

National College of Ireland

Project Submission Sheet – 2015/2016

School of Computing

Student Name: Anicia Lafayette-Madden

Student ID: 15006590

Programme: M.Sc Data Analytics Year: 2015-2016

Module: Configuration Manual

Lecturer: Vikas Sahni
Submission Due

Date: 15/09/2016

Project Title:

Analysing historical stock market data to determine if a
correlation exists between major stock market indexes and if
time series is sufficient to make predictions.

Word Count: 2400

I hereby certify that the information contained in this (my submission) is
information pertaining to research I conducted for this project. All information
other than my own contribution will be fully referenced and listed in the relevant
bibliography section at the rear of the project.
ALL internet material must be referenced in the bibliography section. Students
are encouraged to use the Harvard Referencing Standard supplied by the Library.
To use other author's written or electronic work is illegal (plagiarism) and may
result in disciplinary action. Students may be required to undergo a viva (oral
examination) if there is suspicion about the validity of their submitted work.

Signature:

Date: 16/09/2016

PLEASE READ THE FOLLOWING INSTRUCTIONS:

1. Please attach a completed copy of this sheet to each project (including multiple

copies).
2. You must ensure that you retain a HARD COPY of ALL projects, both for

your own reference and in case a project is lost or mislaid. It is not sufficient to
keep a copy on the computer. Please do not bind projects or place in covers unless
specifically requested.

3 Assignments that are submitted to the Programme Coordinator office must be
placed into the assignment box located outside the office

Office Use Only
Signature:
Date:
Penalty Applied (if applicable)

Chapter 1

Configuration Manual

1.1 SYSTEM SUMMARY

1.1.1 System Configuration

All tools used for the analyses in this research are located on the researcher’s laptop. Below

list the basic configurations that were needed for this research.

Operating System: Windows 10

RAM: 8 GB

Hard Disc: 1Terabyte

Processor: Intel® Core (TM) i3 processor.
System type: 64-bit, x64-based processor

1.2 GETTING STARTED

Download and install R – First, R was downloaded from CRAN (Comprehensive R Archive

Network). To do this, https://cran.rstudio.com/ was visited and R package 3.3.1 for

windows (64bits) was downloaded and installed.

Download and install R- studio – R-studio is a user interface for R, making it easier to use R

and includes a code editor, debugging and visualization tools. To download and install, visit

https://www.rstudio.com/ and follow the necessary instructions.

1.2.1 TOOLS USED

Tools used for analysis and forecasting of stock market price data include:

 R-studio – R-Studio’s ease of use and the fact that it is an open source software

made it ideal for use for in this research. It has installable packages that are ideal

for almost any analytical test, is easy to learn the language and has fast analytical

performance.

 Microsoft Excel 2016 – Very easy to use and create graphs.

1.3 Software overview

This research has chosen to utilize software tools and programming language such as R-
studio, MS Excel as a means conducting the necessary analyses needed to complete this
research.

https://cran.rstudio.com/
https://www.rstudio.com/

R (3.3.1) and R-studio are both open source data analysis applications which ensure analysis
can be reproduced enabling easy collaboration. Both requires some programming
knowledge or skill and has many packages that minimize this which also provides advanced
graphical capabilities. R-studio allows for flexibility creativity and originality in the analysis
of the data. Packages installed include:

install.packages("dplyr")
library(dplyr)
install.packages("xts") ##(zoo package was needed for replacing mi data)
library(xts)
install.packages("forecast")
library(forecast)
install.packages(“ggplot2”)
library(ggplot2)

1.3.1 User Access Levels

Since R-studio is an open source application, it is available for download and use by any and

everyone who wish to utilize it. Ensure CRAN libraries installed into R before attempting to

conduct your analysis using R-studio. Also, the user must be aware that some packages

have to be constantly reinstalled from R-studio panel before conducting the certain

analysis, as they may not have been included in the CRAN libraries.

.

