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Sean McNally
x15021581

MSc Reseach Project in Data Analytics

9th September 2016

Abstract

This research is concerned with predicting the price of Bitcoin using machine
learning. The goal is to ascertain with what accuracy can the direction of Bit-
coin price in USD can be predicted. The price data is sourced from the Bitcoin
Price Index . The task is achieved with varying degrees of success through the
implementation of a Bayesian optimised recurrent neural network (RNN) and Long
Short Term Memory (LSTM) network. The LSTM achieves the highest classific-
ation accuracy of 52% and a RMSE of 8%. The popular ARIMA model for time
series forecasting is implemented as a comparison to the deep learning models. As
expected, the non-linear deep learning methods outperform the ARIMA forecast
which performs poorly. Wavelets are explored as part of the time series narrative
but not implemented for prediction purposes. Finally, both deep learning models
are benchmarked on both a GPU and a CPU with the training time on the GPU
outperforming the CPU implementation by 67.7%.

1 Introduction

Time series prediction is not a new
phenomenon. Prediction of mature finan-
cial markets such as the stock market has
been researched at length (1)(2). Bitcoin
presents an interesting parallel to this as
it is a time series prediction problem in a
market still in its transient stage. As a res-
ult, there is high volatility in the market (3)
and this provides an opportunity in terms of
prediction. In addition, Bitcoin is the lead-
ing cryptocurrency in the world with adop-
tion growing consistently over time. Due
to the open nature of Bitcoin it also poses
another paradigm as opposed to traditional
financial markets. It operates on a decent-
ralised, peer-to-peer and trustless system in
which all transactions are posted to an open

ledger called the Blockchain. This type of
transparency is unheard of in other financial
markets.

Traditional time series prediction meth-
ods such as Holt-Winters exponential
smoothing models rely on linear assump-
tions and require data that can be broken
down into trend, seasonal and noise to be
effective (4). This type of methodology is
more suitable for a task such as forecast-
ing sales where seasonal effects are present.
Due to the lack of seasonality in the Bit-
coin market and its high volatility, these
methods are not very effective for this task.
Given the complexity of the task, deep
learning makes for an interesting technolo-
gical solution based on its performance in
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similar areas. Tasks such as natural lan-
guage processing which are also sequential
in nature and have shown promising results
(5). This type of task uses data of a se-
quential nature and as a result is similar
to a price prediction task. The recurrent
neural network (RNN) and the long short
term memory (LSTM) flavour of artificial
neural networks are favoured over the tradi-
tional multilayer perceptron (MLP) due to
the temporal nature of the more advanced
algorithms (6).

The aim of this research is to ascertain
with what accuracy can the price of Bitcoin
be predicted using machine learning. Sec-
tion one addresses the project specification
which includes the research question, sub
research questions, the purpose of the study
and the research variables. A brief over-
view of Bitcoin, machine learning and time
series analysis concludes section one. Sec-
tion two examines related work in the area
of both Bitcoin price prediction and other
financial time series prediction. Literature
on using machine learning to predict Bit-
coin price is limited. Out of approximately
653 papers published on Bitcoin (7) only
7 have related to machine learning for pre-
diction. As a result, literature relating to
other financial time series prediction using
deep learning is also assessed as these tasks
can be considered analogous. Section 3 fo-
cuses on the design and implementation of
the solution to the research question. Sec-
tion 4 analyses the results of the implemen-
ted solution. A forecast using a traditional
ARIMA time series model is also developed
for performance comparison purposes with
the neural network models. Section 5 con-
cludes the paper with reference to future
work in the area.

1.1 Project Specification

1.1.1 Research Question

Research question: With what
accuracy can the direction of the
price of Bitcoin be predicted us-
ing machine learning?

Sub Research question: What
magnitude of performance im-
provement can be achieved from
parallelisation of algorithms on
a GPU compared to a CPU?

1.1.2 Purpose

The purpose of this study is to find out with
what accuracy the direction of the price
of Bitcoin can be predicted using machine
learning methods. This is fundamentally a
time series prediction problem. While much
research exists surrounding the use of dif-
ferent machine learning techniques for time
series prediction, research in this area relat-
ing specifically to Bitcoin is lacking. In ad-
dition, Bitcoin as a currency is in a transient
stage and as a result is considerably more
volatile than other currencies such as the
USD. Interestingly, it is the top perform-
ing currency four out of the last five years1.
Thus, its prediction offers great potential
and this provides motivation for research
in the area. As evidenced by an analysis
of the existing literature, running machine
learning algorithms on a GPU as opposed
to a CPU can offer significant performance
improvements. This is explored by bench-
marking the training of the RNN and LSTM
network using both the GPU and CPU.
This provides an answer to the sub research
question. Finally, in analysing the chosen
dependent variables, each variables import-
ance is assessed using a random forest al-
gorithm. This body of research builds on
existing literature in the area which is as-
sessed in section 2.

In addition, the ability to predict the
direction of the price of an asset such as

1The Economist: https://www.economist.com/
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Bitcoin offers the opportunity for profit to
be made by trading the asset. To imple-
ment a full trading strategy based on the
results of the models is worthy of a disserta-
tion in itself and as a result this paper will
focus solely on the accuracy at which the
price direction can be predicted. In basic
terms, the model would initiate a short pos-
ition if the price was predicted to go up and
a long position if the price was predicted
to go down. Several Bitcoin exchanges of-
fer margin trading accounts to facilitate this
2. The profitability of this strategy would
be based not only on the accuracy of the
model, but also on the size of the positions
taken. This is outside the scope of this
research but could be addressed in future
work.

