the year

was Software Project. This class had all the fourth-year Computing students from

all streams present. Our lecturer Eamon Nolan briefed on everything we need to

do in next two weeks. We need to have a project idea, run it by a lecturer of our

stream (in my case Dominic Carr in IOT) and then get ready for project proposal.

Ideas:

I was eager to start my project! I had two ideas and was looking forward to start

either one. My first idea was a Wi-Fi controlled car (WWC). The WWC would have

been made from a broke down remote control car, raspberry pi 3, Arduino motor

controller and a camera. An android app would have been made to control the car

from a mobile device.

 - 71 -

My second idea is the Bobo app. The bobo app helps to make traveling safer. It

does this by letting the user check a taxi registration or license number is

registered. If the taxi is registered, then the user is given an option. “Will you be

using this taxi: Yes, or No?”. If the user hit Yes, then the user will be able to send

the taxi details to their contacts. If the user is under 18 then the app will

automatically send the taxi details including the location of the pick up to the

parents / guardians.

It was not long into my first lecture till I started noticing a problem with the modules

I have this year. You see this is the first-time Artificial Intelligence (AI) is done in

forth year, so we are doing an extra subject than previous years. This is problem

because Eamon is setting our project standard to previous years which I thought

is unfair. We have less time! I have asked Eamon what has changed in the

Software Project module to confiscate for the extra work load of AI. He said that is

a good question and I should take it up with Paul Stynes.

27th September 2016

After having two meetings with Sam Cogan I finally got a sit down with Paul Stynes.

I told him about the problem and concerns that not just me but all fourth-year

students are worried about the amount of time AI is taking up. He was happy to

hear this sooner rather than later and said he be looking into it.

29th September 2016

I decided to go with the Bobo app for my fourth-year project. I choose this because

after doing some research I found that the WWC would have been too complicated

and I felt that I would have spent a lot more time on hardware rather than software.

30th September 2016

Preparing my slides for the project proposal. I really hope Bobo gets the green

light.

 - 72 -

6.2.2 Reflective Journal #2 (Oct)

3th October 2016

Finishing slides for the project idea pitch presentation, that are due to be uploaded

tonight. It is only two slides but I need to make sure they explain my app idea in a

nutshell and the key functions are explained.

5th October 2016

Project Pitch today! I had to pitch my idea to three judges. Two judges were happy

with the main function of the Bobo app idea but the third thought it would be a bit

easy for a final year project. When I explained that there will be other features other

than just verifying a taxi like checking history, all three judges were happy. The

results of the project idea pitch were that the Bobo App got the green light and to

achieve high marks it needs to be more difficult.

10th October 2016

Over a week after being given the go ahead to develop the app and I find it hard

to get time to work on my project. I have assignments due nearly every week, next

week I have three assignments due. I also notice that I spend my Software Project

Independent study time working on my Artificial Intelligence project with the rest of

the class.

21st October 2016

 - 73 -

Finished my Project Proposal document that is due tonight! I explained exactly how

my project will work and all the functions it will have. Made this document as clear

as possible, so my final year project supervisor can understand my app idea.

24th October 2016

Found out today that Dominic Carr is my final year project supervisor. I am very

happy with him being my supervisor as I am doing the internet of things (IoT)

stream and he is the IoT lecturer.

2nd November 2016

Started to look for real taxi driver license data. I found it is extremely difficult to get

this data in Ireland, so I started to look outside of Ireland. I realized if my app is

aimed at people who travel, then I will need to get taxi driver data from other

countries and if I am going to do that then I should focus on some of the big cities

that have a lot of taxi’s like New York.

4th November 2016

After doing some research I found an open data website called New York City

Open Data. This site has all the licensed drivers of New York City and State

(48,081 drivers).

I spoke with my supervisor today who gave me good advice on how I could retrieve

taxi driver data. He also helped me to prioritize my tasks for this project and gave

me great tips on how to get top marks.

 - 74 -

6.2.3 Reflective Journal #3 (Nov)

24th November 2016

I had a meeting my supervisor today to let him know I was unable to complete the

requirement spec by today. We didn’t have much else to cover other than I will

need to complete it ASAP

2nd December 2016

With all the time put into other modules, I was able to finally get my project

Requirement Specifications completed. I wasn’t 100% sure if the user case

diagrams are ok, so I will ask Dominic (Supervisor) if they are OK.

3th December 2016

Made a start of my technical report.

5th December 2016

Today I had a meeting with Dominic to see if he is happy with my requirement spec

and how I am doing with the tech report. He gave me great tips and I left the

meeting with a list of what is needed to complete the tech report.

6th December 2016

Created GUI’s using Android Studio.

6.2.4 Reflective Journal #4 (Dec)

9th December 2016

I have made changes to my projects technical report as advised by my supervisor

Dominic. The changes varied from changing the way I referenced the report to a

 - 75 -

more professional Endnote referencing and I broke up my Login and Register

functional Requirement to two separate requirements, Login requirement and

Registration requirement. I have also made some small changes to the diagrams

used.

11th December 2016

I have completed my project technical report and upload it to Moodle today.

13th December 2016

I have planned to start my mid-point presentation work today but I have three

assignments due this week and find it very hard to make a start on preparing for

my mid-point presentation.

17th December 2016

Today I have started to work on my mid-point presentation. I will not be able to put

a working prototype together in this time frame.

