

National College of Ireland

BSc in Computing

2015/2016

VO THI THUY LINH

x11113065

thuylinhrndm@yahoo.com

ANONYMOUS AUTOMATED RESPONSE SYSTEM

Technical Report

Table of Contents

Executive Summary .. 3

1 Introduction ... 4

1.1 Background .. 4

1.2 Research ... 4

1.3 Aims .. 6

1.4 Technologies .. 7

1.5 Structure .. 12

2 System ... 14

2.1 Requirements .. 14

2.1.1 Functional requirements .. 15

2.1.2 Data requirements ... 216

2.1.3 User requirements ... 26

2.1.4 Environmental requirements ... 27

2.1.5 Usability requirements ... 28

2.2 Design and Architecture... 29

2.3 Implementation .. 42

2.4 Testing ... 429

2.5 Graphical User Interface (GUI) Layout... 61

2.6 Users testing .. 614

2.7 Evaluation .. 66

3 Conclusions ... 67

4 Further development or research ... 68

5 References .. 69

6 Appendix .. 701

6.1 Project Proposal .. 71

6.2 Project Plan ... 77

6.3 Requirement Specification ... 80

6.4 Monthly Journal ... 107

6.5 Survey ... 120

 - 3 -

Executive Summary

The main objective of “Anonymous Automated Response System” is for

Educational purposes in that it provides a service which automatically suggests

possible answers to queries immediately after users (e.g. students, employees…)

post their problems or their questions. It also allows other users (e.g. counselors

or consultancy or teachers…) to interact with them by posting answer(s) or giving

advice. The posts and the answers are saved and displayed to all users without

any personal information. The users can see their own post with their information

and the other users can only see the problem and the answer without any personal

information.

AARS leverages the speed and processing power of information technology to

help users to locate useful relevant resources and personalized expert advice,

conveniently, immediately and anonymously.

Immediately after a problem is posted, AARS makes calls to the Google Custom

Search API and renders a list of relevant resources. Result received are sorted

and ordered and only the most relevant and useful hyperlinks are retained. By

using sort algorithm, the system will automatically provide suggestions with highest

rating.

An appointment can be arranged if the user wishes to chat personally with the

counsellor or consultant. Moreover, the application will economize on the use of

time, in that it is available at anytime and anywhere.

The application can be found at: https://afternoon-waters-88881.herokuapp.com

1 Introduction

1.1 Background

The reasons I have chosen to do this project are the following: First of all I want to

use my knowledge, skills and new technologies which I have learnt to create

something useful that can be of benefit to the users. The reason I chose the topic

because I found that many people especially young people have problems

communicating with friends, parents, families, colleagues and school. They have

no one with whom to share their concerns or no one they can trust.

I was encouraged by a group of consultants who were longing to help people to

discover more meaningful ways of communicating. So I decided to build the

application that would allows the users freedom to share their own problem and

discuss with consultants

1.2 Research

I found in my research that there are some organizations that have a webpage

which helps people who have problems with friends, families, school or work. Their

services allow the users to make a call from a mobile or from a landline. Ideally

there is someone to receive the call, listen and give advice. However problems

may arise in that a caller may have to wait a considerable time for someone to

answer the call or the organization may have set specific times when the calls will

be answered. This arrangement may not suit the immediate need of the caller.

The following gives details of a few such organizations dealing with a cross section

of society who is facing different types of problems, for example,

- “Samaritans” who provide a network of people you could 'ask' about

anything;

- “ReachOut.com” helps young people get through tough times by providing

quality mental health information and covering issues that can impact on

mental health, “ReachOut.com” takes the mystery out of mental health;

 - 5 -

- The website, “SpunOut.ie”, carries a range of health information for young

people, including mental health, sexual health, exam stress and general

lifestyle information. “SpunOut” also has an extensive online directory

allowing site visitors to search for supports and services in their area;

- Childline.ie provides a free and confidential listening service to children and

young people up to the age of 18. The Childline helpline is open every day,

24 hours a day and Childline Online Chat is open every day from 10am to

10pm.

In studying the above examples it seems to me that an improvement is needed, to

be an improvement to facilitate the users’ access to an immediate response to their

queries.

In the light of this information I decided to develop a response system which

automatically suggests possible answers to queries immediately after users (e.g.

students, employees…) post their problems or their questions. It also allows other

users (e.g. counselors or consultancy or teachers…) to interact with them by

posting answer(s) or giving advice. The posts and the answers are saved and

displayed to all users without any personal information. The users can see their

own post with their information and the other users only see the problem and the

answer without any personal information.

An appointment can be arranged if the user wishes to speak or chat personally

with the counsellor or consultant. The application will have a booking appointment

system. In addition, this application will use Gmail API for chatting and speaking

functionalities. Moreover, the application will economize on the use of time, in that

it is available at anytime and anywhere.

I have spoken with people from different backgrounds about my idea and have

asked them what they would want, if they were to use the application. Teachers in

secondary school, for example agree with me that the students have problem with

 - 6 -

studies, friends and families. Students feel they have nobody to talk to or trust,

they are afraid to share their problems and as the result they keep them to

themselves until perhaps it is too late to solve the problems. Teachers think the

application will give students opportunities to share their problems without

identifying themselves. This refers only to a group of teachers who will answer the

questions or give an advice. This will also help teachers themselves understand

students and be able to help them find solutions before it is too late.

Employees working in companies also have to deal with personal problems, and

those evolved in relation to their colleagues or their employers find it difficult to

discuss these with the people concerned and they maintain that if they could

access this application it would be a great help to improving personal job

satisfaction. As a result they would be able to focus clearly on the overall objectives

of the organization and thus improve their productivity.

1.3 Aims

Anonymous Automated Response System provides a free service to help people,

especially young people to get through tough times. It also gives opportunities to

share their problems without identifying themselves. It also automatically suggests

possible answers to queries immediately after users post their problems or their

questions. The system will economize on the use of time, in that it will be available

at anytime and anywhere.

The system aims to give users the benefit of expert advice from consultants,

counsellors or teachers, through direct advice, or answers. No one else will have

access to their personal information, but other users of the system will be able to

view the general problems and answers, and thus benefit by someone else’s

questions.

Another aims is to facilitate any person who wishes to speak personally with a

consultant or counsellor by arranging a booking appointment.

 - 7 -

A final aim is to modify, create and display calendar events, as well as working

many other calendar related objects.

1.4 Technologies

The application is built in Ruby on Rails which is an open source web application

framework written in the Ruby programming language; it is a full-stack framework.

Ruby on Rails uses well-known software engineering patterns and principles such

as active record pattern, convention over configuration (COC), don’t repeat

yourself (DRY) and model-view-controller (MVC).

Ruby

Ruby is a language of careful balance. Yukishiro Matzumoto designed this

language in 1995 influence by Perl, Eiffel, Python, Smalltalk and others. It’s a

dynamically typed, fully object-oriented, general-purpose scripting language.

In Ruby, everything is an object. Ruby is used in typical scripting language

applications such as text processing and "glue" or middleware programs. It's

suitable for small, ad-hoc scripting tasks that, in the past, may have been solved

with Perl. Writing small programs with Ruby is as easy as importing

the modules you need and writing an almost BASIC-like "sequence of events" type

of program.

Ruby on Rails

Ruby on Rails (RoR) is open source web framework written in the Ruby

programming language and all the applications in Rails are written in Ruby. Ruby

on Rails is focused on productivity and enforces agile web development.

The Ruby on Rails framework was designed for database-backed web applications

according to the Model-View-Controller (MVC) pattern. It was created as a

response to heavy web frameworks such as J2EE and the .NET framework. Many

of the common tasks for web development are built-in in the framework to work

out-of-the-box. This includes email management, object-database mappers, file

http://ruby.about.com/od/tasks/Performing_and_Meeting_the_Challenges_of_Tasks.htm
http://perl.about.com/
http://ruby.about.com/od/glossary/g/module.htm
http://en.wikipedia.org/wiki/Model-view-controller

 - 8 -

structures, code generation, how the elements are named and organized and so

on. All of these conventions allow developers to write less code and develop agile

applications.

Ruby on Rails architecture has the following features:

- Model-View-Controller architecture.

- Representational State Transfer (REST) for web services.

- Supports the major databases (MySQL, Oracle, MS SQL Server,

PostgreSQL, IBM DB2, and more).

- Open-source server side scripting language.

- Convention over configuration

- Scripts generators to automate tasks.

- Use of YAML machine, which is a human-readable data serialization format.

- The above-described features are distributed in the following Rails’

components

Rails is made up of several components

 Action mailer is responsible for providing e-mail services

 Active record provides object-relational mapping to classes.

 Action pack provides the controller and view layers of the MVC patterns.

These modules capture the user requests made by the browser and map

these requests to actions.

 Action web services

Git

For a version control system it has used Git which allows you to track the history

of a collection of files and includes the functionality to revert the collection of files

to another version. GitHub is a Web-based Git repository hosting service. It offers

all of the distributed revision control and source code management (SCM)

functionality of Git as well as adding its own features.

First-time Repository Setup

https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Distributed_revision_control
https://en.wikipedia.org/wiki/Source_code_management
https://en.wikipedia.org/wiki/Git_(software)

 - 9 -

Navigate to the root directory of the app and initialize a new repository:

$ git init

Add files in the Anonymous Automated Response application to git, then commit

the results.

$ git add.

$ git commit –m “Initial commit”

GitHub

Push the code up to GitHub, which is a social code site, optimized for hosting and

sharing Git repositories. I pushed up the application as follows:

$ git remote add origin

https://github.com/thuylinhrndm/AnonymousAutomatedResponse.git

$ git push –u origin master

Cloud platforms:

Heroku:

The application is deployed on cloud platform using Heroku which is a platform as

a service (PaaS). Heroku allows deploying directly from popular tools like Git,

GitHub or Continuous Integration (CI) systems. First install the Heroku Toolbelt.