1.2 Research Variables

The independent variable for this study is
the closing price of Bitcoin in US Dollars
taken from the Coindesk Bitcoin Price In-
dex. Rather than focusing on one specific
exchange this price index takes the average
prices from five major Bitcoin exchanges;
Bitstamp, Bitfinex, Coinbase, OkCoin and
itBit. If one were to implement trades based
on the signals it would be beneficial to fo-
cus on one exchange. However, the aver-
age price is more suitable for this research
as some exchanges suffer isolated drops in
price from internal issues such as Bitfinex
who were hacked recently3. As a result,
there is less noise in the averaged dataset.
The closing price is chosen over a three-class
dummy classification variable representing
price going up, down or staying the same
for the following reason; the use of a regres-
sion model over a classification model offers
further model comparison potential through
the capture of the root mean squared error
(RMSE) of the models. Classifications are
then made based on the prediction of the
regression model e.g. price up, price down

or no change. Additional performance met-
rics include accuracy, specificity, sensitivity
and precision. This is discussed in the im-
plementation section.

The dependent variables are taken from
the Coindesk website, Blockchain.info and
from the process of feature engineering. In
addition to the closing price, the opening
price, daily high and daily low are also in-
cluded. Data taken from the Blockchain
includes mining difficulty and hash rate.
The features which have been engineered
are considered technical analysis indicators
(8) and include two simple moving averages
(SMA) and a de-noised closing price. The
rationale behind the selection of variables is
discussed in chapter 2.

1.3 Bitcoin

Bitcoin is the worlds most valuable crypto-
currency introduced following the release of
a whitepaper published in 2008 under the
pseudo name Satoshi Nakamoto (9). The
currency is built on a decentralised, peer-
to-peer network with the creation of money
and transaction management carried out by
the members of the network. The result
of this is no central authority controls Bit-
coin. All Bitcoin transactions are posted
in blocks to an open ledger known as the
Blockchain to be verified by miners using
cryptographic proof. This verification takes
place in a trustless system with no interme-
diary required to pass the funds from sender
to receiver. Bitcoin offers a novel opportun-
ity for prediction due its relatively young
age and resulting volatility. In addition, it
is unique in relation to traditional fiat cur-
rencies in terms of its open nature. In com-
parison, no complete data exists regarding
cash transactions or money in circulation
of fiat currencies. The well-known efficient
market hypothesis (10) suggests the price of
assets such as currencies reflect all available
information, and as a result trade at their

2Poloniex Exchange: https://www.poloniex.com/
3Bitfinex Exchange: https://www.bitfinex.com/
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fair value. Although there is an abundance
of data available relating to Bitcoin and its
network, the author argues that not all mar-
ket participants will utilise all this inform-
ation effectively and as a result it may not
be reflected in the price. This paper aims to
take advantage of this assumption through
various machine learning methods.

Bitcoin is traded on over 40 exchanges
worldwide accepting over 30 different cur-
rencies and has a current market capitaliza-
tion of 9 billion dollars 4. Interest in Bitcoin
has grown significantly with over 250,000
transactions now taking place per day. In
addition to the regular use of Bitcoin by
private individuals, its lack of correlation
with other assets have made it an attractive
hedging option to investors. Some research
has found that the price volatility of Bitcoin
is far greater than that of fiat currencies(3).
This offers significant potential in compar-
ison to mature financial markets.

1.4 Machine Learning

Data mining can be defined as the extrac-
tion of implicit, previously unknown and
potentially useful information from data.
Machine learning provides the technical
basis for data mining (11). A dataset is
comprised of observations which are known
as instances which contain one or more vari-
ables known as attributes. Broadly speak-
ing, machine learning can be split into two
categories. Supervised learning involves
the modelling of datasets with labelled in-
stances. Each instance can be represented
as x and y, with x a set of independent pre-
dictor attributes and y the dependent tar-
get attribute. The target attribute can be
continuous or discrete however this has an
effect on the model. If the target variable is
continuous then a regression model is used
and if the target variable is discrete then a
classification model is used (8). Examples
of supervised methods include neural net-

works and support vector machines.
Unsupervised learning involves the mod-

elling of datasets with no known outcome
or attribute. The purpose of these tech-
niques is to group similar data into clusters
or groups. The purpose of this research is to
predict the direction of the price of Bitcoin.
As this is a task with a known target it is a
supervised machine learning task although
some pre-processing can take advantage of
unsupervised learning methods. The super-
vised algorithms explored include Wavelets
and the wavelet discrete transform, several
type of artificial neural networks including
the Multi-Layer perceptron (MLP), Elman
Recurrent Neural Network (RNN) and Long
Short Term Memory (LSTM). In terms of
pre-processing, random forests were used
for feature selection while Bayesian optim-
isation was performed to optimize some the
parameters of the LSTM.