18th December 2016

I used adobe experience design to develop a visual demo layout of how the Bobo

app will look like when up and running. It was great way to demonstrate an apps

prototype with a prototype. I completed my preparation for my mid-point

presentation hat due tomorrow.

19th December 2016

I had my mid-point presentation today. I seemed confident in what I had to present

would please the judges / lecturers. The presentation went well, I talked for over

20 mins straight and answered all questions asked.

 - 76 -

6.2.5 Reflective Journal #5 (Jan)

18th January 2017

Today was the first day I got a chance to sit down and give my final project full

attention now that the exams and semester one is over. I was deciding whether to

use a SQL server database or an NoSQL server database. I weighed the pros and

cons and found that Google’s Firebase (NoSQL) would be the best server option

for the Bobo app.

25th January 2017

After watching multiple Firebase tutorials on Udacity and YouTube I have become

familiar with all of the features it has to offer such as real time database and

authentication. Firebase seems to have what the Bobo app needs to be fully

completed, especially with its messaging services.

3th February 2017

The results for semester two came out today. I was happy with the results but

thought I could have done better. Really curious to find out where I went wrong.

6th February 2017

After two weeks of trying to use the firebase database for the verification function

which is or should be in this case a simple search task of entering a taxi License

number and returning the taxi drivers details has seemed to be a difficult challenge

for me. With the firebase being an NoSQL database and that it is still relatively

new, I cannot find any tutorials to help me.

9th February 2017

 - 77 -

I have decided to use a SQL server database for my verification feature and

continue to use Firebase for the other features. There seems to be a lot of tutorials

and aids that can help me build a search function to a SQL server. I have created

an Amazon Web Services (AWS) account and started work on the SQL database.

10th February 2017

Today I got a chance to sit with my supervisor and informed him of my situation

with unsuccessfully using Firebase for my verification function and that I’m

changing to SQL. He agreed that the tutorials online seemed useless and took

upon himself to find a solution and thought me how it can be done.

6.2.6 Reflective Journal #6 (Feb)

17th February 2017

Today I have created a new GitHub account. The reason I created a new GitHub

account was to get GitHub’s student package. This package included a free two

year private account which was necessary for my final year projects repository. I

didn’t want anyone to be able to see my code, especially the authentication code.

I have also created a new repository for Bobo and pushed the Bobo project to it.

Now that the Bobo project is successfully pushed to GitHub, I have added my

supervisor Dominic as collaborator. He is now able to view the development of the

Bobo app as it progresses.

24th February 2017

Now that I am able to retrieve a taxi drivers details on the app by entering the

drivers registration or license number, I got to work on how the information can be

displayed. I spent two days trying to get the taxi info to be displayed in a popup,

the popup would appear after the user presses the check button. I was able to

have the popup appear once the button was pressed but the taxi info wouldn’t

 - 78 -

appear. I realised I was wasting too much time on this so I have decided to come

back to this later when the main requirements are completed.

1st March 2017

I found it hard to get time to focus on my final year project when I have two other

projects to work on and I have an upcoming exam in data mining and visualisation.

I am trying to get the Cloud application development project done as soon as I can

so I can have more time to focus on the Bobo app.

2nd March 2017

I was able to add a login and signup functions to the Bobo app today using

Firebase authentication. This is a great way to add login and signup to an android

app but unfortunately the signup function just requires the users email address and

password. I will need a lot more details from the user when signing up. For

Example, I will need them too add at least two contacts.

6th March 2017

Today I began to study and experiment with firebase authentication code to add

more options to the signup page which will create and new users table in the

firebase database.

6.2.7 Reflective Journal #7 (Mar)

23th Feb 2017

After careful consideration, I have decided to change the login and signup screens.

The reason I have done this is because the current Login and signup functions

 - 79 -

were not reliable and limited me to just use Firebase’s authentication user interface

(AthUI), this resulted in not being able to do any customisation. Even though

AuthUI was easy to implement into the Bobo app, it didn’t look very safe as it just

looked like an overlay and it was slow. So I began researching for a better, safer

and a more customable solution.

9th March 2017

Nearly two weeks from when I decided to change my login and signup functions

and I have finally completed developing from scratch a new login and signup page.

I have tested a multiple of different ways or types of Android authentication and

found a great tutorial that took me step by step. I was happy that I took this

approach and not the easy one.

18th March 2017

I got time today to work on the user’s signup form. This is an Activity that a user

will be brought to after registering or signing up. The form will ask the user for their

first name, last name, age and emergency contact name and email.

21st March 2017

The form successfully and securely stores user’s personal data in Firebase’s

Realtime database with the user ID. This means that only the user that stored the

data can view it.

26th March 2017

Began work today on the contacts function to retrieve and display contacts that are

stored in Firebase.

 - 80 -

5th April 2017

Today I had a sit down with my supervisor and took a look at what I have done

since our last meeting. Dominic seemed happy with the approach I have taken with

changing from AuthUI. He was also happy with the user form and how it stored

data securely.

We spoke about my next tasks and how I need to prioritised them. Dominic found

great solutions for some of my concerns and gave me great tips.

After the meeting, I began adding a OCR (Optical Character recognition) scanner

to the Bobo app. This will make it easier to enter a taxi’s registration to the app for

verification.

