National College of Ireland
BSc in Computing

2016/2017

Niall Quinn
X13018727

niall.quinni@student.ncirl.ie

RFBase

Technical Report

"—-
\ National

College o
Ireland

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name: Niall Quinn

Student ID: X13108727

Supervisor: Padraig DeBurca

SECTION 2 Confirmation of Authorship

The acceptance of your work is subject to your signature on the following declaration:

| confirm that | have read the College statement on plagiarism (summarised overleaf and printed
in full in the Student Handbook) and that the work | have submitted for assessment is entirely my
own work.

Signature: Date:

NB. If it is suspected that your assignment contains the work of others falsely represented as your
own, it will be referred to the College’s Disciplinary Committee. Should the Committee be
satisfied that plagiarism has occurred this is likely to lead to your failing the module and possibly
to your being suspended or expelled from college.

Complete the sections above and attach it to the front of one of the copies of your
assignment,

What constitutes plagiarism or cheating?

The following is extracted from the college’s formal statement on plagiarism as quoted in the
Student Handbooks. References to “assignments” should be taken to include any piece of work
submitted for assessment.

Paraphrasing refers to taking the ideas, words or work of another, putting it into your own words
and crediting the source. This is acceptable academic practice provided you ensure that credit is
given to the author. Plagiarism refers to copying the ideas and work of another and
misrepresenting it as your own. This is completely unacceptable and is prohibited in all academic
institutions. It is a serious offence and may result in a fail grade and/or disciplinary action. All
sources that you use in your writing must be acknowledged and included in the reference or
bibliography section. If a particular piece of writing proves difficult to paraphrase, or you want to
include it in its original form, it must be enclosed in quotation marks

and credit given to the author.

When referring to the work of another author within the text of your project you must give the
author’s surname and the date the work was published. Full details for each source must then be
given in the bibliography at the end of the project

Penalties for Plagiarism

If it is suspected that your assignment contains the work of others falsely represented as your
own, it will be referred to the college’s Disciplinary Committee. Where the Disciplinary
Committee makes a finding that there has been plagiarism, the Disciplinary Committee may
recommend

that a student’s marks shall be reduced

that the student be deemed not to have passed the assignment

that other forms of assessment undertaken in that academic year by the same student be
declared void

that other examinations sat by the same student at the same sitting be declared void

Further penalties are also possible including

suspending a student college for a specified time,

expelling a student from college,

prohibiting a student from sitting any examination or assessment.,

the imposition of a fine and
the requirement that a student to attend additional or other lectures or courses or
undertake additional academic work.

Table of Contents

1 - Executive Summary

2 - Introduction
2.1- Background
2.2 - Project Scope
2.3 - Technical Approach
2.4 - Technologies
2.4.1 - Backend Platform
2.4.2 - API
2.4.3 - Database
2.4.4 - iOS Application
2.4.5 - Android Application
2.4.5 - Technology Overview
2.5 - Resources
2.5.1- Literature
2.5.2 - Tooling
2.5.3 - Hardware
2.6 - Definitions, Abbreviations & Acronyms
1.3 Definitions, Acronyms, and Abbreviations

3 - System
3.1- Requirements
3.1.1 - User Requirements
3.1.2 - Functional Requirements
3.1.2.1 - Overview
3.1.2.1.1 - Admin Platform Functional Requirements
3.1.2.1.2 - API Functional Requirements
3.1.2.1.3 - Mobile Application Functional Requirements
3.1.2.2 - ADM-1 - User Authentication
3.1.2.3 - ADM-2 - Customer Creation
3.1.2.4 - ADM-3 - Customer Termination
3.1.2.5 - ADM-4 - News Creation
3.1.2.6 - ADM-5 - News Item Editing
3.1.2.7 - ADM-6 - Delete News Item
3.1.2.8 - ADM-7 - Add Social Stream Details
3.1.2.9 - ADM-8 - Edit Social Streams
3.1.2.10 - ADM-9 - Add Media ltems
3.1.2.11 - ADM-10 - Remove Media Items
3.1.2.12 - ADM-11 - Broadcast Notifications
3.1.2.13 - ADM-12 - Edit App Theme
3.1.4 - Non Functional Requirements
3.1.4.1 Performance/Response time requirement
3.1.4.2 Availability requirement

~N

O O © © © © 0 0 N N

— e e e
2 2220 O O O

12
12
12
13
13
13
13
14
14
15
15
16
17
17
18
19
19

20
21
21

22

22

22

3.1.4.3 Recover requirement
3.1.4.4 Security requirement
3.1.4.5 Reliability requirement

3.1.4.6 Maintainability requirement

3.1.4.7 Portability requirement

3.1.4.8 Extendibility requirement

3.1.4.9 Reusability requirement
3.1.4.10 Database Requirement

3.1.5 - Graphical User Interface Requirements

3.1.5.1 - Interface Elements
3.1.5.2 - WYSIWYG Editor
3.1.5.3 - Color Picker
3.1.5.4 - Modal Views

3.2 - Use Case Diagrams
3.2.1- Admin Platform Use Case Diagram

3.2.2 - APl Use Case Diagram

3.2.3 - Mobile Application Use Case Diagram
3.3 - Implementation

3.3.1- Backend Platform
3.3.2 - Mobile Applications
3.3.3- REST API

3.3.4 - Theme Engine

3.3.5 - Broadcast

3.3.6 - White Labeled Apps
3.3.7 - Deployment

3.3.8 - Security

3.4 - Functionality

3.4.1- News
3.4.2 - Bio

3.4.3 - Calendar
3.4.4 - Theme

4. Testing
4.1 - Usability Testing

411-Trunk Test
41.2 -5 Second Test
4.1.3 - Prototyping

4.2 - Unit Testing
4.3 - Integration Testing
4.4 - Graphical User Interface

4.4.1 - Admin Platform GUI Mockup
4.41.1- News Page
4.41.2 - Social Page
4.41.3 - Broadcast Mockup
4.41.4 - Gallery Mockup

22
22
22
22
23
23
23
23
23
23
23
23
23
24
24
24
25
25
25
26
26
26
27
27
27
27
28
28
28
28
28

29
29
29

31

31
33
34
37
37
37
38
38
39

4.41.6 - Theme Page Mockup
4.5 - Application Programmers Interface (API)

4.5.1 - API Specification

4.5.2 - APl Sequence Diagram
4.6 - Architecture

4.6.1 System Class Diagram

5 - Project Plan
5.1 Gantt Chart

6 - System Evolution

7 - Useful Links

8 - References

Appendix 1 - Project Proposal
1. Executive Summary

2. Background

3. Technical Approach
3.1 Technical Overview

4. Resources
4.1 Literature
4.2 Tooling
4.3 Hardware

5. Project Plan
5.1 Gantt Chart

6. Technical Details
6.1 - Backend Platform
6.2 - API
6.3 - Database
6.4 - i0OS Application
6.5 - Android Application

7. Evaluation
7.1 - Unit Testing
7.2 - Manual Testing
7.3 - Requirements Evaluation

Appendix 2 - Monthly Journals
Appendix 3 - Usability Questionnaire

Appendix 4 - Showcase Poster

40
40
40
42
43
43

43
44

44

44

45

46

47

47

48
48

49
49
49
49

50
50

50
50
50
50
51
51

51
51
51
51

52

57

59

1 - Executive Summary

The aim of this project is to produce a highly functional marketing platform for racing drivers. The
platform provides valuable functionality to the customer, and act as a catalyst to grow their social
media following. The project will be provided using modern languages, frameworks and tooling.
This platform includes a custom theme engine, which will allow the mobile application’s look and
feel to be configured from the backend platform. The platform employs multi-tenancy on the
backend - data is segmented by customer and surfaced to the customer’s personal mobile
applications on the front end. The platform will be developed with security in mind. The data will
be kept safe and confidential, and there will be no overspill of data between tenants.

RFBase is a marketing platform for modern race drivers. Gaining the marketing edge is more
important than ever, with drivers fighting for sponsorship and race drives, getting the word out is
a top priority. RFBase gives them a platform to deliver News, Driver Bio, Race Calendar, Social
Streams and Push Notifications to their fanbase. | achieve this by supplying the driver with a login
to the platform where they can generate all of their content. They will also get two white-labeled
mobile applications, deployed to the iOS App Store and the Google Play Store. Drivers can take
residency on the home screens of their most loyal fans, and use RFBase to deliver quality,
exclusive content.

Upon evaluation | found that this product does address the needs of many racing drivers. Drivers
are very excited at the prospect of having their own app in the app store, and see a benefit to
having this personal stream to broadcast to their fanbase. The theming engine was a big hit
among all users - the ability to customise the look and feel of the applications on the fly being
identified as a big selling point.

2 - Introduction

2.1 - Background

Motor racing drivers today spend a large amount of time marketing their brand to the large motor
racing fan base. At the moment, drivers use traditional social media, Twitter, Facebook, Instagram
etc as a means to reach their audience. There is a place in the market for a single outlet from
which the driver can target and grow their audience.

A customer on the platform will receive a login to their own backend portal, where they will be
able to add various information such as: News, Race Calendar, Images & Video and Social
streams. All of this information will be served to their own custom-themed iOS and Android apps
which will be deployed via the iOS App Store and Google Play Store respectively.

The business model for this product is a SAAS model. A Customer on the platform will pay an
upfront development fee, and then pay a monthly subscription to use the service.

| see a gap in the market for this product, and am confident that when deployed will be a viable
product.

2.2 - Project Scope

The scope of the project is to develop the entire system which will be designed from the
beginning to work in harmony. The system consists of an application which will encompass the
API, an application which will encompass the admin backend and front-end marketing site, and
mobile applications for the iOS and Android platforms

Various racing drivers were consulted during the product planning phase, which has led to the
below requirements being laid out.

