
	
	
	
	
	
	
	

BSc	in	Computing	
2016/2017	

	
	
	

Conor	Breen	
X13316381	

conor@breen.ie	
	
	
	
	

	
	
	

OpenSesamessage	Smart	Home	Entry	System	

Technical	Report	
	
	
	
	
	

Table	of	Contents	
1	 Executive	Summary	..	6	
2	 Introduction	...	7	
3	 Background	&	research	..	8	

Researched	methods	..	8	

Pin	code	entry	..	9	
RFID	entry	...	9	
Smartphone	entry	..	10	

Research	conclusion	...	10	

development	of	an	application	..	17	

Recap	 19	

4	 Aims	..	20	
5	 Technologies	..	21	
Hardware	..	21	
Software	...	23	
Frameworks/languages	..	23	

Brief	how	the	software	will	be	used:	..	23	

6	 Full	Project	Concept	Breakdown	..	25	
7	 Structure	..	26	
8	 System	..	27	
Requirements	...	27	
Functional	requirements	..	27	

Requirement	1	Registration	...	27	

Requirement	2	Password	Reset	...	29	

Requirement	3	Add	Users	..	31	

Requirement	4	Open	device	(message)	...	32	

Requirement	5	Open	device	(key)	..	34	

Requirement	5	Get	device	status	...	36	

Requirement	6	Password	Reset	...	38	

Non-Functional	Requirements	...	40	
Multi-platform	support	..	40	

User	requirements	...	41	

Availability	requirement	...	41	

Security	requirement	...	42	

Reliability	requirement	...	42	

Maintainability	requirement	..	42	

Extendibility	requirement	..	42	

	 OpenSesamessage Technical Report	

Reusability	requirement	...	43	

9	 Design	and	Architecture	...	44	
Implementation	..	44	
Web	application	implements	...	44	

User	account	creation	..	45	

Granting	access	to	users	...	46	

authenticate	user	...	47	

mailer	implementation	...	50	

password	reset	system	implementation	..	52	

raspberry	pi	status	update	...	53	

Open	system	...	56	
Raspberry	pi	image	...	58	

10	 Prototype	creation	...	60	
Door	creation	...	60	
Device	setup	...	62	

11	 Graphical	User	Interface	(GUI)	Layout	...	64	
Opensesamessage.com	..	64	
homepage	..	64	

mobile	device	...	65	

Sign	in	66	
mobile	device:	..	66	

Registrations	...	67	
User	registration	GUI	..	67	

mobile	device	...	68	

Add	users	..	68	
	 68	
mobile	device	...	68	
Contact	GUI	..	69	

mobile	device:	..	69	

Telegram	GUI	..	70	
Application	GUI	..	71	

Web	GUI	...	71	

12	 Testing	..	73	
Overview	..	73	
Unit	Testing	..	73	
Customer	testing	..	80	

13	 Market	research	...	85	
Online	survey	..	85	

Questions	and	results	...	85	

	 OpenSesamessage Technical Report	

Question	1:	...	86	

Question	2:	...	87	

Question	3:	...	88	

Question	4:	...	89	

Question	5:	...	90	

Question	6:	...	91	

Question	7:	...	92	

Question	8:	...	93	

Question	9:	...	94	

Question	10:	...	95	

14	 survey	conclusion	...	96	
15	 Conclusions	..	97	
Milestones	and	Hurdles	..	97	

16	 Further	Development	&	Research	..	99	
17	 Closing	Statement	..	100	
18	 References	..	101	
19	 Appendix	..	102	
Monthly	Journals	..	102	
My	Achievements	...	102	
My	Reflection	...	102	
Intended	Changes	...	103	
Supervisor	Meetings	...	103	
My	Achievements	...	103	
My	Reflection	...	104	
Intended	Changes	...	104	
Supervisor	Meetings	...	104	
Month	Overview	..	106	
My	Achievements	...	106	
My	Reflection	...	106	
Intended	Changes	...	107	
Supervisor	Meetings	...	107	
Month	Overview	..	107	
My	Achievements	...	107	
My	Reflection	...	108	
Intended	Changes	...	108	
Supervisor	Meetings	...	108	
Month	Overview	..	108	
My	Achievements	...	109	
My	Reflection	...	109	
Intended	Changes	...	109	

	 OpenSesamessage Technical Report	

Supervisor	Meetings	...	109	
Month	Overview	..	110	
My	Achievements	...	110	
My	Reflection	...	110	
Intended	Changes	...	110	
Supervisor	Meetings	...	111	
Other	Material	Used	...	111	

	 OpenSesamessage Technical Report	

1 Executive	Summary	
OpenSesamessage	uses	multiple	technologies	to	provide	a	cross-platform	solution	to	
smart	home	entry.	Working	off	the	concept	of	usability	and	utilizing	a	peoples	almost	
universal	knowledge	of	messenger	services.	OpenSesamessage	aims	to	provide	a	smart	
home	security	solution	with	ease	of	use	and	security	as	paramount.	
	
Built	using	a	ruby	on	rails	web	application	to	allow	simple	user	integration	with	the	
service,	and	intuitive	account	management.	The	popular	messaging	service	telegram	
which	boasts	high	security	and	exemplary	encryption	as	standard	and	the	raspberry	pi	
to	offer	an	easy	to	use,	safe	and	affordable	solution	to	smart	home	entry.	
	
OpenSesamessage	is	a	fully	functioning	smart	home	entry	system	for	the	future,	
allowing	for	keyless	entry	into	buildings,	or	containers	with	the	use	of	a	smartphone.	Its	
key	features	include:	
	

• Simple	to	use	web	application	with	usability	in	mind	
• Security	rich	features	to	allow	users	to	safely	manage	who	has	access	to	the	

service	based	on	their	unique	phone	number	
• A	simple	to	use	user	dashboard,	allowing	users	to	add	and	remove	sub	users	

when	needed.	
• Integration	with	the	popular	messaging	service	Telegram,	which	does	not	require	

the	installation	of	a	bulky	app	
• Security	features	such	as	the	option	to	receive	a	photo	of	the	person	entering	

the	building	sent	straight	to	the	admin’s	phone.	
• A	truly	keyless	entry	system,	without	the	need	for	easily	lost	items	such	as	RFID	

cards	or	key	fobs	

	
With	the	use	of	the	OpenSesamessage	users	can	grant	access	to	their	house,	building	or	
container	from	anywhere	in	the	world	via	the	internet.	This	negates	the	use	if	keys,	RFID	
cards	and	other	forms	of	entry.	All	you	need	is	an	internet	connection	and	the	
permission	of	the	owner.	This	service	could	benefit	almost	everyone.	Home	owners,	
who	regularly	forget	their	key.	Landlords	who	rent	out	their	property	are	no	longer	
required	to	arrive	with	a	key,	the	use	case	is	scenarios	are	infinite	
	
“open	sesamessage	brings	consumer	level	home	entry	and	home	security	to	the	modern	
era”	

2 Introduction	
The	concept	for	this	project	came	from	my	own	necessities.	In	a	family	of	seven	people,	
the	need	for	us	all	to	have	a	key	to	the	house	was	essential,	however	the	occurrences	of	
one	of	us	forgetting	a	key	and	returning	home	late	at	night	only	to	have	to	ring	someone	
to	get	up	and	answer	the	door	exposed	a	huge	flaw	in	our	home	entry	system.	Keys	are	
a	great	solution	for	home	entry.	But	like	all	things	keys	can	go	missing.	Leaving	a	key	out	
for	someone	raises	huge	security	concerns	as	it	means	anyone	can	pick	it	up	and	enter	
the	house	while	everyone	is	asleep,	or	out.	
	
With	this	system,	users	or	home	owners	can	create	an	account	on	the	
OpenSesamessage	web	application,	enter	their	phone	number	and	establish	themselves	
them	as	the	admin	user.	From	there	they	can	allow	access	to	other	simply	by	entering	
their	phone	numbers	on	the	dashboard.	They	can	monitor	who	is	coming	and	going	
through	the	system	and	seamlessly	add	and	remove	users	to	their	account	granting	and	
revoking	the	privilege	of	home	entry	through	the	web	application.	
	

	 OpenSesamessage Technical Report	

3 Background	&	research	
The	initial	research	for	this	project	came	late	in	December	as	the	project	I	was	
undergoing	raised	concerns	for	my	project	supervisor.	I	was	building	a	front-end	frame	
work	on	a	company’s	pre-existing	website,	and	it	was	becoming	apparent	that	this	
project	was	not	meeting	crucial	marking	scheme	topics.	So,	after	a	meeting	I	decided	to	
create	my	own	ruby	on	rails	project,	implement	front	end	framework	technologies	into	
it	and	implement	an	IOT	aspect	to	better	reflect	my	speciality.	
	
My	interest	in	the	project	became	apparent	when	one	night	I	forgot	my	key,	and	had	to	
ring	and	wake	somebody	up	to	let	me	in.	realising	a	flaw	with	the	system	we	have	for	
our	home	entry	and	the	observation	that	regardless	of	whether	I	have	a	key	or	not	I	
always	seem	to	have	my	phone	with	me	I	began	to	research	possible	solutions	to	my	
problem	

Researched	methods	
	
The	methods	I	researched	are	as	follows	
	

• RFID	entry		
• Keypad	Entry		
• Fingerprint	entry	
• Voice	recognition	entry			

	
These	systems	had	amazing	benefits	over	conventional	use	of	keys,	but	in	my	eyes,	they	
were	all	still	flawed.	Each	time	I	researched	a	possible	solution	I	found	fault	with	it,	and	
further	questioned	how	it	could	be	improved	upon.	Firstly,	I	considered	having	a	pin	
entry	system,	one	where	a	pin	code	would	be	established	and	distributed	amongst	
tenants.	
	
	
	
	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

	

Pin	code	entry	
(Image	1	–	pin	entry	flaw)	

	
	
using	a	pin	code	as	an	entry	system	seems	a	logical	choice	for	entering	a	building	
without	a	key	or	any	physical	means	of	entry.	However,	in	recent	times	it	has	become	a	
growing	concern	that	hackers	could	gain	access	to	these	systems	by	brute	forcing	their	
way	in	by	rapidly	cycling	through	all	code	possibilities	in	minutes.	
	
Provided	the	keypad	on	a	system	has	the	numbers	0	–	9,	the	possible	combinations	for	a	
4-pin	code	are	10	x	10	x	10	x	10	which	is	10,000	possibilities.	With	modern	technology,	
today	that	would	only	be	a	few	minutes	of	a	brute	force	attack.	
	

RFID	entry	
The	second	form	of	home	entry	I	researched	was	RFID	entry.	This	system	has	obvious	
benefits.	Including	heightened	security	over	pin	entry.	RFID	entry	allows	for	multiple	
unique	keys	to	be	used	and	each	having	encrypted	information	meaning	the	chance	of	a	
hacker	gaining	access	to	the	system	is	greatly	reduced	over	the	previous	case.	However,	
RFID	entry	is	very	expensive.	According	to	Ireland	leading	supplier	of	RFID	entry	systems	
the	cost	of	a	RFID	entry	system	can	upwards	of	one	thousand	euro.	This	proves	too	
expensive	for	the	average	home	user	at	the	consumer	level.	Considering	that	every	time	
a	new	user	is	needed	to	have	access	to	the	system	a	new	RFID	card	or	fob	is	required	to	
be	purchased.	
	
	

	 OpenSesamessage Technical Report	

	
	

Smartphone	entry	
(image	2	-		smartphone	entry	system)	

	
	
	
in	recent	years,	a	new	system	came	onto	the	market	form	a	company	called	August.	This	
system	allows	users	to	enter	their	homes	using	their	smartphones.	This	seemed	
promising,	the	ability	to	enter	a	home	or	office	building	using	your	smartphone	was	a	
great	idea.	But	further	research	revealed	some	major	flaws	in	the	system.	
	

• No	android	support	
• Substantial	price	point	
• Useless	without	internet	connection	

	
These	flaws	in	the	system	proved	too	great	a	barrier	for	most	consumers.	The	system	is	
only	compatible	with	IOS	users,	meaning	a	substantial	portion	of	the	potential	user	base	
is	already	alienated	from	the	get-go.	Another	barrier	is	the	fail	safes	in	the	system,	or	
lack	thereof.	If	the	system	experiences	a	loss	in	internet	connectivity	the	system	is	
rendered	useless.	Furthermore,	the	cost	of	almost	500	dollars	seems	too	great	for	
average	users.	
	
	

Research	conclusion	
It	became	evident	that	the	solution	that	I	wanted	was	not	available.	Before	I	set	out	on	
this	project	it	is	quite	clear	that	there	were	no	home	entry	solutions	that	accurately	met	
my	requirements.	So,	I	set	myself	to	the	task	to	create	a	smart	home	entry	system	that	
would	allow	users	simple	but	secure	access	to	their	homes,	while	providing	cross	
platform	support	and	keeping	the	solution	modular	so	that	it	would	work	in	conjunction	
with	traditional	methods	of	security.	This	was	the	starting	point	for	my	final	year	
project.	
	

	 OpenSesamessage Technical Report	

	
	
To	begin	planning	this	project	I	knew	I	needed	a	way	for	users	to	both	grant	access	and	
revoke	access	privileges	to	users	in	a	simple	and	intuitive	way.	For	this,	a	web	
application	was	required.	After	considering	options	such	as:	
	

• Django	
• .net	
• Ruby	on	Rails	

	
I	have	experience	with	these	three	frameworks,	and	each	framework	offers	certain	
benefits	to	the	project.	I	performed	some	research	into	which	one	would	suit	the	
project	the	most.	
	
Firstly,	ruby	on	Rails.	Ruby	on	rails	is	a	web	development	framework	designed	to	work	
with	the	ruby	programming	language.	Ruby	is	a	pleasant	language	to	write	in	and	has	a	
huge	active	community	contributing	to	its	success.	There	is	a	plethora	of	gems	or	plugins	
available	for	ruby	developers	to	use	that	are	open	source	and	quick	to	implement.	it	
offers	simple	generation	of	scaffolds	using	the	rails	command	line.	This	means	that	I	
would	be	able	to	generate	the	MVC	files	needed	and	simple	implementation	of	APIs	
using	rails’	powerful	package	system.	
	
(image	3	-		ruby	on	rails)	

	
	
the	second	choose	would	be	Django.	Django	is	a	high-level	Python	Web	framework	that	
encourages	rapid	development	and	clean,	pragmatic	design.	Built	by	experienced	
developers,	it	takes	care	of	much	of	the	hassle	of	Web	development,	so	you	can	focus	

	 OpenSesamessage Technical Report	

on	writing	your	app	without	needing	to	reinvent	the	wheel.	It’s	free	and	open	source.	
Django	offers	huge	benefits	for	programming	with	devices	such	as	the	raspberry	pi	as	it	
is	built	around	the	python	programming	language.	Making	it	easy	to	integrate	into	the	
project.	
	
the	third	option	is	Microsoft's	.net	framework.	Microsoft’s	.net	framework	is	not	so	
much	a	framework	but	rather	a	collection	of	application	programming	interfaces	and	
shared	library	code	that	can	be	used	to	develop	applications.	This	means	that	you	don’t	
have	to	write	the	code	from	scratch.	In	the	.net	framework	the	shared	libraries	of	code	
are	called	the	Framework	class	library,	or	FCL.	Buts	of	code	in	the	FCL	can	be	shared	and	
accessed	for	use	in	programming	a	whole	wide	variety	of	applications.	
	
For	the	purposes	of	this	project	I	have	decided	to	use	the	web	framework	Ruby	on	Rails	
for	its	rapid	content	creation	and	extemporary	package	management	system,	ruby	
gems.	
	
With	the	framework	for	the	web	application	chosen,	I	needed	to	research	what	use	of	
controller	devices	would	best	suit	this	project.	from	my	research,	I	narrowed	it	down	to	
three	possible	devices.	
	

• NannoPC-T3	
• Raspberry	pi	
• Asus	tinker	board	

	
Each	of	these	boards	runs	a	variation	of	the	Unix	operating	system,	which	was	a	
requirement	for	this	project	as	I	would	be	developing	on	mac	os,	this	would	mean	less	
teething	problems	down	the	line	when	new	features	and	new	packages	needed	to	be	
implemented.	For	this	project	to	remain	affordable	for	users	I	needed	to	pick	a	cost-
effective	solution,	but	it	also	required	adequate	processing	power	and	features	to	allow	
devices	to	be	attached	to	them	easily	and	effectively.	
	
