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Chapter 1 
 
 

 
Configuration Manual 
 
 
 
1.1 SYSTEM SUMMARY 

 
1.1.1 System Configuration 
 
 
All tools used for the analyses in this research are located on the researcher’s laptop. Below 

list the basic configurations that were needed for this research. 
 
Operating System: Windows 10 
 
RAM: 8 GB  
 
Hard Disc: 1Terabyte 
 
Processor: Intel® Core (TM) i3 processor. 
System type: 64-bit, x64-based processor 
 
 
 
1.2 GETTING STARTED 
 
 
Download and install R – First, R was downloaded from CRAN (Comprehensive R Archive 

Network). To do this, https://cran.rstudio.com/ was visited and R package 3.3.1 for 

windows (64bits) was downloaded and installed.    

 

Download and install R- studio – R-studio is a user interface for R, making it easier to use R 

and includes a code editor, debugging and visualization tools. To download and install, visit 

https://www.rstudio.com/ and follow the necessary instructions.  

 
 
1.2.1 TOOLS USED 
 
 
Tools used for analysis and forecasting of stock market price data include: 

 R-studio – R-Studio’s ease of use and the fact that it is an open source software 

made it ideal for use for in this research. It has installable packages that are ideal 

for almost any analytical test, is easy to learn the language and has fast analytical 

performance.  

 Microsoft Excel 2016 – Very easy to use and create graphs. 
 
 
1.3 Software overview  
 
 
This research has chosen to utilize software tools and programming language such as R-
studio, MS Excel as a means conducting the necessary analyses needed to complete this 
research.   
 

https://cran.rstudio.com/
https://www.rstudio.com/


R (3.3.1) and R-studio are both open source data analysis applications which ensure analysis 
can be reproduced enabling easy collaboration. Both requires some programming 
knowledge or skill and has many packages that minimize this which also provides advanced 
graphical capabilities. R-studio allows for flexibility creativity and originality in the analysis 
of the data. Packages installed include: 
 
install.packages("dplyr") 
library(dplyr) 
install.packages("xts") ##(zoo package was needed for replacing mi data) 
library(xts) 
install.packages("forecast") 
library(forecast) 
install.packages(“ggplot2”) 
library(ggplot2) 
 
 
1.3.1 User Access Levels 

   

Since R-studio is an open source application, it is available for download and use by any and 

everyone who wish to utilize it. Ensure CRAN libraries installed into R before attempting to 

conduct your analysis using R-studio. Also, the user must be aware that some packages 

have to be constantly reinstalled from R-studio panel before conducting the certain 

analysis,  as they may not have been included in the CRAN libraries.  
 
. 

1.3.2 Installation  

 
R and R-Studio were updated with their newest versions for this research. Instructions on 
their installation are briefly listed above in getting started or the intended user can visit 
https:cran.r-project.org/bin/windows/base along with the CRAN installation guide.  
 
 
 
1.3.3 System Menu 
 
System Implementation 
 
Gathering all the necessary data - Stock market data was downloaded from Yahoo Finance 
website into CSV files. This included daily closing stock prices going back 24 years (1991 to 
2015). 



 
*Yahoo Finance site 

 
Data Cleaning and transformation - Each CSV file was then transformed to only include the 
closing price and trading date for each stock market index. 
 

 

*Each index closing price along with its corresponding trading date. 

Each CSV file containing each index with only its date and the closing price was imported into 
R-studio. Using the date attribute from the DowJones data as the base trading date, all six 
indexes were merged in order to properly align the trading dates and prices. This created 
missing information for the indexes that did not trade on some of the dates as the 
DowJones.  

 



 
*Merged data 
 
Dates for which there was data, the assumption of a linear change was taken instead of no 
change at all.  For this, the average of the price of the day above and below was used as a 
replacement.  

 stock_full3$Mean <- rowMeans(stock_full3[,2:7]) 

 

 

The average values calculated were then used as a scale to convert all the data into 

percentages in excel thus normalizing the data for further use against the forecasting 

model.  