1.4.1 Multilayer Perceptron

Figure 1: Multilayer Perceptron

Simple feed forward neural networks are
known as multilayer perceptrons and they
form the basis for other neural network
models. In terms of neural network ter-
minology, examples fed to the model are
known as inputs and the predictions are
known as outputs. Each modular sub func-
tion is a layer. A model consists of an in-

4Blockchain: https://www.blockchain.info/

https://www.blockchain.info/


put and output layer, with layers between
these known as hidden layers. Each out-
put of one of these layers is a unit which
can be considered analogous to a neuron in
the brain. The connections between these
units is known as a weight which is analog-
ous to a synapse in the brain. The weights
define the function of the model as they are
the parameter that is adjusted when train-
ing a model. Non-linear element wise op-
erators such as the hyperbolic tangent or
rectified linear unit (ReLu) are applied to
the input to perform the non-linear trans-
formations between layers. An example of
an MLP can be seen in figure 1. One lim-
itation of the MLP and similarly the RNN
is that they are affected by the vanishing
gradient problem. This issue is that as lay-
ers and time steps of the network relate to
each other through multiplication, derivat-
ives are susceptible to exploding or vanish-
ing gradients. Vanishing gradients are more
of a concern as they can become too small
for the network to learn whereas exploding
gradients can be limited using regularisa-
tion. Another limitation of the MLP is that
its signals only pass forward in the network
in a static nature. As a result, it does not
recognise the temporal element of a time
series task effectively as its memory can be
considered frozen in time 5. One can con-
sider an MLP to treat all input as a bucket
of objects with no order in time. As a result,
the same weights are applied to all incoming
data which is a naive approach. The recur-
rent neural network, sometimes known as a
dynamic neural network addresses some of
these limitations.

1.5 Recurrent Neural Net-
work

The recurrent neural network (RNN) was
first developed by Elman (6). The RNN is
structured similarly to the MLP, with the
exception that signals can flow both for-
ward and backwards in an iterative man-

ner. To facilitate this another layer known
as the context layer is added. In addition
to passing input between layers, the out-
put of each layer is fed to the context layer
to be fed into the next layer with the next
input. In this context, the state is overwrit-
ten at each timestep. This offers the benefit
of allowing the network to assign particu-
lar weights to events that occur in a series
rather than the same weights to all input
as with the MLP. This results in a dynamic
network. The length of the temporal win-
dow in a sense is the length of your networks
memory. As is discussed in the related work
section, it is an appropriate technique for a
time series prediction task (5) (12). While
this addresses the temporal issue faced with
a time series task, vanishing gradient can
still be an issue. In addition, some research
has found that while RNN are capable of
handling long-term dependencies, in prac-
tice they often fail to learn due to the dif-
ficulties between gradient descent and long
term dependencies (13) (14). An example
of an RNN can be seen below in figure 2.
Note the context layer is represented as z-i.

Figure 2: Recurrent Neural Network

5Deeplearning4j: http://deeplearning4j.org/lstm
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1.5.1 Long Short Term Memory

Long short term memory (LSTM) units ad-
dress both of these issues. Developed by
Hochreiter et al. (15), they allow the preser-
vation of the weights that are forward and
back-propagated through layers. This is in
contrast to the Elman RNN in which the
state gets overwritten at each step. They
also allow the network to continue to learn
over many time steps by maintaining a more
constant error. This allows the network to
learn long term dependencies. A LSTM cell
contains forget and remember gates which
allow the cell to decide what information to
block or pass based on its strength and im-
portance. As a result, weak signals can be
blocked which prevents vanishing gradient.
A comparison of a regular RNN and LSTM
can be seen below in figure 3. Note the ad-
dition of the gates on the right and left of
the LSTM block.

Figure 3: Long Short Term Memory6

1.6 Time Series Analysis:

Based on the abundance of literature on the
topic, the ARIMA model is a popular ap-
proach to time series forecasting (16)(17).
However, these models rely on linear as-
sumptions regarding the data. Due to the
highly non-linear nature of the Bitcoin price
it was not expected to perform well. The
data was differenced to make it station-
ary to meet the necessary assumptions. As
a result, the ARIMA model will not form
an integral part of this research. How-
ever, a forecast was made using an ARIMA

model for comparison purposes with the fi-
nal neural network models in the evaluation
section. Wavelets and the Wavelet Discrete
Transform (WDT) were also considered in
the analysis of the time series analysis do-
main. Wavelets are a mathematical func-
tion useful for analysing and breaking down
signals (18). A time series can be considered
in the same regard as a signal. The inten-
tion was to investigate using Wavelets as
an input to the neural network model. This
was not possible due to time constraints but
could be addressed in future work. How-
ever, Wavelet coherence analysis was used
to analyse correlation between variables in
the dataset on a temporal scale. This is a
useful exploratory analysis exercise in ana-
lysing relationship between variables over
time (19). An example of one of the Wave-
let Coherence analysis spectrum graphs can
be seen below in figure 4. This graph rep-
resents the cross correlation between Bit-
coin and the Hash rate over time. From
the graph it is apparent that Bitcoin clos-
ing price is correlated with the network hash
rate on a long term horizon.

Figure 4: Wavelet Power Spectrum

6Deeplearning4j: http://deeplearning4j.org/lstm
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2 Related Work

Research on predicting the price of Bitcoin
using machine learning algorithms specific-
ally is lacking. Shah et al. (20) implemen-
ted a latent source model as developed by
Chen et al. (17) to predict the price of Bit-
coin. The model received an impressive 89
percent return in 50 days with a Sharpe ra-
tio of 4.1. The Sharpe ratio examines per-
formance of an investment while adjusting
for its risk. One point of note from this
study is that the period selected for testing
by the user enjoyed growth of 33 percent
using a buy and hold strategy alone. At-
tempts were made to re-create this study in-
dependently which were unsuccessful . One
reason provided for this was that the ori-
ginal authors hand selected 20 patterns ob-
served in their clusters which were similar
to those they had seen in trading books
i.e. the head and shoulders. This highlights
the danger of cherry-picking data to obtain
good results.