This provides you access to the Heroku Command Line Interface (CLI), which can

be used for managing and scaling the applications and add-ons. A key part of the

toolbelt is the heroku local command, which can help in running applications

locally. Once installed, use the Heroku command from command shell.

Heroku Setup

After creating a Heroku account, I will have to install Heroku gem:

$ gem install heroku

Once installed, you can use the heroku command from your command shell.

https://www.heroku.com/dx

 - 10 -

Log in using the email address and password you used when creating your Heroku
account:

$ heroku login

Authenticating is required to allow both the heroku and git commands to operate.

Execute the following commands to clone the application:

git clone https://github.com/heroku/thuylinhrndm/ AnonymousAutomatedRespons

e.git

In this step, deploy the app to Heroku. Create an app on Heroku, which prepares

Heroku to receive the source code.

$ heroku create

When the application is created, a git remote (called heroku) is also created and

associated with the local git repository.

Heroku generates a random name (in this case afternoon-waters-88881) for the

application, or you can pass a parameter to specify your own name.

Now deploy the code:

git push heroku master

The application is now deployed.

Now visit the app at the URL generated by its application name. As a handy

shortcut, can use command line open the website as follows:

$ heroku open

The link of the application run in Heroku: https://afternoon-waters-

88881.herokuapp.com

 - 11 -

Cloud 9:

Cloud9 IDE is an open source, online integrated development environment. It

supports hundreds of programming languages such as

PHP, Ruby, Perl, Python, JavaScript with Node.js, and Go. It enables developers

to get started with coding immediately with pre-setup workspaces, collaborate with

their peers with collaborative coding features, and web development features like

live preview and browser compatibility testing.

It is written almost entirely in JavaScript, and uses Node.js on the back-end. The

editor component uses Ace. As of July 2014, it uses Docker containers for its

workspaces, and is hosted on Google Compute Engine

SignIn with OmniAuth

The Rails community provides a wealth of plugins as Ruby Gems that simply add

to your project Gemfile and install. For example, the application used OmniAuth

for the sign in with Google. It simply added gem "omniauth-google-oauth2" in the

Gemfile, then bundle install.

The application “sign in” will use simple OmniAuth. It is a library that standardizes

multi-provider authentication for web applications. It was created to be powerful,

secure, and flexible. Any developer can create strategies for OmniAuth that can

authenticate users via disparate systems. For example: Google, Facbook,

Twitter,… The reason for using OmniAuth is because most users don’t like to sign

up for websites. They’ve already signed up for so many, using different

usernames and password and trying to remember them is sometimes impossible.

Database

The application will connect to database using SQLite3 and PostgreSQL. SQLite

is a software library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine. PostgreSQL is an object-

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Perl_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Ace_(editor)
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Google_Compute_Engine
https://www.sqlite.org/selfcontained.html
https://www.sqlite.org/serverless.html
https://www.sqlite.org/transactional.html
https://en.wikipedia.org/wiki/Object-relational_database_management_system

 - 12 -

relational database management system (ORDBMS) with an emphasis on

extensibility and on standards-compliance.

Font end

Foundation is used for the font end design. Foundation is a framework for building

the front-end, or client-facing part, of a website or web application. It lets me quickly

prototype and create sites and applications that work on any device. HTML front

end will be responsible for displaying the information on multiple device types. This

service will be written in JavaScript, JQuery, SCSS3 and HTML.

Bootstrap is the most popular HTML, CSS, and JavaScript framework for

developing responsive, mobile-first web sites. Bootstrap makes front-end web

development faster and easier. It's made for folks of all skill levels, devices of all

shapes, and projects of all sizes.

APIs

Google Custom search API for automated response and suggestion. When users

click on the post button, the post will save in the database, display to user and

send to Google Custom search API. Google search takes information and

searches for the web sites which related to that information, then automated

display possible suggestion with title and links.

Simple Calendar API is used to display booking appointment’s time of the days,

week and months which have been made. The appointment automatically removes

from the booking list when the time has passed.

1.5 Structure

- Introduction gives a summary of the project

- System describes the project requirements, Design, the engineering of the

software involved, testing plans, GUI layout, customer testing and

evaluation.

https://en.wikipedia.org/wiki/Object-relational_database_management_system

 - 13 -

- Conclusion describes the outcome of the project and a summary of what I

learned during the progress of the project and the current status of the

system.

- Further Development or research describes what I feel the future direction

and development of the system will be, such as developing a mobile and/or

tablet friendly version of the application in the future to adapt to the currently

expanding mobile device market. It can be run with android and ios.

- References are a section where I list all my resources of learning,

particularly outside of the college course that I needed in order to develop

the application.

- Appendix is used for all other information such as market research.

 - 14 -

2 System

2.1 Requirements

Use Case Diagram

 - 15 -

2.1.1 Functional requirements

- Web Based Interface: This system will have a web based interface so that

it can be viewable on multiple devices: PC and tablets or phones

- User Login: This system will have a user login to ensure only the right users

get to see the content. The user should be able to use an OAuth login to

then login to all the available social media feeds.This system will have users’

role that allow the collection of users into a single unit against which they

can apply permissions in a database.

- Posting system: This system will allow users post problems or questions.

- Automated Response: This system will display automatically the result

from outside resources which relate to users problem and give user some

suggestions. It also allows user to rate for the links and display the

suggestion according to the highest average rate, highest number rate and

most number of time users’ click on the links.

- Responding system: This system will allow consultants or counsellors to

answer the problem which users have posted.

- Booking system: This system will have a booking system so that user can

make an appointment with consultant and a calendar which displays users’

appointment. It will automatically remove the appointment when it is over

- Chat System: This system will have a chatting system that allow user to

chat with consultants

- Reminder system: This system will send email to remind the users about

their appointments.

Requirement 1 <Sign In>

Description & Priority

This function is to allow a user to securely sign in to Anonymous Automated

Response System.

 - 16 -

Use Case

Scope

The scope of this use case is a sign in system for user

Description

This use case describes the user secure when they sign in to Anonymous

Automated Response System

Use Case Diagram

Diagram should highlight actors and uses cases

Flow Description

Precondition

The system is in initialisation mode. User must have Google account.

Activation

This use case starts when a user wishes to sign in to Anonymous Automated

Response system.

Main flow

1. The user enters email and password

2. The system connects to Google account and check if the entered email and

password invalid (See A1)

Alternate flow

A1 : <Invalid email or password>

1. The system displays error message

 - 17 -

2. The user enters email and password again

3. The use case continues at position 3 of the main flow

Termination

The system stores all the login information

Post condition

The system goes into a wait state. If the use case was successful, the actor is now

logged into the system. If not, the system state is unchanged

Requirement 2 < Posting Problem >

Description & Priority

This function is to post the problem which the user wants to ask about or needs an

advice on. It will be stored in the database.

Use Case

Scope

The scope of this use case is to post a problem and store it in the database

Description

This use case describes what users do when they have a problem and need help.

Use Case Diagram

Flow Description

Precondition

The system is in initialisation mode. User must login to Anonymous Automated

Response system.

Activation

This use case starts, when a user presses the button to post his/her own problem

 - 18 -

Main flow

1. The system identifies the user role and displays the post page

2. The user clicks on the button “post your own problem”

3. The system reloads the page and opens the new post page

4. The user enters problem and clicks the button “post your problem”

5. The system displays the message and says that the post is created

successfully

Termination

The system stores all the post into database. The use case terminates when the

user exits

Post condition

The system goes into a wait state

Requirement 3 < Automated Response >

Description & Priority

This function is automated it displays to user some suggestions which are already

given from the other web site, while user is waiting for the answer from a

consultant.

Use Case

Scope

The scope of this use case is to automatically display some recommendations

which are related to user’s problem.

Description

This use case describes what the system does when users are waiting for the

answer to the problem.

Use Case Diagram

 - 19 -

Flow Description

Precondition

The system is in initialisation mode. User must login to Anonymous Automated

Response system.

Activation

This use case starts when a user presses the “created post” button.

Main flow

1- The system makes calls to the Google Custom Search API and renders a

list of relevant resources which are given from other website.

2- The system automated displays the web pages which are related to the

post.

3- The users can rate for the links

4- The system save the rating and that links

5- The system views the results which are sorted and ordered and only the

most relevant and useful hyperlinks are retained sort

6- The system gives the suggestion according to the highest average rate,

highest number rate and most number of time users’ click on the links.

Termination

The system stores the rating and links into database The use case terminates

when the user exits

Post condition

The system goes into a wait state

Requirement 4 < Response Problem >

Description & Priority

This function is to let the consultant give an advice or an answer to the problem

which the user has posted.

Use Case

Scope

The scope of this use case is to give an answer to the problem

 - 20 -

Description

This use case describes what the consultant does when he/she gives the answer

for the problem.

Use Case Diagram

Flow Description

Precondition

The system is in initialisation mode. User must login to Anonymous Automated

Response system.

Activation

This use case starts when a user presses the answer button

Main flow

1. The system identifies the user role and displays the post page.

2. The consultant clicks on the answer button.

3. The system reloads the page and displays the answer page.

4. The consultant enters the answer and clicks to post the answer button.

5. The system displays the message saying that the post has been created

successfully

6. The system sends the alert to the user, saying that user’s question has

been answered.

