

National College of Ireland

BSc in Computing

2016/2017

Andrei Ivanov

X13108824

FindSportClass.ie

Technical Report

 - 2 -

Contents

1 Executive Summary..4

1.1 Background ...4

1.2 Aims ..4

1.3 Structure ...5

1.4 Definitions, Acronyms, and Abbreviations ..5

2 System ..7

2.1 Technologies ..7

2.2 Requirements ...7

2.2.1 Functional requirements..7

2.2.2 User requirements ...7

2.2.3 Use case Diagram ...8

2.2.4 Requirement 1 <User registration> ..8

2.2.5 Requirement 2 <Sign in> ..10

2.2.6 Requirement 3 <create sport class> ..11

2.2.7 Requirement 5 <Searching for the suitable class>12

2.2.8 Requirement 7 <Send Private Message> ..13

2.2.9 Requirement 8 <Write feedback> ...14

2.2.10 Requirement 10 <Delete account> ...15

2.3 Usability Requirements ..16

2.3.1 Performance/Response time requirement ...16

2.3.2 Availability requirement ...16

2.3.3 Security requirement ...16

2.3.4 Portability requirement ..16

2.3.5 Target Site Users ...16

2.3.6 Scenario ...17

2.4 System Architecture and Implementation. ..18

2.4.1 Back end ..19

2.4.2 API Documentation..21

2.5 Front end Angular 2..30

2.5.1 Database ..34

2.6 Deployment ...36

 - 3 -

3 Testing ...38

3.1 Functional Testing ..38

3.2 User Testing (UX) ...50

3.2.1 Design & Navigation ..50

3.2.2 URLs ..50

3.2.3 404 & HTTP 301 ..51

3.2.4 Sitemap ..51

3.2.5 Mobile & Tablet ..51

3.2.6 Heuristic Evaluation ...52

Match between system and the real world ..52

4 GUI ..54

5 Evaluation ...59

6 Conclusion ..60

7 References ..61

7.1 Tutorials used ...61

7.2 References..61

8 Appendix ...62

8.1 Project Proposal ...62

8.1.1 Objectives ..62

8.1.2 Background ..62

8.2 Project Plan ..63

8.3 Technical Details ..64

8.4 Challenges and Considerations...64

8.5 Research and Interviews ...65

8.5.1 Interviews ...68

8.6 Monthly Journals ..71

1 Executive Summary

The main objective of this project is to provide people access to various sport

classes online based in Ireland. Trainers/instructors have ability to advertise their

regular sport classes and events. People have ability to search for these classes.

Introduction

1.1 Background

Using search engines such as google and yahoo users can search for sport

classes by type and location they require. For example, if I am in Swords, County

Dublin and are looking for football class for my 5 years old son I can use google or

yahoo search engines and they will find a dozen of sport classes available. Google

provide links for different websites such as local community centres’ webpages,

trainer’s outdated websites and so on. Also, I discover that lot of people advertise

their classes on the board in the local shops and community centres. Finding sport

class with all suitable criteria or even getting a list of available classes in your area

is very time consuming. People have to ring or go personally to local community

centres, visit all links that google search result provides and then manually filter

available and suitable classes for them. “FindaSportClass.ie” web application will

bring all trainers and their services into one place, make it easy to search for the

end users and get more overall information about sport classes available in their

area.

1.2 Aims

 To create web based application that allow trainers/instructors

advertise their services

 To allow consumers to search for sport classes matching their criteria

 To allow consumers and trainers interact with each other directly.

 To ensure that the site is easy to navigate and sign-up process is as

straightforward as possible.

 To allow consumer rate, leave and view for feedback

 - 5 -

 To ensure that project is completed within specific timeline

1.3 Structure

The first section is the overview and the summary of the project.

The second section details the background of the project, main objectives and

technologies used in the project development.

The third section describe functional requirements, user requirements and use

case diagram. It includes non-functional requirements and also details architecture

of the system.

The fourth section contains the appendices to this document. Appendices include

project proposal, interviews, research results and monthly reflective journals.

1.4 Definitions, Acronyms, and Abbreviations

 Consumer

The consumer is an individual who is interested to participate in sport

classes. He shall be able to search for sport classes available in the local

area using search criteria.

 Provider

The provider is defined as an individual who will be able to advertise their

sport classes for consumers

 User

Both consumer and provider

 Functional Requirements

 - 6 -

Conditions that must be implement to ensure that the basic functions of the

system are met.

 Non-Functional Requirements

Conditions that doesn’t prevent basic functionality, but still need to be

implemented.

 GUI

Graphical User Interface – web application view for the user.

 TypeScript

Superset of JavaScript that provides classes and interfaces.

 Angular 2

Angular2 is platform for building responsive mobile and web applications. It
much faster in rendering and re-rendering than angularJS. Angular 2
working together with typescript.

 JavaScript

High-level, dynamic programming language that is widely used for web

development.

 NodeJS Express

Express is a NodeJS framework that provides all capabilities of NodeJS and
allows to setup middleware to respond HTTP Requests.

 MongoDB

MongoDB is scalable, high performance open source NoSQL document
type database.

 AWS

Amazon Web Services is a secure cloud services platform that offers
computer power and database storage.

 - 7 -

2 System

2.1 Technologies

The web application is developed using different web technologies. It is simple,

responsive, single-page application (SPA) where the single page dynamically

updates as the user interact with the application. The front-end application is

developed using HTML, CSS, Bootstrap, JavaScript, Typescript. Angular 2

framework is used for frontend. MongoDB database is used to store and access

the key records and information. Web application is deployed on Amazon Web

Services (AWS) on EC2 server .

2.2 Requirements

2.2.1 Functional requirements

 System shall allow user to register account

 System shall be able to grant access to the user after he provides
username and password.

 System shall allow user to add, edit and delete sport class

 System shall display search results

 System shall provide private message service

 System shall allow user to write, save and view reviews

 System shall allow user to edit user profiles

2.2.2 User requirements

 The user shall be able to register an account

 The user shall be able to sign in

 The user shall be able to add, edit, delete their class

 The user shall be able to perform search

 The user shall be able to interact with other users

 The user shall be able to write reviews and rate sport trainers

 The user shall be able to personalize their profile

 - 8 -

2.2.3 Use case Diagram

2.2.4 Requirement 1 <User registration>

2.2.4.1 Description & Priority

This requirement refers to an unregistered user who must create a new account

on the site in order to get access to the site functionality such as sending private

messages, booking events etc. After registration user get all privileges of

“Registered user”

2.2.4.2 Use Case <Register account>

Description/Scope

The Register account use case allows the user to create a login and become a

registered user

Actor Consumer, Provider

Pre-Condition User has no valid account, but can browse to the site

 - 9 -

Activation User clicks the registration button

Flow Description

Main Flow

1. The system prompts the user for registration
information

2. The user fills requested fields
3. User click submit button
4. System verifies information
5. System creates account

Alternate Flow

Fields not

completed

1. Starts from Main Flow 3
2. System displays information with appropriate

message to complete the fields.
3. System prompts user re-enter information
4. User re-enters the required fields
5. System validates user details
6. System creates new account

Username

already exists

1. Starts from Main flow 3
2. System displays information that user name already

exists
3. System clear all the fields.
4. System prompts user re-enter information
5. User re-enters the required fields
6. System validates user details
7. System creates new account

Exception Flow User press “cancel” button at any time

Termination Success: Registration completed successfully

Exception: User fails to register

Post Condition User redirected to the Home page

 - 10 -

2.2.5 Requirement 2 <Sign in>

2.2.5.1 Description & Priority

This requirement relates to registered user who wants to sign in to his account.

Signing in to the account gives users possibility to book events, send private

messages, advertise classes etc.

2.2.5.2 Use Case <Sign in account>

Description/Scope

Allows a user to identify themselves on the site and access the required

functionality.

Actor Consumer, Provider

Pre-Condition User has valid account, but has not yet logged in onto the

system.

Activation The use case starts when user browse to the site Home page

Flow Description

Main Flow

1. System prompts user for username and password
2. User enters the required credentials
3. User clicks ‘sign in’ button
4. System validates user details
5. Users is signed in

Alternate Flow

Invalid

credentials

1. Starts from Main Flow 3
2. System displays information “username or password”

is invalid.
3. System prompts user re-enter information
4. User re-enters the required fields
5. System validates user details
6. User is signed in

Exceptional

Flow

User press “cancel” button at any time.

Termination Success: User is signed in

 - 11 -

Exception: User is not signed in

Post Condition User redirected to the Home page

2.2.6 Requirement 3 <create sport class>

2.2.6.1 Description & Priority

This requirement relates to the provider who wants advertise his sport class.

Advertising sport class gives consumer opportunity to be found his by consumer

via search.

2.2.6.2 Use case <create class>

Description/Scope

A provider adds a sport class to the system.

Actor Provider

Pre-Condition User is signed in to the system.

Activation The use case starts when user clicks ‘add class’

Flow Description

Main Flow

1. The system prompts for “new sport class” information
2. The user fills appropriate fields
3. User clicks add button
4. System validates all details
5. System creates new ad

Alternate Flow

Fields not

completed

1. Starts from Main Flow 3
2. System displays information with appropriate

message to complete the fields.
3. User completes appropriate fields
4. System validates details
5. System creates add

 - 12 -

Exceptional

Flow

User press “cancel” button at any time.