	
	
	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

(image	4	-		NannoPC-T3s)	
	

	
The	NannoPC-T3	
NanoPC-T3	is	a	single-board	computer	developed	by	FriendlyArm.	It	houses	Samsung’s	
octa-core	SoC	clocked	@1.4GHz,	Mali	400	GPU	and	1GB	DDR3	RAM.	It	supports	microSD	
expansion,	Wi-Fi,	Bluetooth	and	an	on-board	microphone.	It	can	run	Android	5.1,	
Debian,	Ubuntu	Core	operating	systems.	It	is	equipped	with	8	GB	of	storage	and	is	
extensible	via	microSD	card.	It	includes	4	USB	2.0	ports,	HDMI	(1080p	support)	and	
Ethernet	support.	Other	multimedia	ports	include	LVDS,	LCD,	MIPI-DSI	and	the	3.5mm	
audio	Jack.	
NanoPC-T3	CPU	is	clocked	slightly	higher	than	Raspberry	Pi	3’s	CPU	but	features	the	
same	amount	of	RAM.	One	advantage	it	offers	over	the	Pi	3	is	that	it	comes	with	
an	inbuilt	storage	of	8GB.	Other	than	these	things,	both	are	pretty	neck-to-neck	with	
each	other.	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

	
	
(image	5	–	Asus	tinker	board)	

	
	
Perhaps	the	newest	entry	in	this	list,	Tinker	Board	is	a	single-board	computer	from	Asus.	
Along	with	a	nice	name,	it	also	comes	with	some	great	specifications.	On	the	hardware	
side	of	things,	it	is	equipped	with	a	quad-core	CPU	(Cortex	A17)	clocked	at	1.8	GHz,	Mail-
T764	GPU,	2GB	of	RAM,	4	USB	2.0	ports	and	an	HDMI	port.	The	Tinker	Board	comes	with	
a	custom	OS	named	TinkerOS,	which	is	based	on	Debian.	The	headline	feature	is	the	
support	for	4K	video	playback	for	videos	encoded	with	H.264	or	H.265.	It	also	
supports	Wi-Fi	and	Bluetooth	4.	
Tinker	Board	beats	Raspberry	Pi	3	by	miles	in	benchmarks,	thanks	to	its	more	powerful	
processor	and	an	extra	gig	of	RAM.	The	Tinker	Board	brings	support	for	4K	videos,	
whereas	Raspberry	Pi	3	model	B	supports	(only!)	1080p	videos.	It	also	brings	support	
for	192k/24bit	audio	playback	support	compared	to	Pi’s	48k/16bit.	It	consumes	a	
little	more	power	than	Pi,	but	that	shouldn’t	be	much	of	a	problem	because	it’s	very	
marginal.	The	Tinker	Board	is	all	good	but	is	available	only	in	the	UK,	as	of	now.	If	you’re	
willing	to	shell	out	almost	twice	what	you’d	otherwise	pay	for	Raspberry	Pi,	the	Tinker	
Board	can	be	a	great	board	to	tinker	around!	
	
	
	
	
	

	 OpenSesamessage Technical Report	

(image	6	-		Raspberry	Pi	B+)	

	
	
The	Model	B+	is	the	final	revision	of	the	original	Raspberry	Pi.	It	replaced	the	Model	B	in	
July	2014	and	was	superseded	by	the	Raspberry	Pi	2	Model	B	in	February	2015.	
Compared	to	the	Model	B	it	has	More	GPIO.	The	GPIO	header	has	grown	to	40	pins,	
while	retaining	the	same	pinout	for	the	first	26	pins	as	the	Model	A	and	B.	More	USB.	
We	now	have	4	USB	2.0	ports,	compared	to	2	on	the	Model	B,	and	better	hot	plug	and	
overcurrent	behavior.	Micro	SD.	The	old	friction-fit	SD	card	socket	has	been	replaced	
with	a	much	nicer	push-push	micro	SD	version.	Lower	power	consumption.	By	replacing	
linear	regulators	with	switching	ones	we’ve	reduced	power	consumption	by	between	
0.5W	and	1W.	Better	audio.	The	audio	circuit	incorporates	a	dedicated	low-noise	power	
supply.	Neater	form	factor.	We’ve	aligned	the	USB	connectors	with	the	board	edge,	
moved	composite	video	onto	the	3.5mm	jack,	and	added	four	squarely-placed	mounting	
holes.	
	
In	the	end,	I	decided	to	go	with	the	raspberry	pi	b+	model.	this	decision	is	mainly	
because	that	is	the	device	I	have	the	most	experience	with,	and	its	easy	integration	with	
IOT	sensor	devices,	wireless	abilities	with	the	use	of	a	simple	Wi-Fi	dongle	and	the	easy	
SSH	capabilities	for	wirelessly	editing	files	on	the	machine.	I	have	also	grown	
accustomed	to	the	Raspian	operating	system,	and	am	comfortable	with	developing	on	
it.	
	
	

	 OpenSesamessage Technical Report	

The	last	major	part	of	the	project	that	required	serious	investigation	before	work	could	
commence	was	the	method	in	which	the	communication	between	the	web	application,	
the	user’s	smartphone	and	the	IOT	controller	device	would	be	handled.	This	would	be	
the	most	pivotal	decision	for	the	project	as	it	would	have	to	have	many	features:	
	

• Cross	platform	
• Non-intrusive	
• Available	to	everyone	
• Free	to	use	

	
This	is	a	tall	order.	Luckily	the	options	for	such	a	system	are	plentiful,	however	there	was	
no	clear	‘best’	option.	I	had	to	decide	whether	to	develop	an	application,	use	a	pre-
existing	multi-platform	solution	or	find	an	application	that	ticked	these	boxed	and	
implement	it	in	such	a	way	as	to	have	it	perform	the	actions	I	required	it	to.	My	options	
were	as	follows.	
	
(image	7	–smartphone	os	breakdown)	

	
	
	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

development	of	an	application	
	
for	a	long	time	this	was	what	I	considered	to	be	the	best	option.	However,	this	would	
require	the	development	of	an	application	that	worked	on	most	if	not	all	the	operating	
systems	currently	being	used	by	smartphones.	Further	research	revealed	that	creating	a	
smartphone	app	that	would	work	on	all	systems	would	prove	difficult.	It	became	
apparent	that	in	order	to	have	a	truly	cross	platform	application	to	handle	the	
requirements	of	the	project	I	would	have	to	develop	multiple	applications	using	multiple	
languages.	Something	that	would	have	gone	way	and	beyond	the	scope,	and	time	of	this	
project.	
	
the	next	option	was	to	use	an	IOT	development	tool	for	android	application.	Blynk	is	a	
new	platform	that	allows	you	to	quickly	build	interfaces	for	controlling	and	monitoring	
your	hardware	projects	from	your	iOS	and	Android	device.	After	downloading	the	Blynk	
app,	you	can	create	a	project	dashboard	and	arrange	buttons,	sliders,	graphs,	and	other	
widgets	onto	the	screen.	Using	the	widgets,	you	can	turn	pins	on	and	off	or	display	data	
from	sensors.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

(image	7	-		Blynk	architecture)	

	
	
	
Blynk	was	perfect	for	my	purposes,	except	for	one	major	flaw,	the	cost.	Blynk	is	a	paid	
service.	They	do	however	offer	a	free	service,	but	it	would	not	have	met	my	
requirements.	To	get	the	service	I	required	would	have	cost	me	at	minimum	$199	
dollars	a	month	or	$1990	a	year,	and	for	a	college	project	of	this	scale	this	proved	not	
feasible	for	my	purposes.	
	
Finally,	after	extensive	research	I	found	the	solution.	A	messenger	service	called	
Telegram.	
	
	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

	
(image	8	-	Telegram)	

	
	
Telegram	is	a	messaging	app	with	a	focus	on	speed	and	security,	it’s	super-fast,	simple	
and	free.	You	can	use	Telegram	on	all	your	devices	at	the	same	time	—	your	messages	
sync	seamlessly	across	any	number	of	your	phones,	tablets	or	computers.	
With	Telegram,	you	can	send	messages,	photos,	videos	and	files	of	any	type	(doc,	zip,	
mp3,	etc.),	as	well	as	create	groups	for	up	to	5000	people	or	channels	for	broadcasting	
to	unlimited	audiences.	You	can	write	to	your	phone	contacts	and	find	people	by	
their	usernames.	As	a	result,	Telegram	is	like	SMS	and	email	combined	—	and	can	take	
care	of	all	your	personal	or	business	messaging	needs	
	
telegram	is	the	perfect	service	for	this	project.	it	is	widely	used	across	all	popular	
platforms.	There	would	be	no	learning	curve	for	this	application	as	everyone	has	used	a	
messenger	service	before.	Telegram	has	an	open	api	allowing	for	development	on	the	
raspberry	pi,	python	support	and	ruby	support.	This	would	be	the	final	piece	of	the	
puzzle.	
	

Recap	
Recap	of	what	options	I	picked	for	my	project	from	the	research	conducted:	

Ø Chosen	web	framework:	Ruby	on	Rails		
Ø Chosen	IOT	device:	Raspberry	Pi	B+	
Ø Chosen	Application:	Telegram		

	
	

	 OpenSesamessage Technical Report	

4 Aims	
The	aim	of	this	project	is	to	create	a	smart	home	entry	system	using	IOT	technologies.	
There	are	a	number	of	solutions	on	the	market,	however	there	are	no	cross	platform	
solutions	that	utilise	already	established	applications	that	require	little	to	no	user	
experience	to	operate.	The	solutions	on	the	market	already	such	as	RFID	and	PIN	entry	
systems	are	not	capable	of	adding	and	removing	users	easilty	and	effectively.	there	is	
either	a	cost	to	allowing	new	users	or	having	to	make	the	entry	process	the	same	for	
everyone	making	the	device	succeptible	to	hacking.	
	
This	device	will	tackle	and	hopefilly	improve	upon	the	devices	present	today.	With	Open	
Sesamessage	I	hope	to	allow	for	a	cost	effective	home	entry	system	available	to	
everyone	

	 OpenSesamessage Technical Report	

5 Technologies	

Hardware	
	

Ø Raspberry	Pi	Model	B+	
o The	raspberry	pi	b+	will	be	used	as	a	controller	station	for	this	project's	

main	functions.	It	will	be	responsible	for	opening	and	closing	the	lock	
o Responsible	for	taking	pictures	of	who	is	entering	the	building	
o Filtering	out	unknown	users	who	try	to	gain	disallowed	access	

	

	
	
	 802.11n	Wi-Fi	dongle:	
	 	 allows	the	device	to	connect	wirelessly	to	the	internet.	
	

	

	 OpenSesamessage Technical Report	

	
	

Ø servo	motor	
o Servos	are	controlled	by	sending	an	electrical	pulse	of	variable	width,	

or	pulse	width	modulation	(PWM),	through	the	control	wire.	
o The	control	wire	is	connected	to	the	raspberry	pi	and	controlled	using	

python	
o The	motor	will	be	used	to	open	the	lock	on	the	door	
o The	model	used:	TowerPro	mg995	

Ø 	
Ø Webcam	

o The	webcam	will	be	used	to	take	photos	on	request	of	the	admin	user.	
This	will	allow	them	to	see	who	is	coming	and	going	through	their	
property.	It	will	also	alert	them	the	malicious	intent.	

o Model	used:	Microsoft	LifeCam	Cinema	720p	

	

	

	 OpenSesamessage Technical Report	

Software	
List	of	software	being	used:			

Ø Atom	
Ø OSX	Terminal		
Ø Github	
Ø Waffle.io	
Ø Travis	
Ø nano	

	

Frameworks/languages	
List	of	frameworks/programming	languages	used:	
	

Ø Ruby	on	Rails	
Ø Ruby	
Ø Python	
Ø Lua	
Ø HTML	
Ø CSS	
Ø Tg:	telegram	API	
Ø PostgreSQL	

	
	

Brief	how	the	software	will	be	used:	
The	technical	difficulty	of	this	project	is	spread	out	into	three	main	parts.	The	creation	of	
the	web	application	using	ruby	on	rails,	the	establishment	of	the	Raspberry	Pi	and	its	
devices	and	the	implementation	of	Telegram’s	api	to	allow	communication	between	the	
web	application	and	the	IOT	device		
	
Ruby	on	rails	
Ruby	on	Rails	will	be	used	for	the	following:	
	

Ø a	base	for	the	admin	user		
Ø facilitate	permission	of	new	users		
Ø revoke	permissions	of	users	
Ø contact	service	
Ø communicate	with	raspberry	pi	

	 OpenSesamessage Technical Report	

	
python	
What	I	will	use	it	for	is	the	following:	

Ø IOT	functionality:	this	is	the	programming	language	that	I	will	use	to	operate	the	
sensor	devices	and	motors	connected	to	the	raspberry	pi	

Lua		
Lua	is	a	lightweight	scripting	language,	I	will	use	it	for	is	the	following:	

Ø Interpretation	of	messages:	I	will	use	Lua	to	read	the	messages	sent	by	users	
and	perform	actions	based	on	their	commands.	Such	as	triggering	the	python	
code	to	open	the	door	upon	request	

Ø Get	commands:	to	get	commands	from	the	web	application	adding	new	users	to	
the	approved	list,	or	to	remove	users	from	the	list	

Ø Take	photos:	to	trigger	python	program	to	take	photo,	then	retrieve	the	image	
from	the	file	directory	and	send	it	back	to	the	user	

	
HTML/CSS/Bootstrap	
What	I	will	use	it	for	is	the	following:	

Ø Styling	of	the	web	application	

	
	
Telegram	
What	I	will	use	it	for	is	the	following:	

Ø Communication:	this	cross-platform	messenger	service	will	act	as	the	basis	for	
all	communication	between	the	web	application	and	the	IOT	device,	as	well	as	
users	and	the	raspberry	pi	

	
	

	 OpenSesamessage Technical Report	

6 Full	Project	Concept	Breakdown	
	
The	entire	concept	of	the	project	is	to	create	a	home	entry	system	that	it	is:	
	

• Security	focused	
• Easy	to	setup		
• Easy	to	use	
• Intuitive	
• Works	in	conjunction	with	traditional	methods	
• Unobtrusive	
• Cost	effective	

	
	

	 OpenSesamessage Technical Report	

7 Structure	
The	structure	of	this	document	is	as	follows.	I	will	describe	the	system	and	its	
architecture	pointing	out	its	main	functionalities	and	requirements,	including	the	
projects	non-functional	requirements.	I	will	then	discuss	the	projects’	design	and	
architecture	describing	the	relationships	between	the	web	application,	the	
OpenSesamessage	device	and	the	users	smartphone.	I	will	discuss	the	creation	of	the	
prototype	and	the	process	in	which	I	created	the	door	and	the	integration	of	the	IOT	
device	into	the	prototype.	I	will	then	discuss	the	Graphical	User	Interface	in	which	the	
user	will	operate	the	system,	testing	of	the	application	and	the	market	research	
performed.	And	Finally	the	conclusion	

	 OpenSesamessage Technical Report	

8 System	

Requirements	
	
The	requirements	specification	will	outline	several	variables	that	the	user	will	achieve	
while	using	the	system,	they	are	as	followed:	
	

1. The	user	will	be	aware	of	the	workings	of	the	system,	and	how	to	control	the	
device	within	10	minutes	of	introduction	

2. The	user	will	understand	the	simple	commands	
3. The	user	will	be	able	to	add,	update	and	remove	allowed	people	on	their	device		
4. New	users	will	share	the	first	two	requirements		

	

	

Functional	requirements	

Requirement	1	Registration	
This	is	the	registration	process	for	the	application	
Description	&	Priority	
This	process	however	trivial	is	essential	to	access	the	features	and	functionality	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Use	Case		

	 OpenSesamessage Technical Report	

Scope	
	
The	scope	of	this	use	case	is	to	handle	the	registration	process	
	
Description	
This	use	case	allows	the	user	to	create	an	account	entering	an	email,	password,	phone	
number	and	their	name		
	
Flow	Description	
Precondition	
This	use	case	is	called	into	action	when	the	user	enters	the	registration	screen.	From	
their	they	enter	their	details	and	submit	them	
Activation	
This	use	case	starts	when	the	user	registers	with	the	web	application	
Main	flow	