2.3 - Technical Approach

This project was developed using modern languages, frameworks, tooling and infrastructure. A
clear and concise project plan was set out in order to maximise time available and ensure all
parts are developed in time, and integrate seamlessly. At regular intervals, progress was
assessed and the project timeline updated accordingly.

From a high level, this project is comprised of five main components:
1. Backend portal - a Ruby on Rails Application
API - a Ruby on Rails API
Database - a PostgreSQL database using Heroku Postgres
iOS Application - hybrid application developed using Swift and Turbolinks [1]
Android Application - hybrid application developed using Java and Turbolinks

g wN

| endeavoured to identify all requirements in the requirements specification stage, in order to
build the platform from the beginning with all entities and relationships in scope. This led to less
headaches in the testing and integration phases later.

The project employs a continuous integration scheme, with automated unit testing. All code
merges to the master branch will pass through the automated testing framework, with bad builds
being rejected. This ensures that critical bugs do make it to the production code.

The backend platform makes use of the Heroku deployment toolchain. This allows me to choose
one of Heroku’s many price points to deliver my platform, and also to utilise the excellent
deployment tools provided by heroku. If the load on the app or APl becomes too large, Elastic
Beanstalk will automatically create new instances of the application to handle this load. This
provides us with an extra layer of robustness to scaling problems.

A key part of this product will be the custom theming engine for mobile. The mobile applications
pull down a specially formatted JSON file from the API. Acting upon this file, the application will
initialize core colours, fonts and images. This results in each of the platform customers receiving
a customized application, to suit their own brand.

The latest technologies in automated building is used on the mobile apps, to reduce developer
input when onboarding new customers. The Fastlane platform is used to execute custom scripts
which will take care of app building and distribution. This is a key area to focus on as the
business scales in order for customer onboarding to not become a headache.

Requirements were captured by interviewing current racing drivers. | asked them what they
would like to see in the application and build up a ranking of features from those interviews.

2.4 - Technologies

2.4.1 - Backend Platform

Implementation Language

Ruby, HTML (Haml), CSS (SCSS), Javascript

Deployment

Heroku Dyno

Libraries Used

Ruby on Rails,

Various RubyGems as per requirements,
Bootstrap,

rSpec test framework

2.4.2 - API

Implementation Language

Ruby, serving HTML & JSON over REST interface

Deployment

Heroku Dyno

Libraries Used

Ruby on Rails,
Various RubyGems as per requirements,
rSpec test framework

2.4.3 - Database

Implementation Language

PostgreSQL

Deployment

Heroku Postgres

Libraries Used

2.4.4 - iOS Application

Implementation Language

Swift

Deployment

iOS App Store via XCode, Fastlane build scripts

Libraries Used

CocoaTouch Framework, Turbolinks Framework

2.4.5 - Android Application

Implementation Language

Java

Deployment

Google Play Store, Fastlane build scripts

Libraries Used

Turbolinks Framework

2.4.5 - Technology Overview

Below is a high-level technical diagram of the core components of this project.

Y J

Available on the | h H E R o K U

D App Store
'l ﬂ!\nILS ol = Cloudinary
Image Store

i0s ans301> Backend Platform 9

=) mILS T PostgreSQL

Mobile Applications REST AP Database

2.5 - Resources

2.5.1- Literature

Ruby on Rails
e |earn Ruby the Hard Way - http.//www.learnrubythehardway.org
e Ruby on Rails Guides - http.//quides.rubyonrails.org
iOS
e Apple Developer Portal - https.//developer.apple.com/reference/
Android
e Android Developer Portal - https.//developer.android.com/
AWS
e AWS Documentation - https.//aws.amazon.com/documentation/

2.5.2 - Tooling

Sublime Text text editor

Rbenv Ruby environment manager

XCode IDE for iOS Development

Android Studio IDE for Android Development

https://developer.android.com/
http://www.learnrubythehardway.org/
http://guides.rubyonrails.org/
https://aws.amazon.com/documentation/
https://developer.apple.com/reference/

2.5.3 - Hardware

e Development machine - Apple Macbook Pro 15”
e iPhone 6 & iPhone 7 test devices
e Samsung Galaxy S6 test device

2.6 - Definitions, Abbreviations & Acronyms

1.3 Definitions, Acronyms, and Abbreviations

Item Definition

Racing Driver An athlete competing in the sport of motor racing.

WebApp Web Application - a software application accessed via the web browser.
App User A user of the mobile app, who has registered using their email.

Customer The customer, or nominated party who has the ability to edit content on the
Admin User admin platform.

Super Admin The user with the most privileges, this user is responsible for creating new
User customers.

Cloud ‘The Cloud’ - a term used to describe a software deployment environment,

the hardware of which is not controlled by the system owner. The hardware
is abstracted from the system owner, and all code is deployed to the ‘cloud’.

iOS The iOS mobile platform, developed by Apple and deployed on the iPhone
range of hardware devices

Android The Android mobile platform, developed by Google, open source and
deployed on many hardware devices manufactured by many companies.

App Store The iOS App Store - a marketplace where users can purchase and
download applications for the iOS platform.

Play Store The Android Play Store - a marketplace where users can purchase and
download applications for the Android platform.

AWS Amazon AWS - the cloud computing ecosystem provided by Amazon
EC2 Amazon EC2 - servers in the cloud provided within the AWS ecosystem.
Ruby The ruby programming language, used here in development of the APl and

admin platform.

Java The java programming language, used here in the development of Android
apps.

Swift The swift programming language, used in the development of iOS apps.

RoR Ruby on Rails - The open source web framework used here in development
of the APl and admin platforms

NginX Web Server - used in the deployment of the APl and admin platforms

JSON ‘JavaScript Object Notation’ - an object markup language which is the
primary means by which the API will return information

XML eXtensible Markup Language - an object markup language which our API
will deliver if requested by the consumer.

WYSIWYG “What you see is what you get” - used in relation to text editors on websites.
A WYSIWYG editor provides an interface similar to Microsoft Word where
the user can change the format of text.

Turbolinks Turbolinks is a technology to make HTML applications faster. It employs
body replacement technology to change pages without reloading the page.

3 - System
3.1- Requirements

3.1.1 - User Requirements

The customer is a racing driver, or their marketing team.

The customer wants a platform with which they can deliver valuable content to the driver’s
fanbase. This will be done by giving the customer a backend admin platform, where they can add
content such as; news stories, social streams, media galleries, and two mobile applications, iOS
and Android, which are deployed to the App Store and Play Store respectively.

The customer wants a secure platform, the customer’s data will be sandboxed and protected by
authentication.

The customer wants to learn about the fanbase, and contact the fans directly. The system will
provide a push notification service and email communication to app users, and a view of the
registered users with demographic and usage information.

The customer wants a customized app which fits the driver’s brand. We will develop a mobile app
theming system to allow the customer admin user to modify the app look and feel via the admin
platform and deploy the changes in real time to app user’s devices.

3.1.2 - Functional Requirements

3.1.2.1 - Overview

3.1.2.1.1 - Admin Platform Functional Requirements

Code Description

ADM-1 The system should authenticate users and reject unauthorized access.

ADM-2 | The system should allow Super Admin users to create new customers

ADM-3 | The system should allow Super Admin users to terminate a customer account

ADM-4 | The system should allow a Customer Admin user to create new news items

ADM-5 | The system should allow a Customer Admin user to edit news items

ADM-6 | The system should allow a Customer Admin user to delete news items

ADM-7 | The system should allow a Customer Admin user to add social stream details

ADM-8 | The system should allow a Customer Admin user to edit social stream details

ADM-9 | The system should allow a Customer Admin user to add media items

ADM-10 | The system should allow a Customer Admin user to remove media items

ADM-11 | The system should allow a Customer Admin user to remove media items

ADM-12 | The system should allow a Customer Admin user to broadcast notifications

ADM-13 | The system should allow a Customer Admin user to edit the app theme

ADM-14 | The system should render a mockup of the mobile app with the theme applied while
editing

3.1.2.1.2 - API Functional Requirements

Code Description

API-1 The system should identify the customer via the Api Key in the headers, and reject all
unauthorized consumers

API-2 | The system should allow a consumer to fetch customer details which include all the
information needed to customize the app look and feel

API-3 [The system should allow a consumer to register a new user

API-4 | The system should allow a consumer to login a user

API-5 [The system should allow a consumer to fetch the list of latest news items

API-6 [The system should allow a consumer to fetch the list of gallery items

API-7 | The system should allow a consumer to fetch the social feed

3.1.2.1.3 - Mobile Application Functional Requirements

Code Description

MOB-1 A user should be able to download the application from the platform app store

MOB-2 | A new user should be presented with the register page to onboard

MOB-3 The app should store the user details locally to prevent the need for multiple logins

MOB-4 | A user should be provided with the interface to login and logout

MOB-5 | The app should use the theme provided by the API

MOB-6 | The app should have a page showing a list of the latest news items

MOB-7 | The app should show a single news item detail view when the user taps on one
news item.

MOB-8 | The app should have a page showing a list of the latest social feed items

MOB-9 | The app should have a page showing the media gallery. The gallery will be
separated into an Image section and a Video section. The video section will provide
media playback.

MOB-10 | The app should provide a view of the live timing data when the driver is
participating in a race.

MOB-11 | The app should display a message to the user when a push notification is received.

3.1.2.2 - ADM-1 - User Authentication

Description

the system.

Use Case

Scope

The system should authenticate users and reject unauthorized users from accessing

Priority

The scope of this requirement is to authenticate every user of the system in
order to prevent unauthorized access.

Primary Actor

A human user.

Flow
Description

A user will be presented with a login dialog, an email field and a password field.

Precondition

The user is not logged in to the system.

Activation

The login form is submitted, or a user tries to access any part of the system.