Termination Main Flow: New sport class is added

Exception: Fails to add new class

Post Condition User redirected to the Home page

2.2.7 Requirement 5 <Searching for the suitable class>

2.2.7.1 Description & Priority

This requirement relates to the consumer who wants to perform search for suitable

classes available.

2.2.7.2 Use case <Search Class>

Description/Scope

The user perform search using search criteria

Actor Consumer

Pre-Condition User is signed in to the system

Activation The use case starts when user navigates to the search form

Flow Description

Main Flow

1. System prompts user for search criteria
2. User choose search criteria and add the information

to the appropriate fields
3. User press “search” button
4. System validates the search criteria
5. System output the list of classes available according

to user search criteria

Alternate Flow

 - 13 -

Searching

without search

criteria

1. System prompts user for search criteria
2. User press “search” button
3. System output the list of all sport classes

Termination Success: system outputs list of sport classes

Post Condition User redirected to the search result

2.2.8 Requirement 7 <Send Private Message>

2.2.8.1 Description & Priority

This requirement relates to both consumer and provider. It is very important that

users can interact with each other.

2.2.8.2 Use case <Send Private Message>

Description/Scope

User send private message to other user.

Actor Consumer, Provider

Pre-Condition User is signed in to the system

Activation User press “Send PM” button

Flow Description

Main Flow

1. User presses “send pm” button
2. System prompts user to fill appropriate fields
3. User fill the fields
4. System prompts user for receiver information
5. User fills receiver information
6. User click “send” button
7. System validates information
8. System confirms that message is sent

Alternate Flow
1. User navigates to receiver account

 - 14 -

2. User presses “send pm” button
3. System prompts user to fill appropriate fields
4. User fill the fields
5. System validates information
6. System confirms that message is sent

Exceptional

Flow

User can press cancel at any time

Termination Success: PM is sent

Exception: Fails to send pm

Post Condition User is redirected to previous page

2.2.9 Requirement 8 <Write feedback>

2.2.9.1 Description & Priority

This requirement relates to consumer who want to write review about sport classes

he have been participated.

2.2.9.2 Use case <write review>

Description/Scope

User writes review about sport class he has been participated

Actor Consumer

Pre-Condition User is signed in

Activation User press “review” icon

Flow Description

Main Flow

1. User navigates to consumer account
2. User press “write review” icon
3. System prompts user for appropriate information
4. User fills all fields
5. User press “ok” button
6. System validates information
7. System confirms with appropriate message

 - 15 -

Exception Flow User can press “cancel/back” button

Termination Success: Review is posted successfully

Exception: Fails to post review

Post Condition User is redirected to the home page

2.2.10 Requirement 10 <Delete account>

2.2.10.1 Description & Priority

This requirement relates to both consumer and provider who doesn’t want to hold

account in findasportclass.ie

2.2.10.2 Use case <Delete Account>

Description/Scope

User permanently deletes his account from the system

Actor Consumer, Provider

Pre-Condition User is signed in to the system.

Activation Use case starts when user presses “Delete Account” button

Flow Description

Main Flow

1. User press “Delete Account”
2. System pop-up dialog box with confirm/cancel button
3. User clicks confirm button

Exceptional

Flow

1. User press “Delete Account”
2. System pop-up dialog box with confirm/cancel button
3. User clicks cancel button

Termination Success: Registered account deleted

 - 16 -

Exception: User fails to delete account

Post Condition User is redirected to home page

2.3 Usability Requirements

2.3.1 Performance/Response time requirement

The web application must be responsive and react instantaneously without

any delays. It is important that web application hosted on the correct

hardware and software to avoid significant lags in response.

FindaSportClass.ie will be hosted on AWS.

2.3.2 Availability requirement

It is important for the web application that it is highly available for the users

in multiple location. The application shall be available 24/7 basis.

2.3.3 Security requirement

As the application provides access to the user personal information such as

names, addresses, emails etc. there is a requirement that this information is

protected from external threats.

2.3.4 Portability requirement

The web application an access across different web browsers and devices.

2.3.5 Target Site Users

Trainers

 - 17 -

If you run sport classes, finding customers is time consuming process.

Findasportclass provides platform for people who wants to advertise their sport

classes.

Customers

FindaSportclass provides platform for people who wants to participate in a sport

class. User can perform quick search depending on their needs (location, price

age).

2.3.6 Scenario

Project Manager

Name Kevin

Age 35

Location Blackrock, Co Dublin

Status Married

About Kevin is working as project

manager. He is living in

Ireland, Blackrock, co

Dublin. He has wife and 10

years old son.

Scenario Kevin got a new job in Swords County Dublin. He moved to

the Swords, close to the job. His son was participating

taekwondo classes in Blackrock. Now, Kevin wants to find

similar Taekwondo classes in Swords.

Task Find taekwondo classes for 10 years old boy in Swords,

County Dublin.

Solution Findasportclass.ie can provide list of sportclasses available

in Swords by using search menu and providing location

name and age.

 - 18 -

Football Trainer

Name John Whale

Age 46

Status Divorced

About John is working as real estate agent,

but his part-time job is football trainer.

He is running football classes on

Saturday and Sunday.

Scenario John wants to advertise his football classes to attract more

kids. He already done it local community center, but he feels

that not so much people are aware. John doesn’t have

resources to develop website and then maintain it as this is

more hobby for him.

Task Advertise football class online

Solution John head to findasportclass site. He register on the site and

list his football class with the description, age, price and times

available. Customer can now see his advertisement online.

2.4 System Architecture and Implementation.

This section gives a brief overview of how the different application components

operate. The system is built using range of different technologies. The back-end of

the system is developed using NodeJS Express with RESTful web services. The

front-end is developed using Angular 2 platform with typescript and bootstrap

libraries.

 - 19 -

System architecture

2.4.1 Back end

Backend is developed in NodeJS using express framework. It is fully restful.

In project, all backend is in directory called “server”. For each model – feedback,

messages, sports and users – is separate directory.

 - 20 -

“Config” directory includes configuration for server, express framework, mongoDB,

testing and development environment.

Each model has index.js file, where HTTP GET, PUT, POST, DELETE and error

handling are implemented.

Example of GET:

feedbackDetail(req, res){

 let feedbackId = req.params.feedbackId;

 let promise = global.MongoORM.Feedback.findById(feedbackId)
 .populate('userId',['name','email','address','location','gender','profilePic'])
 .populate('trainerId',['name','email','address','location','gender','profilePic']);
 promise
 .then(function(feedback){
 res.sendResponse(feedback);
 })
 .catch(function(error){
 let errors = [];
 if(error.name == 'ValidationError'){
 Object.keys(error.errors).forEach(function(field){
 let eObj = error.errors[field].properties;

http://error.name/

 - 21 -

 if(eObj.hasOwnProperty("message"))
 errors.push(eObj['message']);
 });
 } else if(error.name == 'MongoError'){
 errors.push(error);
 } else
 errors.push('Internal server error.');
 res.sendError(errors);
 });

}

2.4.2 API Documentation

1. Feedback

POST Add Feedback

Sample request:

curl --request POST \

 --url http://localhost:8080/api/feedback \

 --header 'content-type: application/json' \

 --data '{

 "content":"Nice trainer",

 "ratting":5,

 "trainerId":"58caa3238664432062aea426",

 "userId":"58ca54b437a8ac1437d1cd5f"

}

GET List Feedbacks

Sample request:

curl --request GET \

 --url http://localhost:8080/api/feedback \

 --header 'content-type: application/json' \

 --header 'token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyTmFtZSI

6ImtyaXNobmFsIiwicGFzc

GET Feedback Detail

Sample request:

http://error.name/

 - 22 -

curl --request GET \

 --url http://localhost:8080/api/feedback/58cacb26daabd62824e2f89c \

 --header 'content-type: application/json' \

 --header 'token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyTmFtZSI
6ImtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUxNTQwNiwi

ZXhwIjoxNDg5NjAxODA2fQ

PUT Update Feedback

Sample request:

curl --request PUT \

 --url http://localhost:8080/api/feedback/58cacb26daabd62824e2f89c \

 --header 'content-type: application/json' \

 --header 'token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyTmFtZSI6I
mtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUxNTQwNiwiZ
XhwIjoxNDg5NjAxODA2fQ.e4bL9hX9MSmBS6hutLKejuRlY25dxWtnJ5zAoDvY
WTs' \

 --data '{

 "content":"Very nice trainer"

}'

DELETE Feedback

Sample request:

curl --request DELETE \

 --url http://localhost:8080/api/feedback/58cacb26daabd62824e2f8
9c \

 --header 'content-type: application/json' \

 --header 'x-access-token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyTm

FtZSI6ImtyaXNobmFs

2. Messages

POST Send Message

Sample request:

curl --request POST \

 - 23 -

 --url http://localhost:8080/api/messages \

 --header 'content-type: application/json' \

 --header 'token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyTmFtZSI6I
mtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUxNTQwNiwiZ
XhwIjoxNDg5NjAxODA2fQ.e4bL9hX9MSmBS6hutLKejuRlY25dxWtnJ5zAoDvY
WTs' \