1.3.2 Installation

R and R-Studio were updated with their newest versions for this research. Instructions on
their installation are briefly listed above in getting started or the intended user can visit
https:cran.r-project.org/bin/windows/base along with the CRAN installation guide.

1.3.3 System Menu

System Implementation

Gathering all the necessary data - Stock market data was downloaded from Yahoo Finance
website into CSV files. This included daily closing stock prices going back 24 years (1991 to
2015).

*Yahoo Finance site

Data Cleaning and transformation - Each CSV file was then transformed to only include the
closing price and trading date for each stock market index.

*Each index closing price along with its corresponding trading date.

Each CSV file containing each index with only its date and the closing price was imported into
R-studio. Using the date attribute from the DowJones data as the base trading date, all six
indexes were merged in order to properly align the trading dates and prices. This created
missing information for the indexes that did not trade on some of the dates as the
DowJones.

*Merged data

Dates for which there was data, the assumption of a linear change was taken instead of no
change at all. For this, the average of the price of the day above and below was used as a
replacement.

 stock_full3$Mean <- rowMeans(stock_full3[,2:7])

The average values calculated were then used as a scale to convert all the data into

percentages in excel thus normalizing the data for further use against the forecasting

model.

 stock_full3$dow <- (stock_full3$Dow/stock_full3$Mean)*100

*Normalized data

A baseline/scale value was calculated by finding the average across all the indexes for each
date. This baseline value was then used to scale all the data by converting each data point
into percentages of that baseline value providing a more even distribution. This resulted in
the data being normalized which is thought to be important as this has now brought all the
indexes into a proportion with each other has helped to reduce the variability.

Correlation Implementation

First cross-correlation matrix was used to assess the level of correlation between all stock
market index prices.

 stockcor5<-cor(as.matrix(stock_full4))

*Correlation Matrix

Correlation based on the DowJones and US GDP growth rate

US GDP growth data was first extracted from FRED Economic Data at
https://fred.stlouisfed.org/series/GDP/downloaddata into one CSV file and saved to the
machine's’ desktop.

Fifty excel files were then created in order to complete this analysis, with each excel file
contained the six stock market indexes along with five rows of data relating to the date the
GDP value was released. Each data file created was based on the date of the economic data
release, where two days before and after were taken as data to be analyzed. All fifty file
were then loaded into R where a cross-correlation matrix was conducted on all 50 datasets.

Generating cross-correlation matrix for all 50 files

Results from correlation matrix were merged in an excel file with the original GDP for further
observation and visual analysis.

https://fred.stlouisfed.org/series/GDP/downloaddata

Three non-US stock markets were used to examine correlation movement with the
Dowjones based on the release date of US GDP growth data. Graphs for examination were
created in excel.

ARIMA Implementation

Steps:

1. Visualize the time series –The data is plotted to identify and understand trends
(seasonality). The plots indicated a few sudden changes and indicated no real
abnormal changes. Sudden drops were not considered particularly significant and
may be attributed to global economic factors.

*Time scale is based on date count

2. Check stationarity of the data and Plot ACF and PACF – The data was tested to
ensure stationarity. The augmented Dickey-Fuller test was applied in this
instance. Each stock index being used in this research was taken as a separate
variable and the Dickey-Fuller test applied to each. The Dickey-Fuller test is used
to test the null hypothesis of no stationarity of an ARIMA process against the
alternative that stationarity does exist (Cheung and Lai, 1995). ACF and PACF
plots are done to determine the optimal parameters and possible candidates for
the models. They also visually show the stationarity of the variables being
forecast and can plot along with performing the Dickey-Fuller. The results were
as follow:

Null hypothesis: There is no stationarity

Alternative hypothesis: There is stationarity

> adf.test(x, alternative="stationary")

data: stock_train2$dow

Dickey-Fuller = -1.6634, Lag order= 17, p-
value = 0.7209

alternative hypothesis: stationary

data: stock_train2$s.p

Dickey-Fuller = -1.5345, Lag order=17, p -
value = 0.7755

alternative hypothesis: stationary

data: stock_train2$nas

Dickey-Fuller = -1.7793, Lag order =17,
p-value = 0.6718

alternative hypothesis: stationary

data: stock_train2$ftse

Dickey-Fuller = -2.6041, Lag order=17, p-value
= 0.3225

alternative hypothesis: stationary

data: stock_train2$nikkei

Dickey-Fuller = -1.887, Lag order = 17, p-value
= 0.6262

alternative hypothesis: stationary

data: stock_train2$sse

 Dickey-Fuller = -2.993, Lag order = 17, p-value
= 0.1578

alternative hypothesis: stationary

The results of the Dickey-Fuller test revealed all the variables having a large p-value, which
resulted in the null hypothesis not being rejected, thus is not stationary.

The ACF plots for each variable confirms Dickey-Fuller test results, also indicating non-
stationarity, showing ACF not tailing off quickly. This meant that the application of
differencing was needed in order to get it stationary. Differencing function in R was used

which works by taking each observation and differencing it from the one previous to it.
Another Dickey-Fuller test was then reapplied to check for stationarity along with ACF and
PACF plots. The results are as follow:

>adf.test(d.x, alternative="stationary")

data: d.dowf2

Dickey-Fuller = -18.755, Lag order = 17, p-
value = 0.01

alternative hypothesis: stationary

data: d.s.pf2

Dickey-Fuller = -18.186, Lag order = 17, p-
value = 0.01

alternative hypothesis: stationary

data: d.nasf2

Dickey-Fuller = -17.218, Lag order = 17, p-
value = 0.01

alternative hypothesis: stationary

data: d.ftsef2

Dickey-Fuller = -18.398, Lag order = 17, p-
value = 0.01

alternative hypothesis: stationary

data: d.nikkeif2

Dickey-Fuller = -17.674, Lag order = 17, p-
value = 0.01

alternative hypothesis: stationary

data: d.ssef2

Dickey-Fuller = -16.397, Lag order = 17, p-
value = 0.01

alternative hypothesis: stationary

The results of the Dickey-Fuller test now shows all variables having a very small p-value,
which resulted in the null hypothesis being rejected and the conclusion that stationarity
does exist.

Again the ACF plots confirm the Dickey-Fuller test showing that there is stationarity with the
data. The plots for each index shows significant trends within the data.

3. Build Model- The ACF and PACF plots were used to select the optimal models for
fitting the data. Here it was determined that the ARIMA (1,0,1) and ARIMA (2,0,2)
will be used to find the best model fit.

The AIC values for all ARIMA models were compared with the model having the smallest AIC
value chosen as the best model. ARIMA (1,0,1) was determined better suited for 4 of the
Dow, Nasdaq, Nikkei and SSE, while ARIMA (2,0,2) worked best for the S&P and FTSE.

4. Make Prediction

Results of the ARIMA forecast showing a straight line. This is not the results that were
anticipated, however, it is a result.

Using the System

ARIMA – ARIMA’s implementation required a number of steps to be followed in order to
successfully analyze the data and make a forecast.

 First, the normalized data was plotted to identify trends that may exist.

 Second, since ARIMA requires stationarity of the data, Dickey-Fuller test was
applied along with ACF and PACF plots to check for stationarity. The Dickey-Fuller
test was performed using adf.test(x, alternative="stationary"), without specifying
the number of additional lags k as its inclusion did not make a difference on the
results. After the Dickey-Fuller. Differencing was also conducted where data was
found to be non-stationary, with a second Dickey-Fuller test being applied
afterward.

 Third, models are built based on results from the plot and the optimal model fits
chosen based on the best AIC calculated by each model. The models were trained
on data spanning 20 years and then 4 years of data used to validate prediction
accuracy.

 Forecast time series.

 Evaluation of results will be done by accessing the results from the forecast plots
and by comparing forecast figures with validation set figures.