 



 stock_full3$dow <- (stock_full3$Dow/stock_full3$Mean)*100 

 

*Normalized data 

A baseline/scale value was calculated by finding the average across all the indexes for each 
date. This baseline value was then used to scale all the data by converting each data point 
into percentages of that baseline value providing a more even distribution. This resulted in 
the data being normalized which is thought to be important as this has now brought all the 
indexes into a proportion with each other has helped to reduce the variability. 

 

Correlation Implementation 

First cross-correlation matrix was used to assess the level of correlation between all stock 
market index prices.   

 

 stockcor5<-cor(as.matrix(stock_full4)) 

 

*Correlation Matrix 

 

 

 

 

 

 



Correlation based on the DowJones and US GDP growth rate 

US GDP growth data was first extracted from FRED Economic Data at 
https://fred.stlouisfed.org/series/GDP/downloaddata into one CSV file and saved to the 
machine's’ desktop. 

 

Fifty excel files were then created in order to complete this analysis, with each excel file 
contained the six stock market indexes along with five rows of data relating to the date the 
GDP value was released. Each data file created was based on the date of the economic data 
release, where two days before and after were taken as data to be analyzed. All fifty file 
were then loaded into R where a cross-correlation matrix was conducted on all 50 datasets.  

 

Generating cross-correlation matrix for all 50 files 
 

Results from correlation matrix were merged in an excel file with the original GDP for further 
observation and visual analysis. 

https://fred.stlouisfed.org/series/GDP/downloaddata


 

Three non-US stock markets were used to examine correlation movement with the 
Dowjones based on the release date of US GDP growth data. Graphs for examination were 
created in excel.  

 

 

ARIMA Implementation   

Steps: 

1. Visualize the time series –The data is plotted to identify and understand trends 
(seasonality). The plots indicated a few sudden changes and indicated no real 
abnormal changes. Sudden drops were not considered particularly significant and 
may be attributed to global economic factors. 



 

*Time scale is based on date count 

 

2. Check stationarity of the data and Plot ACF and PACF – The data was tested to 
ensure stationarity. The augmented Dickey-Fuller test was applied in this 
instance. Each stock index being used in this research was taken as a separate 
variable and the Dickey-Fuller test applied to each. The Dickey-Fuller test is used 
to test the null hypothesis of no stationarity of an ARIMA process against the 
alternative that stationarity does exist (Cheung and Lai, 1995). ACF and PACF 
plots are done to determine the optimal parameters and possible candidates for 
the models. They also visually show the stationarity of the variables being 
forecast and can plot along with performing the Dickey-Fuller. The results were 
as follow:  

Null hypothesis: There is no stationarity 

Alternative hypothesis: There is stationarity 

> adf.test(x, alternative="stationary") 

data:  stock_train2$dow 

Dickey-Fuller = -1.6634, Lag order= 17, p-
value = 0.7209   

alternative hypothesis: stationary 

  

data:  stock_train2$s.p 

Dickey-Fuller = -1.5345, Lag order=17, p -
value = 0.7755 

alternative hypothesis: stationary 

 

data:  stock_train2$nas 

Dickey-Fuller = -1.7793, Lag order =17,           
p-value = 0.6718 

alternative hypothesis: stationary 

 

data:  stock_train2$ftse 

Dickey-Fuller = -2.6041, Lag order=17, p-value 
= 0.3225 



alternative hypothesis: stationary 

 

data:  stock_train2$nikkei 

Dickey-Fuller = -1.887, Lag order = 17, p-value 
= 0.6262 

alternative hypothesis: stationary 

 

data:  stock_train2$sse 

 Dickey-Fuller = -2.993, Lag order = 17, p-value 
= 0.1578 

alternative hypothesis: stationary 

 

The results of the Dickey-Fuller test revealed all the variables having a large p-value, which 
resulted in the null hypothesis not being rejected, thus is not stationary.  