Main Flow

The user has entered incorrect details into the login dialog. When this
happened, the authenticity of the user is checked, and it will fail.

Alternative
Flow 1

The user attempts to access a system component by URL directly. The system
will verify the authenticity of the user, which will fail.

Termination

The user is presented with the “401 Unauthorized” page,

3.1.2.3 - ADM-2 - Customer Creation

Description

Use Case

Scope

Priority

The system should allow a Super Admin user to create new customers.

The scope of this requirement is to facilitate the onboarding of new
Customers by the Super Admin User.

Primary Actor

A super admin user.

Flow
Description

The actor will be presented with a form, which contains the various attributes
needed to create a new customer.

Precondition

The actor has a role of “super_admin”

Activation | The customer create form is validated and submitted.

Main Flow | The form is submitted and the Customer is created in the database. The
customer will be assigned a unique Api-Key which will be used by the apps to
identify themselves in the API

Alternative | An error has occurred during the customer creation steps. The actor is
Flow 1 | presented with a page detailing the error and resumes to the precondition
state.
Exceptional | The actor is not a Super Admin user. The actor is presented with a “401
Flow 1 | Unauthorized” page.

Termination

The customer is created and committed successfully to the database.

Post
Condition

The system returns to the super admin home page.

3.1.2.4 - ADM-3 - Customer Termination

Description

Use Case

Scope

Priority

The system should allow Super Admin users to terminate a customer account

The scope of this requirement is to facilitate the removal of Customers by the
Super Admin User.

Primary Actor

A super admin user.

Flow
Description

The actor chooses the Delete option on the customer detail page. The
system will present the actor with an “Are you sure?” message, which they
will need to act upon before deletion occurs.

Precondition

The actor has a role of “super_admin”

Activation | The “delete” button is pressed in the Customer detail page
Main Flow | The actor is presented with the “Are you sure?” Dialog, and selects “Yes”.
The System will proceed to delete the customer from the database. This will
have the effect of disabling the Admin platform for any Customer admin
users, and disabling the apps associated with that Customer account.
Alternative | The actor is presented with the “Are you sure?” Dialog, and selects “No”. The
Flow 1 | system returns to the wait state on the Customer detail page. The customer is
not deleted.
Exceptional | The actor is not a Super Admin user. The actor is presented with a “401
Flow 1 | Unauthorized” page.

Termination

The customer is deleted successfully from the database.

Post
Condition

The system returns to the Customer detail page.

3.1.2.5 - ADM-4 - News Creation

Description

Scope

Priority

The system should allow a Customer Admin user to create new news items

The scope of this requirement is to facilitate the creation of new News items
by the Customer Admin user. The interface will include a WYSIWYG editor
with which the actor can format the text.

Primary Actor

A customer admin user.

Flow
Description

The system is in the create news item page. The actor will be presented with
fields to enter a title, and a body. The body field will encompass a WYSIWYG
editor. The interface will also provide a means to upload a cover image for
the story.

Precondition

The actor has a role of “customer_admin”.

Activation | The “Add News ltem” Button is pressed.
Main Flow | The actor fills out all necessary information and saves the item. The News
item is committed to the database.
Alternative | The actor does not fill out the required information. The actor is presented
Flow 1 | with a dialog box which will inform of the missing attributes.

Exceptional
Flow 1

The actor is not a Customer Admin user. The actor is presented with a “401
Unauthorized” page.

3.1.2.6 - ADM-5 - News ltem Editing

Description

The system should allow a Customer Admin user to edit news items

Use Case

Scope

Priority

The scope of this requirement is to facilitate the editing of News items by the
Customer Admin user. The interface will include a WYSIWYG editor with
which the actor can format the text.

Primary Actor

A customer admin user.

Flow
Description

The system is in the edit news item page. The actor will be presented with
fields to edit the title, and the body. The body field will encompass a
WYSIWYG editor. The interface will also provide a means to upload a cover
image for the story.

Precondition

The actor has a role of “customer_admin”.

Activation | The “Edit News Item” Button is pressed.
Main Flow | The actor fills out all necessary information and saves the item. The News
item is update in the database.
Alternative | The actor does not fill out the required information. The actor is presented
Flow 1 | with a dialog box which will inform of the missing attributes.
Exceptional | The actor is not a Customer Admin user. The actor is presented with a “401
Flow 1 | Unauthorized” page.

Termination

The news item is committed successfully to the database.

Post
Condition

The system returns to the news list page.

3.1.2.7 - ADM-6 - Delete News Item

Description

Use Case

Scope

Priority

The system should allow a Customer Admin user to delete news items

The scope of this requirement is to facilitate the deletion of News items by
the Customer Admin user.

Primary Actor

A customer admin user.

Flow
Description

The system is in the news list page. The actor will click the “delete” button
associated with the news item. After acting upon an “Are you sure?” dialog,
the news item will be deleted or not deleted.

Precondition

The actor has a role of “customer_admin”.

Activation | The “Delete News Item” Button is pressed.
Main Flow | The actor selects “Yes” when prompted. The news item is deleted from the
database.
Alternative | The actor does not fill out the required information. The actor is presented
Flow 1 | with a dialog box which will inform of the missing attributes.
Exceptional | The actor is not a Customer Admin user. The actor is presented with a “401
Flow 1 | Unauthorized” page.

Termination

The news item is committed successfully to the database.

Post
Condition

The system returns to the news list page.

3.1.2.8 - ADM-7 - Add Social Stream Details

Description

The system should allow a Customer Admin user to add social stream details

Use Case

Scope

Priority

The scope of this requirement is to facilitate the addition of Social Streams to
the platform. The social streams can be Facebook, Twitter or Instagram
accounts.

Primary Actor

A customer admin user.

Flow
Description

The system is in the add social streams page. The user is presented with
fields to enter the details for Facebook, Twitter and Instagram social streams.
There will be an interface provided to save the information.

Precondition

The actor has a role of “customer_admin”.

Activation | The “Save” button is pressed.

Main Flow | The actor has inserted relevant data in all of the fields. Upon saving, the
information will be validated to be correct using the social APIs. After this the
details will be committed to the database.

Alternative | The actor fills out bad data in one or more fields, which is identified by the
Flow 1 | validation step. The actor is presented with some information explaining why

the system cannot proceed. The system returns to the pre-save state, with
the offending fields highlighted in red.

Exceptional

The actor is not a Customer Admin user. The actor is presented with a “401

Flow 1

Unauthorized” page.

Termination

The social details are committed successfully to the database.

Post
Condition

The system returns to the home page.

3.1.2.9 - ADM-8 - Edit Social Streams

Description

Scope

Priority

The system should allow a Customer Admin user to edit social stream details

The scope of this requirement is to facilitate the editing of Social Streams to
the platform. The social streams can be Facebook, Twitter or Instagram
accounts.

Primary Actor

A customer admin user.

Flow
Description

The system is in the list social streams page. The user is presented with an
option to edit each item in the list. The user will click the ‘edit’ button, and will
be presented with an edit screen to perform changes.

Precondition

The actor has a role of “customer_admin”.

Activation | The “Edit” button is pressed.
Main Flow | The actor has entered the “edit” screen for the chosen Social Stream. The
edit screen will have fields to edit the details.
Alternative | The actor navigates to the url directly: ie /social_streams/:ID/edit. This will
Flow 1 | take the actor directly to the edit page for stream of ID :ID.
Exceptional | The actor is not a Customer Admin user. The actor is presented with a “401
Flow 1 | Unauthorized” page.

Termination

The actor saves the form, and the social details are committed successfully to
the database.

Post
Condition

The system returns to the list social streams page.

3.1.2.10 - ADM-9 - Add Media Items

Description

Use Case

Scope

Priority

The system should allow a Customer Admin user to add media items to the system.

The scope of this requirement is to facilitate the adding of media items to the
system. The media items may be images (.png, .jpg etc), or video (.mp4, .mov,

.avi etc). The system will take the input file, upload it to a storage service and
store the url.

Primary Actor

A customer admin user.

Flow
Description

The system is in the media gallery page. The actor selects “Add ltem”. The
file upload modal will appear and the actor will be prompted to choose the
file to upload. The system will then process this file and when done the user
will return to the gallery page.

Precondition

The actor has a role of “customer_admin”.

Activation | The “Add Media ltem” button is pressed.

Main Flow | The add file modal has appeared. The user chooses a file and the system
uploads to to Amazon S3. S3 returns the url for the file, which is saved on the
media item model. The system goes back to the media gallery page, with the
new item visible.

Alternative | The actor closes the modal during the upload phase. In this case the upload
Flow 1 | will continue in the background, and when the process has finished the
media page will update.
Alternative | The actor attempts to insert a file which is not supported to the system. The
Flow 2 | add file dialog will not allow this to happen.
Exceptional | The actor is not a Customer Admin user. The actor is presented with a “401
Flow 1 | Unauthorized” page.

Termination

The media item information is committed successfully to the database.

Post
Condition

The system returns to the media gallery page.

3.1.2.11 - ADM-10 - Remove Media Items

Description

Priority

The system should allow a Customer Admin user to add remove items from the

system.

Scope

The scope of this requirement is to facilitate the removing of media items to
the system.

Primary Actor

A customer admin user.

Flow
Description

The system is in the media gallery page. The actor selects “Remove Item” on
a particular item. The system will throw a dialog to ask the user if they are
sure they want to complete this destructive action.

Precondition

The actor has a role of “customer_admin”.

Activation

The “Remove Media Iltem” button is pressed.

Main Flow | The “Are you sure” dialog appears. The user chooses “Yes” on this dialog.
The system then removes the media item from the database, and instructs
Amazon S3 to destroy the stored media.
Alternative | The actor chooses “No” when presented with the “Are you Sure” dialog. The
Flow 1 | system returns to the media gallery page with no destructive actions
performed.
Exceptional | The actor is not a Customer Admin user. The actor is presented with a “401
Flow 1 | Unauthorized” page.