Termination

The system stores all the post into a database. The use case terminates when the

user exits

Post condition

The system goes into a wait state

 - 21 -

Requirement 5 < Booking Appointment >

Description & Priority

This function allows user to book an appointment with consultant.

Use Case

Scope

The scope of this use case is to book an appointment with consultant.

Description

This use case describes how to book an appointment with consultant for more

help.

Use Case Diagram

Flow Description

Precondition

The system is in initialisation mode. User must login to Anonymous Automated

Response system.

 - 22 -

Activation

This use case starts, when a user presses the booking appointment button

Main flow

1. The system displays the booking window.

2. The user wants to make a new appointment (See A1)

3. The system displays new booking appointment window

4. The user wants to cancel an existing appointment (See A2)

5. The system displays cancel booking appointment window

6. The user wants to change an existing appointment (See A3)

7. The system displays result window

Alternate flow

1. A1 Make a new appointment:

- The system displays possible appointment times, dates and email of

consultants

- The user chooses date and time available

- The use case continues until the user submits booking button or want to

release it.

2. A2 Cancel an appointment:

- The system displays the old booking appointment with time and date.

- The use case continues until the user click cancel button or the user

wants to release it.

3. A3 Change an appointment

- The System shows the change appointment window where the users

can change the date and time for theirs appointment.

- The use case continues until the user click make change button or the

user wants to release it.

Termination

 - 23 -

The system stores all the post into database. The use case terminates when the

user exits

Post condition

The system goes into a wait state

Requirement 6 < Chatting System >

Description & Priority

This function allows user to chat or talk with consultant.

Use Case

Scope

The scope of this use case is to chat or talk with consultant for more help.

Description

This use case describes how user operates with the system.

Use Case Diagram

Flow Description

Precondition

The system is in initialisation mode. User must login to Anonymous Automated

Response system and book the appointment with consultant.

Activation

This use case starts when a user presses the chatting button

Main flow

 - 24 -

- The system displays the chat room

- The users send messages

- The system update chat room

- The system reloads the chat room.

Termination

The use case terminates when the user exits

Post condition

The system goes into a wait state

Requirement 7 < Appointment Reminder System >

Description & Priority

This function is to remind users about their appointments.

Use Case

Scope

The scope of this use case is to remind users about their appointments.

Appointment reminders allow system to automate the process of reaching out to

users in advance of an upcoming appointment.

Description

This use case describes how the System Appointment Reminders work in the

Anonymous Automated Response System.

Use Case Diagram

 - 25 -

Flow Description

Precondition

The system is in initialisation mode. User must book appointment in Anonymous

Automated Response system

Activation

The use case starts when a user submits a booking appointment.

Main flow

1. The system stores booking information in the database.

2. The system checks the appointment list and configured time, in advance of

the appointment.

3. The system sends out a reminder

Termination

The use case terminates when the user exits

Post condition

The system goes into a wait state

 - 26 -

2.1.2 Data requirements

2.1.3 User requirements

The application was requested by a group of consultants who are longing to help

people to discover a more meaningful ways of communicating. This application

allows users freedom to share their own problems and discus with consultants.

The application will be free to consultants. Users and consultants will not know

each other. There is no personal information shown. It is a secret room. Moreover,

the application will economize on the use of time and in that it is available at

anytime and anywhere.

 - 27 -

This system will require the following:

- A system that will run on multiple devices computer, iPad and mobile.

- System that has a secure login system.

- A system that has a web interface.

- A system that allows user to input and display information.

- A system that can store information about user problem.

- A system that user login can operate with different roles: user, consultant

and admin.

- A system that can use automated display suggestion after user has posted

the problem

- A system that has a booking appointment.

- A system that has a chatting and talking system.

The application should be user friendly and simplistic with its user interface, so that

the different sections are easy to use.

The system will allow for different users as follows:

User 1: Log in with Google account as user’s role. Then users should be able to

post their problems, view their own questions and list of all problems. The user

should then be able to book an appointment and chat or talk with consultants or

counselors as they wish.

User 2: Consultants log in with Google account. Consultants should be able to see

all problems and manage to give the advice.

User 3: Admin log in with Google account. Admin should be able to see all the

users, posts and have full permission on the post. This user will be a System

administrator who will have user privileges to start and shut the system and monitor

any issues with the system.

2.1.4 Environmental requirements

In order to develop the system the following environmental requirement needed to

be adhered to and present during the development stage:

 - 28 -

- Ruby on rails is required to develop the application.

- Git is used to track the history of a collection of files as they change over

time and includes the functionality to revert the collection of files to another

version

- GitHub is a Web-based Git repository hosting service. It offers all of

the distributed revision control and source code management (SCM)

functionality of Git as well as adding its own features.

- The system will require a server on which to operate .The server will be

hosted on a free cloud service called Heroku. Heroku is a platform as

a service (PaaS) that enables developers to build and run applications

entirely in the cloud.

- Cloud9 IDE is a freeware online integrated development environment. It

combines a powerful online code editor with a full Ubuntu workspace

in the cloud. It supports more than 40 languages, with class A support

for PHP, Ruby, Python, JavaScript, Go, and more. It enables

developers to get started with coding immediately with pre-setup

workspaces, collaborate with their peers with collaborative coding features,

and web development features like live preview and browser compatibility

testing.

- A database is used both SQLite3 and PostgreSQL.

2.1.5 Usability requirements

Simple Interface: this solution has an easy to use interface that uses common

elements found in websites and web-browsers.

User Feedback: this solution uses warning messages and popups to inform the

user what is happing in the application.

Good Looking Interface: this solution has an appealing interface that uses web

safe colours to ensure the user is not put off by the looks.

https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Distributed_revision_control
https://en.wikipedia.org/wiki/Source_code_management
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Freeware
https://en.wikipedia.org/wiki/Integrated_development_environment

 - 29 -

2.2 Design and Architecture

Software Architecture

Here is a high-level overview of the Anonymous Automated Response application.

The application follows the model-view-controller (MVC) architectural pattern,

which enforces a separation between “domain logic” from the input and

presentation logic associated with a GUI.

Figure: Ruby on Rails Web Application framework Architecture1

Ruby on Rails uses the Model-View-Controller (MVC) architectural pattern in order

to improve the maintainability of the application. The Model centralizes the

business logic; the View manages the display logic, while the Controller deals with

the application flow. The MVC allows a clean separation of concerns, in the way

that it keeps the business logic separated from HTML views. Additionally, it

improves decoupling and testing.

1 Mejia, A. (2011). Ruby on Rails Architectural Design - Adrian Mejia’s Blog. [online]

Adrianmejia.com. Available at: http://adrianmejia.com/blog/2011/08/11/ruby-on-rails-architectural-
design/ [Accessed 4 Dec. 2015].

 - 30 -

The Model layer carries the business logic of the application and the rules to

manipulate the data. The Models represent the information in the database and do

the appropriate validations. In Rails, database-backed model classes are derived

from ActiveRecord::Base. Active Record allows presenting the data from database

rows as objects and embellishing these data objects with business logic methods.

Although most Rails models are backed by a database, models can also be

ordinary Ruby classes, or Ruby classes that implement a set of interfaces as

provided by the ActiveModel module.

The view is the front-end of the application, representing the user interface. In Ruby

on Rails, views are HTML files with embedded Ruby code. The embedded Ruby

code in the HTMLs is fairly simple (loops and conditionals). It is only used to display

data to the user in the form of views. Views are used to provide the data to the

browsers that requested the web pages. Views can server content in several

formats, such as HTML, JSON, XML, RSS and more.

Controllers interact with models and views. The incoming requests from the

browsers are processed by the controllers, which process the data from the models

and pass it to the views for presentation. Controllers manipulate models and render

view templates in order to generate the appropriate HTTP response. In Rails, the

Controller and View layers are handled together by Action Pack. These two layers

are bundled in a single package due to their heavy interdependence. Each of these

packages can be used independently outside of Rails.

Renders Browsers screen
Interacts with Model Invokes view

Model View

Controller

Database

Browsers
Sends request

1

2
4

3

http://api.rubyonrails.org/classes/ActiveRecord/Base.html
http://api.rubyonrails.org/classes/ActiveModel.html

 - 31 -

When interacting with a Rails application, a browser sends a request, which is

received by a web server and passed on to a Rails controller, the controller

interacts with a model, which is a Ruby object that represents an element of the

site and is in charge of communicating with the database. Controller invokes view

and View renders to browser screen.