 

 

 

 

The ACF plots for each variable confirms Dickey-Fuller test results, also indicating non-
stationarity, showing ACF not tailing off quickly. This meant that the application of 
differencing was needed in order to get it stationary. Differencing function in R was used 



which works by taking each observation and differencing it from the one previous to it. 
Another Dickey-Fuller test was then reapplied to check for stationarity along with ACF and 
PACF plots. The results are as follow:  

>adf.test(d.x, alternative="stationary")  

  

data:  d.dowf2 

Dickey-Fuller = -18.755, Lag order = 17, p-
value = 0.01 

alternative hypothesis: stationary 

 

data:  d.s.pf2 

Dickey-Fuller = -18.186, Lag order = 17, p-
value = 0.01 

alternative hypothesis: stationary 

 

data:  d.nasf2 

Dickey-Fuller = -17.218, Lag order = 17, p-
value = 0.01 

alternative hypothesis: stationary 

 

data:  d.ftsef2 

Dickey-Fuller = -18.398, Lag order = 17, p-
value = 0.01 

alternative hypothesis: stationary 

 

data:  d.nikkeif2 

Dickey-Fuller = -17.674, Lag order = 17, p-
value = 0.01 

alternative hypothesis: stationary 

 

data:  d.ssef2 

Dickey-Fuller = -16.397, Lag order = 17, p-
value = 0.01 

alternative hypothesis: stationary 



 

The results of the Dickey-Fuller test now shows all variables having a very small p-value, 
which resulted in the null hypothesis being rejected and the conclusion that stationarity 
does exist.   

 

 

 

 

Again the ACF plots confirm the Dickey-Fuller test showing that there is stationarity with the 
data. The plots for each index shows significant trends within the data.  

 

 



3. Build Model- The ACF and PACF plots were used to select the optimal models for 
fitting the data. Here it was determined that the ARIMA (1,0,1) and ARIMA (2,0,2) 
will be used to find the best model fit.   

 

The AIC values for all ARIMA models were compared with the model having the smallest AIC 
value chosen as the best model. ARIMA (1,0,1) was determined better suited for 4 of the 
Dow, Nasdaq, Nikkei and SSE, while ARIMA (2,0,2) worked best for the S&P and FTSE.  

4. Make Prediction 

 

Results of the ARIMA forecast showing a straight line. This is not the results that were 
anticipated, however, it is a result.  

 

Using the System 



 
ARIMA – ARIMA’s implementation required a number of steps to be followed in order to 
successfully analyze the data and make a forecast.  

 First, the normalized data was plotted to identify trends that may exist.  

 Second, since ARIMA requires stationarity of the data, Dickey-Fuller test was 
applied along with ACF and PACF plots to check for stationarity. The Dickey-Fuller 
test was performed using adf.test(x, alternative="stationary"), without specifying 
the number of additional lags k as its inclusion did not make a difference on the 
results. After the Dickey-Fuller. Differencing was also conducted where data was 
found to be non-stationary, with a second Dickey-Fuller test being applied 
afterward.  

  Third, models are built based on results from the plot and the optimal model fits 
chosen based on the best AIC calculated by each model. The models were trained 
on data spanning 20 years and then 4 years of data used to validate prediction 
accuracy. 

 Forecast time series. 

 Evaluation of results will be done by accessing the results from the forecast plots 
and by comparing forecast figures with validation set figures. 

 

Design Workflow 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



R-Script 
 
Anicia Lafayette-Madden 
15006590 
MSc in Data Analytics 
 
 
##IMPORT STOCK FILES INTO R (6 files) 
folder <- "C:/Users/Nerine/Desktop/STOCK/"      # path to folder that holds multiple .csv files 
file_list <- list.files(path=folder, pattern="*.csv") # create list of all .csv files in folder 
 
# read in each .csv file in file_list and create a data frame with the same name as the .csv file 
for (i in 1:length(file_list)){ 
  assign(file_list[i],  
         read.csv(paste(folder, file_list[i], sep='')) 
  )} 
 
##Install package for use 
install.packages("tseries") 
library('tseries') 
install.packages("dplyr") 
install.packages("xts") ##(zoo package was needed for replacing mi data) 
library(xts) 
install.packages("forecast") 
library(forecast) 
library(dplyr) 
library(ggplot2) 
 