Termination

The media item information is removed successfully from the database.

Post
Condition

The system returns to the media gallery page.

3.1.2.12 - ADM-11 - Broadcast Notifications

Description

app users.

Use Case

Scope

The system should allow a Customer Admin user to broadcast push notifications to

Priority

The scope of this requirement is to facilitate the broadcast function using
Push Notifications to app users devices.

Primary Actor

A customer admin user.

Flow
Description

The system is in the broadcast page. The user is presented with a form with
fields for Title and Body. The user will fill this form out with the relevant
information and submit to send the push notification.

Precondition

The actor has a role of “customer_admin”.

Activation | The notification form is filled.
Main Flow | The actor fills out the push notification form with the title and body to be sent.
The actor will then hit the submit button to send a notification to all app users.
Exceptional | An error occurs when sending the push notification. This could be due to an
Flow 1 | error with the certificates for the push services. The developer will be notified

and the user will be informed that the issue will be resolved quickly.

Termination

The push notification is sent successfully.

Post
Condition

The system returns to the push notification page.

3.1.2.13 - ADM-12 - Edit App Theme

Description

Use Case

Scope

Priority

The system should allow a Customer Admin user to edit the App Theme.

The scope of this requirement is to facilitate the editing of the mobile
application theme via the admin platform.

Primary Actor

A customer admin user.

Flow
Description

The system is in the edit theme page. The user is presented with a series of
fields with colour information for various parts of the app. These fields will
include colour pickers for input.

Precondition

The actor has a role of “customer_admin”.

Activation | The actor changes values in the colour fields on the edit theme page.

Main Flow | The actor changes the colours required. When the desired theme has been
created, the user will click save which will persist the new theme. All app
users will experience the new theme on their next launch.

Exceptional | The actor inputs some values which are not valid into a field. The form will
Flow 1 | display a relevant error message and the user will need to rectify this before

saving.

Termination

The updated theme information is persisted to the database successfully.

Post
Condition

The system returns to the theme edit page.

3.1.4 - Non Functional Requirements

3.1.4.1 Performance/Response time requirement

The system should be developed with user experience as a priority. Response times should be
optimized in all areas to reduce the wait time for the user. In any areas where wait times are
necessary, the UlI/UX should be developed to help the user understand the wait.

3.1.4.2 Availability requirement

The system should be available as close to 100% of the time as possible. The system will be
deployed worldwide, and users may need to access the system around the clock.

3.1.4.3 Recover requirement

In the event of a failure, the system should have the ability to recover and restart itself.

3.1.4.4 Security requirement

The system should utilise the most modern security features available to protect the users data,
and also the deployment data. Sensitive user information should be encrypted. Unauthorized

users should be prevented from entering any parts of the system which could uncover sensitive
data.

3.1.4.5 Reliability requirement

The system should be reliable and bug-free. Under normal circumstances system crashes and
unexpected behaviour should not be tolerated.

3.1.4.6 Maintainability requirement

The system should be developed using the software best practices laid out by the creators and
community of RoR. The code should be well commented in order to aid any future developer who
may be maintaining the system.

3.1.4.7 Portability requirement

The system should be developed in such a manner that it can be deployed in a variety of
environments. Over time the correct environment may change, due to reasons such as cost,
scaling,

3.1.4.8 Extendibility requirement

The system should be built in such a way that future features can be added to the system in the
most efficient manner. The system should be modular in nature, and individual components can
be swapped and/or upgraded.

3.1.4.9 Reusability requirement

The system should be built using the DRY principle. Where possible components should be
reused throughout the system.

3.1.4.10 Database Requirement

The database should be scalable. From the beginning thought should be put into all queries with
respect to their execution on much larger datasets. The future possibility of segmented data
should also be entertained.

3.1.5 - Graphical User Interface Requirements

3.1.5.1 - Interface Elements

The system will utilise many different forms of input interface elements. The aim is to provide the
user with the best tools for the job and make working within the system as easy as possible.

3.1.5.2 - WYSIWYG Editor

In the news section, the user will be provided with a WYSIWYG editor for input. This editor will
feel familiar to the user if they are familiar with common text processing tools. The editor will
include modes to enter normal text with formatting tools, enter text in markdown syntax, or enter
raw html.

3.1.5.3 - Color Pi

icker

In the theme editor, the user will have two options for entering the color values. They may enter
the value directly into the form as a HEX code (#RRGGBB), or they may use the color picker. The
color picker will present a modal color picker which will allow the user to visually choose the

color.

3.1.5.4 - Modal Views

Where possible, and where sensible, modal views should be used to present information and
input forms. This allows us to cut down on user wait times as page reloads are not needed.

3.2 - Use Case

Diagrams

3.2.1 - Admin Platform Use Case Diagram

AL

Non User

P
ADM-4 /58

ADMEND
Customer
Admin
User

ADM12

ADM13/14

-1‘.

Mews ttam
Add | Edit | Dalets

Social Streems
Add | Edit | Delete

Broadeagt Push
Notification

,:.{Iﬂduﬂe::v """"""""""

Pull From Sosial
P e\ Network APIS

2‘;29:5'::5:: ---------------- ~sdnCludeg == mmm oo :
Use Apple APN
Push Service

—reaedantseT

-

w<fpolicationss
Admin Flationm

it

Genarate AP1
Mty
Authorization

mﬂtlﬂdw

ADM-2

|
Dalete Customer

Dk-3

Super Admin

3.2.2 - APl Use Case Diagram

REST API Serving JSON

401 Unauthorzed APL-1
Response -
f H

Unauthorized
Consumer

3.2.3 - Mobile Application Use Case Diagram

App User

pUser N T A Mmmiﬂn
(nciudas theme infa)
Get Social _________i
Feed
s ppications==
Mobile App (05 OR Android)
Fegister

MOB-12

3.3 - Implementation

3.3.1 - Backend Platform

The backend platform is implemented using Ruby on Rails (RoR). The application is a RoR
application utilising a Postgresql database. The Postgresql database was chosen due to the
deployment method - Heroku. Heroku requires that Postgresql is used. For this reason | also
utilised Postgresql locally in order to ensure that my local and production environments were as
similar as possible.

The platform utilises the Model View Controller (MVC) pattern. MVC ensures separation of
concerns and allows me to adhere to the DRY (Don’t Repeat Yourself) principle. The model layer
defines the database schema and facilitates communication with the database via ActiveRecord.
The Controller layer sits in the middle of the Model layer and the View layer. The Controller layer
is responsible for all communication with the Model layer, and rendering of the views. The
controller layer passes any data required to the view. The view cannot communicate directly with
the Model layer. This keeps the views lightweight, and speeds up rendering times.

| utilised the haml templating language to produce the views in the application. The hami
language allows me to write HTML with ruby language embedded. This way | can surface ruby
variables throughout the code to provide dynamic views. Haml is very fast to write, as there are
no closing tags. This allowed me to iterate quickly on my views and produce designs faster.

3.3.2 - Mobile Applications

The mobile applications are hybrid applications utilising the cutting-edge Turbolinks 5
technology. The app utilises a fully native navigation, and renders turbolinks-enabled views which
are rendered by the API. This results in what feels to the user as a native application, but the
flexibility of a web application. As the views are rendered from the backend, changes can be
made quickly. Another upside of this is that the main content is cross-platform.

The applications themselves, being native, are developed in the platform’s native languages. The
iOS application is developed using Swift in the XCode IDE, while the Android application is
developed using Java in the Android Studio IDE.

The main content of the app is HTML5/CSS and Javascript delivered via Turbolinks, but the
theme engine is implemented using JSON. When the app launches, it fetches the theme colours
from the API. When the colours are fetched, they are stored in local storage in order to speed up
future app launches. The app will query the API at strategic times in order to fetch the latest
theme colours and render the app appropriately.

3.3.3 - REST API

The REST API is a separate part of the main Rails application. The API delivers content in both
HTML and JSON. The endpoints in use are:

Endpoint Description Method Reponse
/api/vl/post News items index GET HTML
/api/vil/post/id News item detail GET HTML
/api/vil/bio Get Bio GET HTML
/api/vl/calendar Calendar index GET HTML
/api/vl/media Media index GET HTML
/api/vl/media/:id Media item detail GET HTML
/api/vl/theme Get theme GET JSON

3.3.4 - Theme Engine

The theme engine is the heart and soul of the mobile applications. In order to make white label
apps work for a large number of customers, it is necessary to provide customisation. By allowing
the user to choose the colour scheme for their app, | can provide a great deal of customisation.
The user can select the colours for their app on the backend platform using the colour pickers,
and the results are instantly deployed to all mobile users instantly.

3.3.5 - Broadcast

With a large user base comes great potential for getting your story out. A big addition to this is
the inclusion of push notifications to the users. The customer can send out a push notification to
all users of the applications from the backend platform. Push notifications can also be
automatically configured to be sent out when a news story goes live.

3.3.6 - White Labeled Apps

When developing the functionality for the mobile applications, | developed all functionality inside
a library. This library is reusable, and therefore when | need to onboard a new user, the creation
of the mobile apps is streamlined. | need to simply include my RFBase library and add the
Customer API Key to the project. The result is a ready to go white labeled native mobile
application.

3.3.7 - Deployment

| chose heroku as my platform for deployment. | chose Heroku for a number of reasons:
e Heroku is cost effective - this platform will cost ¥$7.00 per month to keep running at the
current scale.
Heroku is simple to use - deployments can be carried out with a simple command.
Heroku has many plugins - such as Cloudinary for asset storage, and PostgreSQL for data
storage.

| found the deployment to very simple, and encountered no major roadblocks. If | notice any bugs
| can make a change in the code and deploy instantly to production with just one command. To
deploy the application, run the following command:

git push heroku master

This pushes your latest changes to the Heroku branch. When the heroku branch is updated, a
new build happens automatically, and your app is deployed on successful build. If there is any
issue with the build the deploy will not happen, and your current production environment
remains unchanged.