 --data '{

 "title":"Test Message",

 "description":"how are you?",

 "senderId":"58caa3238664432062aea426",

 "recipientId":"58ca54b437a8ac1437d1cd5f"

}'

GET List Messages

Sample request:

curl --request GET \

 --url http://localhost:8080/api/messages \

 --header 'content-type: application/json' \

 --header 'token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyTmFtZSI6I
mtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUxNTQwNiwiZ
XhwIjoxNDg5NjAxODA2fQ.e4bL9hX9MSmBS6hutLKejuRlY25dxWtnJ5zAoDvY
WTs'

GET Message Detail

Sample request:

curl --request GET \

 --url http://localhost:8080/api/messages/58caa51431613f2133ce06bb \

 --header 'content-type: application/json' \

 --header 'token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyTmFtZSI6I
mtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUxNTQwNiwiZ
XhwIjoxNDg5NjAxODA2fQ.e4bL9hX9MSmBS6hutLKejuRlY25dxWtnJ5zAoDvY

WTs'

 - 24 -

DELETE Message Detail

Sample request:

curl --request DELETE \

 --url http://localhost:8080/api/messages/58caa51431613f2133ce06bb \

 --header 'content-type: application/json' \

 --header 'token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyTmFtZSI
6ImtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUxNTQwNiwi
ZXhwIjoxNDg5NjAxODA2fQ.e4bL9hX9MSmBS6hutLKejuRlY25dxWtnJ5zAoDvY

WTs'

3. Sports

POST Add Sports

Sample request:

curl --request POST \

 --url http://localhost:8080/api/sports \

 --header 'content-type: application/json' \

 --header 'token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyTmFtZSI6I
mtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUxNTQwNiwiZ
XhwIjoxNDg5NjAxODA2fQ.e4bL9hX9MSmBS6hutLKejuRlY25dxWtnJ5zAoDvY
WTs' \

 --data '{

 "gender":"male",

 "location":[150.644,-34.397],

 "name":"Baseball",

 "description":"baseball description",

 "ownerId":"58caa3238664432062aea426",

 "age":18,

 "price":100,

 "tags":["baseball"],

 "prompPicture":"mytest.jpg",

 "address": {

 - 25 -

 "address1":"address street 1",

 "address2":"address street 2",

 "city":"Wales",

 "state":"New South Wales",

 "zipcode":"1234",

 "country":"Australia",

 "phone":"+412543322222"

 }

 }'

GET List Sports

 Sample request:

curl --request GET \

 --url http://localhost:8080/api/sports \

 --header 'content-type: application/json' \

 --header 'token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyTmFtZSI6I
mtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUxNTQwNiwiZ
XhwIjoxNDg5NjAxODA2fQ.e4bL9hX9MSmBS6hutLKejuRlY25dxWtnJ5zAoDvY

WTs'

GET Sports Detail

Sample request:

curl --request GET \

 --url http://localhost:8080/api/sports/58caaa7889ac37226fb9e4d7 \

 --header 'content-type: application/json' \

 --header 'token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyTmFtZSI
6ImtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUxNTQwNiwi
ZXhwIjoxNDg5NjAxODA2fQ.e4bL9hX9MSmBS6hutLKejuRlY25dxWtnJ5zAoDvY

WTs'

PUT Update Sport's Address

Sample request:

 - 26 -

curl --request PUT \

 --url http://localhost:8080/api/sports/58caa47f6add8120dcc852f8/address \

 --header 'content-type: application/json' \

 --header 'token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyTmFtZSI6I
mtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUxNTQwNiwiZ
XhwIjoxNDg5NjAxODA2fQ.e4bL9hX9MSmBS6hutLKejuRlY25dxWtnJ5zAoDvY
WTs' \

 --data '{

 "address1":"street 1",

 "zipcode":"23456"

}'

PUT Update Sport

Sample request:

curl --request PUT \

 --url http://localhost:8080/api/sports/58caaa7889ac37226fb9e4d7 \

 --header 'content-type: application/json' \

 --header 'token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyTmFtZSI6I
mtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUxNTQwNiwiZ
XhwIjoxNDg5NjAxODA2fQ.e4bL9hX9MSmBS6hutLKejuRlY25dxWtnJ5zAoDvY
WTs' \

 --data '{

 "name":"Base Ball"

}'

DELETE Sports Detail

Sample request:

curl --request DELETE \

 --url http://localhost:8080/api/sports/58caaa7889ac37226fb9e4d7 \

 --header 'content-type: application/json' \

 --header 'token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyTmFtZSI
6ImtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUxNTQwNiwi
ZXhwIjoxNDg5NjAxODA2fQ.e4bL9hX9MSmBS6hutLKejuRlY25dxWtnJ5zAoDvY

WTs'

 - 27 -

4. Users

POST Signup User

Sample request:

curl --request POST \

 --url http://localhost:8080/api/user \

 --header 'content-type: application/json' \

 --data '{

 "email":"Andrei@gmail.com",

 "name":"Andrei Ivy",

 "password":"admin",

 "gender":"male",

 "location":[150.644,-34.397],

 "type":"customer",

 "profilePic":"mytest.png",

 "address": {

 "address1":"address street 1",

 "address2":"address street 2",

 "city":"Wales",

 "state":"New South Wales",

 "zipcode":"1234",

 "country":"Australia",

 "phone":"+412543322222"

 }

}'

GET List Users

Sample request:

curl --request GET \

 --url http://localhost:8080/api/user \

 --header 'content-type: application/json' \

 - 28 -

 --header 'x-access-token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2Vy
TmFtZSI6ImtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUxN
TQwNiwiZXhwIjoxNDg5NjAxODA2fQ.e4bL9hX9MSmBS6hutLKejuRlY25dxWtnJ
5zAoDvYWTs'

PUT Update User Profile

Sample request:

curl --request PUT \

 --url http://localhost:8080/api/user/58c97e18497a771059e999fb \

 --header 'content-type: application/json' \

 --header 'user-agent: Mozilla/5.0 (Linux; U; Android 4.0.3; en-in; SonyEricssonM
T11i' \

 --data '{

 "name":"Andrei",

 "gender":"Male"

}'

GET User Detail

Sample request:

curl --request GET \

 --url http://localhost:8080/api/user \

 --header 'content-type: application/json' \

 --header 'x-access-token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2Vy
TmFtZSI6ImtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUxN
TQwNiwiZXhwIjoxNDg5NjAxODA2fQ.e4bL9hX9MSmBS6hutLKejuRlY25dxWtnJ
5zAoDvYWTs'

PUT Update User Address

Sample request:

curl --request PUT \

 --url http://localhost:8080/api/user/58ca54b437a8ac1437d1cd5f/address \

 --header 'content-type: application/json' \

 --header 'user-agent: Mozilla/5.0 (Linux; U; Android 4.0.3; en-in; SonyEricssonM
T11i' \

 --data '{

 - 29 -

 "address1":"street 1",

 "zipcode":"23456"

}'

POST User Login

Sample request:

curl --request POST \

 --url http://localhost:8080/api/login \

 --header 'content-type: application/json' \

 --header 'user-agent: Mozilla/5.0 (Linux; U; Android 4.0.3; en-in; SonyEricssonM
T11i' \

 --data '{

 "email":"andrei@gmail.com",

 "password":"admin"

}'

DELETE User Detail

Sample request:

curl --request DELETE \

 --url http://localhost:8080/api/user \

 --header 'content-type: application/json' \

 --header 'x-access-token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2V
yTmFtZSI6ImtyaXNobmFsIiwicGFzc3dvcmQiOiJhZG1pbiIsImlhdCI6MTQ4OTUx
NTQwNiwiZXhwIjoxNDg5NjAxODA2fQ.e4bL9hX9MSmBS6hutLKejuRlY25dxWtn
J5zAoDvYWTs'

POST Check Login

Sample request:

curl --request POST \

 --url http://localhost:8080/api/checkLogin \

 --header 'content-type: application/json' \

 --data '{

 - 30 -

 "token":"e1yJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJfaWQiOiI1OGNhYTMy
Mzg2NjQ0MzIwNjJhZWE0MjYiLCJ1cGRhdGVkQXQiOiIyMDE3LTAzLTE2VDE0
OjM3OjIzLjY4OVoiLCJjcmVhdGVkQXQiOiIyMDE3LTAzLTE2VDE0OjM3OjIzLjY4
OVoiLCJhZGRyZXNzIjp7ImFkZHJlc3MxIjoiYWRkcmVzcyBzdHJlZXQgMSIsImFk
ZHJlc3MyIjoiYWRkcmVzcyBzdHJlZXQgMiIsImNpdHkiOiJXYWxlcyIsInN0YXRlIjoi
TmV3IFNvdXRoIFdhbGVzIiwiemlwY29kZSI6IjEyMzQiLCJjb3VudHJ5IjoiQXVzdH
JhbGlhIiwicGhvbmUiOiIrNDEyNTQzMzIyMjIyIiwiX2lkIjoiNThjYWEzMjM4NjY0ND
MyMDYyYWVhNDI3In0sInJlZ2lzdHJhdGlvbkRhdGUiOiIyMDE3LTAzLTE2VDE0
OjM3OjIzLjY4MFoiLCJwcm9maWxlUGljIjoibXl0ZXN0LnBuZyIsInR5cGUiOiJ0cm
FpbmVyIiwiZ2VuZGVyIjoibWFsZSIsImVtYWlsIjoia3Jpc2huYWwuamFkYXZAZ21
haWwuY29tIiwibmFtZSI6IktyaXNobmFsIEphZGF2IiwiX192IjowLCJpc0FjdGl2ZSI
6dHJ1ZSwibG9jYXRpb24iOlsxNTAuNjQ0LC0zNC4zOTddLCJpYXQiOjE0OTA1
MTc2NTEsImV4cCI6MTQ5MDYwNDA1MX0.HOGMAqmvrbq-DWjbgImaPQI8nV
9X14CmNcyQGifHl9s"

}'

2.5 Front end Angular 2

In project, all the front end is in directory called “app”.