##Merge  stock index prices by date 
stock1 <- merge(Dow.csv, SP.csv, by="Date", all.x = TRUE) 
stock2<- merge(stock1, Nasdaq.csv, by="Date", all.x = TRUE) 
stock3 <- merge(stock2, FTSE.csv, by="Date", all.x = TRUE) 
stock4<- merge(stock3, Nikkei.csv, by="Date", all.x = TRUE) 
stock_full <- merge(stock4, SSE.csv, by="Date", all.x = TRUE) 
 
### Put in order of date and convert date variable from factor to date format: 
stock_full2<- stock_full[order(as.Date(stock_full$Date, format="%d/%m/%Y")),] 
 
##Replace missing values with mean of the row above and below 
stock_full2$FTSE <- na.approx(stock_full2$FTSE) 
stock_full2$Nikkei <- na.approx(stock_full2$Nikkei) 
stock_full2$SSE <- na.approx(stock_full2$SSE) 
 
##Calculate mean for each day for all the indexes 
stock_full2$Mean <- rowMeans(stock_full2[,2:7])  
 
##Convert data points to a percentage value of the mean 
stock_full3<- stock_full2  ### making a copy 
stock_full3$dow <- (stock_full3$Dow/stock_full3$Mean)*100 
stock_full3$sp<- (stock_full3$SP/stock_full3$Mean)*100 
stock_full3$nas <- (stock_full3$Nasdaq/stock_full3$Mean)*100 
stock_full3$ftse <- (stock_full3$FTSE/stock_full3$Mean)*100 
stock_full3$nikkei <- (stock_full3$Nikkei/stock_full3$Mean)*100 
stock_full3$sse <- (stock_full3$SSE/stock_full3$Mean)*100 
 
##Omit columns not needed create one copy with the date column 
stock_full4 <- stock_full3[c(9,10,11,12,13,14)] 
stock_full5 <- stock_full3[c(1,9,10,11,12,13,14)] 



##Generate correlation matrix 
stockcor5<-cor(as.matrix(stock_full4)) 
 
##Split data into training and validation sets 
stock_train <- stock_full5[1:5291,]  
stock_val <- stock_full5[5292:6296,]   
stock_train2 <- stock_train ## make a copy 
 
 

ARIMA IMPLEMENTATION 
Steps: 
1. ##Visualize the time series 
stock_plot <- stock_full5 ## make copy of table for plotting 
plot.ts(stock_plot, main = "Time Series plot") 
 
2. Check stationarity of the data using Dickey-Full test and generate ACF/PACF plots 
 
##Plot each index 
  
par(mfrow=c(2,1)) 
acf(stock_train2$dow)   
pacf(stock_train2$dow) 
 
par(mfrow=c(2,1)) 
acf(stock_train2$sp)   
pacf(stock_train2$sp) 
 
par(mfrow=c(2,1)) 
acf(stock_train2$nas)   
pacf(stock_train2$nas) 
 

par(mfrow=c(2,1)) 
acf(stock_train2$ftse)   
pacf(stock_train2$ftse) 
 
par(mfrow=c(2,1)) 
acf(stock_train2$nikkei)   
pacf(stock_train2$nikkei) 
 
par(mfrow=c(2,1)) 
acf(stock_train2$sse)   
pacf(stock_train2$sse) 
 

 
##Apply Dickey-Fuller test to check if series if stationary 
adf.test(stock_train2$dow, alternative="stationary") 
adf.test(stock_train2$sp, alternative="stationary") 
adf.test(stock_train2$nas, alternative="stationary") 
adf.test(stock_train2$ftse, alternative="stationary") 
adf.test(stock_train2$nikkei, alternative="stationary") 
adf.test(stock_train2$sse, alternative="stationary") 
 
##Apply differencing to non-stationary series to make it stationary 
dow2<- stock_train2$dow 
d.dowf2 <- diff(dow2) 
sp2<- stock_train2$sp 
d.spf2 <- diff(sp2) 
nas2<- stock_train2$nas 
d.nasf2 <- diff(nas2) 
ftse2<- stock_train2$ftse 
d.ftsef2 <- diff(ftse2) 
nikkei2<- stock_train2$nikkei 
d.nikkeif2 <- diff(nikkei2) 
sse2<- stock_train2$sse 
d.ssef2 <- diff(sse2) 
 