3.3.8 - Security

As the platform employs multi tenancy, security is a high priority. All data is keyed by customer ID,
and this data can only be surfaced to a user of that customer. The API requires that a Customer
API-Key is sent in every request in order to recieve data. This key is a hash generated when the
customer is created.

For security, | followed the guidlines outlined in the OWASP Top Ten [2] to ensure | left no
security holes while developing the application.

3.4 - Functionality

3.4.1- News

The platform user can create news posts to deliver stories to the app users. The news posts
consist of a title and a body, a go-live date and two images - the cover photo for wide view on top
of the post detail page, and a square image for use on the item list in the index page. The News
item index page on the platform shows the title, body, live date and controls to edit, delete and
show more for each item. The item detail page shows the cover photo along with the story itself.

The news stories are shown to the mobile application with the newest posts to the top of the list.
Posts do not appear on the mobile apps until the live date has been reached.

3.4.2 - Bio

The bio contains many info points about the driver. The fans want to know as much as possible
about their favourite driver, and the bio is the place to deliver that information. The following
information is configurable and is shown to the app users:

Profile Photo

Name

Date of Birth

Hometown

Facebook

Twitter

Instagram

Website

e Career
The career section is a WYSIWYG editor which allows the user to create a formatted prose to
explain the entire race career of the driver.

3.4.3 - Calendar

The calendar allows the platform user to input the race season details. An event consists of a
track image, event name, description and the date it will happen. On the platform, the user has
functionality to add, edit and delete events. These events are shown to the app users in
chronological order. There is a “Next Race” module at the top of the page, which shows a daily
countdown to the next race.

3.4.4 - Theme

The Theme allows the customer to choose four custom colours, which are used throughout the
mobile applications. Using the theme engine the customer can choose a unique colour scheme
to show their own brand or nationality. The engine uses color pickers on the front end and a live
app render, to show how the scheme will look. Upon saving the scheme. The mobile applications
are updated instantly.

. Double Podium Reward from
St Difficult Weekend

s Quinn claims pole for SEAT
S Supercup round 7

= Quinn better prepared for 2016
% SEAT Supercup

4. Testing

4.1 - Usability Testing

411 - Trunk Test

The trunk test is a method of determining if key elements are present in a products navigation.
There are five main headings under which to perform the trunk test:
1. SiteID
a. Are there visual cues to let the user know that they are on RFBase?
2. Page Name
a. Are there visual cues to let the user know which page they are on?
3. Sections

a. lIsit clear to the user what the main sections are on the product.

4. Local Navigation
5. Wheream|
a. Isthere a “You are here” indicator?

Trunk Test Results:

Metric Web Platform

Mobile App

Site ID There is an “RFBase” logo on
the top left of the navigation
bar on each page of the
website. This coupled with
the user name on the top
right will let the user know
they are on the RFBase
platform, and signed into a
particular Customer profile.

The mobile app is branded
with the driver's personal app
icon. When the app launches,
there is a branded splash
screen also. It is not common
practice to include a logo
once inside a mobile
application, so | have followed
these guidelines with this
product.

Page Name Each section in the web
platform has a large H1 on the
top of the content area which
indicates to the user which
section they are in.

When navigating through the
mobile apps, the title bar
always shows the name of the
current section on the top of
the screen.

left-hand navigation bar which
allows the user to navigate
throughout the website.

Sections The left hand navigation The bottom tab-bar surfaces
surfaces all section names to | all section names to the user.
the user.

Local Navigation The web platform employs a The mobile apps employ a

bottom tab-bar navigation
system which allows the user
to navigate throughout the
application.

Where am I? There is a visual indicator on
the left side navigation which
shows the user which section
is currently shown. This along
with the page name leaves no
room for ambiguity.

The selected section is
highlighted in the tab bar with
the theme primary colour.
This, along with the page
name leaves no room for
ambiguity.

Web Platform:

ECx RFBase 2:JPagelName) ot | LogOu

News Iltems
Double Podium Reward from Difficult... Rounds 5 and 6 of the SEAT Supercup Ireland championship.. m [} ©
Bio Quinn claims pole for SEAT... After a super close qualifying session at Mondello Park, Niall... [} [} [+]
Quinn better prepared for 2016... On the eve of the highly anticipated start to the... [} (] ©
Calendar
Theme \
\ 3: Sections
4: Local Navigation
5: Where am I?
Mobile Applications

i0s :
iPhone 6 i0S 10.3 (14E269) Androic

5:53 PM

o ' Page Name

B Double Podium Reward from
#4 Difficult Weekend
B Rounds 5 and 6 of the SEAT Supercup ouble Podium Reward from
ifficult Weekend
Rounds 5 and 6 of the SEAT Supercup
Ireland championship.

Ireland championship..

Quinn claims pole for SEAT
Supercup round 7

B \ftor a super close qualifying session at
Mondello Park; Niall

Quinn claims pole for SEAT
Supercup round 7
After a super close qualifying session at
8 Mondello Park, Niall..

Quinn better prepared for 2016

SEAT Supercup -

On the eve of the highly anticipated start & 5 glEl:]'lr'] Sb:;t:r::ﬂli—fparEd forzo1s
to the... 7 e On the eve of the highly anticipated

i start to the...
/ Where am I? -t
-
Sections
B ©®© 0O o Local Navigation

4.1.2 -5 Second Test

For this test, i showed five testers an image of the web platform, and after five seconds | removed
the image. | then asked them a series of questions about the website. The purpose of this test is
to determine if the site purpose is instantly clear. At the highest level, the results of this test were,
as expected, not very positive. This is due to the fact that this is a very specific service. It is safe
to assume that any user will know what the website is designed to accomplish. | believe that a
user would need to be informed of the value proposition before performing the 5 second test.

4.1.3 - Prototyping

Before development began, | used both low fidelity and high fidelity prototypes to show my
designs to users. The low fidelity prototypes were simple wireframes. | produced wireframes of
my rough idea for navigation, and showed to some colleagues to gauge initial feedback. Based
on this feedback, | tweaked my designs and produced a high fidelity prototype. | used the
invision prototyping tool to produce the high fidelity prototypes. The high fidelity prototypes
allowed testers to click around and follow my proposed navigation while also testing out my
aesthetic design. This testing phase helped my development a lot, as | had a clear idea of the
design direction | would be taking when development began.

Low Fidelity Prototypes

Page 1
https:\WracerApp.com/admin
Log Qut
Add New Post
News Posts
Date ~w Post Title -
Saocial dd/mmiyy Lorem ipsum dolor si met. Edit Delete
dd/mmiyy Lorem ipsum dolor si met. Edit Delete
Broadcast dd/mmiyy Lorem ipsum dolor si met. Edit Delete
dd/mmiyy Lorem ipsum dolor si met. Edit Delete
Gallery
dd/mmiyy Lorem ipsum dolor si met. Edit Delete
dd/mmiyy Lorem ipsum dolor si met. Edit Delete
Theme
dd/mmiyy Lorem ipsum dolor si met. Edit Delete
Settings dd/mmiyy Lorem ipsum dolor si met. Edit Delete

ST T
bt)
AN AN

Page 1

https:/fracerApp.com/admin
Log Qut
Image Gallery Add New Image
News Posts
Social
Broadecast
Gallery
Theme
Settings

High Fidelity Prototype
Prototype can be viewed here: https://invis.io/JSBM6JNDP#/232662379 Latest News

https://invis.io/JSBM6JNDP#/232662379_Latest_News

eeeo0 |nVision T 8:00 PM

Latest News

Joe Bloggs to race for Lamborghini

New deal sees Joe racing for the
legendary Italian marque for the 2017
Season.

Joe Bloggs to race for Lamborghini
New deal sees Joe racing for the
legendary Italian marque for the 2017
Season.

2017

Joe Bloggs to race for Lamborghini

New deal sees Joe racing for the
legendary Italian marque for the 2017
Season.

3017

March 2 201

Joe Bloggs to race for Lamborghini

New deal sees Joe racing for the
legendary Italian marque for the 2017
Season.

Joe Bloggs to race for Lamborghini
New deal sees Joe racing for the

legendary Italian marque for the 2017
Season.

2

News

4.2 - Unit Testing

| used unit testing in the Ruby on Rails application to ensure all functionalities are working as
expected. When run, the test suite runs tests on the model and controller layers to test the
functionality of the following:
1. News item - Create, Update, Delete
Media Item - Create, Update, Delete
Bio - Update
Calendar Item - Create, Update, Delete
Theme - Modify and Save
User - Create, Update, Delete, Reset Password

o0 s wN

Running the Tests
Locally:
Navigate to the project root and run the following command:

bundle exec rake test

Production:
Navigate to the project root and run the following command:

heroku run rake test

4.3 - Integration Testing

The backend platform and the API are covered by the Ruby on Rails unit tests. The whole system
as a unit is then tested using the mobile applications. | enlisted three testers to test my system.
These testers came from different backgrounds: one is a technical product manager for a large
company, another an engineer for a large race team, and the other a tech enthusiast. This
allowed me to test the product from a technical point of view, and from the perspective of a user
in the motorsport community.

For this test, | supplied the testers with a short introduction to the product and their own personal
login details. | supplied them with a version of the mobile application. | informed them that they
could use the backend platform to modify the content and view these changes in the mobile
application. They could also use the backend application to modify the theme colours and test
the theme engine.

| sent questions to the testers in the form of a Google Form, and captured the responses in a
spreadsheet.