Geourgoula et al. (21) investigated the
determinants of the price of Bitcoin while
also implementing sentiment analysis using
support vector machines. The author found
that the frequency of Wikipedia views and
the network hash rate had a positive correl-
ation with the price of Bitcoin. Sentiment
has also been utilised as a predictor of Bit-
coin in other research. Matta et al. (22)
investigated the relationship between Bit-
coin price, tweets and views for Bitcoin on
Google Trends. The author found a weak to
moderate correlation between Bitcoin price
and both Google Trends views and positive
tweets on Twitter. The author found this to
be proof that they can be used as predict-
ors. However, one limitation of this study
is that the sample size is only 60 days. Sen-
timent was considered as a variable. How-
ever, with a variable of this nature the ques-
tion of trust arises. Misinformation can be
spread through various social media chan-
nels such as Twitter or on message boards
such as Reddit. In what is known as a

pump-and-dump scheme, an investor look-
ing to take advantage could spread misin-
formation through the channels discussed in
order to buy at an artificially deflated price
or sell at an artificially inflated price (23).
In the Bitcoin exchanges liquidity is con-
siderably limited. As a result, the market
suffers from a greater risk of manipulation.
For this reason, sentiment from social me-
dia is not considered further. Another study
by the same authors (24) implemented a
similar methodology except instead of pre-
dicting Bitcoin price they tried to predict
trading volume. This study found Google
Trends views to be strongly correlated with
Bitcoin price. This data sample covered a
period of just under one year. This data
source was considered for implementation.
However, as only the past years worth of
data is available from Google this variable
was not deemed suitable. Some papers
have utilised Wavelets to find similar results
(25)(19). Kristoufek found a positive cor-
relation between search engine views, net-
work hash rate and mining difficulty with
the price of Bitcoin in the long run using
Wavelet coherence analysis of Bitcoin price.
Wavelets are useful in exploring cross cor-
relation between time series as they have a
temporal dimension. As a result, one can
see correlation between variables at specific
points in time.

Greaves et al. (26) analysed the Bitcoin
Blockchain to predict the price of Bitcoin
using SVM and ANN. The author reported
price direction accuracy of 55 percent with
a regular ANN. They concluded that there
was limited predictability in Blockchain
data alone as price is technically dictated by
exchanges whose behavior lies outside of the
realm of the Blockchain. Building on these
findings, data from the Blockchain, namely
hash rate and difficulty are included in the
analysis along with data from the major ex-
changes provided by CoinDesk. Similarly,
Madan et al. (27) attempted to predict Bit-
coins price using Blockchain data. They im-
plemented SVM, Random Forests and Bino-



mial GLM using data from the Blockchain.
The author reported accuracy of over 97
percent. One limitation of this study is the
results were not cross-validated. As a result
they may have overfit the data and one cant
be sure if the model will generalize.

In terms of a machine learning task, pre-
dicting the price of Bitcoin can be con-
sidered analogous to other financial time
series prediction tasks such as forex and
stock prediction. The idea for using ANN
for such a task is not a new notion. Since
the discovery of the back propagation al-
gorithm (28) much research was undertaken
in the area which concluded that ANN are
suitable for modelling and forecasting non-
linear time series (29)(30). Several bodies of
research implemented the MultiLayer Per-
ceptron for stock price prediction (2)(31).
White found limited value in their IBM
stock price prediction MLP due to a lack
of data. This study utilized a trial and er-
ror network parameter search process. One
limitation of this approach is that there is
no guarantee that a global maximum has
been found. Bergstra et al. (32) found this
random search process to be more effect-
ive than grid search. This is due to ran-
dom searches being able to find as good
or better models within a small fraction
of the computation time. What the au-
thor doesnt recognize is that it is difficult
to know when an optimal model has been
found. For this reason, grid search is fa-
voured over random search in this research
where Bayesian optimization is not suitable
(33). This approach uses Bayesian regular-
isation to search the feature space for an
optimal solution. The fitness is calculated
for each model and the fittest model is kept.
An example of a Bayesian optimiser is the
Python library Hyperopt7. This approach is
also implemented. This should reduce the
chances of overfitting the model which is a
common problem in the literature. Often
models perform well on training data but
not on unseen data.

Another approach to reducing the risk of
overfitting is dropout regularisation as out-
lined by Wager et al. (34) This approach
is considered a noising scheme that con-
trols for overfitting by corrupting training
data. This increases the generalisability of
the model and as a result should perform
better on unseen data. Another factor to
consider when trying to predict time series
data is that the time when certain features
appear may contain important data. One
limitation of the MLP is it can only learn
an input to output mapping that is static,
and thus it has no notion of order in time.
As a result, the only input it considers is the
current example it has been exposed to (35).
In contrast, the output from each layer in
a RNN is stored in a context layer to be
looped back in with the output from the
next layer. In this sense one may consider
that the network gains a memory of sort
as opposed to the MLP. The length of the
network is known as the temporal window
length. Giles et al. (36) found that the fact
that the temporal relationship of the series
is explicitly modelled by the internal states
can contribute significantly to the models
effectiveness. Rather et al (37) took this ap-
proach in predicting stock returns. They in-
corporated a RNN in a hybrid model with a
genetic algorithm for optimization of weight
selection. In this case the author reported
successful results and credited this to op-
timal network parameter selection. Optim-
isers such as RMSprop are suitable for re-
current neural networks in terms of weight
selection and updates.