#Re-apply Dickey-Fuller test to check data again if stationary 
 
adf.test(d.dowf2, alternative="stationary") 
adf.test(d.spf2, alternative="stationary") 



adf.test(d.nasf2, alternative="stationary") 
adf.test(d.ftsef2, alternative="stationary") 
adf.test(d.nikkeif2, alternative="stationary") 
adf.test(d.ssef2, alternative="stationary") 
 
 
## Plot ACF and PACF for difference data 
  
par(mfrow=c(2,1)) 
acf(d.dowf2)   
pacf(d.dowf2) 
 
par(mfrow=c(2,1)) 
acf(d.spf2)   
pacf(d.spf2) 
 
par(mfrow=c(2,1)) 
acf(d.nasf2)   
pacf(d.nasf2) 
 

par(mfrow=c(2,1)) 
acf(d.ftsef2)   
pacf(d.ftsef2) 
 
par(mfrow=c(2,1)) 
acf(d.nikkeif2)   
pacf(d.nikkeif2) 
 
par(mfrow=c(2,1)) 
acf(d.ssef2)   
pacf( d.ssef  

 
3. Build Model – Build three model each using the differenced data. Then choose the best one 
based on its AIC value.  
 
##ARIMA 1,0,1 
 
fit_dow2 <- arima(d.dowf2, c(1, 0, 1)) 
print(fit_dow2) 
 
fit_sp2 <- arima(d.spf2, c(1, 0, 1)) 
print(fit_sp2) 
 
fit_nas2 <- arima(d.nas2, c(1, 0, 1)) 
print(fit_nas2) 
 
fit_ftse2 <- arima(d.ftsef2, c(1, 0, 1)) 
print(fit_ftse2) 
 
fit_nikkei2 <- arima(d.nikkeif2, c(1, 0, 1)) 
print(fit_nikkei2) 
 
fit_sse2 <- arima(d.ssef2, c(1, 0, 1)) 
print(fit_sse2) 

 ##ARIMA 2,0,2 
 
fit_dow3 <- arima(d.dowf2, c(2, 0, 2)) 
print(fit_dow3) 
 
fit_sp3 <- arima(d.spf2, c(2, 0, 2)) 
print(fit_sp2) 
 
fit_nas3 <- arima(d.nasf2, c(2, 0, 2)) 
print(fit_nas3) 
 
fit_ftse3 <- arima(d.ftsef2, c(2, 0, 2)) 
print(fit_ftse2) 
 
fit_nikkei3 <- arima(d.nikkeif2, c(2, 0, 2)) 
print(fit_nikkei3) 
 
fit_sse3 <- arima(d.ssef2, c(2, 0, 2)) 
print(fit_sse3)  

 
4. Prediction 
 
##Forecast 
forecast<- forecast(fit_dow2, h=1005)  # h indicating the number of days being forecast 
forecast2<- forecast(fit_sp3, h=1005) 
forecast3<- forecast(fit_nas2, h=1005) 
forecast4<- forecast(fit_ftse3, h=1005) 
forecast5<- forecast(fit_nikkei2, h=1005) 
forecast6<- forecast(fit_sse2, h=1005) 
 
##Plot Forecast 
forecast<- plot(forecast(fit_dow2, h=1005)) 
forecast2<- plot(forecast(fit_sp3, h=1005)) 
forecast3<- plot(forecast(fit_nas2, h=1005)) 
forecast4<- plot(forecast(fit_ftse3, h=1005)) 



forecast5<- plot(forecast(fit_nikkei2, h=1005)) 
forecast6<- plot(forecast(fit_sse2, h=1005)) 
 
 
 

CORRELATION IMPLEMENTATION 
##IMPORT FILES ON GDP FIGURES INTO R (50 files) 
folder <- "C:/Users/Nerine/Desktop/GDP/"      # path to folder that holds multiple .csv files 
file_list <- list.files(path=folder, pattern="*.csv") # create list of all .csv files in folder 
 