Testers

Name Paul Hays

Company Independent Media

Position Product Manager

Name Graham Quinn

Company | Andretti Autosport

Position Race Engineer

Name Adam Smith

Company Future Finance

Position Manager

Name Kevin O’Hara

Company LOH Motorsport

Position Race Driver

Results
The form can be viewed at the following link: https://goo.gl/forms/PXLix3JWMUZOLIm92

Question Paul Hays Graham Adam Kevin O’Hara
Quinn Smith
Platform
Was it immediately obvious Yes Yes Yes Yes

what type of content was
presented to you on landing?

The site navigation is effective | 5 5 5 5
(1-5 scale)
It is clear which ltems on the 5 4 5 4

platform on which | can
perform a DELETE operation

It is clear which Items on the 5 4 5 4
platform on which | can
perform an EDIT operation

It is clear which Items on the 5 4 4 4
platform on which | can view

detail

The WYSIWYG (Whatyousee |5 5 5 5

is what you get) editor is a
good addition for styling text
in News and Bio

| find the site aesthetically Yes Yes Yes Yes
pleasing
Feedback - Please supply any | | really like the | Nice simple Easy to | really like
feedback use of ux icons | design and navigate the theme
for the delete | |ayout. Easy | and content | engine. | had
ggsicc))r;:v'th to find my is easy to fun playing
colouring. way around. input. around with
Everything is my personal
very clear and colours and
structured to seeing them
use. Difficult to update on
get lost and the app.
not perform
the desired
task or action.
Performs as
expected.
Speed of use
is good too.
Image

uploaded very

quickly.
WYSIWYG
works well and
is definitely the
right choice for
this format.
Hard to find
fault as app
performs as
desired to
match the user
needs.

Mobile Application

It is clear which sections are 5 5 5 5
available and how to navigate
to each section

It is clear how to show the 5 5 5 5
detail for a news item

The social links on the bio 4 4 4 4
page are a good addition

The layout of the media page | 4 4 4 4
is user friendly.

| find the app aesthetically 5 5 5 5
pleasing

The theming engineisagood (5 5 5 5

addition to the application

Feedback - Please supply any | Theming

feedback engine is great
to have so can

individual
colours to
match racing
theme or
nationality.

Conclusion

The results from these tests were largely satisfying. | am happy that my choice of UX was easy for
the testers to use and there were no issues. There were not many red flags in the results,
perhaps the layout of the Media page on mobile can be tweaked to provide a better experience. |
am very happy that the theme engine got such great reviews.

4.4 - Graphical User Interface

4.41 - Admin Platform GUI Mockup

4.4.1.1 - News Page

Page 1 -
https:\racerApp.com/admin
Log Out
Add New Post
News Posts
Date ~w Post Title
Sacial dd/mmiyy Lorem ipsum dolor si met. Edit Delete
dd/mmiyy Lorem ipsum dolor si met. Edit Delete
Broadcast dd/mmiyy Lorem ipsum dalor si met. Edit Delete
dd/mmiyy Lorem ipsum dolor si met. Edit Delete
Gallery
ddfmmdyy Lorem ipsum dolor si met. Edit Delete
dd/mmiyy Lorem ipsum dolor si met. Edit Delete
Theme
dd/mmiyy Lorem ipsum dolor si met. Edit Delete
Settings dd/mmiyy Lorem ipsum dolor si met. Edit Delete

4.41.2 - Social Page

Page 1 LA ANY,
https:WracerApp.com/admin
Log Out
News Posts Twitter Handle ‘ ‘
Social Instagram Handle ‘ ‘
Facebook Page ‘ ‘
Broadeast
Save
Gallery
Theme
Settings
4.4.1.3 - Broadcast Mockup
page 1 \ W NS
https:/fracerApp.com/admin
Log Out
Send a push notification to your users!
News Posts
Title
Social
Body
Broadcast
Gallery
Send
Theme
Settings

4.4.1.4 - Gallery Mockup

page q LA

https:/fracerApp.com/admin

Image Gallery Add New Image

News Posts

Sacial

Broadcast

Settings

4.4.1.6 - Theme Page Mockup

Page 1

https://racerApp.com/admin

Modify App Theme
News Posts
Primary Golour #RRGGEBB E Page Title
Social " \—‘ \\Y

Secondary Colour | #RRGGBB ‘
Y
Broadcast P Font
SO nmayFon | 4RRGGBB
Y

Lorem ipsum dolor si met.

Lorem ipsum dolor si met.

Gallery
Lorem ipsum dolor si met.
Colour
Theme i
Picker Lorem ipsum dolor si met.
Settinas Lorem ipsum dolor si met.

Lorem ipsum dolor si met.

4.5 - Application Programmers Interface (API)

4.5.1 - API Specification

The system will include a REST API for communication with the mobile applications. The API will
consume and produce JSON, and support the standard HTTP methods; GET, POST, PUT,
DELETE. The API will be robust and provide detailed responses when the desired action is not
completed. The endpoints to be created are listed below:

Endpoint Description

[METHOD : endpoint]

POST : /login Perform the login action
POST : /signup Perform the signup action
GET : /customer Retrieve customer details

GET : /news Retrieve list of news items

GET : /social Retrieve list of social items

GET : /gallery Retrieve list of gallery items

GET : /messages Retrieve list of messages

4.5.2 - APl Seque

nce Diagram

c Bng - :Router :ApiController :Database
POST /login with user params r*‘ 8 8
* loginU L H
ginUser{params) verify :
o auth token o
. [auth tallure] retumn ragponas: 401 <! fptch user from db -l :
< return user object 7]
create user IF user E
does not exist H
[create user error] retu '
[Eommmmmmm oo s T commit user o db
. retum response: 200 *
s 5 5
GET fcustomer N 0 0
> e H
getCustomer() verify :
auth token :
fetch customer from db .
[fetch details errar] return rasponse 500 with details N >
e R L L C e T P PP return customer object
< return response: 200 with cusmmsr details in params :
] H
] GET /news . getNewsFeed() i :
L7 verify H
H auth token H
- [auth failure] re‘turn response: 401 :‘ 8
: fetch news feed :
feed 1 : 500 with detail
P [feed error] refur [‘_’???‘.“J?? _____ Wi Cera s S——— P reumnfeed
< return response: 200 with feed in params -
-------------------------- R L ELEEETEEY H
] GET Jsocial : : :
» getSocialFeed() verify :
Iv‘ auth token '
[auth failure] return response: 401 H
[€rmmm oo {PacEecaSEaSEecEeEnsanSaseasS fetch social feed :
PR lfeed arror] ratur [‘_’??P‘_“_‘_s?_ 500 with ct=it- S return feed
P return response: 200 with feed in params :
] verify :
auth token o
fetch messages :
[feed error] return response 500 with details
B S[oummossages
P return response: 200 with message list in params g
o o o o
e GET fgallery : :
" geGalleryFeed() verify :
H auth token H
[auth failure] return response: 401 8
5 fetch gallery feed .
I [feed error] retur [‘_'??"‘_“ls?_ 500 with ciat=lt= S < return feed
= return response: 200 with feed in params H

4.6 - Architecture

The core system will be built in Ruby on Rails. The system should be built to the best practices of
the RoR platform. The database used will be mySQL. Care should be taken to ensure the system

is scalable in the long term.

4.6.1 System Class Diagram

News ltem

-ID : Integer

-fitle : String

-body : String
-headerimagelrl : String
-date : DateTime
-customerid : Integer

-getDate() : DateTime

Customer

=11
—\—q-—o -ID : Integer

-Api-Key - String

- «—1 -getUserList() : Array

-getNewsltems() : Array

-ID : UUID
0| -email : String

0.1 -customer_id: Integer

-fole : String

<<Enumeration>=
Role

-~ 1 "customer_admin"
"super_admin"

~type : SocialType = "facebook”
-applD : String

-accessToken : String
-accessSecret : String

~type : SocialType = "twitter”
-applD : String
-accessToken : String
-accessSecret : String

~type : SocialType = "instagram”
-applD : String
-accessToken : Striing

5 - Project Plan

- -getGalleryltems() : Array ~getEmail() : String "app_user”
-getRole() : String
Gallery tem

<<Enumeration>> ’mni |Sm‘=99" T

MediaType -url : String

| -type : MediaType b1
“image" -thumbnailJrl : String
“video" ~customerld : Integer Customer Admin App user Super Admin
-getMediaType() : MediaType ~role : String = "customer_admin” ~role : String = "app_user" ~role : String = "super_admin"
-platform : mobilePlatform
Soclal Stream

<<Enumeration>> -ID : Integer -

SacialType -url : String H

| -type : SocialType 1.3 :
“facebook” *| -customerid : Integer
"twitter” <<Enumeration>>
“instagram" -getMediaType() : MediaType mobilePlatform
-getStream() : Array T
fos'
“android”
SocialTypeFacebook SocialTypeTwitter SoclalTypelnstagram

The project was split into three main phases: the documentation phase, the development phase,
and the testing phase. According to the deliverable dates set out by the NCI faculty, there will be
some overlap in these phases. See item 5.1 - gantt chart for the exact spread throughout the

project.