Another form of RNN is the Long Short
Term Memory (LSTM) network. They dif-
fer from Elman RNN in that in addition to
having a memory, they can choose which
data to remember and which data to for-
get based on the weight and importance of
that feature. Gers et al. (12) implemented a
LSTM for a time series prediction task. The
author found that the LSTM performed as
well as the RNN for this task. This type of

7Hyperopt: https://github.com/hyperopt/hyperopt
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model is implemented here also. One limit-
ation in training both the RNN and LSTM
is the significant computation required. For
example, a network of 50 days is compar-
able to training 50 individual MLP models.
Since the development of the CUDA frame-
work by NVIDIA in 2006, the development
of applications that take advantage of the
extremely parallel capabilities of the GPU
has grown greatly including the area of ma-
chine learning. Steinkrau et al. (38) repor-
ted over three times faster training and test-
ing of its ANN model when implemented on
a GPU rather than a CPU. Cantanzaro et
al. (39) reported an increased speed in clas-
sification time to the magnitude of eighty
times when implementing a SVM on a GPU
over an alternative SVM algorithm ran on
a CPU. In addition, training time was nine
times greater for the CPU implementation.
Ciresan et al. (40) also received speeds that
were forty times faster for training a when
training deep neural networks for image re-
cognition on a GPU as opposed to a CPU.
Due to the apparent benefits of utilising a
GPU, the LSTM model is implemented on
both the CPU and GPU. The performance
of both implementations is analysed in the
results section.

3 Methodology

This body of research follows the CRISP
data mining methodology 8. This is an in-
cremental approach made of up four levels
of tasks which are completed in an iterat-
ive manner. As a result, analogously it also
reflects an Agile methodology (41).

The dataset ranges from the 19th of Au-
gust 2013 until the 19th of July 2016. A
time series plot of this can be seen in figure
5 below in the observed window. Data from
previous to August 2013 was excluded as
the author feels that due to the immaturity
of the network, its not an accurate repres-
entation of the network at present. In addi-

tion to the Open, High, Low, Close (OHLC)
data from CoinDesk and the difficulty and
hash rate taken from the Blockchain, fea-
tures were engineered to provide the data-
set with more predictive data to learn from.
Data was standardised in R using the scale
function. This transforms the dataset to
give it a mean = 0 and SD = 1. Before
the dataset was standardised and given as
input to the neural network it performed
poorly. Standardisation was chosen over
normalising the data for example between
0 and 1 as this methodology is robust to
most activation functions.

Figure 5 Decomposition of Time
Series

3.1 Feature Engineering

Feature engineering is the art of extract-
ing useful patterns from data to make it
easier for machine learning models to per-
form its prediction. It can be considered
one of the most important skills to achieve
good results for prediction tasks (42). Wind
(43) investigated the behaviour of consist-
ent top performers in Kaggle data mining
competitions. The findings were that fea-
ture engineering is often the most import-
ant part. It is quite a subjective process
requiring domain knowledge to be effective.
It is also considered an art. Engineered fea-
tures should represent what one is trying to
teach the network.

8CRISP-DM 1.0: https://www.the-modeling-agency.com/crisp-dm.pdf
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However, chosen features must be eval-
uated to ensure they improve your data-
sets predictability. The addition of tech-
nical analysis indicators offers the benefit
of describing and quantifying trends which
may exist in the price. The rationale for this
is quantitative technical indicators provide
a numerical description of previous trends
in the data which can be used as an at-
tribute in a machine learning algorithm for
both regression and classification. Several
papers in recent years have included indic-
ators including the Simple Moving Average
(SMA) for machine learning classification
tasks (44) (45). An example of one such
technical indicator is a simple moving aver-
age (SMA). This records the average price
over the previous x number of days.

SMA =
p1 + p2... + px

n

Fortunately, not much feature engineer-
ing is required for deep learning models as
the hidden layers learn non-linear hierarch-
ical features and in the case of the LSTM
to detect very long term dependencies in se-
quential data (42). The reason one would
still be required to engineer features is that
there is no way of knowing what non-linear
features the model has learned. When fea-
ture engineering, one may explicitly choose
features which are thought to be important.
It is accepted that feature engineering is a
subjective process highly individual to the
task at hand (43). As a result, utilising do-
main knowledge is necessary. The rationale
of selecting a SMA is that it can allow a
model to more easily recognise trends by
smoothing the data. It is a popular tech-
nical indicator. In addition to the SMA
a de-noised closing price was created in R.
This involved decomposing the time series
into trend, seasonal and noise components
as can be seen in figure 5 above. The im-
portance of features can be evaluated using
various feature evaluation methods.

3.2 Feature Evaluation

Features must be evaluated once selected.
The reason for this is dealing with too large
of a feature set will considerably increase
training time. In addition, machine learn-
ing algorithms can suffer from decreased ac-
curacy if the number of variables is signific-
antly higher than the optimal number(46).
Several methods of feature evaluation exist
including filter based selection and wrapper
based selection. Filter based selectors fil-
ter features based on a particular statist-
ical property of the feature e.g. correlation.
Wrapper based methods perform a heuristic
search of solutions to a classifier.

The Boruta algorithm in R is one such
wrapped based methods. This algorithm is
a wrapper built around the random forest
classification algorithm. This is an en-
semble classification method in which clas-
sification is performed by voting of mul-
tiple classifiers. The algorithm works on a
similar principle as the random forest clas-
sifier. It adds randomness to the model
and collects results from the ensemble of
randomised samples to evaluate attributes.
This extra randomness provides you with
a clear view on which attributes are im-
portant (47). All features were deemed im-
portant to the model based on the random
forest, with 5 day and 10 days the highest
importance among the tested averages. The
de-noised closing price was one of the most
important variables also.