Design Workflow

R-Script

Anicia Lafayette-Madden
15006590
MSc in Data Analytics

##IMPORT STOCK FILES INTO R (6 files)
folder <- "C:/Users/Nerine/Desktop/STOCK/" # path to folder that holds multiple .csv files
file_list <- list.files(path=folder, pattern="*.csv") # create list of all .csv files in folder

read in each .csv file in file_list and create a data frame with the same name as the .csv file
for (i in 1:length(file_list)){
 assign(file_list[i],
 read.csv(paste(folder, file_list[i], sep=''))
)}

##Install package for use
install.packages("tseries")
library('tseries')
install.packages("dplyr")
install.packages("xts") ##(zoo package was needed for replacing mi data)
library(xts)
install.packages("forecast")
library(forecast)
library(dplyr)
library(ggplot2)

##Merge stock index prices by date
stock1 <- merge(Dow.csv, SP.csv, by="Date", all.x = TRUE)
stock2<- merge(stock1, Nasdaq.csv, by="Date", all.x = TRUE)
stock3 <- merge(stock2, FTSE.csv, by="Date", all.x = TRUE)
stock4<- merge(stock3, Nikkei.csv, by="Date", all.x = TRUE)
stock_full <- merge(stock4, SSE.csv, by="Date", all.x = TRUE)

Put in order of date and convert date variable from factor to date format:
stock_full2<- stock_full[order(as.Date(stock_full$Date, format="%d/%m/%Y")),]

##Replace missing values with mean of the row above and below
stock_full2$FTSE <- na.approx(stock_full2$FTSE)
stock_full2$Nikkei <- na.approx(stock_full2$Nikkei)
stock_full2$SSE <- na.approx(stock_full2$SSE)

##Calculate mean for each day for all the indexes
stock_full2$Mean <- rowMeans(stock_full2[,2:7])

##Convert data points to a percentage value of the mean
stock_full3<- stock_full2 ### making a copy
stock_full3$dow <- (stock_full3$Dow/stock_full3$Mean)*100
stock_full3$sp<- (stock_full3$SP/stock_full3$Mean)*100
stock_full3$nas <- (stock_full3$Nasdaq/stock_full3$Mean)*100
stock_full3$ftse <- (stock_full3$FTSE/stock_full3$Mean)*100
stock_full3$nikkei <- (stock_full3$Nikkei/stock_full3$Mean)*100
stock_full3$sse <- (stock_full3$SSE/stock_full3$Mean)*100

##Omit columns not needed create one copy with the date column
stock_full4 <- stock_full3[c(9,10,11,12,13,14)]
stock_full5 <- stock_full3[c(1,9,10,11,12,13,14)]

##Generate correlation matrix
stockcor5<-cor(as.matrix(stock_full4))

##Split data into training and validation sets
stock_train <- stock_full5[1:5291,]
stock_val <- stock_full5[5292:6296,]
stock_train2 <- stock_train ## make a copy

ARIMA IMPLEMENTATION
Steps:
1. ##Visualize the time series
stock_plot <- stock_full5 ## make copy of table for plotting
plot.ts(stock_plot, main = "Time Series plot")

2. Check stationarity of the data using Dickey-Full test and generate ACF/PACF plots

##Plot each index

par(mfrow=c(2,1))
acf(stock_train2$dow)
pacf(stock_train2$dow)

par(mfrow=c(2,1))
acf(stock_train2$sp)
pacf(stock_train2$sp)

par(mfrow=c(2,1))
acf(stock_train2$nas)
pacf(stock_train2$nas)

par(mfrow=c(2,1))
acf(stock_train2$ftse)
pacf(stock_train2$ftse)

par(mfrow=c(2,1))
acf(stock_train2$nikkei)
pacf(stock_train2$nikkei)

par(mfrow=c(2,1))
acf(stock_train2$sse)
pacf(stock_train2$sse)