	 OpenSesamessage Technical Report	

1. The	system	accepts	the	user	information	and	creates	a	user	profile	in	the	
database	

2. The	User	creates	their	account	
3. The	user	receives	an	email	notifying	the	success	of	their	registration	
4. The	system	accepts	the	information	and	creates	a	database	entry	
5. The	admin	can	access	this	information	through	the	admin	panel	

Alternate	flow	
1. Administration	requests	user	information		

2. The	system	responds	to	the	request	
3. The	application	populates	the	screen	with	a	table	of	user	information	
	

Exceptional	flow	
1. The	system	encounters	an	error	

2. The	system	returns	an	error	message	to	the	user	
3. The	system	notifies	the	administrator	

	
Termination	
The	system	terminates	when	the	registration	process	is	complete	
	
Post	condition	
The	system	goes	into	a	wait	state	 	
	
	
	
	
	
	
	
	

Requirement	2	Password	Reset	
Description	&	Priority	
This	requirement	allows	the	user	to	reset	their	password,	instructions	will	be	sent	to	the	
users	email	address,	they	will	enter	a	password	reset	page	
Use	Case		
The	user	will	request	a	password	change,	and	the	system	will	update	the	password	entry	
in	their	information	
Scope	
The	scope	of	this	use	case	is	to	allow	the	user	to	change	their	password	
	

	 OpenSesamessage Technical Report	

Description	
This	use	case	describes	the	interaction	between	the	user	and	the	system	in	this	
application	requirement	
Use	Case	Diagram	

Flow	Description	
Precondition	
The	system	is	initialized	when	the	user	opens	the	password	reset	view	
	
Activation	
This	use	case	starts	when	a	requests	a	password	change	
	
Main	flow	

1. The	system	accepts	the	users	email	information	
2. The	user	requests	an	email	reset	link	
3. The	system	sends	a	password	reset	link	
4. The	user	proceeds	to	the	password	reset	view	
5. The	system	accepts	the	information	and	updates	the	database	

Alternate	flow	
1. The	system	cannot	find	user	email	

2. The	system	displays	an	error	message		
3. The	use	case	returns	to	its	initial	state	

	
	
Termination	
The	system	updates	the	database	

	 OpenSesamessage Technical Report	

	
Post	condition	
The	system	goes	into	a	wait	state	
	
	
	
	

Requirement	3	Add	Users	
Description	&	Priority	
This	requirement	allows	users	to	add	users	to	their	account.	These	users	will	be	stored	
in	the	database,	as	well	as	be	sent	to	the	device	to	be	stored	locally	
Use	Case		
The	user	will	add	the	users	from	their	user	dashboard	
	
Scope	
The	scope	of	this	use	case	is	to	allow	the	user	to	add	users	
	
Description	
This	use	case	allows	for	a	user	to	add	secondary	users	to	their	account,	these	names	and	
numbers	will	be	able	to	access	the	device	
Use	Case	Diagram	

	
	
Flow	Description	
	
Precondition	
The	system	is	initialized	when	the	user	enters	their	user	dashboard	view	
	
Activation	
This	use	case	is	activated	when	new	information	is	entered	into	the	fields	

	 OpenSesamessage Technical Report	

	
Main	flow	

6. The	system	accepts	the	new	user’s	information	
7. The	system	updated	the	user’s	database	entry	
8. The	system	sends	the	new	users	to	the	device	
9. The	user	gets	confirmation	
10. The	device	and	database	go	into	a	wait	state	

Alternate	flow	
4. The	system	encounters	an	error	

5. The	system	displays	an	error	message		
6. The	use	case	returns	to	its	initial	state	

	
Termination	
The	system	updates	the	database	and	device	
	
Post	condition	
The	system	goes	into	a	wait	state	
	
	

Requirement	4	Open	device	(message)	
Description	&	Priority	
The	requirement	allows	the	user	to	send	a	message	to	the	device	and	request	the	device	
to	open	
	
Use	Case		
The	user	message	the	device	using	a	popular	messaging	application	
	
Scope	
The	scope	of	this	use	case	is	to	allow	the	trigger	the	device	actuators	via	smartphone	
	
Description	
This	use	case	allows	the	user	to	message	the	device	and	request	it	open	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

Use	Case	Diagram	

	
	
Flow	Description	
	
Precondition	
The	precondition	is	created	when	the	user	has	the	number	for	the	device	
	
Activation	
The	use	case	is	activated	when	the	device	is	messaged	
	
	
	
Main	flow	

1. The	user	sends	a	message	to	the	device	
2. The	device	interprets	the	message	
3. The	system	activates	the	actuator	
4. The	device	goes	into	a	wait	state	

Alternate	flow	
1. The	system	interprets	the	message	

2. The	system	does	not	approve	of	the	message		
3. The	system	returns	a	message	of	disapproval	
4. The	device	goes	into	a	wait	state	

	
	
Termination	

	 OpenSesamessage Technical Report	

	The	system	will	return	a	message	
	
Post	condition	
The	system	goes	into	a	wait	state	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Requirement	5	Open	device	(key)	
Description	&	Priority	
The	requirement	allows	the	user	to	use	a	USB	key	to	trigger	the	actuator	and	open	
	
Use	Case		
The	user	inserts	the	USB	key	into	the	device	trigger	the	actuator	
	
Scope	
The	scope	of	this	use	case	is	to	allow	the	trigger	the	device	actuators	via	USB	
	
Description	
This	use	case	allows	the	user	insert	USB	the	device	and	request	it	open	
Use	Case	Diagram	

	 OpenSesamessage Technical Report	

	
	
Flow	Description	
	
Precondition	
The	precondition	is	when	the	device	is	on	
	
Activation	
The	use	case	is	activated	when	the	USB	is	inserted		
	
Main	flow	

5. The	user	enters	the	USB	
6. The	device	triggers	the	open	program	
7. The	device	activates	the	actuator	
8. The	device	goes	into	a	wait	state	

Alternate	flow	
5. The	system	cannot	interpret	the	command	

6. The	system	does	not	approve	of	the	command		
7. The	system	returns	false	
8. The	device	goes	into	a	wait	state	

	
	
Termination	
	The	system	opens	the	device	
	
Post	condition	

	 OpenSesamessage Technical Report	

The	system	goes	into	a	wait	state	
	
	
	
	
	

Requirement	5	Get	device	status	
Description	&	Priority	
This	requirement	allows	the	user	to	message	the	device	requesting	status	information		
	
Use	Case		
The	user	requests	information	via	message	
	
Scope	
The	scope	of	this	use	case	is	to	get	status	information	
	
Description	
The	user	messages	the	device	requesting	information	such	as	CPU	usage,	ram,	and	core	
temperatures		
	
Use	Case	Diagram	

	
	

	 OpenSesamessage Technical Report	

Flow	Description	
	
Precondition	
The	precondition	is	when	the	device	is	on	
	
	
Activation	
The	use	case	is	activated	when	the	user	requests	device	status		
	
Main	flow	

1. The	user	requests	status	readings		
2. The	device	returns	sensor	readings	
3. The	device	goes	into	a	wait	state	

Alternate	flow	
1. The	request	is	not	sent	by	an	approved	number	

2. The	system	responds	with	a	disapproval	message		
3. The	system	returns	false	
4. The	device	goes	into	a	wait	state	

	
	
Termination	
The	system	returns	information	
	
Post	condition	
The	system	goes	into	a	wait	state	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

	
	

Requirement	6	Password	Reset	
Description	&	Priority	
This	reqirement	allows	the	user	to	message	to	device	and	request	an	image	to	be	taken,	
and	responded	to	that	message	with	the	.jpeg	
	
Use	Case		
The	user	will	request	an	image,	the	system	will	execute	the	image.py	program	to	take	a	
picture,	save	the	image	and	the	Lua	will	respond	to	the	user	with	the	image.	
	
Scope	
The	scope	of	this	use	case	is	to	allow	the	user	to	request	an	image,	have	the	device	take	
it	and	respond	with	a	multi	media	message	containing	the	captured	image	
	
Description	
This	use	case	describes	the	interaction	between	the	user	and	the	raspberry	pi	in	this	
application	requirement	
	
Use	Case	Diagram	

	
	
	
Flow	Description	

	 OpenSesamessage Technical Report	

	
Precondition	
The	system	is	initialized	when	the	user	messages	the	device	requesting	an	image	
	
Main	flow	

11. The	user	requests	an	image	
12. The	system	interprets	the	message		
13. The	system	responds	with	an	image	to	the	user	

	
Alternate	flow	
	

7. The	image	fails	

8. The	system	responds	with	an	error	message		
9. The	use	case	returns	to	its	initial	state	

	
	
Termination	
The	system	responds	to	the	message	
	
Post	condition	
The	system	goes	into	a	wait	state	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

	

Non-Functional	Requirements	

Multi-platform	support	
This	performance	is	measured	by	the	accessibility	to	as	many	users	as	possible.	The	web	
application	allows	for	access	for	anyone	with	a	modern	web	browser,	while	the	
telegram	application	allows	for	access	to	anyone	with	a	smart	phone	running	one	of	the	
main	operating	systems		
	
Supported	web	browsers	

Ø Microsoft	edge	
Ø Google	chrome	
Ø Firefox	
Ø safari	
Ø internet	explorer		

supported	messenger	platforms	
iOS	

Ø android	
Ø Microsoft	windows	phone		
Ø OSX	
Ø all	main	Linux	distributions	

	
	

the	cross-platform	aspect	of	this	project	is	paramount.	The	main	non-functional	
requirement	for	this	project	is	to	allow	users	access	to	the	project	regardless	of	the	
systems	that	they’re	running.	
	
	
	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

User	requirements	
	
The	user	requirements	are	as	follows:	

Ø The	user’s	requirements	are	their	smartphones.	It	must	have	one	or	more	of	
these:	

Ø Android	smartphone	
Ø IOS	smartphone	
Ø Microsoft	Windows	smartphone	
Ø Chrome,	Firefox,	safari	
Ø Desktop	or	laptop	with	mac	os	
Ø Desktop	or	laptop	with	windows		
Ø Desktop	or	laptop	with	Linux	

	
Ø The	user	must	have	the	telegram	app	installed	on	one	of	the	above	devices	
Ø The	user	must	have	a	telegram	account	
Ø The	raspberry	pi	connected	with	stepper	motor	and	webcam	

	

Availability	requirement	
requirement	1:	web	application		
	

Ø This	requirement	would	be	a	web	application	accessible	to	anyone	using	any	of	
the	main	web	browsers	

Ø This	requirement	would	be	of	the	maximum	uptime	possible	with	modern	web	
hosting.	Digital	ocean	offers	multiple	servers,	with	load	balancing	which	will	
contribute	to	maximum	uptime	

Ø It	would	also	have	to	offer	control	of	the	users	and	they’re	sub	user’s	
information.	I.e.	the	user’s	dashboard	

requirement	2:	IOT	availability	
	

Ø The	availability	of	the	raspberry	pi	is	a	requirement	
Ø The	uptime	of	the	raspberry	pi	will	be	based	mainly	on	the	network	capabilities	

of	the	user’s	location.	
Ø The	network	provided	by	the	user	will	have	to	be	consistent	for	the	server	to	

remain	open	for	incoming	messages	from	telegram	
Ø The	python	programs	will	need	to	be	written	with	error	handling	so	that	

interrupts,	such	as	accidental	keyboard	interrupts	will	not	halt	the	program		

	 OpenSesamessage Technical Report	

Ø The	Lua	program	will	have	to	be	written	in	such	a	way	that	it	will	be	able	to	
recover	from	any	interruptions		

Ø The	system	is	required	to	run	for	an	indefinite	amount	of	time,	there	will	have	to	
be	systems	in	place	to	clear	the	cache	and	remove	the	images	taken	once	sent	
to	the	user	to	avoid	filling	the	system’s	memory	

requirement	3:	telegram		
	

Ø This	requirement	is	for	the	user	to	have	a	unique	phone	number	to	create	a	
telegram	account	if	they	do	not	already	have	one		

Ø The	network	capabilities	of	the	user’s	phone	is	another	requirement,	the	need	to	
be	able	to	access	the	telegram	servers	is	an	important	requirement	

Ø The	ability	to	use	telegram	outside	of	the	scope	of	this	project	as	a	messenger	
service	

	

Security	requirement	
Security	for	this	project	is	an	important	aspect	for	the	scope	of	it.	The	users	need	to	be	
able	to	send	messages	securely	between	the	IOT	device	and	their	phones.	One	of	the	
main	reasons	I	chose	to	use	telegram	is	because	of	its	exemplary	encryption.	Telegram	
offers	end	to	end	encryption	meaning	that	the	only	devices	capable	of	decrypting	the	
messages	are	the	device	that	sent	the	message	and	the	device	that	received	the	
message	
	

Reliability	requirement	
This	requirement	is	straight	forward,	the	Tg	server	needs	to	be	called	and	once	running	
and	the	tgl	repository	will	maintain	it	until	the	safe	quit	function	is	called.	
The	servers	also	need	to	be	running	and	accessible	to	anyone	on	the	web	
	

Maintainability	requirement	
The	maintaibality	of	the	project	will	be	managed	through	Github.	Updates	to	the	
repository	will	be	able	to	be	called	using	the	git	command	git	pull	in	the	terminal.	This	
will	merge	the	updated	files	in	the	Github	repository	with	the	local	files	on	the	machine	
Telegram	offers	updates	as	standard,	as	does	its	well-maintained	API.	

Extendibility	requirement	
the	main	code	for	this	project	is	easily	updated	and	extended.	The	project	would	benefit	
from	a	plethora	of	new	functionalities.	
	

	 OpenSesamessage Technical Report	

Reusability	requirement	
The	code	for	this	project	will	work	on	multiple	raspberry	Pi	devices,	it	just	requires	to	be	
setup	with	a	new	number.	
	
	
	

	 OpenSesamessage Technical Report	

9 Design	and	Architecture	
In	this	section	I	will	describe	the	design	and	architecture	of	the	project,	including	the	
web	application,	the	raspberry	pi	IOT	device	and	the	smartphone	application	required	to	
operate	the	system.				

Implementation	
Each	implementation	of	this	project	will	span	throughout	the	web	application,	the	
telegram	functionality	and	the	working	project.	along	with	images	and	code	snippets.	
	

Web	application	implements	
This	section	of	the	implementation	will	cover	the	overall	web	application	systems,	these	
systems	are	crucial	to	the	running	of	the	website	and	are	linked	to	many	of	the	
functional	requirement’s	listed	and	documented	above.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

User	account	creation	
Creates	a	user	account,	action	mailer,	stores	in	database	

Ø Name:	used	to	track	username,	allows	User	mailer	to	address	the	user	by	their	
name	when	getting	in	contact	

Ø email:	This	used	in	conjunction	with	the	user_id	is	the	user’s	unique	identifier.	
Email	is	used	by	the	mailer,	it	plays	an	important	part	in	password	reset	
functionality	

Ø password:	the	password	is	encrypted	using	becrypt	through	the	devise	gem	
Ø sign	up:	triggers	a	user	save	function	which	triggers	user	mailer.	Saves	the	user	

to	the	database	

	
	
	
	
	
	
	
	
Implementation	&	code	snippets:	
At	the	account	creation,	the	User	controller	handles	saving	the	user	and	runs	through	
the	sign-up	code	process.	
	

class User < ActiveRecord::Base
 # Include default devise modules. Others available are:
 # :confirmable, :lockable, :timeoutable and :omniauthable
 devise :database_authenticatable, :registerable,
 :recoverable, :rememberable, :trackable, :validatable

 has_many :authorised_users
 has_many :numbers

 after_create :send_admin_mail
 def send_admin_mail
 UserMailer.send_welcome_email(self).deliver
 end
end

	
	

	 OpenSesamessage Technical Report	

	
	
	
	
after	the	account	is	created	the	user	is	designed	an	association	with	the	numbers	model.	
each	user	can	have	many	numbers	associated	with	it.	This	allows	for	the	user	to	add.	
Modify	and	delete	the	list	of	numbers	they	want	to	allow	access	to	the	
OpenSesamessage	service	
	
	

Granting	access	to	users	
Controls,	Maintains	and	Implements:	Large	blueprint	system	some	systems	will	be	
broken	down	and	detailed	in	sections,	this	section	will	detail	first	options	the	user	has	
access	to.	