Common folder includes notification service and pager (pagination) services.

These are used in different modules, such as feedback, sport and message

modules, to avoid code duplication there are placed into separated directory from

where they are injected into other modules.

 - 31 -

Component folder consist of main component – root component – and header

component (navbar). View folder consist html pages, where also sits main view

page – app.html – that renders all the .html pages.

Modules

All Angular 2 applications have modular structure, findasportclass is also broken

down into modules. It has dashboard, login, message, profile and root module -

app module. Modules contains components, providers (services) and pipes, html

and CSS. Angular 2 provides built in services (like libraries) that can be importer

and injected into the components. This makes developing application faster.

 - 32 -

Example of module class (profile module):

@NgModule({
 declarations: [ProfileComponent],
 imports: [BrowserModule,

 CommonModule,
 ReactiveFormsModule,
 RouterModule,

 ModalModule.forRoot(),
 FlexLayoutModule,

 DropzoneModule.forRoot(DROPZONE_CONFIG)
],
 exports: [ProfileComponent],

 providers: [ProfileService]
})
export class ProfileModule {

 static ROUTES:any=routes;
}

 - 33 -

As we can see “profile module” include component (profile.component.ts) html

page (profile.html) and module(profile.module.ts) file. Modules are like separate

units – small applications - that can be imported, not only in the same application,

but across different Angular 2 applications.

Component

Component contains data members and functions. It’s like controller in MVC

architecture that has application logic and controls a patch of the page called a

template (.html). It interacts with the template through functions, bindings and API.

Service

To reuse code over and over in angular2 services are implemented and then

injected into components. Services allows us to create specific functionality and

then reuse them in components. We can use Angular 2 native http module that

exposes HTTP service to access web services over http.

Example of profile service with the update profile functionality:

@Injectable()
export class ProfileService {
 private headers = new Headers();
 private profileUrl = "api/user";

 constructor(private http: Http) {
 this.headers.append('Content-Type', 'application/json');
 this.headers.append('token',localStorage.token);
 }

 updateProfile(postArray,profileId): Promise<profile[]> {
 let apiRequestUrl=this.profileUrl+'/'+profileId;
 return this.http
 .put(apiRequestUrl, JSON.stringify(postArray), {headers: this.headers})
 .toPromise()
 .then(res => res as profile[])
 .catch(this.handleError);

 }

In profile service “updateProfile” function updates (http PUT) profile data by

accessing update profile URL (API) and update profile accordingly in server side.

Authorization and authentication

 - 34 -

JWT (Jason web token) library is used to securely communicate JSON payload

(object) across HTTP connection. When user sign-in and the password match, he

is assigned with the valid token that is used to send request over http. If user does

not have a token he can only access to log-in, register and main page of the sport

classes.

2.5.1 Database

Database is developed in MongoDB using mongoose library. Mongoose is high

level and uses MongoDB driver. System have 4 models:

1. User collection stores user details and it has address schema and user

schema as following:

 AddressSchema = new mongoose.Schema({
 address1: {type: String},
 address2: {type: String},
 city: {type: String},
 county: {type: String},
 zipcode: {type: String},
 country: {type: String},
 phone: {type: String}
 });

UserSchema = new mongoose.Schema({
 name: { type: String },
 email: { type: String, required: [true,'Email is required'] },
 password: { type: String, required: [true,'Password is required'] },
 birthdate: { type: Date },
 gender: { type: String },
 registrationDate: { type: Date},
 address: AddressSchema,
 location: { type: Array},
 isActive: { type: Boolean, default:true },
 profilePic: { type: String},

 - 35 -

 about: { type: String},
 type: { type: String}
}

2. Sport collection is used to store sport class details. It has address schema
and user schema as following:

AddressSchema = new mongoose.Schema({
 address1: {type: String},
 address2: {type: String},
 city: {type: String},
 state: {type: String},
 zipcode: {type: String},
 country: {type: String},
 phone: {type: String}

 });

 SportSchema = new mongoose.Schema({
 name: { type: String, required: [true,'Sport name is required'] },
 description: { type: String, required: [true,'Description is required'] },
 ownerId : { type: mongoose.Schema.Types.ObjectId, ref: 'User' },
 startDate: { type: Date},
 startTime: { type: String},
 address: AddressSchema,
 location: { type: Array},
 prompPicture: { type: String},
 minAge: { type: Number},
 maxAge: { type: Number},
 price: { type: Number, min: 1},
 tags: { type: Array},
 isActive: { type: Boolean, default:true },
 createdDt: { type: Date, default: Date.now}, }

3. Feedback collection is used to store feedback details and following
schema is used.

FeedbackSchema = new mongoose.Schema({
 content: { type: String, required: [true,'Content is required'] },
 trainerId: { type: mongoose.Schema.Types.ObjectId,ref: 'User' },
 rating: {type: Number},
 userId: { type: mongoose.Schema.Types.ObjectId,ref: 'User' },
 createdDt: { type: Date, default: Date.now},
 }

4. Message collection is used to store PM details.

MessageSchema = new mongoose.Schema({
 title: { type: String, required: [true,'Message title is required'] },
 description: { type: String, required: [true,'Description is required'] },
 senderId: { type: mongoose.Schema.Types.ObjectId, ref: 'User' },

 - 36 -

 recipientId: { type: mongoose.Schema.Types.ObjectId, ref: 'User'
 createdDt: { type: Date, default: Date.now},

 }, |

2.6 Deployment

Deployment Process

I used webpack for build process of angular 2 application and Nginx for setting

routing for APIs to node.js application and serve angular app statistically.

Webpack:

 Webpack is a JavaScript bundler. It takes in a bunch of assets (i.e. source,

images, markup, CSS, JS) and turns that into minified and browser compatible

format(For example typescript to JavaScript transpiled source with html and CSS).

Nginx:

 nginx is an open source, lightweight, high-performance web server or proxy

server. Nginx used as reverse proxy server for HTTP, HTTPS, SMTP, IMAP, POP3

protocols, on the other hand, it is also used for server’s load balancing and HTTP

Cache.

How deployment works:

 Used webpack to generate application build. It packs all third-party module

in vendor.bundle.js file, CSS in webapp.css file and all angular source in

 - 37 -

app.bundle.js file. Index.html will have only these 4 files injected. It will copy images

and assets in build folders using webpack copy plugins.

 Nginx will serve index.html from build folder which is generated using

webpack.

 /api upstream block will catch all api calls and proxy it to node.js application

running on different port.

How to generate build:

"npm run build" script will execute "webpack --config webpack.config.js " command

to generate build as per the config in webpack.config.js file. It will create build folder

in project root directory which will be used by nginx to server static content.

 - 38 -

3 Testing

3.1 Functional Testing

Mocha, xunit, jenkins-mocha, istanbul, should, and supertest npms of node.js have

been used to unit test our api code.

Mocha:

Mocha is an open source JavaScript test framework running on Node.js and in the

browser, making asynchronous testing simple. Mocha tests run serially, allowing

for flexible and accurate reporting, while mapping uncaught exceptions to the

correct test cases.

xunit:

xunit is a plugin to integrate test with automation and CI using jenkins. xunit collects

test results and prepares xml reports for viewers in jenkins, hudson etc.

jenkins-mocha:

Jenkins mocha is the wrapper npm to jenkins and mocha which acts like a task

runner to execute unit tests and prepare reports according to reporter, In my case

I provided xunit.

istanbul:

Istanbul is a coverage tool that calculates statement, line, function, and branch

coverage with module loader hooks to transparently add coverage when running

tests. It helps to maintain code coverage and reports non-tested dead codes.

Supertest:

Supertest is used to test http requests by asserting HTTP to the app. It makes

requests and maintains dependency requirements.

 - 39 -

Should :

Should is an expressive and readable assertion library. It keeps clean code and

error message helpful. For example to check attribute name with andrei value in

the user object, we can check by 'user.should.have.property('name', 'andrei');' it's

readable and easy to use.

Test automation flow:

Npm script, 'npm test' are added in the package.json file. It executes Make

command('make test').

Step 1:

Make script set's reporter to xunit so it can produce xml report which can be used

prepare unit test document for code coverage and further integrate with jenkins.