5.1 Gantt Chart

QOct Nov Dec Jan Feb Mar Apr May
Task Sat | End | 1 | 2 |3 [4] 1] 2]3]41]2]3][a4]1] 2] 3 a 1] 2[3] 4] 1] 2] 3] 4 1] 2] 3] 4] 1 =z
1.0 ion Phase| Oct-1 Dec-2
1.1 Project Proposal| Oct-1 Oct-3
1.2 Requi Oct-4 | Nov-2
1.3 Mid-Point Dec-1 | Dec-1

1.4 Showcase Materials| Mar-<4 Apr-1
1.5 Final Doct Jan-1 May-2
1.6 Final May-2 | May-2

2.0 Development Phase| Nov-1 | April-2
2.1 - Prototype| Nov-1 Dec-1

2.1 Admin Portal| Nov-2 | Jan-1
2.2 Database| Nov-2 | Jan-1
2.3 API| Jan-1 Jan-3

2.4i0S App| Jan4 Feb-4

2.5 Android App| Feb-4 Mar-3

3.0 Testing Phase| Jan-1 May-2
3.1 Backend Testing| Dec<4 | Dec<4
3.2 API Testing| Jan-3 | Jan-3

3.310S Testing| Feb-4 | Feb-4
3.4 Android Testing| Mar4 | Mar-3

35 Full System Test| Mar4 | Apr 5 o |

6 - System Evolution

The system will launch with all of the requirements set out in this document in place. There is
scope for further evolution in some key areas. As we gather user feedback over time, new media
types and outlet types may be added to the system. The mobile applications should constantly
evolve, as the mobile platform ecosystem is currently in a period of rapid improvement. Every
yearly cycle brings new APIs and capabilities. We should always be exploring these areas to
bring new features to the end user.

As time goes on and | begin to see user patterns in the application, areas to improve will show
up. | see some distinct areas for new functionality going forward:

e The ability for an app user to follow/like the drivers social accounts from inside the
application.

Live timing streamed to the application during races.

A results section.

Video support in media.

Expand beyond race drivers to other athletes.

With more time and resources | can see this project becoming a viable business. There is a
market of racing drivers and other athletes who want to interact directly with their fans.

7 - Useful Links

Platform Github Repository https://github.com/NQuinn27/RFBase
iOS Github Repository https://github.com/NQuinn27/RFBase-iOS
Android Github Repository https://github.com/NQuinn27/RFBase-Android

Platform http://rfbase.herokuapp.com

Login Details for Platform

Email: niall+johnSmith@niallguinn.me
Password: johnSmith

8 - References

1. "Turbolinks/Turbolinks". GitHub. N.p., 2017. Web. 9 May 2017.
2. "Category:OWASP Top Ten Project - OWASP". Owasp.org. N.p., 2017. Web. 9 May 2017.

mailto:niall+johnSmith@niallquinn.me

Appendix 1 - Project Proposal

Project Proposal

RFBase

Niall Quinn
X13108727
niall.quinnl@student.ncirl.ie

BSc (Hons) in Computing
Evening

Software Development Stream

mailto:niall.quinn1@student.ncirl.ie

Table of Contents

1. Executive Summary

2. Background
3. Technical Approach

3.1 Technical Overview

4. Resources

41 Literature

4.2 Toolin
4.3 Hardware

5. Project Plan

5.1 Gantt Chart

6. Technical Details

6.1- Backend Platform
6.2 - API

6.3 - Database

6.4 - iOS Application

6.5 - Android Application

7. Evaluation

7.1 - Unit Testing
7.2 - Manual Testing
7.3 - Requirements Evaluation

1. Executive Summary

1.
2.
3.
4

To produce a highly functional marketing platform for racing drivers.

To supply valuable functionality to target and grow an audience.

To provide this using modern languages, frameworks and tooling.

To develop a custom theme engine to produce configurable look-and-feel for the mobile
applications.

To leverage third party services to provide valuable real-time data to end users.

2. Background

Motor racing drivers today spend a large amount of time marketing their brand to the large motor
racing fan base. At the moment, drivers use traditional social media, Twitter, Facebook, Instagram
etc as a means to reach their audience. There is a place in the market for a single outlet from
which the driver can target and grow their audience.

A customer on the platform will receive a login to their own backend portal, where they will be
able to add various information such as: News, Race Calendar, Images & Video and Social
streams. All of this information will be served to their own custom-themed iOS and Android apps
which will be deployed via the iOS App Store and Google Play Store respectively.

The business model for this product is a SAAS model. A Customer on the platform will pay an
upfront development fee, and then pay a monthly subscription to use the service.

| see a gap in the market for this product, and am confident that when deployed will be a viable
product.

3. Technical Approach

This project will be developed using modern languages, frameworks, tooling and infrastructure. A
clear and concise project plan has been set out in order to maximise time available and ensure all
parts are developed in time, and integrate seamlessly. At regular intervals, progress will be
assessed and the project timeline updated accordingly.

From a high level, this project will be comprised of five main components:
1. Backend portal - a Ruby on Rails Application

API - a Ruby on Rails API

Database - a mySQL database using Amazon RDS

iOS Application - native application developed using Swift

Android Application - native application developed using Java

g wN

| will endeavour to identify all requirements in the requirements specification stage, in order to
build the platform from the beginning with all entities and relationships in scope. This will lead to
less headaches in the testing and integration phases later.

The project will employ a continuous integration scheme, with automated unit testing. All code
merges to the master branch will pass through the automated testing framework, with bad builds
being rejected. This will ensure that critical bugs do not make it to the production code.

The project will make use of the Elastic Beanstalk platform on AWS. This allows us to choose the
most cost-effective configuration to begin with on AWS. If the load on the app or APl becomes
too large, Elastic Beanstalk will automatically create new instances of the application to handle
this load. This provides us with an extra layer of robustness to scaling problems.

A key part of this product will be the custom theming engine for mobile. The mobile applications
will pull down a specially formatted JSON file from the API. Acting upon this file, the application
will initialize core colours, fonts and images. This results in each of the platform customers
receiving a customized application, to suit their own brand.

The latest technologies in automated building will be used on the mobile apps, to reduce
developer input when onboarding new customers. The Fastlane platform will be used to execute
custom scripts which will take care of app building and distribution. This will be a key area to
focus on as the business scales in order for customer onboarding to not become a headache.

Requirements will be captured by interviewing current racing drivers. | will ask them what they
would like to see in the application and build up a ranking of features from those interviews.

3.1 Technical Overview

Below is a high-level technical diagram of the core components of this project.

{ eiazon

Backend Portal

Broadcast

2

Image Store

A

[-
| API-O)

REST API

Mobile Apps

mySQL Database

4. Resources

4.1 Literature

Ruby on Rails
e Learn Ruby the Hard Way - http.//www.learnrubythehardway.org
e Ruby on Rails Guides - http.//quides.rubyonrails.org
iOS
e Apple Developer Portal - https.//developer.apple.com/reference/
Android
e Android Developer Portal - https.//developer.android.com/
AWS
e AWS Documentation - https.//aws.amazon.com/documentation/

4.2 Tooling

Atom Editor

Rbenv Ruby environment manager

XCode IDE for iOS Development

Android Studio IDE for Android Development

4.3 Hardware

e Development machine - Apple Macbook Pro 15
e iPhone 6 & iPhone 7 test devices
e Samsung Galaxy S6 test device

http://www.learnrubythehardway.org/
http://guides.rubyonrails.org/
https://developer.apple.com/reference/
https://aws.amazon.com/documentation/
https://developer.android.com/

5. Project Plan

The project will be split into three main phases: the documentation phase, the development
phase, and the testing phase. According to the deliverable dates set out by the NCI faculty, there
will be some overlap in these phases. See item 5.1 - gantt chart for the exact spread throughout

the project.

5.1 Gantt Chart

QOct Nov Dec Jan Feb Mar Apr May

Task Sat | End | 1 | 2 [3|41]2]3[4]1[2[3]af1] 2[a3 4 1] 2[] 4 1] 2[3] & 1] 2 3] 4] 1 2
1.0 ion Phase| Oct-1 Dec-2
1.1 Project Proposal| Oct-1 Oct-3
1.2F i q Oct-4 | Nov-2

1.3 Mid-Point f ion| Dec-1 | Dec-1 ||

1.4 Showcase Materials| Mar4 | Apr-1
1.5 Final Doct i Jan-1 May-2
1.6 Final P May-2 | May-2

2.0 Development Phase| Nov-1 | April-2

2.1 - Prototype| Nov-1 Dec-1
2.1 Admin Porial| Nov-2 | Jan-1
2.2 Database| Nov-2 | Jan-1
2.3API| Jan-1 Jan-3

2.4i0S App| Jan-4 | Feb-4

2.5 Android App| Feb-4 | Mar-3

3.0 Testing Phase| Jan-1 | May-2
3.1 Backend Testing| Dec-4 | Dec-4
3.2 API Testing| Jan3 | Jan-3
33i0S Testing| Feb4 | Feb4

3.4 Android Testing]| Mar4 | Mar3
3.5 Full System Test| Mar4 | Apr3

6. Technical Details

6.1 - Backend Platform

Implementation Language

Ruby, HTML (Haml), CSS (SCSS), Javascript

Deployment

Amazon Web Services Elastic Beanstalk

Libraries Used

Ruby on Rails,

Various RubyGems as per requirements,
Bootstrap,

rSpec test framework

6.2 - API

Implementation Language

Ruby, serving JSON over REST interface

Deployment

Amazon Web Services Elastic Beanstalk

Libraries Used

Ruby on Rails,
Various RubyGems as per requirements,
rSpec test framework

6.3 - Database

Implementation Language

mySQL

Deployment

Amazon Web Services RDS

Libraries Used TBD

6.4 - iOS Application

Implementation Language | Swift

Deployment iOS App Store via XCode, Fastlane build scripts

Libraries Used CocoaTouch Framework

6.5 - Android Application

Implementation Language | Java

Deployment Google Play Store, Fastlane build scripts

Libraries Used TBD

7. Evaluation

The finished product will be evaluated with respect to various criteria.

7.1 - Unit Testing

TDD - Test Driven Development will be employed when writing all features. In this way, tests will
be created before functionality is built. This will serve to provide a specification for each function,
while also giving us maximum code coverage. Tests will be run on integration to ensure all
features are bug-free.