Ø Add	number	function:	allow	the	user	to	add	numbers	to	the	device,	these	
numbers	will	have	the	privileges	required	for	accessing	the	raspberry	pi	through	
the	telegram	messenger		

Ø Edit	function:	allows	the	user	to	update	phone	numbers	if	a	person	changes	
phone,	update	any	field	necessary	to	maintain	an	up	to	date	record	of	each	
permitted	number	

Ø Delete	function:	allows	the	administrator	user	to	delete	numbers,	this	revokes	
their	privileges	for	accessing	the	raspberry	pi	through	the	telegram	service.	This	
allows	for	granting	temporary	access	to	a	user	rather	than	lending	them	a	key.	

	
Implementation	&	Screenshots:	
Add	User:		
Allows	the	addition	of	new	numbers:	

	
	
Edit	User:	calls	the	edit	view,	and	provides	a	new	form	for	altering	records.	Also	
provides	a	delete	button	for	quick	and	easy	removing	of	numbers	from	the	system	

	 OpenSesamessage Technical Report	

Once	the	form	is	completed,	it	calls	upon	the	Number.update	function	to	alter	the	
active	record	entry	associated	with	the	number	
		

	
	
	
index	view:	the	index	view	allows	for	a	visual	representation	of	the	numbers	with	
privileges	required	to	access	the	raspberry	pi	through	telegram	opening	the	door	
	

	
	

authenticate	user	
Controls,	Maintains	and	Implements:		

Ø Add	number	as	authenticated	user:	allows	the	user	with	the	designated	phone	
number	to	access	the	service	

Ø On	create	function:	on	create	of	the	Number	record	a	rails	call	sends	a	message	
to	the	raspberry	pi	via	telegram	containing	the	user	details	

Ø Add	user	to	contacts:	the	incoming	telegram	message	is	interpreted	by	the	
raspberry	pi	device	

	
Implementation	&	Screenshots:	
Add	number	function:	is	an	on	create	event,	its	overall	function	is	to	grab	the	Number	
record	information	and	pass	it	through	telegram	to	the	raspberry	pi	
Its	first	function	is	to	create	the	number,	as	illustrated	above	
The	second	function	lies	in	the	on	create	function	of	the	Number	record,	that	sends	a	
message	via	telegram	
	

	 OpenSesamessage Technical Report	

	
	
	
	
	
	
	
	
def	create	
				@number	=	current_user.numbers.build(number_params)	
				TeleNotify::TelegramUser.find(1).send_message("#{@number.phone_number}	,	
#{@number.first_name}	,	#{@number.last_name}")	
	
				#	@number	=	Number.new(number_params)	
	
				respond_to	do	|format|	
						if	@number.save	
								format.html	{	redirect_to	@number,	notice:	'Number	was					successfully	created.'	}	
								format.json	{	render	:show,	status:	:created,	location:	@number	}	
						else	
								format.html	{	render	:new	}	
								format.json	{	render	json:	@number.errors,	status:	:unprocessable_entity	}	
						end	
				end	
		end	
	
as	you	can	see	above,	once	the	user	is	created	the	@number.phone	number,	
@number.first_name	and	the	@number.last_name	variables	are	passed	into	the	
telegram	TeleNotify	method	to	pass	these	arguments	onto	the	raspberry	pi	
The	message	is	interpreted	by	the	action.lua	code,	and	returns	a	cli	command	to	
add_contact.	Once	the	contact	is	added	to	the	raspberry	pi	it	will	have	the	permissions	
required	to	access	the	services.		
Note:	a	user	with	the	privileges	of	triggering	the	open-door	function	does	not	have	
access	to	the	camera	function,	this	feature	was	added	as	it	would	seem	a	security	
violation	to	have	anyone	able	to	access	the	camera.	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

function	on_msg_receive	(msg)	
				if	msg.out	then	
								return	
				end	
				if		(msg.from.print_name	==	"opensesamessage")	then	
												string	=	msg.text	
												number,	first_name,	last_name	=	string:match("([^,]+),([^,]+),([^,]+)")	
												add_contact	(number,	first_name,	last_name,	ok_cb,	false)	
				end	
end	
	
	
once	the	message	is	received,	the	function	on_msg_recieve	takes	in	the	new	message,	
checks	that	it	came	from	the	rails	application	
In	the	telegram	cli	console	you	can	see	the	message	being	received.	The	message	
contains	the	phone	number,	first	name	and	second	name.	
As	it	stands	this	string	contains	all	the	required	information	to	create	a	contact,	however	
it	is	one	string.	This	string	to	prove	useful	needs	to	be	converted	into	variables.	As	you	
can	see	in	the	code	above	this	is	done	with	the	number, first_name,	last_name	
string:match	("([^,]+),([^,]+),([^,]+)")	line.	This	separated	the	three	needed	variables	by	
the	“,”	delimitator.	
	

	
	
	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

mailer	implementation	
outlines	the	mail	response	required	for	a	users’	creation,	password	recovery	and	the	
queries	put	forward	using	the	contact.	
all	options	are	handled	using	the	user_mailer	model	within	the	rails	application,	the	
zoho	mail	SMTP	(simple	mail	transfer	protocol)	and	the	cloud	application	service	
cloudflare	
Controls,	Maintains	and	Implements:		

Ø Account	creation	mailer	–	user:	triggers	an	email	once	the	account	is	created	
emailing	the	user	welcoming	them	to	the	service.	

Ø Password	reset	mailer	–	user:	creates	a	password	reset	token	for	the	user,	and	
sends	them	an	email	using	this	token	to	allow	them	to	set	a	new	password.	

Ø Mailer	contact	–	user:	the	message	flow	for	the	web	application’s	contact	us	
form	responds	to	the	user’s	query	with	an	email	informing	them	of	the	received	
and	with	the	intent	to	reply	to	the	email	

Ø Mailer	contact	–	administrator:	the	message	flow	for	this	function	is	for	the	
administrator	account,	it	receives	the	email	containing	the	user	information	of	
the	person	querying	them,	and	allows	them	to	promptly	respond	to	the	
message.	

	
Implementation	&	code	snippets:	
Account	creation	mailer:	this	mailer	is	triggered	once	the	user	creates	an	account.	
Below	you	can	see	the	code	that	relates	to	the	welcome	mail	sent	to	the	user	once	their	
account	is	created	
	
class	UserMailer	<	ActionMailer::Base	
		default	from:	"hello@opensesamessage.com"	
			
		def	send_welcome_email(user)	
				@user	=	user	
				mail(:to	=>	user.email,	:subject	=>	"Welcome	to	opensesamessage.com")	
		end	
end	
	
furthermore,	the	mailer	is	called	into	action	once	someone	sends	a	message	through	the	
contact	us	form.	This	creates	a	new	record	using	the	contact	model	in	the	contact	form	
in	the	on	create	method	and	triggers	the	action	mailer.	
	
	
	
	
	

	 OpenSesamessage Technical Report	

	
class	ContactsController	<	ApplicationController	
		def	new	
			@contact	=	Contact.new	
		end	
		def	create	
				@contact	=	Contact.new(contact_params)	
				if	@contact.save	
						redirect_to	root_path,	notice:	'Thank	you	for	contacting	us.'		
				else	
							render	:new		
				end	
		end	
		private	
				#	Use	callbacks	to	share	common	setup	or	constraints	between	actions.	
				#	Never	trust	parameters	from	the	scary	internet,	only	allow	the	white	list	through.	
				def	contact_params	
						params.require(:contact).permit(:name,	:email,	:query)	
				end	
end	
	
the	mailer	is	called	into	action	to	trigger	emails	for	both	the	user	(the	person	submitting	
the	query)	and	the	system	administrator.	The	administrator	email	
hello@opensesamessage.com	is	handled	by	the	service	provider	zoho	mail.	The	code	for	
this	action	can	be	seen	below.	
	
class	ContactMailer	<	ActionMailer::Base	
		default	from:	"hello@opensesamessage.com"	
			
		def	send_contact_notification(contact)	
				@contact	=	contact	
				mail(:to	=>	'hello@opensesamessage.com',	:subject	=>	"New	contact	submitted")	
		end	
	
		def	send_ack_mail(contact)	
				@contact	=	contact	
				mail(:to	=>	contact.email,	:subject	=>	"Thank	you	for	contacting	us")	
		end	
end	
	

	 OpenSesamessage Technical Report	

	

password	reset	system	implementation	
outlines	how	the	password	reset	functionality	is	handled,	with	the	user		
Controls,	Maintains	and	Implements:		

Ø Reset	system:	allows	the	user	to	update	their	password	record	for	the	system,	
allowing	them	to	recover	an	account	if	they	forget	their	login.	

Ø Password	reset	view:	this	view	allows	the	user	to	enter	their	email	address	
requesting	a	password	change.	
	

Implementation	&	Screenshots:	
Password	reset	view:	this	view	allows	the	user	request	a	change	to	their	account	login	
details.	The	view	for	password	reset	takes	in	a	user’s	email	and	if	there	is	a	
corresponding	email	listed	in	the	User	database	it	sends	an	email	containing	password	
reset	instruction	
	

	
	
error	handling:	if	there	is	no	email	in	the	database	that	matches	the	email	requesting	
the	password	change	the	system	will	return	an	error	stating	that	the	password	was	not	
found	on	the	system.	
	
	

	

	 OpenSesamessage Technical Report	

upon	clicking	the	provided	link,	the	user	is	redirected	to	a	password	change	view,	this	
view	is	only	accessible	with	the	password	reset	token	generated	for	the	user	when	they	
request	a	password	change.	Only	users	with	this	unique	token	can	access	this	screen.	
	

	
	
below	is	the	code	that	handles	the	authentication,	and	calls	for	a	token	to	be	generated:	
	
<%=	form_for(resource,	:html	=>	{class:	'form-signin'},	as:	resource_name,	url:	
password_path(resource_name),	html:	{	method:	:post	})	do	|f|	%>	
<%=	devise_error_messages!	%>	
<div	class="container	margin-top-10em">	
	
<div	class="wrapper	">	
				<h2	class="form-signin-heading">Enter	your	email</h2>	
				<div	class="field">	
								<%=	f.email_field	:email,	class:	'form-control-custom',	autofocus:	true	%>	
				</div>	
				<div	class="Send	me	reset	password	instructions">	
								<%=	f.submit	"Send	me	reset	password	instructions",	class:	'btn	btn-primary-custom	
margin-top-2em'	%>	
				</div>	
		<%	end	%>	
				<div	class="sign-up-links">	
								<%=	render	"devise/shared/links"	%>	
				</div>	
</div>	
</div>	
	

	

raspberry	pi	status	update	
Outlines	in	detail	the	full	device	status	check	system,	allowing	the	user	to	see	the	cpu	
load,	ram	usage	and	memory	on	the	device.	This	is	an	important	part	as	the	device	is	
designed	to	run	indefinitely	and	remotely	accessing	the	device	status	is	integral	to	the	
device’s	seamless	operation		
Controls,	Maintains	and	Implements:		

Ø status:	this	message	sent	to	the	device	through	telegram	
Ø parsed	message:	the	device	integrates	the	message	and	preforms	a	bash	

command	on	the	system	and	saves	it	as	a	string	
Ø respond	function:	grabs	the	string	handled	and	replies	to	the	message,	with	a	

message	containing	the	system’s	information.	Cpu	load,	memory	usage	etc.	

	 OpenSesamessage Technical Report	

	
Implementation	&	Screenshots:	
Status:	is	a	custom	python	program	I	have	written	contained	within	the	raspberry	pi	
system.	Once	triggered	it	returns	a	string	containing	system	information.	This	string	can	
then	be	gathered	by	a	system	call	triggered	within	the	Lua	file	that	parses	the	incoming	
messages.	
cpu:	checks	the	load	the	cpu	is	currently	under	
ram:	checks	the	percentage	of	ram	being	used	
memory:	returns	the	amount	of	memory	currently	in	use	and	the	percentage	of	
memory	free	
the	image	below	shows	the	message	being	sent	to	the	device	through	the	telegram	
messenger	service	
	
import	os		
	
#	Return	CPU	temperature	as	a	character	string																																							
def	getCPUtemperature():	
				res	=	os.popen('vcgencmd	measure_temp').readline()	
				return(res.replace("temp=","").replace("'C\n",""))	
	
#	Return	RAM	information	(unit=kb)	in	a	
list																																																																																																						
def	getRAMinfo():	
				p	=	os.popen('free')	
				i	=	0	
				while	1:	
								i	=	i	+	1	
								line	=	p.readline()	
								if	i==2:	
												return(line.split()[1:4])	
	
#	Return	%	of	CPU	used	by	user	as	a	character	string																																	
def	getCPUuse():	
				return(str(os.popen("top	-n1	|	awk	'/Cpu\(s\):/	{print	1.84€}'").readline().strip(\	
)))	
	
#	Return	information	about	disk	space	as	a	list	(unit	
included)																																																																						
def	getDiskSpace():	
				p	=	os.popen("df	-h	/")	
				i	=	0	
				while	1:	
								i	=	i	+1	
								line	=	p.readline()	

	 OpenSesamessage Technical Report	

								if	i==2:	
												return(line.split()[1:5])	
	
	
execution:	once	this	code	executes	the	user	is	responded	to	with	a	message	with	the	
string	containing	the	system	information.	This	allows	the	user	to	remotely	monitor	the	
system.	
	
Lastly	the	python	program	creates	a	text	file	called	status_file	which	contains	the	
information,	this	file	is	then	interpreted	by	the	Lua	code	when	a	request	for	status	is	
made.	Every	time	the	status	request	is	called	the	file	gets	overwritten	with	new	
information.	This	avoids	a	build-up	of	text	files	over	periods	of	long	use.	
Python	code	handling	file	creation	and	update:	
	
file	=	open("status_file","w")	
	
file.write("\n"+"CPU	Temp")	
file.write("\n"+getCPUtemperature())	
file.write("\n"+"================")	
file.write("\n"+"%	of	CPU	use")	
file.write("\n"+"\n".join(getCPUuse()))	
file.write("\n"+"================")	
file.write("\n"+"Total	Ram,	Ram	Used,	Ram	Free")	
file.write("\n"+"\n".join(getRAMinfo()))	
file.write("\n"+"================")	
file.write("\n"+"Total	Disk,	Disk	Used,	Disk	Free,	%	disk")	
file.write("\n"+"\n".join(getDiskSpace()))	
	
file.close()	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

image	of	chat	screen	requesting	status	update:	
	

	
	

	

	

	
	
	

Open	system	
This	system	is	the	integral	part	of	this	project,	this	is	the	system	responsible	for	the	
opening	and	closing	of	the	door.	there	are	certain	authentication	protocols	that	are	
required	before	this	system	is	called	into	action.	
	
message	to	system:	
The	user	initiates	this	action	when	the	user	messages	the	system	requesting	it	to	open,	
this	needs	to	be	as	simple	and	as	intuitive	as	possible	to	cater	for	all	users	and	their	
abilities.	Because	of	this	I	have	chosen	to	designate	the	message	for	opening	the	door	as	
simply	‘open’	
	

	 OpenSesamessage Technical Report	

response	failed:	if	the	user	is	not	already	approved	by	the	administrator	before	they	
message	the	device	requesting	it	to	open.	
The	device	performs	a	check	once	the	open	request	comes	through,	it	will	search	its	
contacts	list	of	pre-approved	users	and	numbers	searching	for	the	current	requested	
user.	If	that	user	is	not	found	in	the	database	the	system	will	respond	with	a	message	
informing	them	that	they	do	not	have	the	required	permissions	to	access	this	device	and	
to	contact	the	device	administrator	to	gain	approval.	
	
	

	
	
	
This	stops	unwanted	people	gaining	access	to	the	device	and	the	building.	
	
	

	
	
	
response	success:	if	the	user	has	the	required	permissions	to	access	the	device	their	
request	is	granted.	This	informs	the	device	to	trigger	the	python	program	to	open	the	
device.	
	

	 OpenSesamessage Technical Report	

This	program	is	written	in	python	and	handles	the	movement	of	the	servo	motor.	As	you	
can	see	in	the	code	snippet	below	the	servo	is	working	on	pin	11	in	the	raspberry	pi’s	
GPIO.	This	pin	handles	the	control	of	this	device.	The	servo	is	also	operating	at	a	
frequency	of	50hz.	
	