Step2:

Set node environment as a test (NODE_ENV=test) so that API will read the test

environment config and it will use test database to create testing data.

Step 3:

Initiate test from index file of test directory which includes all test files. It will pass,

artifact directory to store test results in html format.

All test passed with the following input and output (command line interface):

POST /api/user
Mongoose: users.insert({ updatedAt: new Date("Sun, 07 May 2017 22:11:16 GMT"),

createdAt: new Date("Sun, 07 May 2017 22:11:16 GMT"), address: { address1: 'address

street 1', address2: 'address street 2', city: 'Wales', state: 'New South Wales', zipcode:

'1234', country: 'Australia', phone: '+412543322222', _id:

ObjectId("590f9b8411626e1046f797df") }, registrationDate: new Date("Sun, 07 May

2017 22:11:16 GMT"), profilePic: 'mytest.png', type: 'trainer', gender: 'male', password:

'21232f297a57a5a743894a0e4a801fc3', email: 'andrei@gmail.com', name: 'Andrei', _id:

ObjectId("590f9b8411626e1046f797de"), isActive: true, location: [150.644, -34.397],

__v: 0 })

POST /api/user 200 271.230 ms - 596

mailto:andrei@gmail.com

 - 40 -

 ✓ should create trainer user and respond with json and 200 status (341ms)

Mongoose: users.insert({ updatedAt: new Date("Sun, 07 May 2017 22:11:16 GMT"),

createdAt: new Date("Sun, 07 May 2017 22:11:16 GMT"), registrationDate: new

Date("Sun, 07 May 2017 22:11:16 GMT"), type: 'trainer', password:

'21232f297a57a5a743894a0e4a801fc3', email: 'andrei.customer@gmail.com', name:

'Andrei', _id: ObjectId("590f9b8411626e1046f797e0"), isActive: true, location: [], __v: 0 })

POST /api/user 200 10.584 ms - 339

userId 590f9b8411626e1046f797e0

 ✓ should create customer user and respond with json and 200 status

POST /api/user 400 5.732 ms - 81

 ✓ should not create user without password

 POST /api/login

Mongoose: users.findOne({ password: '21232f297a57a5a743894a0e4a801fc3', email:

'andrei@gmail.com' }, { fields: {} })

POST /api/login 200 29.001 ms - 1393

 ✓ should login user and respond with 200 status

Mongoose: users.findOne({ password: 'e00cf25ad42683b3df678c61f42c6bda', email:

'andrei@gmail.com' }, { fields: {} })

POST /api/login 400 6.661 ms - 55

 ✓ should not login user and respond with 400 status

 GET /api/user

Mongoose: users.find({}, { limit: 10, skip: 0, sort: { createdAt: -1 }, fields: {} })

Mongoose: users.count({}, {})

GET /api/user 200 19.348 ms – 926

 ✓ should respond with json

mailto:andrei.customer@gmail.com
mailto:andrei@gmail.com
mailto:andrei@gmail.com

 - 41 -

Mongoose: users.findOne({ _id: ObjectId("590f9b8411626e1046f797e0") }, { fields: {} })

GET /api/user/590f9b8411626e1046f797e0 200 6.972 ms - 311

 ✓ should respond with 200 status

GET /api/user/15 400 3.003 ms - 55

 ✓ should respond with 204, record not found

 PUT /api/user

Mongoose: users.findOne({ _id: ObjectId("590f9b8411626e1046f797e0") }, { fields: {} })

Mongoose: users.update({ _id: ObjectId("590f9b8411626e1046f797e0"), __v: 0 }, {

'$set': { gender: 'male', location: [150.644, -34.397], updatedAt: new Date("Sun, 07 May

2017 22:11:17 GMT") }, '$inc': { __v: 1 } })

PUT /api/user/590f9b8411626e1046f797e0 200 28.706 ms - 342

 ✓ should update user and respond with json and 201 status

Mongoose: users.findOne({ _id: ObjectId("590f9b8411626e1046f797e0") }, { fields: {} })

PUT /api/user/590f9b8411626e1046f797e0 200 15.029 ms - 342

 ✓ should update address of user and respond with json and 200 status

Mongoose: users.findOne({ _id: ObjectId("590f9b8411626e1046f797e0") }, { fields: {} })

Mongoose: users.update({ _id: ObjectId("590f9b8411626e1046f797e0") }, { '$set': {

address: { address1: 'address line 1', address2: 'address street 2', city: 'Wales', state:

'New South Wales', country: 'Australia', zipcode: '1234', phone: '+412543322222', _id:

ObjectId("590f9b8511626e1046f797e4") }, updatedAt: new Date("Sun, 07 May 2017

22:11:17 GMT") } })

PUT /api/user/590f9b8411626e1046f797e0/address 200 7.775 ms - 577

 ✓ should update address of user and respond with json and 200 status

PUT /api/user/100 400 2.831 ms - 55

 ✓ should return no user found

 - 42 -

 DELETE /api/user

Mongoose: users.findAndModify({ _id: ObjectId("590f9b8411626e1046f797e0") }, [], , {

remove: true, fields: {} })

DELETE /api/user/590f9b8411626e1046f797e0 200 9.790 ms - 39

 ✓ should delete user and respond with json and 200 status

DELETE /api/user/100 400 1.988 ms - 207

 ✓ should return no user found

 POST /api/feedback

Mongoose: users.findOne({ password: '21232f297a57a5a743894a0e4a801fc3', email:

'andrei@gmail.com' }, { fields: {} })

POST /api/login 200 8.584 ms - 1393

Mongoose: feedbacks.insert({ updatedAt: new Date("Sun, 07 May 2017 22:11:17 GMT"),

createdAt: new Date("Sun, 07 May 2017 22:11:17 GMT"), userId:

ObjectId("590f9b8411626e1046f797de"), trainerId:

ObjectId("58caa3238664432062aea426"), content: 'Nice trainer', _id:

ObjectId("590f9b8511626e1046f797e7"), createdDt: new Date("Sun, 07 May 2017

22:11:17 GMT"), __v: 0 })

POST /api/feedback 200 11.081 ms - 287

 ✓ should create feedback and respond 200 status

 GET /api/feedback

Mongoose: users.findOne({ password: '21232f297a57a5a743894a0e4a801fc3', email:

'andrei@gmail.com' }, { fields: {} })

POST /api/login 200 7.344 ms - 1393

Mongoose: feedbacks.find({}, { limit: 10, skip: 0, sort: { createdAt: -1 }, fields: {} })

Mongoose: feedbacks.count({}, {})

GET /api/feedback 200 10.529 ms - 353

mailto:andrei@gmail.com
mailto:andrei@gmail.com

 - 43 -

 ✓ should respond with json

Mongoose: feedbacks.findOne({ _id: ObjectId("590f9b8511626e1046f797e7") }, { fields:

{} })

Mongoose: users.find({ _id: { '$in': [ObjectId("590f9b8411626e1046f797de")] } }, { fields:

{ name: 1, email: 1, address: 1, location: 1, gender: 1, profilePic: 1 } })

Mongoose: users.find({ _id: { '$in': [ObjectId("58caa3238664432062aea426")] } }, {

fields: { name: 1, email: 1, address: 1, location: 1, gender: 1, profilePic: 1 } })

GET /api/feedback/590f9b8511626e1046f797e7 200 24.765 ms - 596

 ✓ should respond with 200 status

GET /api/feedback/111 400 2.680 ms - 55

 ✓ should respond with 400, record not found

 PUT /api/feedback

Mongoose: users.findOne({ password: '21232f297a57a5a743894a0e4a801fc3', email:

'andrei@gmail.com' }, { fields: {} })

POST /api/login 200 7.461 ms - 1393

Mongoose: feedbacks.findOne({ _id: ObjectId("590f9b8511626e1046f797e7") }, { fields:

{} })

Mongoose: feedbacks.update({ _id: ObjectId("590f9b8511626e1046f797e7") }, { '$set': {

trainerId: ObjectId("590f9b8411626e1046f797de"), updatedAt: new Date("Sun, 07 May

2017 22:11:17 GMT") } })

PUT /api/feedback/590f9b8511626e1046f797e7 200 8.658 ms - 287

 ✓ should update feedback and respond with 200 status

PUT /api/feedback/100 400 3.063 ms - 55

 ✓ should return no user found

 DELETE /api/feedback

mailto:andrei@gmail.com

 - 44 -

Mongoose: users.findOne({ password: '21232f297a57a5a743894a0e4a801fc3', email:

'andrei@gmail.com' }, { fields: {} })

POST /api/login 200 6.195 ms - 1393

 ✓ login

Mongoose: feedbacks.findAndModify({ _id: ObjectId("590f9b8511626e1046f797e7") }, [],

, { remove: true, fields: {} })

DELETE /api/feedback/590f9b8511626e1046f797e7 200 7.163 ms - 43

 ✓ should delete feedback and respond with 200 status

DELETE /api/feedback/100 400 3.666 ms - 211

 ✓ should return no feedback found

 POST /api/messages

Mongoose: users.findOne({ password: '21232f297a57a5a743894a0e4a801fc3', email:

'andrei@gmail.com' }, { fields: {} })