##Apply Dickey-Fuller test to check if series if stationary
adf.test(stock_train2$dow, alternative="stationary")
adf.test(stock_train2$sp, alternative="stationary")
adf.test(stock_train2$nas, alternative="stationary")
adf.test(stock_train2$ftse, alternative="stationary")
adf.test(stock_train2$nikkei, alternative="stationary")
adf.test(stock_train2$sse, alternative="stationary")

##Apply differencing to non-stationary series to make it stationary
dow2<- stock_train2$dow
d.dowf2 <- diff(dow2)
sp2<- stock_train2$sp
d.spf2 <- diff(sp2)
nas2<- stock_train2$nas
d.nasf2 <- diff(nas2)
ftse2<- stock_train2$ftse
d.ftsef2 <- diff(ftse2)
nikkei2<- stock_train2$nikkei
d.nikkeif2 <- diff(nikkei2)
sse2<- stock_train2$sse
d.ssef2 <- diff(sse2)

#Re-apply Dickey-Fuller test to check data again if stationary

adf.test(d.dowf2, alternative="stationary")
adf.test(d.spf2, alternative="stationary")

adf.test(d.nasf2, alternative="stationary")
adf.test(d.ftsef2, alternative="stationary")
adf.test(d.nikkeif2, alternative="stationary")
adf.test(d.ssef2, alternative="stationary")

Plot ACF and PACF for difference data

par(mfrow=c(2,1))
acf(d.dowf2)
pacf(d.dowf2)

par(mfrow=c(2,1))
acf(d.spf2)
pacf(d.spf2)

par(mfrow=c(2,1))
acf(d.nasf2)
pacf(d.nasf2)

par(mfrow=c(2,1))
acf(d.ftsef2)
pacf(d.ftsef2)

par(mfrow=c(2,1))
acf(d.nikkeif2)
pacf(d.nikkeif2)

par(mfrow=c(2,1))
acf(d.ssef2)
pacf(d.ssef

3. Build Model – Build three model each using the differenced data. Then choose the best one
based on its AIC value.

##ARIMA 1,0,1

fit_dow2 <- arima(d.dowf2, c(1, 0, 1))
print(fit_dow2)

fit_sp2 <- arima(d.spf2, c(1, 0, 1))
print(fit_sp2)

fit_nas2 <- arima(d.nas2, c(1, 0, 1))
print(fit_nas2)

fit_ftse2 <- arima(d.ftsef2, c(1, 0, 1))
print(fit_ftse2)

fit_nikkei2 <- arima(d.nikkeif2, c(1, 0, 1))
print(fit_nikkei2)

fit_sse2 <- arima(d.ssef2, c(1, 0, 1))
print(fit_sse2)

 ##ARIMA 2,0,2

fit_dow3 <- arima(d.dowf2, c(2, 0, 2))
print(fit_dow3)

fit_sp3 <- arima(d.spf2, c(2, 0, 2))
print(fit_sp2)

fit_nas3 <- arima(d.nasf2, c(2, 0, 2))
print(fit_nas3)

fit_ftse3 <- arima(d.ftsef2, c(2, 0, 2))
print(fit_ftse2)

fit_nikkei3 <- arima(d.nikkeif2, c(2, 0, 2))
print(fit_nikkei3)

fit_sse3 <- arima(d.ssef2, c(2, 0, 2))
print(fit_sse3)

4. Prediction

##Forecast
forecast<- forecast(fit_dow2, h=1005) # h indicating the number of days being forecast
forecast2<- forecast(fit_sp3, h=1005)
forecast3<- forecast(fit_nas2, h=1005)
forecast4<- forecast(fit_ftse3, h=1005)
forecast5<- forecast(fit_nikkei2, h=1005)
forecast6<- forecast(fit_sse2, h=1005)

##Plot Forecast
forecast<- plot(forecast(fit_dow2, h=1005))
forecast2<- plot(forecast(fit_sp3, h=1005))
forecast3<- plot(forecast(fit_nas2, h=1005))
forecast4<- plot(forecast(fit_ftse3, h=1005))

forecast5<- plot(forecast(fit_nikkei2, h=1005))
forecast6<- plot(forecast(fit_sse2, h=1005))