Class Diagram

 - 32 -

 : User : User
:System:System

Sign In with OmmiAuth

Posting Problem

verify with provider

Create post
Edit post
Remove post

Automated Response Automated display

recommendation

Respose Problem

Create response

Edit Response

Booking Appointment

Change appointment

Cancel appointment

Make appointment

Confirm appointment

Appointment Reminder

Send message reminder

Chatting

Send and receive message

Sequence System Diagram

 - 33 -

Requirement 1: Sign In

Class Diagram

Sequence System Diagram

Collaboration and Patten Diagram

 : User : User

: System: System

SignIn(email,password)

VerifySignIn()

GUI

Sign In Handler

SignIn

:System :Provider

:Database

1: account(email,password) 2: Provider: = account(email, password):Provider

3: SignIn()

4: AddUser()

 - 34 -

State chart Diagram

Requirement 2: Posting Problem

Class Diagram

Sequence System Diagram

 : User : User

SystemSystem

CreateNewPost

AddnewPost

EditPost

RemovePost

UpdatePost

Update

Ready to

SignIn

SignIn detail ready

to be checked

Details verified

User opens website

User has enter

sign in details

User enter SignIn

details

Details send to

the provider
User is

signed in

User presses

signIn button

Send datails to provider

check details

with provider
matching user

 - 35 -

Collaboration and Patten Diagram

State chart Diagram

Requirement 3: Automated Response

Class Diagram

GUI

PostingProblem

Handler

PostingProblem

:Post

:Database

1

1

contain

1: createPost()
3: editPost()

5: deletePost()

6: removePost()

2: AddPost()

4: updatePost()

enterPost

enterPost

PostProblem CreatePost

 - 36 -

Sequence System Diagram

Collaboration and Patten Diagram

State chart Diagram

GUI

Automated Response

Handler

Automated Response

:Post : SearchRequest

 :

Recommendation

1: postProblem()
2: SearchRequest: = postProblem():SearchRequest

3: giveRecommendation
4: display

 : User : User
:System:System

postProblem

searchProblem

giveRecommendatiob

displayUser

SearchingForResponseWaitingForResponse
automatedSearch

searchResponse

GivingRecommendation

endSearch

desplay

 - 37 -

Requirement 4: Response Problem
Class Diagram

Sequence System Diagram

Collaboration and Patten Diagram

 : User : User

:System:System

giveResponse

AddResponse

editResponse
UpdateResponse

GUI

ResponseProblem

Handler

ResponseProblem

:Response

:Database

containResponse

1: giveResponse()

3: editResponse()

2: addResponse()

4: update

 - 38 -

State chart Diagram

Requirement 5: Booking Appointment

Class Diagram

Sequence System Diagram

 : User : User
:System:System

makeAppointment

AddAppointment

cornfirmAppointment

changeAppointment
updateAppointment

cancelAppointment

removeAppointment

CreatingResponseResponseProblem enterResponse

enterResponse

 - 39 -

Collaboration and Patten Diagram

State chart Diagram

GUI

Change Appointment

Handler

BookingAppointment

:Database

:Appointment

3: addAppointment

1: makeAppointment()

2: confirmAppointment

1 1...*

GUI

Cancel Appointment

Handler

:Appointment

:Database

CancelAppointment
7: cancelAppointment

8: remove

9: remove

GUI

Change Appointment

Handler

:Database

:Appointment

ChangeAppointment

4: changeAppointment

5: update

6: update

1 1...*

ConfirmAppointment

MakeAppointmentBookingAppoint bookingDetails

available
ChangeAppointment

CancelAppointment

unvalid

unavailable

 - 40 -

Requirement 6: Appointment Reminder

Class Diagram

Sequence System Diagram

Collaboration and Patten Diagram

State chart Diagram

 : User : User

:System:System

sendMessageReminder

CheckAppointment

GUI

Appointment

Reminder Handler

AppointmentReminder

:BookingAppointment

AppointmentReminder

1: currentBooking()

2: BookingAppointment:=currentBooking():BookingAppointment

4: displayReminderMessage
3: hasAppointment()

Sending Message

Reminder

Waiting for checking

Appointment

Checking

Appointment

currentAppointment

endofChecking

messageDilivery

 - 41 -

Requirement 7: Chatting

Class Diagram

Sequence System Diagram

Collaboration and Patten Diagram

State chart Diagram

 : User : User

:System:System

chatWithConsultant

receiveMessage

sendMessage

GUI

ChatWithConsultant

Handler

ChatWithConsultant

:Consutant

:MessageBody

containMessages

1: sendMessage

2: receiveMessage

WaittingForReceiving

ChatBoardWaitingForChat

receivedMessage

sendMessage

readMessage
writeMessage

deliverMessage

 - 42 -

2.3 Implementation

Difficult according to my specialization

The reason of choosing Ruby on Rails for the application was because it is a

particularly good match for cloud computing, it’s share-nothing architecture. Just

toss off new instances of an application and it will just begin to run. It has less to

do with Ruby itself, but more to do with smart architectural decisions. Ruby is

known as having a high developer productivity rate and that's always good for

business. And the cloud helps most business concerns in scaling. The dominant

model for RoR application deployment is cloud, with platforms such

as Slicehost (now part of Rackspace Cloud), Engine Yard and Heroku. Cloud

services such as New Relic, FiveRuns and Scout provide the de facto standard

monitoring and management frameworks, and cloud-based GitHub is the standard

code version and developer collaboration tool for the RoR generation. Ruby is their

first, or early programming language, as it is growing up with cloud platforms.

The most difficult thing is to use Ruby, which is unfamiliar for building the

application. This is a big challenge. Learning syntax, learning how to use it,

especially when problems or errors arise; means that time is required for

searching for a solution or to fix the errors. Ruby on Rails are supported by a rich

ecosystem of gems that collectively provide just about any capability a developer

can think of. This is great for building up a complex application quickly, but it also

seens to have many bloated applications, where the number of gems in the

application’s Gemfile is disproportionately large, when compared with the

functionality provided. Sometime it is hard to install the gem because it does not

like the vision of gem. The factor is that the application is deployed to cloud

platforms which always update the latest version. For example, the application was

deployed to Heroku but since Feb 24, 2016, Ruby 2.0.0 security maintenance

reached its end-of-life. Span Ruby 2.0.0 will no longer receive security updates.

One must upgrade the application to a supported Ruby version 2.2.4, to ensure

that it is running in a secure environment. Every time a new version is update,

http://slicehost.com/
http://engineyard.com/
http://heroku.com/
http://newrelic.com/
http://fiveruns.com/
http://scoutapp.com/
http://github.com/
https://www.ruby-lang.org/en/news/2015/12/16/ruby-2-0-0-p648-released/
https://devcenter.heroku.com/articles/ruby-support#ruby-versions

 - 43 -

errors arise and time is required to fix the errors and test each function to make

sure everything is working. Since Heroku updated a new version of Ruby, the

application was transferred to cloud 9. It is a marvelous online integrated

development environment which enables developers to get started with coding

immediately with pre-setup workspaces, collaborate with their peers with

collaborative coding features, and web development features like live preview and

browser compatibility testing.

Difficulties

Certain aspects of the implementation were difficult; the areas that were the most

difficult were related to the automated response. Immediately after a problem is

posted, AARS uses Google Custom Search API to search the web for links to

useful and relevant resources. System receives a result set from Google custom

search API, and creates an array of Ruby objects called result. Then AARS

automated display the result which is related to the post. Users can also rate links

suggested by AARS by assigning a value on a integral scale from 1 (poor) to 5

(excellent). AARS uses its own custom algorithm to intelligently sort results that

takes into account users' feedback and online behaviour, namely; the number of

times a link or response has been rated, the average rating for a link or response

and the number of times a link has been clicked. It was difficult to find the way of

implementing it; the snippets of code for where they were implemented are as

follows:

Class Result

System receives a result set from Google custom search API, create an array of

Ruby objects called result.

require 'data'
class Result

attr_accessor :title, :link_url, :click_count, :average_rating,
:number_of_ratings

 def initialize(title, link_url, click_count = 0, average_rating = 0,
number_of_ratings = 0)
 @title = title

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment

 - 44 -

 @link_url = link_url
 @click_count = click_count
 @average_rating = average_rating
 @number_of_ratings = number_of_ratings
 end
end

Class Data

The links and rating are saved in the a database and used sort algorithm to sort

the result by the number of times a link or response has been rated, the average

rating for a link or response and the number of times a link has been clicked.

require 'result'
class Data
 def self.parse(results)
 result_set = []
 results.items.each do |result|
 # item = SavedLink.find_by_link_url(result.link.to_s) ?
SavedLink.find_by_link_url(result.link.to_s) : Result.new(result.title,
result.link.to_s)
 if SavedLink.find_by_link_url(result.link.to_s)
 link = SavedLink.find_by_link_url(result.link.to_s)
 item = Result.new(link.title, link.link_url,
link.click_count, link.average_rating, link.ratings.count.to_i)
 result_set << item
 else
 item = Result.new(result.title.to_s, result.link.to_s)
 result_set << item
 end
 end
 result_set # return the result set
 end
 def self.sort(results)
 results.sort_by! {|object| [object.average_rating,
object.number_of_ratings, object.click_count] }
 results.reverse!
 end
end

Class SaveLink

class SavedLink < ActiveRecord::Base
 has_many :ratings

 - 45 -

 def sum_of_ratings
 ratings.pluck(:rating).inject(0) {|sum, number| sum += number}
 end

 def average_rating
 sum_of_ratings/ratings.count.to_d
 end
end

Class SavedLinksController

class SavedLinksController < ApplicationController

 # before_action :set_saved_link, only: [:update_rating]

 def update_link
 @saved_link = ""
 if SavedLink.find_by_link_url(params[:link_url].to_s)
 @saved_link =
SavedLink.find_by_link_url(params[:link_url].to_s)
 @saved_link.click_count == nil ? @saved_link.click_count = 1 :
@saved_link.click_count += 1
 @saved_link.save
 else
 @saved_link = SavedLink.create(title: params[:title].to_s,
link_url: params[:link_url].to_s, click_count: 1)
 @saved_link.save
 end
 redirect_to @saved_link.link_url.to_s
 end

 def index
 @saved_links = SavedLink.all
 end

 def update_rating
 @saved_link = ""
 if SavedLink.find_by_link_url(params[:link_url].to_s)
 @saved_link =
SavedLink.find_by_link_url(params[:link_url].to_s)
 @saved_link.ratings.build(rating: params[:rating].to_i)
 @saved_link.save
 else

 - 46 -

 @saved_link = SavedLink.create(title: params[:title].to_s,
link_url: params[:link_url].to_s, click_count: 0)
 @saved_link.ratings.build(rating: params[:rating].to_i)
 @saved_link.save
 end
 redirect_to URI(request.referer).path
 end

 # private

 # def set_saved_link
 # @saved_link = SavedLink.find_or_create_by(link_url: params[:link_url])
 # end

 # def saved_link_params
 # params.require(:saved_link).permit(:link_url, :title, :click_count)
 # end
end

Another difficult is real time chat system which allows users chat with consultants.