POST /api/login 200 11.200 ms - 1393

Mongoose: messages.insert({ updatedAt: new Date("Sun, 07 May 2017 22:11:17 GMT"),

createdAt: new Date("Sun, 07 May 2017 22:11:17 GMT"), recipientId:

ObjectId("58ca54b437a8ac1437d1cd5f"), senderId:

ObjectId("58caa3238664432062aea426"), description: 'how are you?', title: 'Test

Message', _id: ObjectId("590f9b8511626e1046f797ec"), createdDt: new Date("Sun, 07

May 2017 22:11:17 GMT"), __v: 0 })

POST /api/messages 200 11.789 ms - 318

 ✓ should create message and respond 200 status

 GET /api/messages

Mongoose: users.findOne({ password: '21232f297a57a5a743894a0e4a801fc3', email:

'andrei@gmail.com' }, { fields: {} })

POST /api/login 200 5.681 ms - 1393

mailto:andrei@gmail.com
mailto:andrei@gmail.com
mailto:andrei@gmail.com

 - 45 -

Mongoose: messages.find({}, { limit: 10, skip: 0, sort: { createdAt: -1 }, fields: {} })

Mongoose: users.find({ _id: { '$in': [ObjectId("58caa3238664432062aea426")] } }, {

fields: { name: 1, email: 1, address: 1, location: 1, gender: 1, profilePic: 1 } })

Mongoose: messages.count({}, {})

GET /api/messages 200 16.082 ms - 317

 ✓ should respond with json

Mongoose: messages.findOne({ _id: ObjectId("590f9b8511626e1046f797ec") }, { fields:

{} })

GET /api/messages/590f9b8511626e1046f797ec 200 4.501 ms - 318

 ✓ should respond with 200 status

GET /api/messages/111 400 2.407 ms - 55

 ✓ should respond with 400, record not found

 PUT /api/messages

Mongoose: users.findOne({ password: '21232f297a57a5a743894a0e4a801fc3', email:

'andrei@gmail.com' }, { fields: {} })

POST /api/login 200 6.394 ms - 1393

Mongoose: messages.findOne({ _id: ObjectId("590f9b8511626e1046f797ec") }, { fields:

{} })

PUT /api/messages/590f9b8511626e1046f797ec 200 8.459 ms - 318

 ✓ should update message and respond with 200 status

PUT /api/messages/100 400 4.395 ms - 55

 ✓ should return no user found

 DELETE /api/messages

Mongoose: users.findOne({ password: '21232f297a57a5a743894a0e4a801fc3', email:

'andrei@gmail.com' }, { fields: {} })

mailto:andrei@gmail.com
mailto:andrei@gmail.com

 - 46 -

POST /api/login 200 5.874 ms - 1393

 ✓ login

Mongoose: messages.findAndModify({ _id: ObjectId("590f9b8511626e1046f797ec") }, [],

, { remove: true, fields: {} })

DELETE /api/messages/590f9b8511626e1046f797ec 200 5.143 ms - 42

 ✓ should delete message and respond with 200 status

DELETE /api/messages/100 400 1.890 ms - 210

 ✓ should return no message found

 POST /api/sports

Mongoose: users.findOne({ password: '21232f297a57a5a743894a0e4a801fc3', email:

'andrei@gmail.com' }, { fields: {} })

POST /api/login 200 4.273 ms - 1393

Mongoose: users.findOne({ _id: ObjectId("590f9b8411626e1046f797de") }, { fields: {} })

Mongoose: sports.insert({ updatedAt: new Date("Sun, 07 May 2017 22:11:17 GMT"),

createdAt: new Date("Sun, 07 May 2017 22:11:17 GMT"), address: { address1: 'address

street 1', address2: 'address street 2', city: 'Wales', state: 'New South Wales', zipcode:

'1234', country: 'Australia', phone: '+412543322222', _id:

ObjectId("590f9b8511626e1046f797f2") }, prompPicture: 'mytest.jpg', price: 100,

ownerId: ObjectId("590f9b8411626e1046f797de"), description: 'baseball description',

name: 'Baseball', _id: ObjectId("590f9b8511626e1046f797f1"), createdDt: new

Date("Sun, 07 May 2017 22:11:17 GMT"), isActive: true, tags: ['baseball'], location: [

150.644, -34.397], __v: 0 })

POST /api/sports 200 19.945 ms - 593

 ✓ should create sport and respond 200 status

 GET /api/sports

mailto:andrei@gmail.com

 - 47 -

Mongoose: users.findOne({ password: '21232f297a57a5a743894a0e4a801fc3', email:

'andrei@gmail.com' }, { fields: {} })

POST /api/login 200 6.561 ms - 1393

Mongoose: sports.find({}, { limit: 10, skip: 0, sort: { createdAt: -1 }, fields: {} })

Mongoose: users.find({ _id: { '$in': [ObjectId("590f9b8411626e1046f797de")] } }, { fields:

{ name: 1, email: 1, address: 1, location: 1, gender: 1, profilePic: 1 } })

Mongoose: sports.count({}, {})

GET /api/sports 200 14.379 ms - 943

 ✓ should respond with json

Mongoose: sports.findOne({ _id: ObjectId("590f9b8511626e1046f797f1") }, { fields: {} })

Mongoose: users.find({ _id: { '$in': [ObjectId("590f9b8411626e1046f797de")] } }, { fields:

{ name: 1, email: 1, address: 1, location: 1, gender: 1, profilePic: 1 } })

GET /api/sports/590f9b8511626e1046f797f1 200 11.082 ms - 896

 ✓ should respond with 200 status

GET /api/sports/111 400 6.741 ms - 55

 ✓ should respond with 400, record not found

 PUT /api/sports

Mongoose: users.findOne({ password: '21232f297a57a5a743894a0e4a801fc3', email:

'andrei@gmail.com' }, { fields: {} })

POST /api/login 200 5.724 ms - 1393

Mongoose: sports.findOne({ _id: ObjectId("590f9b8511626e1046f797f1") }, { fields: {} })

Mongoose: sports.update({ _id: ObjectId("590f9b8511626e1046f797f1") }, { '$set': {

ownerId: ObjectId("58caa3238664432062aea426"), updatedAt: new Date("Sun, 07 May

2017 22:11:17 GMT") } })

PUT /api/sports/590f9b8511626e1046f797f1 200 26.286 ms - 565

 ✓ should update sport and respond with 200 status

mailto:andrei@gmail.com
mailto:andrei@gmail.com

 - 48 -

Mongoose: sports.findOne({ _id: ObjectId("590f9b8511626e1046f797f1") }, { fields: {} })

Mongoose: sports.update({ _id: ObjectId("590f9b8511626e1046f797f1") }, { '$set': {

'address.address1': 'address line 1', updatedAt: new Date("Sun, 07 May 2017 22:11:17

GMT") } })

PUT /api/sports/590f9b8511626e1046f797f1/address 200 20.788 ms - 591

 ✓ should update address of sport and respond with 200 status

PUT /api/sports/100 400 3.353 ms - 55

 ✓ should return no user found

 DELETE /api/sports

Mongoose: users.findOne({ password: '21232f297a57a5a743894a0e4a801fc3', email:

'andrei@gmail.com' }, { fields: {} })

POST /api/login 200 6.799 ms - 1393

 ✓ login

Mongoose: sports.findAndModify({ _id: ObjectId("590f9b8511626e1046f797f1") }, [], , {

remove: true, fields: {} })

DELETE /api/sports/590f9b8511626e1046f797f1 200 5.699 ms - 40

 ✓ should delete sport and respond with 200 status

DELETE /api/sports/100 400 1.610 ms - 208

 ✓ should return no sport found

 42 passing (1s)

mailto:andrei@gmail.com

 - 49 -

Users Module Test Coverage Report:

Sports Module Test Coverage Report:

Personal Message Module Test Coverage Report :

Feedback Module Test Coverage Report :

Metric explained:

Statement: how many statements/actions in code are executed. For example,

loops or if statements.

 - 50 -

Branches: some conditional statements may not be executed (for example if/else,

if executes then else, will not execute). Then these statements create branches

and metric tells how many of these branches have been executed.

Functions: the percentage (proportion) of the functions is defined and which have

been called.

Lines: the percentage (proportion) of the lines of code which have been executed.

3.2 User Testing (UX)

3.2.1 Design & Navigation

Main color scheme is white and gray (background, navbar) gives neutral, simple

and calm look for user. However, some images uploaded by trainers are bright and

colorful that stand out and attract user attention. Most of the pages were found to

use defined headings and page titles. Page titles appears in search results

however at the top of the browser’s heading is missed. Defined heading and titles

allow users to summarize and get overall view the content of the pages quickly.

3.2.2 URLs

Website uses appropriate URLs throughout. User can make an accurate guess

about the contents of the by looking at the URL.

 - 51 -

3.2.3 404 & HTTP 301

Findasportclass website does not have custom 404 pages that handles missing

pages correctly and allow user to navigate correct page.

 However, it follows the best practise of using permanent (HTTP 301) redirect

between URLs with or without trailing slashes. For example, when user type in

http://ec2-52-212-18-167.eu-west-1.compute.amazonaws.com/#/messages/ it will

redirect to http://ec2-52-212-18-167.eu-west-

1.compute.amazonaws.com/#/messages.