Because	the	raspberry	pi	b+	GPIO	pins	only	offer	a	voltage	of	5v	an	external	battery	was	
used	to	provide	enough	power	to	open	the	bolt	on	a	door’s	lock.	Because	of	this	the	
raspberry	pi’s	pins	offer	the	ground	for	both	the	servo	and	the	external	power	source.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	

Raspberry	pi	image	
Outlines	in	detail	the	process	of	taking	a	photo	using	the	Microsoft	LifeCam	Cinema	
720p	webcam,	and	returning	the	image	to	the	user	via	the	telegram	messanging	system.	
This	is	an	important	security	feature	for	the	device	as	it	allows	the	user	to	see	who	is	
entering	the	building	remotely	
	
Controls,	Maintains	and	Implements:		

Ø request:	this	message	sent	to	the	device	through	telegram	
Ø parsed	message:	the	device	interprets	the	message	and	preforms	a	bash	

command	on	the	system	and	saves	it	as	a	string	
Ø respond	function:	the	device	stores	the	image	locally,	allowing	the	lua	function	

to	search	and	grab	the	image	from	the	image	location	and	send	it	to	the	user	
using	the	media	function	in	the	telegram	API	

	

	 OpenSesamessage Technical Report	

Implementation	&	snippets:	
image:	is	a	custom	python	program	I	have	written	contained	within	the	raspberry	pi	
system.	Once	triggered	it	returns	a	image	to	the	user.	This	image	is	stored	in	the	device	
and	sent	to	the	user,	to	avoid	taking	up	too	much	memory	the	image	rewrites	itself	
every	time	a	picture	is	taken	
	
#!/usr/bin/python
import os
import pygame, sys

from pygame.locals import *
import pygame.camera

width = 640
height = 480

#initialise pygame
pygame.init()
pygame.camera.init()
cam = pygame.camera.Camera("/dev/video0",(width,height))
cam.start()

#setup window
windowSurfaceObj = pygame.display.set_mode((width,height),1,16)
pygame.display.set_caption('Camera')

#take a picture
image = cam.get_image()
cam.stop()

#display the picture
catSurfaceObj = image
windowSurfaceObj.blit(catSurfaceObj,(0,0))
pygame.display.update()

#save picture
pygame.image.save(windowSurfaceObj,'image.jpg')
	
	
execution:	once	this	code	executes	the	user	is	responded	to	the	user	with	a	message	
with	containing	the	image.	This	allows	the	user	to	remotely	monitor	who	is	entering	the	
building.	
	
	
	
	

	 OpenSesamessage Technical Report	

10 Prototype	creation	
Because	of	the	nature	of	the	project	a	prototype	is	required	to	accurately	see	how	the	
device	will	function.	This	prototype	will	be	implemented	with	the	device	operating,	and	
executing	all	of	the	functionality.	
	
The	prototype	creation	took	place	in	two	parts.	The	first	part	consisted	of	creating	the	
door	in	which	the	device	would	operate,	the	second	part	of	the	prototype	consisted	of	
establishing	the	device	in	its	working	state	onto	the	door.	
	

Door	creation	
The	creation	of	the	door	took	place	over	the	course	of	an	afternoon.	For	this	small	
project	I	created	the	door	frame	using	2x4	wood,	and	a	piece	of	fire	retardant	MDF	
board	for	the	door.	
	

	
	
	

	 OpenSesamessage Technical Report	

	
	
	
	
Making	sure	the	door	frame	was	square	was	ensured	by	using	a	square,	and	cutting	the	
frame	pieces	to	the	required	length.	Once	the	frame	was	made,	the	door	needed	to	be	
cut	to	length.	
	
	

	
	
	
	
I	used	small	hinges	to	mount	the	foor	to	the	frame	and	the	lock,	which	for	this	project	
was	the	yale	p85	night	latch.	I	chose	this	lock	because	it	is	a	common	door	lock	used	in	
Ireland,	and	is	consitant	with	the	style	of	lock	used	commonly	throughout	the	world.	
This	decision	was	made	to	further	broaden	the	application	and	the	use	cases	for	the	
project,	and	not	to	have	it	only	hit	a	small	niche.	
	

	 OpenSesamessage Technical Report	

Device	setup	
The	second	part	of	creating	the	prototype	consisted	of	adding	the	raspberry	pi,	the	
servo	and	the	external	power	supply	to	the	door.	this	shows	that	the	device	can	be	
added	to	a	standard	door	and	used	without	a	lot	of	configuration.	
	

	
	
above	you	can	see	the	system	diagram	for	the	raspberry	pi,	the	ground	wire	for	both	the	
external	power	source	and	the	servo	are	connected	to	pins	1	and	3	of	the	raspberry	pi’s	
GPIO	board,	while	the	controller	wire	is	connected	to	pin	11.	Finally,	the	power	cord	
shown	in	red	runs	from	the	servo	to	the	external	power	source.	
	

	 OpenSesamessage Technical Report	

once	the	door	is	opened	the	program	is	told	to	maintain	the	arc	on	the	servo	for	a	
period	of	5	seconds.	This	is	the	time	in	which	the	user	will	be	able	to	push	the	door.	the	
program	initiated	a	time.sleep()	function,	once	this	is	over	the	device	returns	to	its	
default	state.	
	
	
	

	
	
	
with	the	creation	of	the	prototype	door	and	the	device	established,	I	was	able	to	get	a	
better	understanding	of	how	it	would	act	in	normal	use	throughout	its	life	cycle.	
	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

11 Graphical	User	Interface	(GUI)	Layout	
This	section	of	the	report	will	cover	all	the	different	GUI	elements	the	user	will	have	
access	to	and	need	to	navigate	to	use	OpenSesamessage	to	its	maximum	potential.	This	
section	will	be	broken	up	into	two	parts,	the	graphical	user	interface	for	the	web	
application	and	the	graphical	user	interface	for	the	telegram	messenger	service.	This	
service	will	also	cover	the	mobile	view	as	this	service	will	have	to	be	accessible	to	users	
on	mobile	also.	
	
	

Opensesamessage.com		
The	GUI	for	the	web	application	is	made	up	of	html	and	css,	and	the	front-end	
framework	bootstrap.	
“Bootstrap	makes	front-end	web	development	faster	and	easier.	It's	made	for	folks	of	all	
skill	levels,	devices	of	all	shapes,	and	projects	of	all	sizes.”	
	

homepage	
Description:	this	is	the	first	interface	the	user	will	be	met	with,	it	is	the	homepage	for	
the	website	with	links	to	the	sign	in	page,	and	the	contact	page:		

Ø home,	allows	the	user	to	return	to	the	homepage	from	anywhere	in	the	
application.		

Ø contact,	allows	the	user	to	access	the	contact	us	page.		
Ø Sign	in,	allows	the	user	to	enter	the	sign	in	page.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

	
(GUI	1:	open	sesamessage	homepage)	

	
	
	
	

mobile	device	
Ø Responsive	navbar	for	screens	under	a	certain	size	
Ø Responsive	icons	and	text	for	smaller	screen	sizes		

Reason:	this	is	where	the	user	is	welcomed	to	the	service,	it	needs	
to	be	clean	responsive	and	clearly	show	how	the	product	works	on	
a	consumer	level.	
	

	 OpenSesamessage Technical Report	

	

	

	

	

	

Sign	in	
Description:	This	interface	allows	the	user	to	modify	all	in-game	settings	to	improve	
performance	on	their	machine	by	increasing	or	decreasing	certain	options.	It	also	allows	
users	with	higher	end	machines	to	increase	the	visual	quality	of	the	game.	
This	interface	allows	the	user	to	sign	in	to	their	account,	this	is	a	simple	process	that	
allows	users	access	to	their	account	settings	
There	are	two	authentication	options:		

Ø email		
Ø password	

(GUI	2:	login)	

	
	
	
	

mobile	device:	

	 OpenSesamessage Technical Report	

Ø responsive	navbar	for	smaller	screen	devices	
Ø resizing	containers	that	allows	for	easy	navigation	of	the	sign	up	form	for	mobile	

users.	
Ø Larger	buttons	for	mobile	users	to	allow	for	easier	navigation	to	the	next	menu	

	
	
	
	
	
	

Registrations	

User	registration	GUI	
Description:	this	interface	allows	the	user	to	register	for	the	service.	It	requires	their	
name,	email	password.	From	here	they	will	have	access	to	their	account’s	administrator	
functionality.	
	
(GUI	3:	registration)	

	
	
	

	 OpenSesamessage Technical Report	

mobile	device	
Description:	This	interface	allows	the	user	to	start	the	chosen	chapter	from	the	
beginning	if	they	use	the	start	chapter	button,	if	they	have	play	already	and	saved	they	
can	start	from	there	using	the	continue	chapter	button.	
	
	
	
	
	
	

	

	

Add	users	
Description:	this	interface	allows	the	administrator	user	to	add	phone	numbers	to	the	
whitelist.	This	grants	the	required	privileges	to	the	telegram	account	to	access	the	
device	and	make	requests	

	

	

	

mobile	device	
Ø Responsive	navbar	
Ø Scaled	down	interface	for	smaller	device.	
Ø Larger	buttons	for	mobile	users	to	allow	for	

easier	navigation	to	the	next	menu	
Ø As	intuitive	as	possible	

	
	

	 OpenSesamessage Technical Report	

	
	
	
	
	
	
	
	

Contact	GUI	
Description:	this	view	handles	the	user	contact	functionality.	this	allows	users	to	get	in	
contact	with	the	service.	The	form	consists	of	three	text	areas,	one	for	name,	email	and	
the	user’s	query.	

	
	
	

mobile	device:		
Ø this	interface	resizes	itself	to	cater	for	the	difference	

of	screen	sized	
Ø This	is	handled	in	the	form-control-contact	css	class	

that	sets	the	display	to	block	and	resizes	the	text	
areas	to	140%.	
	

	
	
	

	 OpenSesamessage Technical Report	

Telegram	GUI	
Description:	the	telegram	interface	is	not	one	I	have	created,	however	I	feel	it	is	
important	to	the	look	and	feel	of	the	projects	operation.	Each	of	the	below	graphical	
user	interfaces	are	ways	in	which	the	users	can	interact	with	the	raspberry	pi	device	
	
Mobile	GUI	

	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

Application	GUI	

	
	

Web	GUI	

	

	 OpenSesamessage Technical Report	

	

	 OpenSesamessage Technical Report	

12 Testing	
	

Overview	
Testing	is	essential	when	it	comes	to	consumer	devices,	and	when	it	comes	to	security	
devices	testing	is	paramount.	It	is	no	different	for	OpenSesamessage.	Three	main	forms	
of	testing	were	used	for	this	project.	this	testing	ensured	the	device	was	simple	to	use	
for	all	audiences	regardless	of	age	or	technical	ability.	
Tools	used	in	the	testing	process	of	OpenSesamessage:	
	

Ø Travis.io:	this	testing	was	carried	out	by	Travis.	Travis	CI	is	a	hosted,	distributed	
continuous	integration	service	used	to	build	and	test	software	projects	hosted	at	
GitHub.	

Ø Usability	testing:	this	testing	was	carried	out	by	adding	users	to	the	system	and	
having	them	run	through	the	processes	of	operating	the	system	

Ø typeform:	I	conducted	online	surveys	to	see	what	average	consumers	wanted	
and	if	those	needs	could	be	met	within	the	project.	

	
Methods	of	testing	used	in	OpenSesamessage:	
	

Ø online	survey	
Ø Unit	&	Integration	Testing		
Ø Usability	testing	

	
Each	method	of	testing	is	explained	under	its	own	heading,	tests	where	participants	
where	used	are	detailed	with	the	number	of	active	participants	and	any	collected	
responses	from	surveys	untaken.	
	
	

Unit	Testing	
	
Initial	testing	for	this	project	began	with	creating	a	separate	database	for	tests	to	be	
performed.	In	ruby	on	rails	a	test	database	gets	populated	while	running	through	
controller	tests,	and	is	dropped	after	the	tests	are	done.	To	create	the	test	database,	I	
performed	the	following	commands.	
	
	
conorbreen$ bundle exec rake db:drop RAILS_ENV=test

	 OpenSesamessage Technical Report	

conors-MacBook-Pro:opensesamessage-2.0 conorbreen$ bundle exec rake
db:create RAILS_ENV=test
conors-MacBook-Pro:opensesamessage-2.0 conorbreen$ bundle exec rake
db:schema:load RAILS_ENV=test
	
this	generated	the	necessary	test	database.	With	the	creation	of	the	test	database	I	
could	begin	writing	tests.	The	test	suite	I	used	was	rSpec.	rSpec	is	a	testing	framework	
for	ruby	on	rails,	it	can	be	installed	by	adding	the	rSpec-rails	gem	to	the	gem	file	within	
the	rails	application.	The	installation	process	for	rSpec	is	similar	to	most	gems.	First	you	
have	to	add	it	to	the	gemfile	in	the	appropriate	group,	in	this	case	the	development	test	
group:	
	
group :development, :test do
 # Call 'byebug' anywhere in the code to stop execution and get a
debugger console
 gem 'byebug'
 gem 'pry-rails'
 gem 'letter_opener'
 gem 'rspec-rails', '~> 3.5'
end
	
and	running	both	bundle	to	download	the	gem,	and	then	running	the	command	rails	
generate	rspec:install.	This	process	can	be	seen	in	the	terminal	snippet	below:	
	
	
conors-MacBook-Pro:opensesamessage-2.0 conorbreen$ rails generate
rspec:install
Running via Spring preloader in process 67578
Expected string default value for '--jbuilder'; got true (boolean)
 create .rspec
 create spec
 create spec/spec_helper.rb
 create spec/rails_helper.rb
conors-MacBook-Pro:opensesamessage-2.0 conorbreen$ rake db:migrate
&& rake db:test:prepare
conors-MacBook-Pro:opensesamessage-2.0 conorbreen$ rake spec
/Users/conorbreen/.rbenv/versions/2.3.1/bin/ruby -
I/Users/conorbreen/.rbenv/versions/2.3.1/lib/ruby/gems/2.3.0/gems/rs
pec-core-
3.6.0/lib:/Users/conorbreen/.rbenv/versions/2.3.1/lib/ruby/gems/2.3.
0/gems/rspec-support-3.6.0/lib
/Users/conorbreen/.rbenv/versions/2.3.1/lib/ruby/gems/2.3.0/gems/rsp
ec-core-3.6.0/exe/rspec --pattern spec/**\{,/*/**\}/*_spec.rb
No examples found.

Finished in 0.00043 seconds (files took 0.09987 seconds to load)
0 examples, 0 failures

	 OpenSesamessage Technical Report	

Once	rSpec	created	the	necessary	test	files	within	the	application,	I	began	to	make	the	
tests	for	each	controller.	These	tests	run	through	the	CRUD	functionality.	for	the	testing	
of	the	application	I	needed	to	test	each	controller	and	make	sure	that	each	was	
functioning	as	it	should.	The	controllers	I	tested	were	the	Numbers	controller,	the	user	
controller	and	the	contacts	controller.	
	
Numbers	controller:	
The	numbers	controller	is	responsible	for	handling	the	users	phone	numbers.	Each	
person	they	want	provide	the	necessary	privileges	required	for	opening	the	door	is	
added	in	the	numbers	controller.	Therefore,	this	controller	is	critical	to	the	applications	
operation.	And	therefore,	the	testing	of	this	model	is	paramount.	
	
Numbers	controller	file	
require 'test_helper'

class NumbersControllerTest < ActionController::TestCase
 setup do
 @number = numbers(:one)
 end

 test "should get index" do
 get :index
 assert_response :success
 assert_not_nil assigns(:numbers)
 end

 test "should get new" do
 get :new
 assert_response :success
 end

 test "should create number" do
 assert_difference('Number.count') do
 post :create, number: { area_code: @number.area_code,
first_name: @number.first_name, last_name: @number.last_name,
phone_number: @number.phone_number, user_id: @number.user_id }
 end

 assert_redirected_to number_path(assigns(:number))
 end

 test "should show number" do
 get :show, id: @number
 assert_response :success
 end

	 OpenSesamessage Technical Report	

 test "should get edit" do
 get :edit, id: @number
 assert_response :success
 end

 test "should update number" do
 patch :update, id: @number, number: { area_code:
@number.area_code, first_name: @number.first_name, last_name:
@number.last_name, phone_number: @number.phone_number, user_id:
@number.user_id }
 assert_redirected_to number_path(assigns(:number))
 end

 test "should destroy number" do
 assert_difference('Number.count', -1) do
 delete :destroy, id: @number
 end

 assert_redirected_to numbers_path
 end
end
	
as	you	can	see	above	the	tests	for	this	controller	handle	the	CRUD	functionality,	some	
test	smaller	roles	such	as	the	“should	get	index”	method	which	tests	the	index_path	for	
this	model.	others	such	as	the	‘should	create	number’	method	tried	to	create	a	new	
number	entry	into	the	test	database	with	the	parameters	I	have	given	it.	These	
parameters	are	the	ones	that	are	required	for	this	controller,	parameters	such	as	
area_code,	first_name,	last_name,	phone_number,	and	user_id.	Once	it	runs	through	
these	successfully	is	checks	to	make	sure	the	user	is	correctly	redirected	to	the	
number_path	of	the	appropriate	number.	
	