The dimensionality reduction technique
of principal component analysis (PCA) was
also explored. The result was four principal
groups in which all attributes belonged to.
The results of the PCA was not included
in the final model as computation wasnt an
issue and the original data performed reas-
onably well.

3.3 RNN

Appropriate design of deep learning mod-
els in terms of network parameters is im-
perative to their success. The three main



options available when choosing how to se-
lect parameters for deep learning models
are random search, grid search and heur-
istic search methods such as genetic al-
gorithms. As mentioned in the related work
section manual grid search and Bayesian op-
timisation are utilised in this study. Grid
search, implemented for the Elman RNN,
is the process of selecting two hyperpara-
maters with a minimum and maximum for
each. One then searches that feature space
looking for the best performing parameters.
This approach was taken for parameters
which were unsuitable for Bayesian optim-
isation. This model was built using Keras
in the Python programming language (48).

3.4 LSTM

Similar to the RNN, Bayesian optimisation
was chosen for selecting parameters for this
model where possible. This is a heuristic
search method which works by assuming
the function was sampled from a Gaussian
process and maintains a posterior distri-
bution for this function as the results of
different hyperparameter selections are ob-
served. One can then optimise the expected
improvement over the best result to pick
hyperparameters for the next experiment
(49). The performance of both the RNN
and LSTM network are evaluated on valid-
ation data with significant overfitting meas-
ures in place. Dropout is implemented in
both layers. In addition, an early stopper
is programmed into the model to prevent
overfitting. This stops the model if its val-
idation loss doesnt improve for 5 epochs.

4 Implementation

4.1 RNN

The first parameter for selection was the
temporal length window. As suggested by
supporting literature (14) these type of net-
works may struggle to learn long term de-
pendencies using gradient based optimisa-

tion. However, this could not be assumed.
An autocorrelation function (ACF) was ran
for the closing price time series. This as-
sesses the relationship between the current
closing price and previous or future closing
prices. While this is not a guarantee of pre-
dictive power for this length, it was a bet-
ter choice than random choice. The ACF
for closing price can be seen below in figure
6. Closing price is correlated with a lag of
up to 20 days in many cases, with isolated
cases at 34, 45 and 47 days. This led the
grid search for the temporal window to test
from 2 to 20 days and says 34, 45 and 47. To
ensure a robust search larger time periods
of up to 100 days were also tested in incre-
ments of five. The most effective window
temporal length was 24.

Figure 6: ACF

Learning rate is the parameter that
guides your stochastic gradient descent
(SGD) i.e. how your network learns. Mo-
mentum updates your learning rate to avoid
getting stuck in local minima and attempt
to move to global minimum of the function
(50). However, several optimisers are avail-
able to improve this process. The optim-
ser RMSprop improves on SGD with mo-
mentum as it keeps a running average and
as a result is more robust to information



loss (51). RMSprop keeps a running aver-
age of its recent gradient magnitudes. The
next gradient is divided by the average so
that gradient values are loosely normalised.
The number of hidden layers and hidden
nodes was the next parameter choice. Other
optimisers such as Adagrad and Adadelta
are available but the Keras documenta-
tion recommends the RMSprop for recur-
rent neural networks. According to Heaton,
one hidden layer is enough to approxim-
ate the vast majority of non-linear functions
(52). Two hidden layers were also explored
and were chosen as they achieved lower val-
idation accuracy. Heaton also recommends
for the number of hidden nodes to select
between the number of input and output
nodes. In this case, less than 20 nodes
per layer resulted in poor performance. 50
and 100 nodes were tested with good per-
formance. However, too many nodes can
increase the chances of overfitting. As 20
nodes performed sufficiently well this was
chosen for the final model. The activation
function are non-linear stepwise equations
that pass signals between layers. The op-
tions explored were Tanh, and ReLu which
can be seen below..

Tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x

ReLU = f(x) = max(0, x)

These functions perform better on dif-
ferent types of tasks so it is important to
test several. Tanh performed the best but
the differences were not significant. The fi-
nal parameters for selection are batch size
and number of training epochs. Batch size
was found to have little effect on accur-
acy but considerable effect on training time
when using smaller batches in this case.
Number of epochs tested ranged from 10 to
10000. Too many training epochs can res-
ult in overfitting. Overfitting is a common
issue with neural networks. To reduce the

risk of overfitting dropout can be implemen-
ted as discussed in the related work section.
Optimal dropout between 0.1 and 1 was
searched for both layers with .5 dropout the
optimal solution for both layers. An early
stopper was also implemented in the code.
This Keras callback method stops the train-
ing of the model if its performance on valid-
ation data did not improve after 5 epochs.
This helps to prevent overfitting. Gener-
ally the RNN converged between 20 and 40
epochs with early stopping. LSTM models
converged between 50 and 100 epochs

4.2 LSTM

In terms of temporal length, the LSTM is
considerably better at learning long term
dependencies. As a result, picking a long
window for this parameter was less detri-
mental for the LSTM as the RNN. This pro-
cess followed a similar process to the RNN
in which autocorrelation lag was used as
a guideline. The LSTM performed poorly
on smaller window sizes. Its most effective
length found was 100 days.