# read in each .csv file in file_list and create a data frame with the same name as the .csv file 
for (i in 1:length(file_list)){ 
  assign(file_list[i],  
         read.csv(paste(folder, file_list[i], sep='')) 
  )} 
 
##Generate cross-correlation matrix for all 50 data frames 
JAN_91<-cor(as.matrix(JAN1991.csv)) 
JUL_91<-cor(as.matrix(JUL1991.csv)) 
 
JAN_92<-cor(as.matrix(JAN1992.csv)) 
JUL_92<-cor(as.matrix(JUL1992.csv)) 
 
JAN_93<-cor(as.matrix(JAN1993.csv)) 
JUL_93<-cor(as.matrix(JUL1993.csv)) 
             
JAN_94<-cor(as.matrix(JAN1994.csv)) 
JUL_94<-cor(as.matrix(JUL1994.csv))  
 
JAN_95<-cor(as.matrix(JAN1995.csv)) 
JUL_95<-cor(as.matrix(JUL1995.csv))  
 
JAN_96<-cor(as.matrix(JAN1996.csv)) 
JUL_96<-cor(as.matrix(JUL1996.csv))  
 
JAN_97<-cor(as.matrix(JAN1997.csv)) 
JUL_97<-cor(as.matrix(JUL1997.csv))  
 
JAN_98<-cor(as.matrix(JAN1998.csv)) 
JUL_98<-cor(as.matrix(JUL1998.csv))  
 
JAN_99<-cor(as.matrix(JAN1999.csv)) 
JUL_99<-cor(as.matrix(JUL1999.csv)) 
 
JAN_00<-cor(as.matrix(JAN2000.csv)) 
JUL_00<-cor(as.matrix(JUL2000.csv)) 
 
JAN_01<-cor(as.matrix(JAN2001.csv)) 
JUL_01<-cor(as.matrix(JUL2001.csv)) 
 
JAN_02<-cor(as.matrix(JAN2002.csv)) 
JUL_02<-cor(as.matrix(JUL2002.csv)) 
 
JAN_03<-cor(as.matrix(JAN2003.csv)) 
JUL_03<-cor(as.matrix(JUL2003.csv)) 

 
JAN_04<-cor(as.matrix(JAN2004.csv)) 
JUL_04<-cor(as.matrix(JUL2004.csv)) 
 
JAN_05<-cor(as.matrix(JAN2005.csv)) 
JUL_05<-cor(as.matrix(JUL2005.csv)) 
 
JAN_06<-cor(as.matrix(JAN2006.csv)) 
JUL_06<-cor(as.matrix(JUL2006.csv)) 
 
JAN_07<-cor(as.matrix(JAN2007.csv)) 
JUL_07<-cor(as.matrix(JUL2007.csv)) 
 
JAN_08<-cor(as.matrix(JAN2008.csv)) 
JUL_08<-cor(as.matrix(JUL2008.csv)) 
 
JAN_09<-cor(as.matrix(JAN2009.csv)) 
JUL_09<-cor(as.matrix(JUL2009.csv)) 
 
JAN_10<-cor(as.matrix(JAN2010.csv)) 
JUL_10<-cor(as.matrix(JUL2010.csv)) 
 
JAN_11<-cor(as.matrix(JAN2011.csv)) 
JUL_11<-cor(as.matrix(JUL2011.csv)) 
 
JAN_12<-cor(as.matrix(JAN2012.csv)) 
JUL_12<-cor(as.matrix(JUL2012.csv)) 
 
JAN_13<-cor(as.matrix(JAN2013.csv)) 
JUL_13<-cor(as.matrix(JUL2013.csv)) 
 
JAN_14<-cor(as.matrix(JAN2014.csv)) 
JUL_14<-cor(as.matrix(JUL2014.csv)) 
 
JAN_15<-cor(as.matrix(JAN2015.csv)) 
JUL_15<-cor(as.matrix(JUL2015.csv)) 
 

 