Contacts	controller:	
The	contacts	controller	handles	the	queries	sent	by	users	to	the	systems	administrator.	
This	is	handled	by	creating	a	contact	entry	into	the	PostgreSQL	database	containing	the	
parameters	email,	name	and	query.	Once	created	the	on_create	method	calls	the	user	
Mailer	within	the	application	that	sends	an	email	to	the	application’s	administrator	
account	hello@opensesamessage.com	with	the	contact.query,	the	contact.name	and	
the	contact.email	parameters.	It	also	takes	the	contact.email	and	sends	and	email	to	the	
person	submitting	the	query	notifying	them	of	the	receipt	of	their	query	and	that	the	
support	team	will	be	in	contact	with	them	shortly.	
	
Contact	controller	test	file:	
require	'test_helper'	
	

	 OpenSesamessage Technical Report	

require 'test_helper'

class ContactsControllerTest < ActionController::TestCase
 setup do
 @contact = contacts(:one)
 end

 test "should get index" do
 get :index
 assert_response :success
 assert_not_nil assigns(:contacts)
 end

 test "should get new" do
 get :new
 assert_response :success
 end

 test "should create contact" do
 assert_difference('Contact.count') do
 post :create, contact: { email: @contact.email, name:
@contact.name, query: @contact.query }
 end

 assert_redirected_to contact_path(assigns(:contact))
 end

end
	
the	contacts	controller	test	file	preforms	the	standard	tests	such	as	should	get	index	test	
that	requires	the	correct	redirect.	It	also	tests	for	successful	creation	of	contacts	in	the	
should	get	new	method.	This	method	tries	to	create	a	new	entry	into	the	contacts	table	
and	awaits	the	200-success	response.	
	
Travis	–	CI	
Travis-CI	is	one	of	several	build	automation	tools	that	allows	developers	understand	if	
their	application	is	working.	This	is	done	by	building,	testing	and	finally	reporting	on	the	
build	sequences	the	developer	has	configured.	The	‘continuous’	part	reflects	that	these	
tools	will	scan	and	detect,	in	my	case	by	each	time	a	commit	is	pushed	to	Github,	errors	
in	the	application.	The	integration	part	reflects	the	fast	software	development	requires	
the	interaction	between	multiple	separate	components	working	together	smoothly.	In	
most	cases,	there	will	be	a	tool	to	retrieve	the	latest	release	or	development	version,	it	
will	then	compile	the	code,	perform	the	necessary	tests	and	deploy	the	code	to	the	
server.	
	

	 OpenSesamessage Technical Report	

setup	
setting	up	Travis	Is	quite	simple,	I	logged	in	via	the	website	travis-ci.com	and	linked	with	
my	Github	account.	Then	I	created	a	configuration	file	called	.travis.yml	file	to	the	
project	containing	the	necessary	configuration	parameters	for	my	project.	this	file	Is	
what	Travis	will	reference	when	building	this	version	and	performing	tests	
	
language: ruby
rvm:
 - 2.3.1
 - jruby-18mode
 - jruby-19mode
 - jruby-head
	
this	file	declares	the	ruby	version	as	well	as	some	additional	info	for	the	Travis	build.	
Once	this	file	is	pushed	to	the	remote.	Whenever	a	commit	is	sent	to	the	remote	
repository	in	Github	Travis	will	run	through	the	test	suite,	and	if	these	tests	pass	it	will	
notify	the	developer.	
	
like	the	numbers	controller	this	test		

	
	
Travis-CI	also	gives	a	log	of	the	build	process,	this	allows	you	to	run	down	through	the	
testing	process	and	find	where	the	sequence	is	being	interrupted.	This	is	extremely	
useful	for	rapid	development	that	has	you	adding	functionality	quickly.	It	gives	peace	of	
mind.	
worker_info
Worker information
hostname: i-02469a7-precise-production-2-worker-com-
docker.travisci.net:01b88a1a-1718-4344-a568-1133c535bdea
version: v2.5.0 https://github.com/travis-
ci/worker/tree/da3a43228dffc0fcca5a46569ca786b22991979f
instance: 5c36215:travis:ruby
startup: 1.068711592s
system_info
Build system information
Build language: ruby
Build group: stable
rvm
19.85s$ rvm use 2.3.1 --install --binary --fuzzy
ruby-2.3.1 is not installed - installing.
Searching for binary rubies, this might take some time.

	 OpenSesamessage Technical Report	

Found remote file https://s3.amazonaws.com/travis-
rubies/binaries/ubuntu/12.04/x86_64/ruby-2.3.1.tar.bz2
Checking requirements for ubuntu.
Requirements installation successful.
ruby-2.3.1 - #configure
ruby-2.3.1 - #download
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 23.0M 100 23.0M 0 0 92.9M 0 --:--:-- --:--:-- --:--:-- 93.8M
No checksum for downloaded archive, recording checksum in user configuration.
ruby-2.3.1 - #validate archive
ruby-2.3.1 - #extract
ruby-2.3.1 - #validate binary
ruby-2.3.1 - #setup
ruby-2.3.1 - #gemset created /home/travis/.rvm/gems/ruby-2.3.1@global
ruby-2.3.1 - #importing gemset
/home/travis/.rvm/gemsets/global.gems...
.....
ruby-2.3.1 - #generating global wrappers........
ruby-2.3.1 - #uninstalling gem rubygems-bundler-1.4.4.
ruby-2.3.1 - #gemset created /home/travis/.rvm/gems/ruby-2.3.1
ruby-2.3.1 - #importing gemset
/home/travis/.rvm/gemsets/default.gems....................
ruby-2.3.1 - #generating default wrappers........
chown: changing ownership of `/home/travis/.rvm/user/installs': Operation not
permitted
Using /home/travis/.rvm/gems/ruby-2.3.1
$ export BUNDLE_GEMFILE=$PWD/Gemfile
$ ruby --version
ruby 2.3.1p112 (2016-04-26 revision 54768) [x86_64-linux]
$ rvm --version
rvm 1.26.10 (latest-minor) by Wayne E. Seguin <wayneeseguin@gmail.com>, Michal
Papis <mpapis@gmail.com> [https://rvm.io/]
$ bundle --version
Bundler version 1.14.6
$ gem --version
2.5.1
install.bundler
67.95s$ bundle install --jobs=3 --retry=3 --deployment
Your Gemfile lists the gem letter_opener (>= 0) more than once.
You should probably keep only one of them.
While it's not a problem now, it could cause errors if you change the version of
one of them later.
Fetching gem metadata from https://rubygems.org/........
2.23s$ bundle exec rake

	 OpenSesamessage Technical Report	

/home/travis/.rvm/rubies/ruby-2.3.1/bin/ruby -
I/home/travis/build/conorbr/opensesamessage-
2.0/vendor/bundle/ruby/2.3.0/gems/rspec-core-
3.6.0/lib:/home/travis/build/conorbr/opensesamessage-
2.0/vendor/bundle/ruby/2.3.0/gems/rspec-support-3.6.0/lib
/home/travis/build/conorbr/opensesamessage-
2.0/vendor/bundle/ruby/2.3.0/gems/rspec-core-3.6.0/exe/rspec --pattern
spec/**\{,/*/**\}/*_spec.rb
No examples found.
Finished in 0.00046 seconds (files took 0.08421 seconds to load)
0 examples, 0 failures
The command "bundle exec rake" exited with 0.
Done. Your build exited with 0.
	

Customer	testing	
Usability	testing	was	conducted	for	OpenSesamessage	to	see	how	quickly	users	could	
get	setup	with	the	service	and	operate	its	functionality.	The	aim	for	this	project	in	terms	
of	usability	was	to	have	users	capable	of	gaining	a	comprehensive	understanding	of	the	
system	within	five	minutes		
Number	of	participants:	Ten	(age	range	18	to	58)	
Tools	used	in	Usability	study:	
	

Ø Online	Survey:	Created	a	survey	based	questionnaire,	with	questions	related	to	
improvements,	problems	and	recommendations	on	the	interfaces	and	the	in-
game	controls				

Ø Consumer	testing:	Beta	version	date	was	05/04/2017	

	
Usability	Study:		
All	questions	are	rating	based,	Ratings	below	or	at	2	are	deemed	problem	areas,	users	
that	answer	with	this	rating	are	asked	and	required	to	provide	feedback	as	to	what	the	
problem	or	concern	is	
all	questions	were	based	on	what	tasks	the	user	would	be	preforming	within	the	life	
cycle	of	the	product,	tasks	such	as	status	check,	opening	and	closing	of	the	device	and	
adding	new	users	to	the	system	as	well	as	getting	pictures.	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

First	Question:	on	a	scale	of	1	to	5,	how	easily	did	you	find	creating	an	account	on	the	
website?	

	
	
Collected	User	Reponses	from	those	that	answered	with	a	rating	of	3	or	lower:	(Copied	
directly	from	survey	response)	
	

Ø “I	had	trouble	hitting	the	sign-up	button	on	my	phone”	
o device	was	iPhone	4s	

Ø “Buttons	are	to	small”	
o Lenovo	tablet	

	
Analysis	&	Solution		
From	the	collected	information,	it	was	clear	that	smaller	screen	devices	were	having	
trouble	navigating	signup	form.	I	altered	the	css	of	the	web	application	to	allow	for	
larger	buttons	when	the	screen	size	dropped	below	a	certain	size.	This	seems	to	have	
remedied	the	issues	users	were	having	
		
	
	
	
Second	Question:	Overall,	how	easy	was	it	for	you	to	add,	remove	and	edit	numbers	on	
the	website?	

0

1

2

3

4

5

6

7

1 2 3 4 5

between	1	and	5	how	dod	you	find	the	registration	
process?

testers

	 OpenSesamessage Technical Report	

	
	
Collected	User	Reponses	from	those	that	answered	with	a	rating	of	3	or	lower:		

Ø “I	got	an	error	message	when	adding	my	phone	number”	
Ø “I	couldn’t	save	my	phone	number”	

	

Analysis	&	Solution		
from	the	collected	information,	the	error	was	rather	vague,	however	looking	back	over	
the	logs	I	discovered	that	when	users	entered	a	phone	number	with	non-numerical	
characters	such	as	‘+’	or	‘-’	it	would	cause	errors	with	the	saving	of	the	numbers.	To	
address	this	I	added	some	parsing	code	to	get	the	number	and	alter	it	into	such	a	way	
that	I	would	be	accepted	by	both	the	rails	web	application	and	the	Raspberry	pi	device	
this	question	more	than	any	thought	me	of	the	importance	of	testing,	because	I	created	
this	application,	I	never	considered	that	users	would	enter	numbers	with	non-numerical	
characters.	
	
	
Third	Question:	overall	how	did	you	find	the	open	function	for	this	project?	

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

Overall,	how	easy	was	it	for	you	to	add,	remove	and	edit	
numbers	on	the	website?

testers

	 OpenSesamessage Technical Report	

	
Collected	User	Reponses	from	those	that	answered	with	a	rating	of	3	or	lower:		
None,	however	one	participant	experience	trouble	registering	for	telegram.	The	two-
step	verification	failed,	and	they	had	to	request	another	text	message	
	
Remarks	
No	solution	needed,	I’m	happy	with	the	result	because	I	had	usability	in	mind	when	I	
was	deciding	to	use	this	functionality	
	
Fourth	Question:	how	likely	would	you	be	to	implement	a	system	like	this	in	your	
home?	

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

Series	1

Series	1

	 OpenSesamessage Technical Report	

	
Collected	User	Reponses	from	those	that	answered	with	a	rating	of	3	or	lower:	(Copied	
directly	from	survey	response)	
	

Ø “I’m	not	sure	I	would	trust	hackers”	
Ø “I	keep	a	key	in	the	porch”	

	
Analysis	&	Solution		
This	survey	question	gave	a	better	understanding	of	the	potential	consumers	for	this	
product.	The	users	that	seemed	interested	in	the	product	and	showed	interest	in	
implementing	it	in	their	home	were	of	a	younger	age	group.	The	people	who	scored	
lower	were	older	and	were	unsure	of	technology	and	relying	on	encryption	in	their	
home.	They	worried	about	potential	hackers.	This	is	a	view	I	was	not	able	to	change.	
	

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

Series	1

Series	1

	 OpenSesamessage Technical Report	

13 Market	research	

Online	survey	
	
This	survey	was	carried	out	during	the	project,	its	aim	was	to	get	a	better	understanding	
of	the	market	and	what	consumers	would	be	interesting	in	with	a	product	of	this	type.	
The	questionnaire	was	10	questions	long	and	was	designed	to	gauge	the	users	gender	
age	and	their	openness	to	a	pro	
	
The	online	survey:	was	carried	out	using	the	survey	tool	typeform.com.	this	allowed	me	
to	get	the	survey	out	to	as	many	people	as	possible.	The	survey	consisted	of	10	simple	
questions,	aimed	to	get	a	better	understanding	of	the	product	and	its	features.	The	
survey	was	carried	out	by	a	total	of	178	people.	To	get	a	good	spread	of	user	data	I	
asked	friends,	family	and	posted	to	online	forums.	
	
Reason	for	online	survey:	because	of	the	nature	of	the	project	getting	a	good	
understanding	of	what	people	want,	and	the	concerns	they	have	over	implementing	a	
technology	such	as	this	is	paramount.	The	best	way	to	gauge	what	the	public	want	and	
how	they	feel	entrusting	their	home	and	belongings	to	a	smart	device	is	to	ask,	so	I	
created	this	survey.	
	
	
	
	
	

Questions	and	results	
This	section	will	go	through	each	question,	the	amount	of	people	that	answered	the	
question,	the	results	and	the	conclusion.	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 OpenSesamessage Technical Report	

Question	1:	
are	you	male	or	female?	

	
	
number	of	people	answered:	
176	out	of	178	
results:	this	question	is	intended	to	get	a	better	understanding	of	the	demographics	of	
potential	users.	The	results	show	that	the	people	who	were	interested	in	taking	the	
survey	were	predominantly	male	
conclusion:	the	data	shows	people	who	were	answering	the	questions	were	mainly	mail.	
This	needs	to	be	considered	when	reading	the	data.	However,	this	does	mean	I	can	
differentiate	different	answers	based	on	male	and	female	later	in	the	data	analysis.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

0 20 40 60 80 100 120 140 160

male	

female

are	you	male	or	female?

	 OpenSesamessage Technical Report	

Question	2:	
How	old	are	you?	

	
number	of	people	answered:	
177	out	of	178	
	
results:	the	results	of	this	question	show	that	the	users	who	took	this	survey	were	
generally	within	the	age	group	of	over	30	years	old.		
	
conclusion:	the	data	shows	that	the	people	interested	in	taking	this	survey	and	thus	the	
product	were	people	over	the	age	of	30.	People	of	this	age	generally	own	their	own	
homes,	so	would	be	the	target	market.	This	is	the	intended	audience	for	the	survey	and	
the	results	therefore	are	a	good	indication	of	what	the	target	market	is	interested	in.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

0 10 20 30 40 50 60

30+

18	- 22

23-26

26 - 30

<18

how	old	are	you?

	 OpenSesamessage Technical Report	

Question	3:	
do	you	have	Wi-Fi	and/or	3g	in	your	house?	