Two hidden LSTM layers were chosen.
For a time series task two layers is enough
to find non-linear relationships among the
data for a time series task. Three and four
layers were tested but didnt improve val-
idation performance. Several layers can be
required for tasks such as image recognition
when the number of features is significantly
large. 20 hidden nodes were also chosen for
both layers as per the RNN model. The
Hyperas library9 was used to implement
the Bayesian optimisation of the network
parameters. The optimiser searched for the
optimal model in terms of how much dro-
pout per layer and which optimizer to use.
RMSprop performed the best for this task
as indicated by the Keras documentation.
The LSTM model activation functions wer-
ent changed as the LSTM has a particular
sequence of activation functions within its
cell made up of tanh and sigmoid activa-

9Hyperas: https://github.com/maxpumperla/hyperas
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tion functions for the different gates within
the cell.

LSTM models converged between 50
and 100 epochs with early stopping. LSTM
models converged between 50 and 100
epochs in comparison to the RNN. This in-
dicates the LSTM continues to learn for
longer than the RNN. Batch size represents
how often to updates weights using RMS-
prop. This was found to have a greater af-
fect on execution time than accuracy. This
may be due to the relatively small size of
the dataset.

In terms of temporal length, the LSTM
is considerably better at learning long term
dependencies. As a result, picking a long
window for this parameter was less detri-
mental for the LSTM as the RNN. This pro-
cess followed a similar process to the RNN
in which autocorrelation lag was used as a
guideline.

Two hidden LSTM layers were chosen.
For a time series task two layers is enough
to find non-linear relationships among the
data for a time series task. Three and four
layers were tested but didnt improve valid-
ation performance. Several layers can be
required for tasks such as image recogni-
tion when the number of features is sig-
nificantly large. The Hyperas library was
used to implement the Bayesian optimisa-
tion of the network parameters. The optim-
iser searched the optimal model in terms of
the number of hidden layers and batch size.
Batch size represents the number of data
points to train on before updating weights.
Similarly as above, dropout was implemen-
ted along with early stopping to prevent
overfitting.

4.3 Model Comparison

A confusion matrix representing the ratio
of true/false and positive/negative classific-
ations is used to derive the ratings metrics.
The formulae for the four metrics can be
seen below. Accuracy can be defined as the
total number of correctly classified predic-

tions. This metric can be misleading for
example when there is an imbalanced data-
set. As a result, the metrics sensitivity,
specificity and precision are also analysed.
Sensitivity represents how good a test is
at detecting positives. Specificity repres-
ent how good the model is at avoiding false
alarms. Finally, precision represents how
many positively classified predictions were
relevant. Root Mean Square Error (RMSE)
is used to evaluate and compare the regres-
sion accuracy.

Sensitivity =
TP

TP + FN

Specificity =
TN

FP + TN

Precision =
TP

TP + FP

Accuracy =
TP + TN

P + N

RMSE =
√

(xi− yi)2

4.4 Validation

Holdout validation is used by default in
Keras. The last 20 percent of the dataset
is withheld for validation while the model
trains on the remaining 80 percent of the
date. This is the only method natively sup-
ported in Keras. K-fold cross validation
was investigated through the Python Scikit-
Learn library. However, it was not imple-
mented due to the significant training times
that result from it. Training times are k
times greater than that for holdout. Slid-
ing window validation was tested but per-
formed poorly in a Theano version of the
RNN implementation. As a result it was
not implemented for the LSTM.

Holdout validation is used by default in
Keras. The last 20 percent of the data-
set is withheld for validation. The model
trains on the remaining 80 percent. K-fold
cross validation was investigated. However,



it was not implemented due to the signific-
ant training times that result from it. Slid-
ing window validation was considered but
not implemented due to time constraints.

4.5 ARIMA

The ARIMA forecast was created by split-
ting the data into 5 periods and then pre-
dicting 30 days into the future. The data
was differenced before being fit with several
ARIMA models. The best fit as found by
auto.arima from the R forecast package.10

5 Evaluation

5.1 Model Evaluation

As can be seen in table 1 LSTM achieved
the highest accuracy while the RNN
achieved the lowest RMSE. The ARIMA
prediction performed poorly in terms of ac-
curacy and RMSE. This was to be expec-
ted. Upon analysis of the ARIMA forecast
it predicted the price would gradually rise
each day. There were no false positives from
the model. One reason for this may be due
to the class imbalance in predictive portion
of the ARIMA forecast. This contributed
to the specificity and precision being so high
(specificity,precision= 1). This does not ne-
cessarily suggest good performance.

Based on the results on the validation
data it is apparent that all models struggled
to effectively learn from the data. On train-
ing data the model reduced error to below
1%. On validation data the LSTM achieved
error of 8.07% while the RNN achieved er-

ror of 7.15%. The 50.25% and 52.78%
accuracy achieved by the neural network
models is a marginal improvement over the
odds one has in a binary classification task
i.e. 50% The RNN was effectively of no
use when using a temporal length over 50
days. In contrast, the LSTM performed
better in the 50 to 100 day range with
100 days producing the best performance.
Both models were combined to create a net-
work with one LSTM and one RNN lay-
ers. This performed marginally worse to
the pure LSTM model but required less
training time. The ARIMA model appears
to perform well based on sensitivity, spe-
cificity and precision. However, on analysis
of the high RMSE of the model its apparent
its forecast was poor. The ARIMA model
forecast followed a stable path with very
little variance. The fact that it appears to
have performed well in terms of specificity
and precision accuracy appears to have been
down to chance as it failed to recognise any
trends in the data and predicted the price
would rise in general.