3.2.4 Sitemap

Findasportclass doesn’t have a sitemap. As it small site and all pages are easy to

discover, it will probably doesn’t need to have a sitemap.

3.2.5 Mobile & Tablet

It is important that content is optimized for a wide range of devices as a growing

percentage of web browsing is done on phones and tablets. Findasportclass site

is fully optimized for viewing content on a mobile or tablet.

http://ec2-52-212-18-167.eu-west-1.compute.amazonaws.com/#/messages/
http://ec2-52-212-18-167.eu-west-1.compute.amazonaws.com/#/messages
http://ec2-52-212-18-167.eu-west-1.compute.amazonaws.com/#/messages

 - 52 -

3.2.6 Heuristic Evaluation

Visibility of system status

Site has some visibility features implanted such as

 Changing mouse cursor (hand over) if user navigates to the navbar

 Highlights selected navbar

 Change text color on selected tab.

Match between system and the real world

Overall, there is a strong match between the system and the real world. However,

as most of the content (class advertisements) on a website is uploaded by users

there is not much control over vocabulary used on the website. So, the content

might include slang or words that non-native English speakers may not

understand.

User control and freedom

As site is SPA (single page application) and user are always on the same page or

on the modal pop-up window that provides “emergency exit”, findasportclass

follows good practice of “user control and freedom”.

Error prevention

Only one field fails on validation. During the registration user can provide and string

on email field. This could be improved. Overall, fields has validation and users are

not able to finish forms without proper input.

Recognition rather than recall

Website follows good practice of “recognition rather than recall”. For example,

when user perform the search he gets back the list of sport classes. Each sport

class has basic information such as exact address and brief description of the sport

class. If user wants to get more information he can click on the “detail: link and

modal pop-up window brings him to the full ad.

 - 53 -

Flexibility and efficiency of use

Site provide users with the search criteria like location, price age etc to narrow

down their search result. This is very efficient; however, site could provide filtering

by date added and price in descending or ascending order.

Aesthetic and minimalist design

Site has minimalist design. Interface is not overloaded with features.

Conclusion & Recommendations

The site meet its objectives, but require some further development in terms of UX.

All functionality is working properly, however there some additional functionality

needed to increase usability from user perspective.

All links on a page operate correctly, validation is missed only on register form in

“email” field.

List of recommendations:

1. Add filtering so that user can filter list of sport class by date and price in

ascending and descending order.

2. Add validation to “email” field in “register” form.

3. Allow user to choose how many results he wants to be displayed by

adding appropriate dropdown menu above and the bottom of the search

result.

4. Display average price for list of sport classes in search result

5. Add custom 404 pages to handle missing pages.

 - 54 -

4 GUI

The main page will contain a main screen with “login” and “register” buttons.

Also, main page provides searching functionality and results section. User can

search and view classes without registration.

Main page

To login user has to provide his email and password used during registration.

 - 55 -

Register page will allow users to register their accounts. Some information is

required to create valid account. If user is trainer that wants to advertise a

service, then he/she must tick the appropriate checkbox to enable advertising

functionality on the account.

Register page

After registration trainer can login and see extra functionality on his trainer’s

authorized main page.

 - 56 -

Trainer main page

On the left side trainer has buttons view rating, delete class, edit class, write

feedback, pm” (from left to right). Delete and edit class buttons are visible only

if the trainer is class owner.

Buttons

On the left side trainer has “add new sport”, “all sport”, “my sports” buttons.

Clicking to “add new sport” will trigger modal pop-up window, where trainer can

add new sport class details.

 - 57 -

Add sport class modal pop-up.

“My Sport” – allows trainer to view only his classes.

Registered consumer can contact the trainer via private message service,

leave feedback, rate sport class from 1 to 5 scale and view rating and feedback.

User can see average trainer rating based of the previous rating score.

 - 58 -

Add rating and feedback

View rating and feedbacks

On the left user can open side menu where he can enter to the private message

service (inbox)

 - 59 -

5 Evaluation

The website was evaluated in two ways, as a resource for trainers and costumers,

who are looking for sport class for themselves or their kids. Trainers were agreed

that most of them running classes is more hobby and they do it on their free time.

So, they don’t have extra financial resources to create their own website or spend

time on advertising their services on a different social media sites (Facebook etc.)

Findasportclass website would bring all enthusiastic trainers into one place. Then

consumers will be happy to use quick and simple sport class search and interact

with the trainer.

 - 60 -

6 Conclusion

The concept of my final project was difficulty to find suitable sport class for my 5

years old son. Living in Swords, county Dublin I noticed that most of the adds are

on the board in the local community centres. To get any information about the sport

class you must physically go there.

The reason I chose angular 2 is, because I started my internship, where the

company use angular 2 for the front end. I found that combining my final project

and work experience into one will give me quicker and better understanding of

cutting-edge technology – angular 2. At the start it was very hard to learn and

understand as I did not have any experience, but now I am very confident with

angular 2 and express framework.

 - 61 -

7 References

7.1 Tutorials used

1. RESTful Web Services with Node.js and Express

https://app.pluralsight.com/library/courses/node-js-express-rest-web-

services/table-of-contents

2. Building Web Applications with Node.js and Express 4.0

https://app.pluralsight.com/library/courses/nodejs-express-web-

applications/table-of-contents

3. Angular 2 Fundamentals

https://app.pluralsight.com/library/courses/angular-fundamentals/table-of-

contents

4. Introduction to Mongoose for Node.js and MongoDB

https://app.pluralsight.com/library/courses/mongoose-for-nodejs-

mongodb/table-of-contents

5. Angular 2: Reactive Forms

https://app.pluralsight.com/library/courses/angular-2-reactive-forms/table-

of-contents

6. Angular 2 with TypeScript for Beginners: The Pragmatic Guide

https://www.udemy.com/angular-2-tutorial-for-beginners/learn/v4/overview

7.2 References

1. https://angular.io/

2. https://expressjs.com/

3. https://github.com/dwyl/learn-istanbul

4. http://unitjs.com/guide/mocha.html

5. https://wiki.jenkins-ci.org/display/JENKINS/TestComplete+xUnit+Plugin

6. https://www.npmjs.com/package/jenkins-mocha

7. http://mongoosejs.com/

https://app.pluralsight.com/library/courses/node-js-express-rest-web-services/table-of-contents
https://app.pluralsight.com/library/courses/node-js-express-rest-web-services/table-of-contents
https://app.pluralsight.com/library/courses/nodejs-express-web-applications/table-of-contents
https://app.pluralsight.com/library/courses/nodejs-express-web-applications/table-of-contents
https://app.pluralsight.com/library/courses/angular-fundamentals/table-of-contents
https://app.pluralsight.com/library/courses/angular-fundamentals/table-of-contents
https://app.pluralsight.com/library/courses/mongoose-for-nodejs-mongodb/table-of-contents
https://app.pluralsight.com/library/courses/mongoose-for-nodejs-mongodb/table-of-contents
https://app.pluralsight.com/library/courses/angular-2-reactive-forms/table-of-contents
https://app.pluralsight.com/library/courses/angular-2-reactive-forms/table-of-contents
https://www.udemy.com/angular-2-tutorial-for-beginners/learn/v4/overview
https://angular.io/
https://expressjs.com/

 - 62 -

8 Appendix

8.1 Project Proposal

8.1.1 Objectives

I am looking to develop a web application that will act as an online portal. It will

allow people find sport classes matching their criteria and interact directly with the

trainers who runs the classes. The web application will allow trainers/instructors to

create their own profile with their details and classes offered on a regular basis.

Once registered, end users will be able to search for sport classes by criteria they

filter (sport category, location, price, time etc.), send private messages to the

trainers, and leave feedback.

Goals

 To create web application that allow trainers/instructors advertise their

services

 To allow consumers to search for sport classes matching their criteria

 To allow consumers and trainers interact with each other directly.

 To ensure that the site is easy to navigate and sign-up process is as

straightforward as possible.

 To ensure that project is completed within specific timeline

8.1.2 Background

Using search engines such as google and yahoo users can search for sport

classes by type and location they require. For example, if I am in Swords, County

Dublin and are looking for football class for my 5 years old son I can use google or

yahoo search engines and they will find a dozen of sport classes available. Google

 - 63 -

provide links for different websites such as local community centres’ webpages,

trainer’s outdated websites and so on. Also, I discover that lot of people advertise

their classes on the board in the local shops and community centres. Finding sport

class with all suitable criteria or even getting a list of available classes in your area

is very time consuming. People have to ring or go personally to local community

centres, visit all links that google search result provides and then manually filter

available and suitable classes for them. “FindaSportClass.ie” web application will

bring all trainers and their services into one place and make it easy to search for

the end user and get more overall information about sport classes available in their

area.

Audience

The web application will be targeted at two groups of people.

Trainers/instructors

This will be the individuals who are running sport classes and want to advertise

their services. It could be football, taekwondo, boxing or gymnastic etc

End users

This will be anyone who are interested to find some suitable sport class or to

enrol local once-off activity. “FindaSportClass.ie” will be very useful for parents

who wants to find list of local sport classes available for their kids and keep

them busy during specific time.