With the first beta of Rails 5 was released recently. The biggest new feature is

Action Cable, which provides support for implementing WebSockets with a pair of

libraries for JavaScript (for the client) and Ruby (for the server)

WebSockets are a convenient way to stream data between the client and server,

making it easy to build apps that require real-time message passing. A chat room

is the usual example of such an app: without anyone having to refresh the page, a

message sent from one user to appear for all other connected users. In the past,

this was implemented by having each client poll the server for new messages.

WebSockets replace polling with two-way channels that stream messages to

where they're needed, as soon as they're created, avoiding the overhead and

latency of continuous polling over HTTP. It was difficult to implement in rails 4, but

with WebSockets in rails 5 makes the work easier. Application is used first beta of

Rails 5. The snippets of code for where they were implemented are as follows:

http://weblog.rubyonrails.org/2015/12/18/Rails-5-0-beta1/
http://weblog.rubyonrails.org/2015/12/18/Rails-5-0-beta1/
http://weblog.rubyonrails.org/2015/12/18/Rails-5-0-beta1/

 - 47 -

The chat room in the system is built on ActionCable. First channel is added, which

can be used to communicate, via websockets between the client and the server.

This function follow Hector Perez Arenas’s online tutorial2.

Setting up chat channel

app/channels/room_channel.rb

class RoomChannel < ApplicationCable::Channel
 def subscribed
 stream_from "room_channel"
 end

 def unsubscribed
 # Any cleanup needed when channel is unsubscribed
 end

 def speak(data)
 ChatMessage.create! body: data['message'], conversation_id:
data['conversation_id'], user_id: data['user_id']
 end
end

When a client connects to the channel, the #subscribed action is called. This

subscribes the client to a stream called room_channel. Whenever data is

broadcast to the room_channel stream, it is pushed to the clients.

The #speak action corresponds to a method in the client side code. When a user

types a chat message a hits enter, App.room.speak is called on the client side,

which in turn invokes this action on the server

Client side

Rails has already generated some client side code for us. Let’s start by handling

the event when enter is pressed in the chat input field. Add this at the end of

app/assets/javascripts/channels/room.coffee

 $(document).on 'keypress', '[data-behaviour~=room_speaker]', (event) ->

 if event.keyCode is 13

2 Arenas, H. (2015). Rails 5 tutorial: How to create a Chat with Action Cable. [online] Hector

Perez Arenas. Available at: https://hectorperezarenas.com/2015/12/26/rails-5-tutorial-how-to-
create-a-chat-with-action-cable/ [Accessed 25 Apr. 2016]

 - 48 -

 jQuery ->

 text = $('#text').val()

 user_id = $('#user_id').val()

 conversation_id = $('#conversation_id').val()

 App.room.speak(text, user_id, conversation_id)

 event.target.value = ''

 event.preventDefault()

When you hit enter in the #room-speak input field, this pushes the content of the

field to the chat channel by calling App.room.speak, which in turn sends it to the

cable server.

App.room = App.cable.subscriptions.create "RoomChannel",

received: (data) -> # Called when there's incoming data on the websocket for
this channel
 $('#chats').append(data['message']);

 speak: (message, user_id, conversation_id) ->
 @perform 'speak', message: message, user_id: user_id, conversation_id:
conversation_id

Active Job allows Rails application to work with common queres in a single

interface. The job class is where the code that will execute by queue. There is a

perform method which is called and sent whatever parameters were sent when the

job was first enqueued

class ChatMessageBroadcastJob < ApplicationJob
 queue_as :default

 def perform(chat_message)
 ActionCable.server.broadcast 'room_channel', message:
render_chat_message(chat_message)
 end

 private
 def render_chat_message(chat_message)
 ApplicationController.renderer.render(partial: "chat_messages/chat_message",
locals: { chat_message: chat_message})
 end
end

 - 49 -

2.4 Testing

2.4.1. Testing plan:

Requirement < Post Problem >

If users click on
PostProblem

if (email,password ==valid)
MyPost..showAllt();
Post..newPost();

Else email, password
invalid
system exit(o);

1

1

6

Create New Post

1

2

User.signIn(true);

3

Else Cancel

5
4

Else user click on
SignOut
System.exit(0);

9

If users click sign
in with Google
account

10

8

7

If user click on BackButton
showMyPost(true);
else user click on SignOut
System.exit(0);

Delete Post

Edit Post

 - 50 -

1.)Determine the cyclomatic complexity

- CC(G) = Number(edges) - Number(nodes) + 2
= 14 – 11 + 2 = 5

- CC(G) = Number of Nodes with a condition +1
= 4 + 1 = 5

- CC(G) = Number of regions + 1
= 4 +1 = 5

2.)Determine a basis set of linearly independent paths

- path 1: 1 – 3 – 11

- path 2: 1 – 2 – 5 – 1

- path 3: 1 – 2 – 4 – 7 – 11

- path 4: 1 – 2 – 4 – 6 – 8 – 9 – 10 – 11

3)Prepare test cases that will force execution of each path in the basis set

Path 1 test case:

Test SignIn(true). Expected result: users click cancel and system exit

Path 2 test case:

- Test SignIn(true). Expected result: users enter but invalid email and
password

- count <= 3 times then system exit;

Path 3 test case:

- SignIn(true).

- PostProblem(true); then allow users to post their problems

- System exit or sign out

Path 4 test case:

- SignIn(true).

- PostProblem(true); then allow users to post their problems, edit and
delete problems

- System exit or sign out

 - 51 -

Requirement < Automated Response >

users click on
PostProblem

if (email,password ==valid)
Post..newPost();

Else email,
password invalid
system exit(o);

1

0

6

User click create
New Post

1

2 3

Else Cancel

5 4

8

If users click sign
in with Google
account

1

1

7

If user click on BackAllPost
showAllPost(true);
else user click on SignOut
System.exit(0);

User rate for
the links

9

Automated display
suggestion

Sort highest rate

User.signIn(true);

 - 52 -

1.)Determine the cyclomatic complexity

- CC(G) = Number(edges) - Number(nodes) + 2
= 13 – 11 + 2 = 4

- CC(G) = Number of Nodes with a condition +1
= 3 + 1 = 4

- CC(G) = Number of regions + 1
= 3 +1 = 4

2.)Determine a basis set of linearly independent paths

- path 1: 1 – 3 – 11

- path 2: 1 – 2 – 5 – 1

- path 3: 1 – 2 – 4 – 6 – 7– 8 – 9 – 10 – 11

3)Prepare test cases that will force execution of each path in the basis set

Path 1 test case:

Test SignIn(true). Expected result: users click cancel and system exit

Path 2 test case:

- Test SignIn(true). Expected result: users enter but invalid email and
password

- count <= 3 times then system exit;

Path 3 test case:

- SignIn(true).

- PostProblem(true); then allow users to post their problems

- AutomatedResponse(true). System automated display relevant
resources.

- AutomatedResponse(true). Then allow users rate for the link

- AutomatedResponse(true). System sort and view the suggestion
with highest average rate

- System exit or sign out

Requirement < Response Problem >

 User.signIn(true);

 1

 - 53 -

1.)Determine the cyclomatic complexity

- CC(G) = Number(edges) - Number(nodes) + 2 = 10 – 8 + 2 = 4

- CC(G) = Number of Nodes with a condition +1 = 3 + 1 = 4

- CC(G) = Number of regions + 1 = 3 +1 = 4
2.)Determine a basis set of linearly independent paths

- path 1: 1 – 3 – 8

- path 2: 1 – 2 – 5 – 1

- path 3: 1 – 2 – 4 – 6 – 7– 8
3)Prepare test cases that will force execution of each path in the basis set

Path 1 test case:
- Test SignIn(true). Expected result: users click cancel and system exit

Path 2 test case:

- Test SignIn(true). Expected result: users enter invalid email and
password

- count <= 3 times then system exit;
Path 3 test case:

- ResponseProblem(true); then allow users to answer the problem

- System exit or sign out
Requirement < Booking Appointment >

Display
problems

if (email,password ==valid)
showAllt();
ResponseProblem.
newReplyt();

Else email, password
invalid
system exit(o);

8

6

Reply to Problem

2
3

Else Cancel

5 4

If users click sign
in with Google
account

7
If user click on BackAllPost
showMyReply(true);
else user click on SignOut
System.exit(0);

User.signIn(true);

 - 54 -

1.)Determine the cyclomatic complexity

- CC(G) = Number(edges) - Number(nodes) + 2
= 15 – 12 + 2 = 5

If users click on Booking Incon
Show BookingAppointment

if (email,password ==valid)
MyPost.showAllt();
Post..newPost();
ResponseProblem.showReply

Else email, password
invalid
system exit(o);

1

1

6

Create New
Appointment

1

2 3

Else Cancel

5
4

Else user click on
SignOut
System.exit(0);

9

If users click sign
in with Google
account

10

8

7

If user click on BackButton
showMyAppointment(true);
else user click on SignOut
System.exit(0);

Cancel
Appointment

Change
Appointment

1

2

Delete
Appointment

 - 55 -

- CC(G) = Number of Nodes with a condition +1
= 4 + 1 = 5

- CC(G) = Number of regions + 1
= 4 +1 = 5

2.)Determine a basis set of linearly independent paths

- path 1: 1 – 3 – 12

- path 2: 1 – 2 – 5 – 1

- path 3: 1 – 2 – 4 – 7 – 12

- path 4: 1 – 2 – 4 – 6 – 8 – 9 – 10 – 11 – 12

3)Prepare test cases that will force execution of each path in the basis set

Path 1 test case:

- Test SignIn(true). Expected result: users click cancel and system exit

Path 2 test case:

- Test SignIn(true). Expected result: users enter but invalid email and
password

- count <= 3 times then system exit;

Path 3 test case:

- SignIn(true).