		
	
number	of	people	answered:	
175	out	of	178	
	
results:	this	question	was	both	surprising	and	unsurprising.	It	revealed	that	everyone	
who	answered	this	question	had	some	form	of	internet	connectivity	
	
conclusion:	the	device	requires	internet	connectivity	to	operate	as	the	messages	are	
sent	over	the	internet.	Having	internet	access	in	the	home	means	that	users	can	have	
the	raspberry	pi	connected	to	the	internet,	while	being	within	range	of	Wi-Fi/3g	to	be	
able	to	message	the	device	
	
	
	
	
	
	
	
	
	
	
	
	
	

0 20 40 60 80 100 120 140 160 180 200

yes

no

do	you	have	wifi	and/or	3g	in	your	house?

	 OpenSesamessage Technical Report	

Question	4:	
Do	you	use	a	messenger	service?	e.g	whatsapp/telegram/viber	
	

	
	
number	of	people	answered:	
175	out	of	178	
	
results:	the	results	of	this	question	shows	that	the	target	market	for	this	product	have	
some	experience	using	a	popular	messenger	service.	
	
conclusion:	this	is	an	important	result	as	it	shows	that	most	users	have	experience	using	
a	messenger	service.	The	importance	of	this	result	comes	from	the	importance	of	
people	ease	of	use	of	the	service.	The	device	is	operated	by	sending	messages	to	the	
device	using	the	messenger	service	telegram.	If	users	have	experience	with	a	messenger	
service	then	the	learning	requirement	for	the	devices’	operation	is	severely	reduced	
	
	
	
	
	
	
	
	
	
	
	

0 20 40 60 80 100 120 140 160

yes

no

Do	you	use	a	messenger	service?	e.g	
whatsapp/telegram/viber

Series	1

	 OpenSesamessage Technical Report	

Question	5:	
have	you	ever	left	your	house	forgetting	your	keys?	
	

	
	
number	of	people	answered:	
176	out	of	178	
	
results:	The	majority	of	people	who	have	taken	this	survey	at	some	stage	left	their	
house	forgetting	their	keys	
	
conclusion:	this	question	showed	that	the	majority	of	people	have	experienced	the	
problem	that	this	product	aims	to	solve.	This	is	what	the	consumer	has	left	their	house	
forgetting	their	keys,	meaning	they	either	must	get	a	locksmith,	wait	for	someone	with	a	
key,	or	call	someone	in	the	house	to	let	them	in.	with	OpenSesamessage	this	is	avoided	
by	having	the	ability	to	just	message	the	device	and	inlock	the	door	
	
	
	
	
	
	
	
	
	
	
	

70 75 80 85 90 95 100

yes

no

have	you	ever	left	your	house	forgetting	your	keys?

	 OpenSesamessage Technical Report	

	
	
	
	

Question	6:	
if	yes,	how	likely	would	you	be	to	have	your	phone	with	you?	
	
(on	a	sale	of	1	–	10.	1	being	not	at	all,	and	10	being	extremely	likely)	

	
	
number	of	people	answered:	
158	out	of	178	
	
results:	this	data	is	for	a	follow	up	question,	the	data	clearly	shows	that	the	likelihood	of	
a	person	having	their	phone	with	them	in	the	event	of	them	forgetting	their	keys	is	quite	
likely,	most	people	have	answered	either	10,	9	or	8	for	this	question.	The	average	
answer	being	8.66	
	
conclusion:	this	question	further	re-enforced	the	idea	for	this	project.	this	device	is	
operated	using	a	smartphone.	With	users	having	access	to	their	smartphone	they	can	
then	use	the	device	to	access	their	home	without	the	need	for	their	keys.	
	
	
	
	
	

how	likely	would	you	be	to	have	your	phone	with	you?	

0 1 2 3 4 5 6 7 8 9 10

	 OpenSesamessage Technical Report	

Question	7:	
how	likely	would	you	be	to	use	a	device	to	enter	your	home	using	your	smartphone?	
(on	a	sale	of	1	–	10.	1	being	not	at	all,	and	10	being	extremely	likely)	

	
	
number	of	people	answered:	
176	out	of	178	
	
results:	this	data	shows	how	likely	a	person	taking	this	survey	would	be	to	have	a	device	
to	allow	entry	to	their	home	via	smartphone.	This	data	is	scattered,	a	high	percentage	
(17%).	However,	most	the	data	scores	5	or	higher.	
	
conclusion:	with	the	main	number	of	people	scoring	5	accounted	for	64%	of	the	people	
taking	this	survey.	This	shows	that	while	there	are	people	who	are	not	interested,	there	
are	people	willing	to	get	this	device,	there	are	however	clearly	certain	concerns		
	
	
	
	
	
	
	
	
	
	
	
	

10 9 8 7 6 5 4 3 2 1 0

	 OpenSesamessage Technical Report	

Question	8:	
how	much	would	you	pay	for	a	device	such	as	the	one	described	above?	

	
	
number	of	people	answered:	
170	out	of	178	
	
results:	the	participants	showed	interest	in	the	product	at	a	price	ranger	under	€70	
	
conclusion:	this	result	shows	that	the	participants	would	be	willing	to	spend	
approximately	€70	for	a	device	such	as	the	one	this	project	is	based.	The	initial	research	
for	this	project	showed	that	there	are	products	on	the	market	that	perform	a	similar	
function,	but	at	a	price	point	of	€150+.	This	further	assures	that	the	project	would	have	
an	audience	with	consumers	with	a	total	cost	of	approximately	50	euro.	
	
	
	
	
	
	
	
	
	
	
	
	
	

0

10

20

30

40

50

60

25 50 10 70 €100+

price	in	euro

participants

	 OpenSesamessage Technical Report	

	
	
	

Question	9:	
if	you	had	the	device	described,	would	you	like	the	ability	to	control	who	can	access	
your	front	door?	
	

	
	
number	of	people	answered:	
176	out	of	178	
	
results:	this	question	shows	that	the	participants	answered	strongly	in	favour	of	having	
control	over	who	has	access	to	the	lock.	The	participants	answered	with	a	majority	of	
95%	
	
conclusion:	the	results	of	this	question	showed	a	95%	majority	of	people	wanted	to	
control	who	has	access	to	the	device.	This	is	a	security	feature	that	has	been	
implemented	because	of	a	high	popularity	of	this	question.		
	
	
	
	
	
	
	

if	you	had	the	device	described,	would	you	like	the	ability	to	control	
who	can	access	your	front	door?

yes no

	 OpenSesamessage Technical Report	

Question	10:	
how	many	people,	friends	and	family,	would	you	allow	to	access	your	home?	
	

	
	
number	of	people	answered:	
174	out	of	178	
	
results:	the	results	of	this	question	show	the	number	of	people	a	user	of	this	service	
would	have	associated	with	their	device.	Most	users	would	have	between	1	and	7	
people		
	
conclusion:	the	results	showed	that	the	majority	of	users	would	not	have	more	than	
seven	users	associated	with	an	account.	However,	the	device	can	facilitate	an	infinite	
number	of	users	provided	there	is	sufficient	storage.	This	question	was	primarily	to	give	
an	insight	into	how	people	would	use	OpenSesamessage		

0 10 20 30 40 50 60 70 80 90

1	to	3

3	to	7

7	to	15

15+

participants

participants

	 OpenSesamessage Technical Report	

14 survey	conclusion	
the	survey	showed	that	people	would	be	interested	in	a	cost-effective	home	security	
system.	However,	based	on	the	data	the	participants	had	some	reservations.	Further	
investigation	is	needed	for	a	fully	comprehensive	consumer	opinion,	however	it	would	
seem	that	some	people	are	unsure	whether	they	are	prepared	to	trust	technology	with	
access	to	their	home.	This	investigation	gave	me	a	great	insight	into	what	people	
wanted	in	terms	of	this	project’s	scope.	It	also	provided	me	with	ideas	for	functionality.	

	 OpenSesamessage Technical Report	

15 Conclusions	

Milestones	and	Hurdles	
	
Milestones	where	set	by	myself	in	two	ways:	
Self-imposed:	these	milestones	had	very	little	in	terms	of	time	requirements,	but	more	
of	a	learning	and	understanding	standpoint:	
	

Ø Design	level,	I	have	a	great	interest	in	front	end	web	development	and	I	hope	to	
peruse	a	future	in	it.	I	feel	this	project	allowed	me	to	get	a	better	understanding	
of	web	development	in	terms	of	user	experience	and	styling	

Ø Web	development,	I	have	a	huge	interest	in	the	intricacies	of	web	development	
and	the	plethora	of	tools	available	to	developers	today.	The	creation	of	
functionality	is	of	huge	interest	to	me.	

Ø IOT	or	internet	of	things	development.	This	field	allows	for	the	creation	of	fun	
and	unique	devices	and	tools.	I	enjoyed	working	with	the	raspberry	pi	and	
already	have	plans	to	maintain	this	project	and	countless	projects	for	the	future	

	
Although	these	milestones	did	not	have	deadlines	I	worked	toward	these	milestones	
throughout	the	project,	and	hoped	to	excel	in	these.	
	
Required:	these	milestones	unlike	the	ones	outlined	above	were	a	requirement	for	the	
project.	these	requirements	added	structure	to	the	project	and	created	achievable	goals	
to	strive	for	through	the	course	of	the	project	

Ø Ensuring	monthly	logs	of	development	progress	were	kept.	This	allows	for	a	
timeline	for	the	project		

Ø Ensure	a	working	prototype	for	the	mid-point	presentation.		

	
These	milestones	made	up	the	framework	on	which	the	entire	OpenSesamessage	
project	was	based.	
	
	
	
	
The	Main	Hurdles	that	where	encountered:	
IOT:	the	IOT	device	was	a	great	hurdle,	I	had	little	to	no	experience	in	working	with	the	
raspberry	pi	entering	this	project,	and	it	proved	to	be	quite	a	substantial	learning	curve.	
The	Linux	operating	system	has	great	support	communities	that	allowed	me	to	research	
the	development	process.	

	 OpenSesamessage Technical Report	

	
The	working	with	devices	such	as	motors	was	new	territory	for	me,	working	with	GPIO	
pins	and	handling	external	power	sources	proved	difficult.	It	showed	me	the	modular	
nature	of	the	IOT	development	process,	I	learned	when	one	problem	is	encountered	
there	is	always	another	module	that	can	allow	for	the	requirements	to	be	met.	
	
telegram:	telegram	as	a	service	allows	the	use	of	their	cli,	however	with	this	project	I	
was	not	creating	functionality	for	its	intended	use.	But	from	the	raw	tools	provided	by	
the	messenger	service	I	could	use	the	service	to	suit	this	project.	I	had	trouble	setting	up	
communication	between	the	raspberry	pi,	mobile	devices	and	the	web	application.	
However,	with	the	use	of	the	provided	methods	I	could	accomplish	cross	platform	
communication.	
	
new	languages:	this	project	required	me	to	implement	new	programming	languages.	
When	it	comes	to	new	languages	there	is	always	a	learning	curve,	however	with	the	
languages	used	such	as	Lua	and	bash	script	there	is	always	a	teething	period,	which	did	
end	up	being	time	consuming	
	
time	hurdles:	this	project	began	with	another	goal,	I	was	I	agreement	to	implement	a	
front-end	framework	with	a	start-up	company	unituition.com.	the	goal	was	to	
implement	react.js	into	the	pre-existing	website.	However,	after	my	midpoint	
presentation	my	project	supervisor	pointed	out	the	loss	in	marks	I	was	suffering	with	no	
database	implementation	among	other	things.	After	much	consideration,	I	chose	to	take	
a	new	direction.	I	chose	to	create	my	own	ruby	on	rails	application	and	implement	and	
iot	device	
	

	 OpenSesamessage Technical Report	

16 Further	Development	&	Research	
Further	development	opportunities:	

Ø New	devices:	I	would	like	to	continue	development	on	this	project	by	adding	
new	devices,	such	as	a	light	that	can	be	triggered	when	the	door	is	opening	

Ø Further	explore	security:	because	of	the	nature	of	the	project	I	would	like	to	
explore	the	security	aspect	of	this	project	further.	I	have	plans	to	implement	a	
brute	force	attack	protocol.	When	an	unrecognised	device	makes	too	many	
requests	within	a	certain	time	frame	the	device	would	close	connections	

Ø Improve	OpenSesamessage:	this	can	take	many	forms,	but	some	ideas	I	have	are	
cleaning	up	of	the	code	further,	adding	more	user	requests	that	the	device	can	
handle,	further	exploring	the	ruby	on	rails	web	application	

Ø Product	design:	I	would	like	to	design	and	develop	a	3d	printed	case	for	the	
device	

Ø Active	Release:	prepare	a	full	copy	of	the	device	code	and	product	list,	and	write	
up	documentation	for	the	device.	I	would	like	to	allow	people	to	use	and	create	
their	own	OpenSesamessage	device	and	use	it.	

Research	opportunities	for	OpenSesamessage:	
Ø User	Feedback:	Use	feedback	provided	from	users	to	better	understand	issues	or	

take	advice	on	what	should	be	implemented	going	forward.	
Ø User	testing:	I	plan	to	release	the	code	under	the	MIT	licence	as	an	open	source	

project	and	see	how	users	of	the	service	implement	the	device	and	the	feature	
they	request	or	add	themselves	to	the	device.	

	
	

	 OpenSesamessage Technical Report	

17 Closing	Statement		
On	further	development	and	research	for	OpenSesamessage	I	aim	to	continue	
development,	this	project	has	become	a	great	hobby	and	has	grown	my	interest	in	IOT	
development.	It	has	increased	my	knowledge	in	the	areas	of	web	development,	IOT	
development	and	design.	
I	would	like	to	apply	myself	to	a	future	in	areas	such	as	this,	and	am	considering	a	
masters	in	the	field.	I	aim	to	specialise	my	knowledge	in	the	area	if	IOT	development	and	
continue	development	of	OpenSesamessage	

	 OpenSesamessage Technical Report	

18 References	
	
"3.6.1	Documentation".	Docs.python.org.	N.p.,	2017.	Web.	8	May	2017.	
	
"15.3.	Time	—	Time	Access	And	Conversions	—	Python	2.7.13	
Documentation".	Docs.python.org.	N.p.,	2017.	Web.	8	May	2017.	
	
"Active	Record	Associations	—	Ruby	On	Rails	Guides".	Guides.rubyonrails.org.	N.p.,	
2017.	Web.	8	May	2017.	
	
"Active	Record	Basics	—	Ruby	On	Rails	Guides".	Guides.rubyonrails.org.	N.p.,	2017.	Web.	
8	May	2017.	
	
"Active	Record	Migrations	—	Ruby	On	Rails	Guides".	Guides.rubyonrails.org.	N.p.,	2017.	
Web.	8	May	2017.	
	
"Active	Record	Validations	—	Ruby	On	Rails	Guides".	Guides.rubyonrails.org.	N.p.,	2017.	
Web.	8	May	2017.	
	
"Document".	Core.telegram.org.	N.p.,	2017.	Web.	8	May	2017.	
"GPIO:	Raspberry	Pi	Models	A	And	B	-	Raspberry	Pi		
	Documentation".	Raspberrypi.org.	N.p.,	2017.	Web.	8	May	2017.	
	
"Lua:	Documentation".	Lua.org.	N.p.,	2017.	Web.	8	May	2017.	
	
"Razzpisampler".	Razzpisampler.oreilly.com.	N.p.,	2017.	Web.	8	May	2017.	
	
"Rspec	Documentation".	Rspec.info.	N.p.,	2017.	Web.	8	May	2017.	
	
"Using	A	Standard	USB	Webcam	-	Raspberry	Pi	Documentation".	Raspberrypi.org.	N.p.,	
2017.	Web.	8	May	2017.	
	
"Welcome	To	RPIO’S	Documentation!	—	RPIO	0.10.0	
Documentation".	Pythonhosted.org.	N.p.,	2017.	Web.	8	May	2017.	
	
"YARD	-	A	Ruby	Documentation	Tool".	Yardoc.org.	N.p.,	2017.	Web.	8	May	2017.	
	
	
	

	 OpenSesamessage Technical Report	

19 Appendix	
	
	

Monthly	Journals	

Reflective	Journal	
Student	name:	Conor	Breen	
Programme:	BSc	in	computing	
Month:	September	
You	don’t	have	to	follow	the	suggested	format.	These	sub-headings	and	questions	
below	may	help	you	to	get	the	most	out	of	this	journal,	but	you	are	free	to	modify	as	
you	see	fit.	Through	this	journal,	you	demonstrate	that	you	are	engaged	with	the	
process	and	that	you	can	identify	what	you	need	to	do	or	change	to	progress	and	
succeed	in	this	project.	
Upload	one	journal	every	month.	Expected	word	count	300	words	(of	you	own	words).	