CORRELATION IMPLEMENTATION
##IMPORT FILES ON GDP FIGURES INTO R (50 files)
folder <- "C:/Users/Nerine/Desktop/GDP/" # path to folder that holds multiple .csv files
file_list <- list.files(path=folder, pattern="*.csv") # create list of all .csv files in folder

read in each .csv file in file_list and create a data frame with the same name as the .csv file
for (i in 1:length(file_list)){
 assign(file_list[i],
 read.csv(paste(folder, file_list[i], sep=''))
)}

##Generate cross-correlation matrix for all 50 data frames
JAN_91<-cor(as.matrix(JAN1991.csv))
JUL_91<-cor(as.matrix(JUL1991.csv))

JAN_92<-cor(as.matrix(JAN1992.csv))
JUL_92<-cor(as.matrix(JUL1992.csv))

JAN_93<-cor(as.matrix(JAN1993.csv))
JUL_93<-cor(as.matrix(JUL1993.csv))

JAN_94<-cor(as.matrix(JAN1994.csv))
JUL_94<-cor(as.matrix(JUL1994.csv))

JAN_95<-cor(as.matrix(JAN1995.csv))
JUL_95<-cor(as.matrix(JUL1995.csv))

JAN_96<-cor(as.matrix(JAN1996.csv))
JUL_96<-cor(as.matrix(JUL1996.csv))

JAN_97<-cor(as.matrix(JAN1997.csv))
JUL_97<-cor(as.matrix(JUL1997.csv))

JAN_98<-cor(as.matrix(JAN1998.csv))
JUL_98<-cor(as.matrix(JUL1998.csv))

JAN_99<-cor(as.matrix(JAN1999.csv))
JUL_99<-cor(as.matrix(JUL1999.csv))

JAN_00<-cor(as.matrix(JAN2000.csv))
JUL_00<-cor(as.matrix(JUL2000.csv))

JAN_01<-cor(as.matrix(JAN2001.csv))
JUL_01<-cor(as.matrix(JUL2001.csv))

JAN_02<-cor(as.matrix(JAN2002.csv))
JUL_02<-cor(as.matrix(JUL2002.csv))

JAN_03<-cor(as.matrix(JAN2003.csv))
JUL_03<-cor(as.matrix(JUL2003.csv))

JAN_04<-cor(as.matrix(JAN2004.csv))
JUL_04<-cor(as.matrix(JUL2004.csv))

JAN_05<-cor(as.matrix(JAN2005.csv))
JUL_05<-cor(as.matrix(JUL2005.csv))

JAN_06<-cor(as.matrix(JAN2006.csv))
JUL_06<-cor(as.matrix(JUL2006.csv))

JAN_07<-cor(as.matrix(JAN2007.csv))
JUL_07<-cor(as.matrix(JUL2007.csv))

JAN_08<-cor(as.matrix(JAN2008.csv))
JUL_08<-cor(as.matrix(JUL2008.csv))

JAN_09<-cor(as.matrix(JAN2009.csv))
JUL_09<-cor(as.matrix(JUL2009.csv))

JAN_10<-cor(as.matrix(JAN2010.csv))
JUL_10<-cor(as.matrix(JUL2010.csv))

JAN_11<-cor(as.matrix(JAN2011.csv))
JUL_11<-cor(as.matrix(JUL2011.csv))

JAN_12<-cor(as.matrix(JAN2012.csv))
JUL_12<-cor(as.matrix(JUL2012.csv))

JAN_13<-cor(as.matrix(JAN2013.csv))
JUL_13<-cor(as.matrix(JUL2013.csv))

JAN_14<-cor(as.matrix(JAN2014.csv))
JUL_14<-cor(as.matrix(JUL2014.csv))

JAN_15<-cor(as.matrix(JAN2015.csv))
JUL_15<-cor(as.matrix(JUL2015.csv))