- BookingAppointment(true); then allow users to book an appointment

- BookingAppointmen (true); Users can change appointment

- BookingAppointmen (true). User can cancel appointment

- BookingAppointmen (true). User can delete appointment

- System exit or sign out

 - 56 -

Requirement < Appointment Reminder >

1.)Determine the cyclomatic complexity

- CC(G) = Number(edges) - Number(nodes) + 2 = 10 – 8 + 2 = 4

- CC(G) = Number of Nodes with a condition +1 = 3 + 1 = 4

- CC(G) = Number of regions + 1 = 3 +1 = 4

2.)Determine a basis set of linearly independent paths

- path 1: 1 – 3 – 8

- path 2: 1 – 2 – 5 – 1

- path 3: 1 – 2 – 4 – 6 – 7– 8

3)Prepare test cases that will force execution of each path in the basis set

Path 1 test case:

Test SignIn(true). Expected result: users click cancel and system exit

Path 2 test case:

User.signIn(true);

Display MyClientList

if (email,password ==valid)
MyClient(showAll).
SendReminder

Else email, password
invalid
system exit(o);

8

6

SendReminder

1

2 3

Else Cancel

5
4

If users click sign
in with Google
account

7

If user click on BackAllPost
else user click on SignOut
System.exit(0);

 - 57 -

- Test SignIn(true). Expected result: users enter but invalid email and
password

- count <= 3 times then system exit;

Path 3 test case:

- AppointmentReminder(true); then allow consultant to send
appointment reminder to user.

- System exit or sign out

Requirement < Chatting >

1.)Determine the cyclomatic complexity

User.signIn(true);

Send
ChatMessage

if (email,password ==valid)
User click on chat icon
chatRoom open

Else email, password
invalid
system exit(o);

8

6

Update Window

1

2 3

Else Cancel

5 4

If users click sign
in with Google
account

7
If user click on BackAllPost
PostProblem(true)
ResponseProblem(true)
else user click on SignOut
System.exit(0);

 - 58 -

- CC(G) = Number(edges) - Number(nodes) + 2 = 10 – 8 + 2 = 4

- CC(G) = Number of Nodes with a condition +1 = 3 + 1 = 4

- CC(G) = Number of regions + 1 = 3 +1 = 4

2.)Determine a basis set of linearly independent paths

- path 1: 1 – 3 – 8

- path 2: 1 – 2 – 5 – 1

- path 3: 1 – 2 – 4 – 6 – 7– 8

3)Prepare test cases that will force execution of each path in the basis set

Path 1 test case:
Test SignIn(true). Expected result: users click cancel and system exit

Path 2 test case:

- Test SignIn(true). Expected result: users enter but invalid email and
password

- count <= 3 times then system exit;
Path 3 test case:

- ChatRoom(true); then allow users to chat to each other

- System exit or sign out

2.4.2. Unit Testing

By default, every Rails application has three environments: development, test, and

production. The database for each one of them is configured

in config/database.yml.

Rails creates a test folder for us as soon as we create a Rails project using rails

new Anonymous Automated Response System (AARS).

Unit Testing for Models:

Rails will generate a default test for any Models or Scaffolds AARS generate,

here is an example: The default test stub in test/models/post_test.rb looks like this:

require 'test_helper'

class PostTest < ActiveSupport::TestCase

 # test "the truth" do
 # assert true
 # end

end

 - 59 -

- test_helper.rb specifies the default configuration to run our tests. This is

included with all the tests, so any methods added to this file are available to

all your tests.

- The PostTest class defines a test case because it inherits

from ActiveSupport::TestCase. PostTest thus has all the methods available

from ActiveSupport::TestCase.

Running Test

Running a test is as simple as invoking the file containing the test cases

through rake test command.

$ rake test test/models/post_test.rb
.
Finished tests in 0.009262s, 107.9680 tests/s, 107.9680 assertions/s.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

Functional testing for Controllers

Controllers handle the incoming web requests to one’s application and eventually

respond with a rendered view. Functional testing tests the following type of

functionalities of the controllers:

 Is the web request successful?

 Is the user redirected to the right page?

 Is the user successfully authenticated?

 Is the correct object stored in the response template?

 Is the response redirected as expected ?

 Is the expected template rendered?

 Is the routing as expected

 Does the response contain the expected tags?

 Is the appropriate message displayed to the user in the view?

 Is the information displayed right?

 Is the layout displayed right?

If a check fails or error then it is a sign that something goes wrong, to find these

problems, certain functions are set up to detect these errors. The default assertion

 - 60 -

messages which provide just enough information to help pinpoint the error has

failed.

$ ruby unit/post_test.rb -n test_should_not_save_post_without_title
Loaded suite -e
Started
F
Finished in 0.102072 seconds.

 1) Failure:
test_should_not_save_post_without_title(PostTest) [/test/unit/post_test.rb:6]:
<false> is not true.

1 tests, 1 assertions, 1 failures, 0 errors

Now that AARS has used Rails scaffold generator for resource, it has already

created the controller code and tests. Take look at the file post_controller_test.rb in

the test/controllers directory

class PostControllerTest < ActionController::TestCase

 test "should get index" do

 get :index

 assert_response :success

 assert_not_nil assigns(:posts)

 end

end

In the test_should_get_index test, Rails simulates a request on the action

called index, making sure the request was successful and also ensuring that it

assigns a valid posts instance variable.

Using Rake for Test :

- rake test : runs all tests in the test folder.

rake test
Run options: --seed 44145
Running:
.......
Finished in 0.606734s, 11.5372 runs/s, 21.4262 assertions/s.

 - 61 -

7 runs, 13 assertions, 0 failures, 0 errors, 0 skips

- rake test:controllers: Runs all the controller tests from test/controllers

rake test:controllers
Run options: --seed 12183
Running:
.......
Finished in 0.558399s, 12.5358 runs/s, 23.2808 assertions/s.

7 runs, 13 assertions, 0 failures, 0 errors, 0 skips

2.5 Graphical User Interface (GUI) Layout

The user interface will be shown in a web browser. The user will be able to access

the GUI from an internet enabled device. The application will have a navigation bar

at the top. All problems and answers will be available to all users without any

identification. Users will be able to ask questions or post their problems by signing

in with the Google account. Once users sign in, they will be able to see their own

posts and their information.

The system will automatically suggest possible answers to queries immediately

after users post their problems or their questions. Users can also rate links

suggested by assigning a value on a integral scale from 1 (poor) to 5 (excellent).

AARS uses its own custom algorithm to intelligently sort results that takes into

account users' feedback and online behaviour, namely; the number of times a link

or response has been rated, the average rating for a link or response and the

number of times a link has been clicked. The consultant can interact with users

problems by posting answer(s) or giving advice

The application will have a booking appointment system if the user wishes chat

personally with the counsellor or consultant. The system also automatically

removes an appointment after user has seen a consultant. In addition, this

application also provides a chatting functionality.

Posting Problem

 - 62 -

Automated Response and suggestion

An appointment can be arranged if the user wishes to chat personally with the

consultant. “Calendar” icon is for booking appointment with consultant who has

given the answers. “Envelop” icon is for sending an email to a consultant and “chat”

icon is for chatting with consultant.

Booking Appointment

 - 63 -

Consultants can either view the list of their client appointment or send reminder to

students or clients.

Chat room where user can talk with consultant

 - 64 -

2.6. Users Testing:

Usability testing is a technique used in user-centered interaction designed to

evaluate a product by testing it on users. It is the best way to understand how real

users experience the application. This can be seen as an

irreplaceable usability practice, since it gives direct input on how real users use the

system. According to Jakob Nielsen “Usability is like cooking: everybody needs

the results, anybody can do it reasonably well with a bit of training, and yet it takes

a master to produce a gourmet outcome.”3

Jakob Nielsen defined usability is a quality attribute that assesses how easy user

interfaces are to use. The word "usability" also refers to methods for improving

ease-of-use during the design process.

Usability is defined by 5 quality components4:

 Learnability: How easy is it for users to accomplish basic tasks the first time

they encounter the design?

3 Nielsen Norman Group. (2009). Anybody Can Do Usability. [online] Available at:

https://www.nngroup.com [Accessed 30 Apr. 2016].
4 Nngroup.com. (2012). Usability 101: Introduction to Usability. [online] Available at:

https://www.nngroup.com/articles/usability-101-introduction-to-usability/ [Accessed 30 Apr. 2016].

https://en.wikipedia.org/wiki/User-centered_design
https://en.wikipedia.org/wiki/Interaction_design
https://en.wikipedia.org/wiki/Usability
https://www.nngroup.com/articles/author/jakob-nielsen/
https://www.nngroup.com/articles/author/jakob-nielsen/
https://www.nngroup.com/articles/author/jakob-nielsen/
https://www.nngroup.com/articles/author/jakob-nielsen/

 - 65 -

 Efficiency: Once users have learned the design, how quickly can they

perform tasks?

 Memorability: When users return to the design after a period of not using it,

how easily can they reestablish proficiency?

 Errors: How many errors do users make, how severe are these errors, and

how easily can they recover from the errors?

 Satisfaction: How pleasant is it to use the design?