My	Achievements	
This	month	I	was	able	to	settle	on	a	project	for	my	final	year.	I	met	with	a	company	
called	Unituition	to	discuss	possible	projects	that	I	could	do	for	them.	After	our	meeting,	
we	settled	on	a	project.	My	project	will	consist	of	me	implementing	a	front-end	
framework	on	their	site.	This	is	no	small	task;	it	involves	completely	redesigning	the	
entire	front	end	of	their	site	which	is	written	in	basic	CSS.	I	have	chosen	React.js	to	
implement.	React	is	a	front-end	framework	developed	by	Facebook	and	is	most	notable	
used	in	the	previous	example	as	well	as	Instagram.	It	improves	responsiveness	of	sites	
such	by	moving	html	elements	into	a	‘components’	file.	This	allows	responsive	rendering	
of	html	elements	on	the	fly.	As	well	as	that	is	improves	upon	site	efficiency	making	the	
pages’	load	faster	and	allows	for	quicker	ajax	calls	to	be	performed.	
	
	
	
	

My	Reflection	
This	month	I	have	implemented	the	framework	into	the	site	by	using	the	react-rails	gem.	
This	gem	generates	the	necessary	files	needed	for	ruby	on	rails	to	properly	interact	with	
the	react	component	files.	However,	there	have	been	some	setbacks.	Because	the	site	
has	been	created	using	mainly	CSS	classes	written	when	needed.	The	application.css	file	
contains	thousands	of	lines	of	code	that	will	need	to	be	loaded	every	time	the	site	
renders	a	new	page.	Cleaning	up	the	legacy	code	will	play	a	huge	part	in	this	project.	

	 OpenSesamessage Technical Report	

Making	proper	use	of	bootstrap	should	make	the	site	more	efficient,	however	I	have	
had	trouble	when	using	ruby	code	in	the	component.js.jsx	files.	
	
	
	

Intended	Changes	
Next	month	I	will	work	on	the	user	dashboard	trying	to	clean	up	the	interface	as	well	as	
make	it	more	intuitive.	This	involves	rewriting	tables,	ruby	calls	to	the	database	as	well	
as	ajax	calls	that	confirm	bookings.	
	

Supervisor	Meetings	
	
Date	of	Meeting:	n/a	
Items	discussed:	n/a	
Action	Items:	n/a		
	
	

Reflective	Journal	
Student	name:	Conor	Breen	
Programme:	BSc	in	computing	
Month:	October	
	

My	Achievements	
This month saw slow progress with the project. Reactjs is proving simple in some areas,
and cripplingly difficult in others. Because I’m using ruby on rails, I was able to avail of
the react-rails gem, a package for rails users that allows easy install of dependencies, and
with a couple lines of command line input I had the necessary component.js folder, the
require tree and the compiler setup and ready to go. Initially I began coding in JavaScript
to create and render new Reactjs components. This however raised a new challenge,
JavaScript code that generates html is not very easy to read. And in a project with
multiple developers I made the decision to change from JavaScript to jsx. This syntax
resembles xml, so it is inherently easier for other developers to read.

Because my project is building a frontend framework on top of an already established,
and constantly changing website, there has been some challenges in terms of version

	 OpenSesamessage Technical Report	

control. Having met with the lead developer, we agreed on branching out from the master
branch, and having my project run parallel to the main project. From there, this branch
will act as my master branch, allowing me to branch from it and merge code without the
fear of altering something in the main site.

	
	

My	Reflection	
This month has proved rather difficult in terms of project work. Working only one day a
week on a project of this scale has me worried about the time frame. My other modules
are requiring more and more of my time and I fear that the added workload will hinder
just how much work I am able to do. However, this month I wrote the code to allow react
components make calls to the database, pulling user information. And populating tables
with only minimal input, while generating the rest of the tables based my pre definitions.
This means for a more optimised app

	
	
	
	

Intended	Changes	
Next	month	I	will	work	heavily	on	active	record,	as	well	as	creating	the	react	equivalent	
of	for	loops,	to	loop	through	associations	between	students	and	tutors,	populating	both	
landing	pages.	
	

Supervisor	Meetings	
	
Date	of	Meeting:	n/a	
Items	discussed:	n/a	
Action	Items:	n/a		
	

	 OpenSesamessage Technical Report	

Reflective	Journal	
Student	Name:	Conor	Breen	

Programme:	BSc	in	Computing	

Month:	November	

This	month	saw	a	slight	lull	in	my	projects	progression.	November	saw	a	considerable	increase	in	my	
time	required	for	other	modules.	However,	I	did	manage	to	overcome	the	problems	I	was	
experiencing	earlier	in	the	month.	I	created	a	component	to	handle	all	of	the	database	calls	relating	
to	appointments	on	the	site.	rather	than	using	a	ruby	method	to	loop	through	the	database	records,	
this	new	jsx	component	creates	the	table’s	skeleton	and	with	the	raw	database	information	
generates	the	html	code	to	display	the	information	to	the	user	in	tables.	beyond	this	i	hope	to	add	
additional	functionality	to	this	page,	but	more	importantly	to	move	on	to	a	new	task.	

	

with	the	onslaught	of	in	class	assessments,	project	due	dates	and	my	presentation	for	my	final	year	
project	to	prepare	for	I’m	finding	myself	more	and	more	short	of	time.	however	with	careful	
planning	i	feel	that	i	can	keep	this	project	on	track	 	

My	Achievements	
As	mentioned	above	i	did	make	progress	improving	the	efficiency	of	the	user	dashboard	pages,	by	
reducing	the	amount	of	server	side	code	required	to	pull	appointment	information	to	display	to	the	
user	

	

Although	ephemeral,	I	am	happy	with	this	progress	however	I	do	feel	I	need	to	get	a	considerable	
amount	covered	over	the	Christmas	break.	I	do,	justifiably	so	have	reservations	on	how	productive	i	
will	prove	to	be	over	the	break,	but	i	remain	optimistic	

	

My	Reflection	
this	month	thought	me	to	maintain	my	timekeeping	better	than	i	have	been	doing	previously,	and	
with	he	help	on	waffle.io	i	have	created	a	SCRUM	board	to	keep	track	of	the	backlog	of	tasks,	tasks	
in	progress	and	tasks	that	i	have	completed	

	

Supervisor	Meetings	
	

	 OpenSesamessage Technical Report	

	Reflective	Journal	
Student	name:	Conor	Breen	
Programme	BSHCIOT4	
Month:	December	
	

Month	Overview	
After	my	project	mid-point	presentation	Adrianna	suggested	it	would	be	best	for	a	
change	in	direction,	so	I	have	decided	to	make	my	own	ruby	on	rails	application	and	
implement	front	end	features	into	that.	Also,	if	possible	add	an	IOT	element.	
December.	proved	difficult	for	project	work,	social	obligation	meant	that	progress	
slowed	somewhat.	
However,	although	slow	progress	was	made.	I	continued	development	on	the	ruby	on	
rails	website,	the	site	now	has	its	entire	scaffold.	A	user	model	for	the	admin	users	of	
the	service,	as	well	as	a	sub	user	model	for	the	people	users	add	to	the	service.	This	is	a	
security	feature	as	it	allows	to	user	to	grant	access	to	new	people	using	
OpenSesamessage,	while	giving	them	the	option	to	remove	this	privilege	rather	easily	
by	logging	into	their	account	and	removing	them.	However,	this	functionality	does	not	
exist,	and	for	the	month	coming	I	plan	on	implementing	telegram	into	the	rails	website	
via	the	use	of	a	gem	
	

My	Achievements	
This	month	was	focused	heavily	on	the	development	of	ruby	on	rails,	having	worked	on	
it	for	the	last	months,	I	felt	comfortable	programming	in	it	now.	Making	changes	and	
adding	functionality.	I	am	also	keeping	a	list	of	functionalities	that	should	be	
implemented	in	the	hopes	that	time	will	allow.	I	have	substantial	plans	for	next	month.	
	
	
	
	

My	Reflection	
In	reflection,	I	guess	I	knew	that	December	would	be	a	slow	month,	it	would	mean	
family	events	and	work	parties	and	every	form	of	social	obligation	or	final	year	project	
hindrance	imaginable.	However,	December	did	act	as	a	way	to	blow	off	steam.	I	enter	
January	optimistic	
	
	
	

	 OpenSesamessage Technical Report	

Intended	Changes	
Work	further	on	the	raspberry	pi,	implementing	a	messenger	service	and	finding	a	way	
to	parse	incoming	information	and	use	it	to	control	the	raspberry	pi,	and	motor.	Further	
information	on	how	this	all	works	will	make	itself	apparent	next	month	when	further	
research	is	carried	out	
	

Supervisor	Meetings	
	
Date	of	Meeting:		
Items	discussed:	a	possible	change	in	direction	for	my	project,	which	will	be	tough	but	
not	impossible.	
Action	Items:	
	
	

Reflective	Journal	
Student	name:	Conor	Breen	
Programme	BSHCIOT4	
Month:	January	

Month	Overview	
This	month	saw	great	progress	in	terms	of	programming.	I	have	chosen	the	messenger	
service	telegram	to	handle	requests	and	interpret	messages	as	commands.	With	the	
introduction	of	telegram	into	the	project	I	have	been	able	to	solve	the	problem	of	
interoperability.	This	project	is	now,	be	default	multi-platform.	I	have	chosen	a	
programming	language	called	Lua	to	parse	the	incoming	messages	and	based	on	their	
content	execute	commands.	For	example,	the	message	hello	to	the	system	will	return	a	
message	hello	#{user_name}.	this	is	the	simplest	of	the	commands,	but	in	the	next	
coming	months	I	will	use	messages	to	control	os	commands	with	the	system,	executing	
python	code	that	I	have	written.	

My	Achievements	
This	month’s	achievements	have	put	me	on	track	for	this	project.	I	have	purchased	a	
stepper	motor	which	should	arrive	shortly.	With	this	motor,	I	can	write	a	python	
program	to	activate	it,	in	the	hopes	that	it	would	open	a	lock	on	a	door	solely	from	a	
message	on	a	popular	messenger	service.	I	also,	have	plans	to	implement	a	webcam	to	
allow	the	admin	user	to	receive	image	messages	of	who	is	entering	the	house.	
	
	
	

	 OpenSesamessage Technical Report	

	

My	Reflection	
This	month	saw	great	progress,	especially	over	last	month.	However,	there	is	much	to	
do.	I	need	to	configure	the	motor	with	the	door	lock.	This	means	writing	a	program	to	
handle	this	functionality,	as	well	as	possibly	creating	a	functionality	for	taking	photos	
and	sending	them	back	to	the	admin	user	via	multimedia	message	through	telegram.	
	
This	month	saw	a	mild	disaster	with	the	project	code,	I.e.	ruby	on	rails	code.	The	
database	got	corrupted	by	fault	of	my	own	when	testing	migrating	to	AWS.	Fortunately,	
I	had	my	code	on	Github,	so	I	was	able	to	salvage	the	vast	majority	of	it	by	forking	my	
repository	and	creating	a	new	one.	OpenSesamessage-2.0	
	
	
	

Intended	Changes	
Next	month	I	hope	to	establish	the	stepper	motor	functionality	and	have	users	be	able	
to	trigger	this	action	via	a	message	to	“open”.	More	works	needs	to	be	done	on	the	
website.	I	need	to	implement	a	front-end	framework	into	the	new	website.	
	

Supervisor	Meetings	
	
Date	of	Meeting:	08/02/17	
Items	discussed:	getting	a	revised	project	documents	to	Adrianna.	Because	of	the	new	
direction,	the	project	has	taken	
Action	Items:	
	
	
	

Reflective	Journal	
Student	name:	Conor	Breen	
Programme	BSHCIOT4	
Month:	February	

Month	Overview	
This	month	was	a	difficult	one.	I	have	growing	fears	over	the	timeline	of	this	project,	
based	on	the	workload	that	has	fallen	upon	us	in	the	IOT	stream.	With	no	final	exams,	
we	have	a	substantial	amount	of	project	work.	However,	I	did	make	progress	with	the	

	 OpenSesamessage Technical Report	

rails	website,	mainly	in	terms	of	styling.	I	am	going	to	have	to	make	time	for	the	project	
report	as	time	seems	to	be	rapidly	slipping	through	my	fingers.	

My	Achievements	
Progress	with	the	website,	I	need	to	begin	looking	into	hosting.	I	have	purchased	the	
domain	name	openssesamessage.com	and	plan	to	host	it	online.	I	will	probably	choose	
Digital	Ocean	as	they	provide	affordable	hosting	packages	for	small	scale	projects,	as	
well	as	a	certain	amount	of	hosting	credit	for	students.		
	
	
	
	

My	Reflection	
In	reflection,	I	would	like	to	have	gotten	more	done.	However,	with	the	circumstances	of	
college	project	work	outside	of	the	final	year	project	this	was	impossible.	However,	I	
have	hopes	that	next	month	I	can	make	further	progress	with	the	project.	in	an	upside	
to	the	project	I	have	found	that	using	git	has	saved	me	once	again,	reverting	back	
through	commits	has	meant	that	I	haven’t	lost	huge	amounts	of	code	and	progress	
based	on	poor	programming	choices.	I	have	learned	that	programming	when	tired	and	
in	the	master	branch	is	recipe	for	disaster.	
	
	
	

Intended	Changes	
Next	month	I	hope	to	continue	on	with	this	project	making	steady	progress.	I	have	had	
problems	with	the	stepper	motor	and	have	ordered	a	new	one.	This	new	one	will	have	
increased	torque	over	the	other	and	should	be	better	suited	for	the	job	
	

Supervisor	Meetings	
	
Date	of	Meeting:	17/01/17	
Items	discussed:	a	time	plan	was	drawn	out	to	better	manage	time	in	the	project,	also	I	
need	to	get	the	documents	discussed	last	month	as	time	restraints	have	gotten	in	the	
way.	
Action	Items:	
	
	
	
	

	 OpenSesamessage Technical Report	

Reflective	Journal	
Student	name:	Conor	Breen	
Programme	BSHCIOT4	
Month:	March	

Month	Overview	
With	the	deadline	approaching	fast	it	has	become	apparent	that	time	is	a	commodity	
now.	The	rapid	approach	of	the	project	deadline	has	become	shrouded	by	the	onslaught	
of	projects	from	other	modules.	I	have	growing	fears	that	my	final	year	project	will	have	
its	quality	lessened	by	the	work	load.	However,	this	month	did	see	some	progress.	I	have	
the	website	styled	and	the	stepper	motor	working	on	command	through	the	telegram	
messenger	service.	What’s	required	now	is	a	webcam	to	take	photos	and	send	them	
back	upon	request	and	to	setup	security	features.	

My	Achievements	
The	achievements	this	month	are	in	the	programming	sense.	The	motor	works,	with	
python	code	running	by	commanding	the	GPIO	pins,	the	website	is	better	styled	and	the	
user	accounts	are	up	and	running.	However,	I	still	need	to	establish	communication	
between	the	web	application	and	the	IOT	device.	This	I	hope	will	be	possible	through	
the	use	of	a	telegram	gem.	Gems	are	packages	in	ruby	that	allows	wrappers	for	certain	
API’s.	with	the	use	of	a	suitable	gem	I	hope	that	I	will	be	able	to	establish	
communication	between	the	two	devices.	
	
	
	
	

My	Reflection	
It	is	coming	more	and	more	apparent	that	time	is	short,	obligations	outside	the	scope	of	
this	college	project	have	been	creeping	in	and	I	have	growing	concerns	over	the	final	
report.	So	far,	a	substantial	amount	of	my	project	work	has	been	programming.	And	
where	I	am	comfortable	programming,	I	fear	that	writing	technical	documents	is	my	
Achilles	heel.	
	
	

Intended	Changes	
Next	month	I	aim	to	focus	more	on	the	final	report.	The	daunting	size	of	it	requires	a	
large	time	commitment	and	next	month	will	be	very	busy	finishing	module	projects.	
	

	 OpenSesamessage Technical Report	

Supervisor	Meetings	
	
Date	of	Meeting:	14/03/17	
Items	discussed:	further	time	management,	and	features	
Action	Items:	
	

Other	Material	Used		
Any	other	reference	material	used	in	the	project	for	example	evaluation	surveys	etc.	
	