The figures listed are those that are
thought to represent the generalizability of
the model as appropriate prevention meas-
ures were taken in terms of overfitting. Dro-
pout was considerably high on both hid-
den layers with the training dataset being
shuffled in groups based on temporal win-
dow length. In addition, an early stopper
was programmed into the model to stop
training if the validation loss didnt improve
for 5 epochs. Turning this off and it is pos-
sible to attain considerably better results
but this is as a result of overfitting.



5.2 Performance Evaluation

The CPU utilised was a Intel Core i7
2.6GH/z. This is a relatively high specific-
ation processor for a laptop. The GPU
used was a NVIDIA GeForce 940M 2GB.
Both were running on Ubuntu 14.04 LTS
installed on a SSD.

For comparability the same batch size
and temporal length of 50 were chosen for
both the RNN and LSTM. Performance
can be seen in table 1 above. The GPU
considerably outperformed the CPU as can
be seen in figure 7. In terms of over-
all training time for both networks, the
GPU trained 67.7% faster than the CPU.
The RNN trained 58.8% faster on the GPU
while the LSTM trained 70.7% faster on
the GPU. From monitoring performance in
Glances the CPU spread the algorithm out
over 7 threads. The GPU has 384 CUDA
cores which provide it with greater paral-
lelism. These models were relatively quite
small in terms of data with two layers. For
deeper models with more layers or bigger
datasets the benefits of implementing on a
GPU is even greater.

The LSTM and RNN were also com-
pared in terms of total training time on
both the CPU and GPU combined as can
be seen in figure 8. The LSTM took 3.1
times longer to train than the RNN with the
same network parameters. One reason for
this may be due to the increased number of
activation functions, and thus an increased
number of equations to be performed by the
LSTM. Due to the increased computation,
this raises the question of the value of using

an LSTM over an RNN. In financial market
prediction small margins can make all the
difference. As a result of this the use of an
LSTM is justified. In other areas the slight
improvement in terms of performance isn’t
justifiable for the increase in computation.

Figure 7: CPU vs GPU
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Figure 8: LSTM vs RNN
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Table 1: Model Results

Model Temporal Length Sensitivity Specificity Precision Accuracy RMSE

LSTM 100 37% 61.30% 35.50% 52.78% 6.87%

RNN 20 40.40% 56.65% 39.08% 50.25% 5.45%

ARIMA 170 14.7% 1 1 50.05% 53.74%



Table 2: Performance Comparison
Model Epochs Intel Core i7 6700 2.6GH\z NVIDIA GeForce 940M 2GB
RNN 50 56.71s 33.15s
LSTM 50 59.71s 38.85s
RNN 500 462.31s 258.1s
LSTM 500 1505s 888.34s
RNN 1000 918.03s 613.21s
LSTM 1000 3001.69s 1746.87s

6 Conclusion and Future

Work

Deep learning models such as the RNN and
LSTM are evidently effective learners on
training data with the LSTM more cap-
able for recognising longer-term dependen-
cies. However, a high variance task of this
nature make it difficult to transpire this
into impressive validation results. As a res-
ult it remains a difficult task. There is a
fine line to balance between overfitting a
model and preventing it from learning suf-
ficiently. Dropout is a valuable feature to
assist in improving this. However, despite
using Bayesian optimisation to optimize the
selection of dropout it still couldnt guar-
antee good validation results. Despite the
metrics of sensitivity, specificity and preci-
sion indicating good performance, the ac-
tual performance of the ARIMA forecast
based on error was significantly worse than
the neural network models. The LSTM out-
performed the RNN marginally, but there
was not significant difference in the results
of both. However, the LSTM takes consid-
erably longer to train.

The performance benefits gained from
the parallelisation of machine learning al-
gorithms on a GPU are evident with a
70.7% performance improvement for train-
ing the LSTM model on the GPU as op-
posed to the CPU. This confirmed the
findings indicated by the related work.
It appears from the results that Andrej
Karpathy was correct in his article on
the unreasonable effectiveness of recurrent
neural networks (5). They can reduce val-

idation error sufficiently low for a difficult
task like this one. Looking at the task from
purely a classification perspective one may
be able to achieve better results. One lim-
itation of the research is that the model has
not been implemented in a practical or real
time setting for predicting into the future
as opposed to learning what has already
happened. In addition, the ability to pre-
dict on streaming data would improve the
model. Sliding window validation is an ap-
proach not implemented here but this may
be explored for future work. One problem
that will arise is that the data is inherently
shrouded in noise.

Wavelets offer an interesting approach
to time series analysis due to the way they
break down a signal on a temporal level
to get rid of noise. Some research exists
in merging Wavelets with the MLP flavour
of Neural Networks (53). To the best of
the authors no implementation exists know-
ledge of a more advanced neural network
like a LSTM or RNN being integrated with
Wavelets. This is to be explored in fu-
ture work. In terms of the dataset, based
on an analysis of the weights of the model
the difficulty and hash rate variables could
be considered for pruning. Deep learning
models require a significant amount to data
to learn effectively from. The dataset util-
ised contained 1066 time steps representing
each day. If the granularity of data was
changed to per minute this would provide
512,640 data points in a year. Data of this
nature is not available for the past but is
currently being gathered from CoinDesk on
a daily basis for future use. Finally, par-



allelisation of algorithms is not limited to
GPU devices. Field Programmable Gate
Arrays (FPGA) are an interesting altern-
ative to GPU devices in terms of paral-
lelisation. Under some circumstances ma-

chine learning models have been show to
perform better on FPGA than on a GPU
(54). This warrants further investigation for
deep learning models.
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