To conduct a usability test, begin by identifying the target audience. The target

audience will consist of one or more user groups. For example, a group of students

sign in with Google account and another group called consultants, sign in with

Google account. Each user group is given tasks to perform during testing, that

reflect their different usage patterns. For example, after signing in, students post a

problem, send an email to a consultant, book an appointment, chat with the

consultant, view their own posts and appointments. Consultant after signing in, can

post the answers or give advice, check their clients, send a reminder to students

and chat with a student.

Users were asked use the application and test all functionalities which belong to

their areas. After answering the following questions:

- What do you think the purpose of this system is?

- Did you find what you were looking for?

- How did you find the design of the system?

- How are the icons used in the system?

- If you could only change one thing about this page, what would you

change? Why?

There were 20 people involve in the testing system. As the result, most users think

the purpose of the system is very helpful, in particular for young people, who have

many questions in their lives, it is very hard for them to find the advice or answers,

or for those who scare of go face to face. The good thing is users agree that they

could find some advice from suggestions on the system. From the user’s points of

view, layout of the system is very simple, easy to use and clear and looks

https://www.nngroup.com/articles/slips/

 - 66 -

professional. Users suggested that it would be good to have some instruction,

because there is no post problem in the main menu. Users would like to use “Sign

in with Gmail” instead of Google icon.

2.7 Evaluation

To evaluate if the application is working in deferent platforms and different

browsers. One must test the output of application against the information on the

test server. If the information is correct then application is giving the correct

information.

To evaluate whether the application is working in deferent cloud platforms or not,

one must test whether output of the application is the same in each platform. Is

the application working in both cloud 9 and Heroku cloud platform? There were

problems with email and chat in Heroku because it requires account verification

by having a credit card on file provided. Verified accounts may add any add-on to

the application. Add-ons are third-party cloud services that provide out-of-the-box

additional services for the application. However, it makes the full log stream

available as a service - and several add-on providers have written logging

services that provide things such as log persistence, search, and email and SMS

alerts. For this reason, verification account in order email and chat functionalities

are working in Heroku platform.

To evaluate the application with end users, users must be asked to use and

interpret how the application could be used and how useful they think this

application might be in their lives. As the result, there are possible feedbacks.

There are 98% users think, the system is very useful, and they can get help

anytime and anywhere. There are 85% users like the layout. There are 25% users

suggest adding more colour in the layout. There are 25% users confuse the icons

used. Their feedbacks help improve the performance of the system.

To evaluate whether the system has bugs or not, involves in an on-going test that

take place at all stages of development. This has been completed with black box

and white box testing.

 - 67 -

3. Conclusions

Anonymous Automated Response System has many advantages which can be

brought to any organization. The system helps organizations improve their which

can satisfy the customer’s need with immediate effect. services For example

“Samaritans”, “ReachOut”, “ SpunOut” or “ Childline” , etc can improve their

services by the users’ access to an immediate response to their queries. In the

school situation, students have opportunities to share their problems without

identifying themselves and teachers understand that students are be able to help

find solutions before it is too late. For the Employees working in companies who

deal with personal problems, especially those involved in relation with their

colleagues or their employers. Users may find it difficult to discuss problem with

the people concerned. They maintain that if they could access this application it

would be a great help to improving personal job satisfaction. As a result they would

be able to focus clearly on the overall objectives of the organization and thus

improve its productivity. The system also economizes on the use of time, in that it

will be available at anytime and anywhere.

There have been difficulties and challenges during the development stage of this

project as discussed in the implementation section of this document. However this

has been an interesting project and gave great job satisfaction when the

application was sucessfuly completed. In this document the requirements have

been laid out, the design and architecture has been completed. The system has

been tested in accordance to the testing plans laid out for each function, unit testing

and users testing and the results for these tests have been documented in the

evaluation section of the document. Screen shots of the GUI for different aspects

of the system are supplied in the Graphical User Interface (GUI) Layout section.

 - 68 -

4. Further development or research

Additionally a mobile and/or tablet friendly version of the application could be

developed in the future to adapt to the currently expanding mobile device market.

Ruby on rail can also create mobile application using Ruby motion. RubyMotion is

a tool that allows developers to write (code) an iOS app in Ruby. RubyMotion is a

revolutionary toolchain for iOS, Android and OS X development. The most

attractive part of the RubyMotion is to code an app (Cross plateform app) in ruby.

RubyMotion helps quick developing cross-platform native apps for iOS, Android

and OS X.

RhoMobile Suite, based on the Rhodes open source framework, is a set of

development tools for creating data-centric, cross-platform, native mobile

consumer and enterprise applications. It allows developers to build native mobile

apps using web technologies, such as CSS3, HTML5, JavaScript and Ruby.

Developers can deploy RhoMobile Suite to write an app once and run it on the

most-used operating systems, including iOS, Android, Windows Phone, Windows

Mobile, Windows CE and Windows 8. Developers control how apps behave on

different devices. RhoMobile Suite consists of a set of tools for building, testing,

debugging, integrating, deploying and managing consumer and enterprise apps. It

is a built-in Model View Controller pattern, an Object Relational Mapper for data

intensive apps, integrated data synchronization, and a broad API set.

https://en.wikipedia.org/wiki/CSS3
https://en.wikipedia.org/wiki/HTML5
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Windows_Phone
https://en.wikipedia.org/wiki/Windows_Mobile
https://en.wikipedia.org/wiki/Windows_Mobile
https://en.wikipedia.org/wiki/Windows_CE
https://en.wikipedia.org/wiki/Windows_8

 - 69 -

5. References

Devcenter.heroku.com, (2015). Getting Started with Ruby on Heroku | Heroku
Dev Center. [online] Available at:
https://devcenter.heroku.com/articles/getting-started-with-ruby#introduction
[Accessed 10 Nov. 2015].

Gist, (2012). Steps to set up a new Rails app, initialize a git repo, push to Github
and deploy to Heroku. [online] Available at:
https://gist.github.com/JennDudley/2493288 [Accessed 10 Nov. 2015].

Hartl, M. (2015). Ruby on rails tutorial. 3rd ed. Upper Saddle River, NJ: Addison-
Wesley.

Heroku.com, (2015). Build apps on Heroku: the innovative PaaS & leading dev
experience. [online] Available at: https://www.heroku.com/platform
[Accessed 10 Nov. 2015].

Intridea.github.io, (2015). OmniAuth | Multi-provider Authentication for Web
Applications. [online] Available at: http://intridea.github.io/omniauth/
[Accessed 3 Nov. 2015].

Railscasts.com, (2015). #241 Simple OmniAuth - RailsCasts. [online] Available
at: http://railscasts.com/episodes/241-simple-omniauth?autoplay=true
[Accessed 10 Nov. 2015].

Academy, T. (2014). How to Send Emails in Rails - a Comprehensive Tutorial.
[online] Gotealeaf.com. Available at:
http://www.gotealeaf.com/blog/handling-emails-in-rails [Accessed 13 Nov.
2015].

Cse.google.com, (2015). Sign in - Google Accounts. [online] Available at:
https://cse.google.com/cse/setup/basic?cx=007092960594765751254:ajyut
vxvgwe [Accessed 20 Nov. 2015].

Google Developers, (2015). Introduction. [online] Available at:
https://developers.google.com/custom-search/docs/tutorial/introduction
[Accessed 20 Nov. 2015].

GitHub, (2015). excid3/simple_calendar. [online] Available at:
https://github.com/excid3/simple_calendar [Accessed 27 Jan. 2016].

GitHub, (2016). wiseleyb/google_custom_search_api. [online] Available at:
https://github.com/wiseleyb/google_custom_search_api [Accessed 27 Jan.
2016].

Mejia, A. (2011). Ruby on Rails Architectural Design - Adrian Mejia’s Blog.
[online] Adrianmejia.com. Available at:

 - 70 -

http://adrianmejia.com/blog/2011/08/11/ruby-on-rails-architectural-design/
[Accessed 4 Dec. 2015].

Morin, M. (2014). Cloud Computing and Ruby: Interviewing Hampton Catlin.
[online] About.com Tech. Available at:
http://ruby.about.com/od/reviewsevents/p/hcatlin2.htm [Accessed 11 Oct.
2015].

Akita, F. and Akita, F. (2016). Fixing DHH's Rails 5 Chat Demo |
AkitaOnRails.com. [online] Akitaonrails.com. Available at:
http://www.akitaonrails.com/2015/12/28/fixing-dhh-s-rails-5-chat-demo
[Accessed 25 Apr. 2016].

Arenas, H. (2015). Rails 5 tutorial: How to create a Chat with Action Cable.
[online] Hector Perez Arenas. Available at:
https://hectorperezarenas.com/2015/12/26/rails-5-tutorial-how-to-create-a-
chat-with-action-cable/ [Accessed 25 Apr. 2016].

DesignersLib.com. (2015). 10+ Free Bootstrap Chat Box Templates -
DesignersLib.com. [online] Available at:
http://www.designerslib.com/bootstrap-chat-box-templates [Accessed 25
Apr. 2016].

Morin, M. (2014). Cloud Computing and Ruby: Interviewing Hampton Catlin.
[online] About.com Tech. Available at:
http://ruby.about.com/od/reviewsevents/p/hcatlin2.htm [Accessed 11 Oct.
2015].

Muhammed, A. (2015). 10 Best Free Bootstrap Chat Templates | Designrazor.
[online] Designrazor.net. Available at: http://www.designrazor.net/best-free-
bootstrap-chat-templates/ [Accessed 25 Apr. 2016].

Nngroup.com. (2009). Anybody Can Do Usability. [online] Available at:
https://www.nngroup.com/articles/anybody-can-do-usability/ [Accessed 30
Apr. 2016].