8.2 Project Plan

Key project milestones have been detailed in the Gantt Chart. Screen shot

of the Gantt chart is attached below.

 - 64 -

8.3 Technical Details

The web application will be developed using different web technologies.

It will be simple, responsive, fluid single-page application (SPA) where

the single page dynamically updates as the user interact with the

application. The front end application will be developed using HTML,

CSS, Bootstrap, JavaScript, Angular 2, JQuery & AJAX where

applicable. MongoDB database will be used to store and access the key

records and information. For the back end NodeJS and Express

framework will be used. Breaking code into modules allows it to be easily

understand, develop and maintain. Web application will be hosted in

Amazon Web Services (AWS).

8.4 Challenges and Considerations

In terms of key challenges, first consideration is the time to fully complete the

project and meet all the project milestones as the workload on year 4 is huge.

In terms of web development my knowledge in HTML, CSS and Bootstrap is

strong, but I have no experience in NodeJS and Angular 2. My technical skills

 - 65 -

in terms of NodeJS and Angular 2 are very limited. I will need to research and

learn it as the project progresses and consider how much time learning Angular

2 will take.

8.5 Research and Interviews

5753 people living in Ireland participate in the research. Questionnaire has been

created using google research tool and link shared across the Facebook groups

and friends.

Questions:

 Do you run any sport classes?

if yes:

Where do you advertise your sport classes?

 a) Web site

 b)community centres

 c)local newspaper

if no:

What is your age group?

 1)3-7

 2)7-11

 3)11 - 15

 4)15-18

 5)18-24

 6)24-40

 7)40-

Have you or your kids ever sign up or willing to sign up for the classes?

 - 66 -

 1)Yes

 2)No

Are you thinking to sign up for the classes?

 1)Yes

 2)No

How you found the suitable sport class for you or for your kids?

 1)Online Search engine

 2)Friends

 3)Local community centres

Do you found search engine effective?

Yes, works for me fine

No

What is the import criteria when you search for the sport classes? Please

start from MOST IMPORTANT.

 1)Location

 2)Time

 3)Age

 3)Sport category

 4)price

 - 67 -

RESULTS

Have you or your kids ever sign up or willing to sign up for the classes?

67%

33%

YES

NO

 - 68 -

How you found the suitable sport class for you or for your kids?

8.5.1 Interviews

Interview 1

What is your name?

My name is Ardy Mehist

What is your occupation?

28%

24%
24%

14%

10%

Search criteria

Location

Time

Age

Sport Category

price

 - 69 -

Software Tester

Do you participate in sport classes? What class?

I am doing kickboxing 3 times a week.

How did you find this sport class? Was it difficult to find?

I was googling and got 4 websites with the kickboxing classes in my area. Then

got more information over the phone.

What you think about the web application that brings all trainers and

instructors into one place. Users can search by sport category, location etc.

This is good idea as the google give a lot of results. Some of the classes are not

available any more at specific location, timetable is changed etc. Trainers order to

create static "business card type" website, but never maintain or update

information. This make end user difficult to find suitable class for him.

Interview 2

What is your name?

Emer

What is your occupation?

Third level support

Do you participate in sport classes? What class?

I do not go to any classes but my 4 years old son attend football classes 2 times a

week.

How did you find the sport class? Was it difficult to find?

I went to the community centre and found advertisements of several classes

around my area. Then I contacted trainers over the phone. It wasn't difficult, but I

spend some time to go to community centre.

 - 70 -

What you think about the web application that brings all trainers and

instructors into one place. Users can search by sport category, location etc.

That would be great. The most important criteria for me would be the age. As most

of classes are for 5+ years old kids I got the problem to find classes for my son

who is 4 years old.

There is someone who provide classes for 4 years old kids, but it's very difficult to

filter them out from rest of the classes.

Interview 3

What is your name?

Conor

What is your occupation?

I am manager in Tesco, but I work part-time as a taekwondo trainer. I am training

mostly kids who are 12 years old or under.

What you think about the web application that brings all trainers and

instructors into one place. Users can search by sport category, location etc.

Well, that’s what we don't have at the moment. Most of trainers work as trainers

part-time only. We don't have funds to hire software developer to build proper

website and then pay for maintaining and updating information.

We advertise classes on donedea.ie, adverts.ie, but people use this website mostly

for other purposes. If you are going to build web application, it would be good if it

would have self-intuitive user interface. Trainers could easily add, delete, update

information about the class.

 - 71 -

8.6 Monthly Journals

Month: September

Introduction

This is the first month of the final project reflective journal. So I would like to

introduce myself.

My name is Andrei Ivanov and I am 30 years old. I have my final year in Bachelor

Honor in computing. Also I have two years full-time course (Software development

stream) in progress run by FIT ICTP. I have two sons – Andrey 5 years old, and

Steven 3 months old. For the last 4 years I live in Swords, County Dublin.

So my final year is very tough, considering that I have another full time course and

new born baby. First weeks of September I was thinking to get deferral and come

back next year, when the full time college is over. Last minute I changed my mind,

and enrolled for the final year.

Project Idea

21/09 2016, I spend all day thinking about project ideas. I wanted to develop

something original, but had no luck to come up with something.

24/09/2016 – My wife asked me to find football class in Swords for older son. I

started to google and got lot of links where the location or age were not suitable. I

got few links for local community centers, classes were advertised all over the

place with no detailed information provided. I did approximately 5 different phone

calls to get picture about local football activities available for my son. I visited few

local community centers and noticed ads on the board (“in 21st century ads on the

board? They are probably kidding” I thought). I found out that there is lot of sport

activities for kids and adults in Swords and also how much time I waste to find this

out. So I started to think that it would be a great idea to develop web application

and put all activities together by category, location, time, price and age. Trainers

would advertise their classes and be able to manage their ads by adding

 - 72 -

information, pictures and maybe videos. Parents could use this web application to

find different activities (sport classes, dancing, drawing, drama, and so on).

Next few days I was thinking about additional functionalities such as possibility for

trainers/organizers to create different events (such as charity marathons), kids

events/parties and bootcamps for adults. So users can find them all by location,

activity category and sub-category with all details.

Month: October

This month, I finished my project proposal document and submitted it to the

Moodle. The project proposal template we got was very detailed and some topics

were not related to the “project proposal”. I followed the template, however, I felt

that I am writing something mixed between proposal and requirements specs

document.

Supervisor meetings

I got Ralf Bierig for supervisor. Unfortunately, I haven’t have any meetings with him

yet. He wants everyone in on Fridays which does not suit me. I am going to arrange

meeting and talk to him soon.

Anyways, Project proposal document is submitted and now I am going to focus on

requirements specification document.

Month: November

This month I started to write SRS. It was long and boring document. I accidentally

met my supervisor Ralf and we had a quick chat about the project. Ralf wasn’t

happy that I wanted to develop back-end in PHP as it’s old technology. I tried to

defend myself that I need it in my further job I am starting in January.

Month: December

In December, we will do mid-term presentation, where we should present

prototype. I am facing ow with the problem: I don’t have enough knowledge in

angular 2 to develop even prototype.

 - 73 -

I accidently met Ralf again in Artificial Intelligence class and had a meeting. I tried

to explain him that I can’t develop prototype as I need to learn angular first. Ralf

advised me to develop interactive bootstrap app that will fake my main app and

present it. It was good advice, I spent just two evenings developing prototype.

Presentation went fine. Both, Padraig and Eammon, were happy even though I am

very bad at presentation.

Month: January

This month I haven’t worked on the project as it was exam period. We had 3 exams

and two of them was theory based that I really hate.

I started my internship where I got to do project to learn angular 2.

Month: February

This month I just learned angular 2. I followed lot of tutorials on Udemy and

pluralsight, but faced to the problem – All tutorials were in angular beta version.

After angular 2 final version released (December) there were not much tutorials

out there. So, my only mentor was official documentation and one tutorial on

pluralsight that Ralf recommend me. In few weeks, I finished my job project and

started to work on actual company SAAS project. In few days, I understood that I

am not going to develop anything in back-end, so I abandon idea to do my final

project back end in PHP. To be honest I wasn’t happy to learn PHP, as I totally

agreed with the Ralf that this is old technology. The only reason I chose PHP was

because of work.

Month: March

Every day I had tremendous progress in angular 2 at work. I was surprised how

quickly you can learn at work. I learned how to create services and consume API’s.

I started to think about back-end for my actual college project and decided to go

with nodejs express. I was thinking that will be cool that my app will be mean stack.

Specially I found lot of tutorials in nodejs express RESTful. But this all requires me

extra work – I needed to change my database into mongodb as all meaningful

 - 74 -

tutorials in nodejs express were with the mongoDB. It wasn’t hard. I followed lot of

tutorials and adapted them to my project.

This month I created project skeleton and started to add models and create HTTP

methods in express framework.

Suddenly my younger son got very sick. So, we decided that my wife and younger

son go to Russia for treatment. They left 24th of March without return ticket as we

did not know how long treatment will take. I left with the 5-year-old son in Ireland.

I agreed at work 3 days a week as I needed to look after my son and couldn’t afford

childminder.