7.2 - Manual Testing

The final week of each development phase will be used to conduct manual testing on each
feature. This week will be used to identify and fix any bugs introduced during that development
period. Appointed alpha testers will be asked to evaluate the platform at certain points during the
development cycle. In the case of the mobile applications, the Crashlytics mobile testing
framework will be used to deploy test builds to testers own devices for evaluation.

7.3 - Requirements Evaluation

The entire product will be evaluated in conjunction with the requirements specification. Each
requirement will be evaluated individually to determine if the final product fulfils the requirement
correctly.

Appendix 2 - Monthly Journals

Reflective Journal

Name: Niall Quinn
Programme: BSCHE SD
Student Number: X13108727
Month: September

Achievements

This month | brought my Software Project idea from the idea stage to putting a
tentative plan down on paper, and pitching to the panel of Michael Bradford, Manuel
Tova-lzquierdo and Joe Molumby.

| fleshed out the core pieces which | want to be present in the final project, and settled
on an initial plan for which technologies | would like to use. | decided to focus solely on the
vertical of Motor Racing Drivers.

Reflection

I am happy with how my idea was received by the panel and | was happy to have my
pitch accepted. They offered some advice to me on the best areas on which to focus in order
to maximise the potential of my project. | will be taking these on board. | am now excited to
build upon it more and get my plans down on paper in the form of my Project Proposal, and
later my Requirements Documentation. | am happy with my idea as a whole, and | feel
passion for the project which will carry me through the 6+ month development period.

Improvements

I have been working hard this college year to manage my time better than in previous
years. At the moment | am juggling a full time job where | am Senior iOS Developer bringing a
large project to market in Q4, with a pretty intense workload for year 4 in this degree. | have
decided to use Asana to track my deliverables, and the upside of this is that | get a deliverable
calendar, along with notifications when deadlines are approaching. | believe that this
approach will help me to deliver every module well and maximise my potential to score high
marks.

Reflective Journal

Name: Niall Quinn
Programme: BSCHE SD
Student Number: X13108727
Month: October

Achievements
This month | completed the Project proposal deliverable and the Requirements
Specification.

Reflection

I am happy with how this stage has gone. These were quite big documents and finding
time to complete them has been difficult. However, | am very happy to have worked through
the requirements specification putting a lot of thought into the implementation of my project. |
feel very ready now to being the coding phase.

Improvements

Again, time management is the hard part this year. With a full time job at a growing
startup, it is not easy to juggle all. | am overall happy with my time management but of course
this could be improved.

Reflective Journal

Name: Niall Quinn
Programme: BSCHE SD
Student Number: X13108727
Month: November

Achievements

During November, | began to work on the codebase of the application. | am very happy
with the progress made during this month, as | now have a working application. It is now
possible to create an Admin user, and log in as this user. It is now possible for an Admin user to
create a customer. It is possible for a Customer to log in. The customer is greeted with a view
which lists all of the news items for the customer. These items are sandboxed as per the
multi-tenancy requirement. The customer admin can add, edit and delete news items. The
news items are created using a WYSIWYG editor..

Next Steps
| will continue to flesh out the code base, working towards a working prototype for my
interim presentation.

Issues

| have not yet met with my project supervisor, Padraig deBurca. We had scheduled to
meet initially, and | had to cancel a few hours before the meeting due to work commitments.
We scheduled to meet the following Monday at 5.30. | arrived 10 minutes before the scheduled
time and Padraig was not in the Associate faculty room. | emailed Padraig and waited until 7pm,
but left at that point with no reply. Padraig later emailed me apologising that we had ‘missed
each other’ and we set about rescheduling. Since this contact | have not received a response
from Padraig to my emails. Another student has told me Padraig is ill, but | have not received
this information first hand

Reflective Journal

Name: Niall Quinn
Programme: BSCHE SD
Student Number: X13108727
Month: December

Achievements

| presented my mid term presentation to Padraig de Burca and Eugene McLaughlin. | was very
happy with how the presentation went, and | feel | did well to show the potential of my idea and
how much progress | have made to date. | was awarded a mark of 21.75/25, which | am very
happy with. | met with my supervisor Padraig de Burca and we spoke about my presentation
and my plans for development.

Next Steps

| have exams coming up so | will be shifting focus to those for the time being. | will be keeping
my mind on my project and thinking about solutions to the various technical challenges that lie
ahead.

Issues
| encountered no issues in December.

Reflective Journal

Name: Niall Quinn
Programme: BSCHE SD
Student Number: X13108727
Month: January

Achievements
January was a tough month for me. | fell ill the week after christmas which severely disrupted
my work and study for exams.

Next Steps
February will mark the return to heavy work on my project. | have a lot to do to catch up on my
project plan.

Issues

Due to my illness | had to spend some time seeking a deferral of the christmas sitting exams.
This caused some stress but all was resolved thankfully.

Reflective Journal

Name: Niall Quinn
Programme: BSCHE SD
Student Number: X13108727
Month: February

Achievements

In february | implemented the Customer and introduced multi tenancy to the platform. | worked
on the styling of the entire platform and got closer to the final look and feel that | was after. |
began work on the iOS and Android designs before the real work begins on those platforms. |
implemented the image uploader for the post. | met with my supervisor Padraig De Burca. We
spoke about my progress and if my project plan was moving as expected.

Next Steps

In March | plan to implement the Theme, Bio and Calendar items. These pieces should be
quicker to develop as | am learning rails and feel more comfortable as | go along.

Issues
I ran into a few bugs during this period.

Reflective Journal

Name: Niall Quinn
Programme: BSCHE SD
Student Number: X13108727
Month: March

Achievements

In March | added the functionality to edit the theme for the customer. This was a piece that was
daunting to me, but | was pleasantly surprised when my solution worked as expected. | began
work on the mobile applications.

| scheduled an appointment to meet with my supervisor, Padraig de Burca. However he was ill
and we rescheduled for April.

Next Steps

In April my plan is to flesh out the mobile applications fully. | am more experienced with mobile
applications so | expect this will go quite smoothly. The only possible stumbling block will be
integrating the theme in a satisfactory way.

Issues
Again, there were no real issues to report in March.

Reflective Journal

Name: Niall Quinn
Programme: BSCHE SD
Student Number: X13108727
Month: April

Achievements

In April | completed the functionality in both mobile applications and fully integrated them with
the API. | prepared applications for testing and delivered to testers. | used a google form to
gather the responses from the testers. | met with my supervisor, | had some questions about
my project and my mind was put to ease. | am feeling good about my progress. The application
is now deployed live on the internet and working as expected.

Next Steps
In May | need to finish the technical document and prepare my presentation.
Issues

Reflective Journal

Name: Niall Quinn

Programme: BSCHE SD
Student Number: X13108727
Month: May

Achievements
| finished the technical document and presentation slides. | finished the final pieces of the
product in the codebase and deployed the final version to Heroku.

Next Steps
Wait for results :)

Issues

Appendix 3 - Usability Questionnaire

This questionnaire was posed to the testers in the form of a Google Form. | have extracted the
questions to text form for easier viewing. The form can be viewed at:
https.//goo.gl/forms/IKWh2KQfD2siGCU72. Results can be seen in section 4.3

RFBase Usability Testing

RFBase is a marketing platform for racing drivers. The product consists of a backend platform for
adding and managing content, and iOS and Android applications for users to consume the
content. The types of content include:

- News ltem
- Title, body, Header Image and Square Image
- Bio
- Driver Info
- Social and website links
- Career details
- Calendar
- Events with Name, Date, Description and Image (Track Map)
- Media
- Image + Caption

The mobile apps are white labeled, and implement the theme which is configurable on the
backend platform. The theme allows the user to choose the Primary, Inverse Primary, Primary
Text and Secondary Text colours.

Thank you for taking the time to use the product and thanks in advance for your feedback. Feel
free to play around and change some content and view that in the mobile application. Please
bear in mind that there are other testers in this session, so please don't delete everything.

Your Info

Name:

Gender:

Profession:

Company you work for:

Age Range:

What is your primary device used for consuming online information:

Platform

Was it immediately obvious what type of content was presented to you on landing?
Click around, take some time to navigate around the platform. You can:

- Add, Edit, Remove News items

- Add, Remove Media Iltems

- Modify the Driver Bio

- Add, Edit, Remove Calendar ltems

- Modify the App Theme

https://goo.gl/forms/IKWh2KQfD2sjGCU72

Read the following statements and on a scale of 1to 5 mark how much you agree. (11 do not
agree, 5 | fully agree)

The site navigation is effective

It is clear which Items on the platform on which | can perform a DELETE operation

It is clear which ltems on the platform on which | can perform an EDIT operation

It is clear which Items on the platform on which | can view detail

The WYSIWYG (What you see is what you get) editor is a good addition for styling text in
News and Bio

| find the site aesthetically pleasing

Feedback - Please supply any feedback

Mobile Application

The mobile app exposes all of the content created on the backend platform to the fans.
It is clear which sections are available and how to navigate to each section

It is clear how to show the detail for a news item

The social links on the bio page are a good addition

The layout of the media page is user friendly.

| find the app aesthetically pleasing

The theming engine is a good addition to the application

Feedback - Please supply any feedback

Appendix 4 - Showcase Poster

S Nationa

dationa : .

College Niall Quinn .
Ireland BSHCE Computing

ot

[~
<>
=Y b

EL_:IIRFBase

RFBase is a marketing platform for the modern Race Driver. Reach
your fanbase through your personalized iOS and Android
Applications, right from the App Store!

Add Content Using Our Secure
Admin Platform.

Kepp Your Fans Interested With Apply YOUR Brand Using Our
Rich Media. Theme Engine

TECHNOLOGIES

- ’
MAeons @ 5] Heroku

i0S an>30I2 PostgreSQL

HTML LSS 45

BER & swift é Java