Nngroup.com. (2012). Usability 101: Introduction to Usability. [online] Available
at: https://www.nngroup.com/articles/usability-101-introduction-to-usability/
[Accessed 30 Apr. 2016].

Docs.rhomobile.com. (n.d.). Rhomobile | Welcome To RhoMobile Suite. [online]
Available at: http://docs.rhomobile.com/en/5.4/guide/welcome [Accessed 3
May 2016].

Rubymotion.com. (n.d.). Guides | RubyMotion. [online] Available at:
http://www.rubymotion.com/developers/guides/ [Accessed 3 May 2016].

 - 71 -

6. Appendix

6.1. Project Proposal

6.1.1. Objectives

The application is for a social communication that provides a service which

automatically suggests possible answers to queries immediately after users (e.g.

students, employees…) post their problems or their questions. It also allows other

users (e.g. counselors or consultancy or teachers…) to interact with them by

posting answer(s) or giving advice. The posts and the answers are saved and

displayed to all users without any personal information. The users can see their

own post with their information and the other users only see the problem and the

answer without any personal information.

An appointment can be arranged if the user wishes to speak or chat personally

with the counsellor or consultant. The application will have a booking appointment

if users wish to talk with consultant. The API will make provision to modify, create

and display calendar events as well as work with many other calendar-related

objects. In addition, this application will use Gmail API for chatting and speaking

functionalities. Moreover, the application will economize on the use of time and in

that it is available at anytime and anywhere.

This application will have the following characteristics.

- Login System: a system that the users will login to and get access to the

information that they are allowed to see.

- Simply Layout: a simply layout that is easy to understand and will not

overload the users with unnecessary information.

- Dynamic Scaling: a layout the can be used and look good on a PC, Tablet

or Smartphone.

 - 72 -

6.1.2. Background

The reasons I have chosen to do this project are the following: First of all I want to

use my knowledge, skills and new technologies which I have learnt to create

something useful that can be of benefit to the users. The reason I chose the topic

because I found that many people especially young people have problems

communicating with friends, parents, families, colleagues and school. They have

no one with whom to share their concerns or no one they can trust.

I was encouraged by a group of consultants who were longing to help people to

discover more meaningful ways of communicating. So I decided to build the

application that would allows the users freedom to share their own problem and

discuss with consultants

6.1.3. Research

I found in my research that there are some organizations that have a webpage

which helps people who have problems with friends, families, school or work. Their

services allow the users to make a call from a mobile or from a landline. Ideally

there is someone to receive the call, listen and give advice. However problems

may arise in that a caller may have to wait a considerable time for someone to

answer the call or the organization may have set specific times when the calls will

be answered. This arrangement may not suit the immediate need of the caller.

The following gives details of a few such organizations dealing with a cross section

of society who is facing different types of problems, for example,

- “Samaritans” who provide a network of people you could 'ask' about

anything;

- “ReachOut.com” helps young people get through tough times by providing

quality mental health information and covering issues that can impact on

mental health, “ReachOut.com” takes the mystery out of mental health;

- The website, “SpunOut.ie”, carries a range of health information for young

people, including mental health, sexual health, exam stress and general

lifestyle information. “SpunOut” also has an extensive online directory

allowing site visitors to search for supports and services in their area;

 - 73 -

- Childline.ie provides a free and confidential listening service to children and

young people up to the age of 18. The Childline helpline is open every day,

24 hours a day and Childline Online Chat is open every day from 10am to

10pm.

In studying the above examples it seems to me that an improvement is needed, to

be an improvement to facilitate the users’ access to an immediate response to their

queries

In the light of this information I decided to develop a response system which

automatically suggests possible answers to queries immediately after users (e.g.

students, employees…) post their problems or their questions. It also allows other

users (e.g. counselors or consultancy or teachers…) to interact with them by

posting answer(s) or giving advice. The posts and the answers are saved and

displayed to all users without any personal information. The users can see their

own post with their information and the other users only see the problem and the

answer without any personal information.

An appointment can be arranged if the user wishes to speak or chat personally

with the counsellor or consultant. The application will have a booking appointment

system. In addition, this application will use Gmail API for chatting and speaking

functionalities. Moreover, the application will economize on the use of time, in that

it is available at anytime and anywhere.

I have spoken with people from different backgrounds about my idea and have

asked them what they would want, if they were to use the application. Teachers in

secondary school, for example agree with me that the students have problem with

studies, friends and families. Students feel they have nobody to talk to or trust,

they are afraid to share their problems and as the result they keep them to

themselves until perhaps it is too late to solve the problems. Teachers think the

application will give students opportunities to share their problems without

identifying themselves. This refers only to a group of teachers who will answer the

 - 74 -

questions or give an advice. This will also help teachers themselves understand

students and be able to help them find solutions before it is too late.

Employees working in companies also have to deal with personal problems, and

those evolved in relation to their colleagues or their employers find it difficult to

discuss these with the people concerned and they maintain that if they could

access this application it would be a great help to improving personal job

satisfaction. As a result they would be able to focus clearly on the overall objectives

of the organization and thus improve their productivity.

6.1.4. Technical Approach

To build the application I will be using the Ruby on Rails where the framework is

rails and the syntax is ruby.

GitHub is a Web-based Git repository hosting service. It offers all of the distributed

revision control and source code management (SCM) functionality of Git as well

as adding its own features.

The application will connect to database using SQLite3 and PostgreSQL. SQLite

is a software library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine. PostgreSQL is an object-

relational database management system (ORDBMS) with an emphasis on

extensibility and on standards-compliance.

Google Custom search API will be used for automated response and suggestion.

When users click on the post button, the post will save in the database, display to

user, send to search bar and automatically display possible suggestion.

For the front end design I will use foundation. The web application will be host on

cloud platform using Heroku which is a platform as a service (PaaS).

Simple Calendar API will be used for display events of the days, weeks and

months. Gmail API as a calling, chatting system and for sending email reminds

about appointments.

I plan to take the following technical Approach:

Capture the requirements

Research what needs to be gathered.

https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Distributed_revision_control
https://en.wikipedia.org/wiki/Distributed_revision_control
https://en.wikipedia.org/wiki/Source_code_management
https://en.wikipedia.org/wiki/Git_(software)
https://www.sqlite.org/selfcontained.html
https://www.sqlite.org/serverless.html
https://www.sqlite.org/transactional.html
https://en.wikipedia.org/wiki/Object-relational_database_management_system
https://en.wikipedia.org/wiki/Object-relational_database_management_system

 - 75 -

Research How to gather different data types

Research how to summarize and display information

Design the Project

Create a Front end website application by using foundation

 Learn Ruby syntax for the need of the project

Search the use of each API and how to connect them together

Use HTML, CSS, JavaScript to connect APIs

Learn to build, deploy and manage application on Heroku and Cloud 9 platforms.

6.1.5. Special resources required

- Google Account, Gmail API, Google Custom Search API, Calendar API,

GitHub account, Cloud 9 and Heroku Account.

- Ruby 2.15 and Rails 4

- Sublime Text 3

- Learn ruby syntax and ruby on rails.

6.1.6. Technical Details

To build project I will use Ruby on Rails which is an open source web application

framework, it is a full-stack framework. Ruby on Rails uses a well-known software

engineering patterns and principles such as active record pattern, convention over

configuration (COC), don’t repeat yourself (DRY) and model-view-controller

(MVC).

The application will connect to database using SQLite3 and PostgreSQL. SQLite

is a software library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine. PostgreSQL is an object-

relational database management system (ORDBMS) with an emphasis on

extensibility and on standards-compliance.

For a version control system, I will use Git which allows tracking the history of a

collection of files and includes the functionality to revert the collection of files to

another version and to use Github to host my repository.

https://www.sqlite.org/selfcontained.html
https://www.sqlite.org/serverless.html
https://www.sqlite.org/transactional.html
https://en.wikipedia.org/wiki/Object-relational_database_management_system
https://en.wikipedia.org/wiki/Object-relational_database_management_system

 - 76 -

Sublime Text is a sophisticated text editor for code, markup and prose. It is an

amazing piece of software that is a clean, functional, and fast code editor.

The Rails community provides a wealth of plugins as Ruby Gems that simply add

to project Gemfile and install. For example, the application used OmniAuth for the

sign in with Google. It simply added gem "omniauth-google-oauth2" in the Gemfile,

then bundle install.

The application “sign in” will use simple OmniAuth. It is a library that standardizes

multi-provider authentication for web applications. It was created to be powerful,

secure, and flexible. Any developer can create strategies for OmniAuth that can

authenticate users via disparate systems. For example: Google, Facbook,

Twitter,… The reason of using OmniAuth is because most users don’t like to sign

up for websites. They’ve already signed up to so many; using different usernames

and password that trying to remember them is sometimes impossible.

Foundation is used for the font end design. Foundation is a framework to build the

front-end, or client-facing part, of a website or web application. It lets me quickly

prototype and create sites and apps that work on any device. HTML front end will

be responsible for displaying the information on multiple device types. This service

will be written in JavaScript, JQuery, CSS3 and HTML.

The application also uses Gmail API for sending email to book appointments. The

Gmail API is a RESTful API that can be used to access Gmail mailboxes and send

mail. For most web applications (including mobile apps), the Gmail API is the best

choice for authorized access to a user's Gmail data.

Heroku allows deploying directly from popular tools like Git, GitHub or Continuous

Integration (CI) systems. First install the Heroku Toolbelt. This provides you access

to the Heroku Command Line Interface (CLI), which can be used for managing and

scaling the applications and add-ons. A key part of the toolbelt is the heroku

https://www.heroku.com/dx

 - 77 -

local command, which can help in running applications locally. Once installed, use

the heroku command from command shell.

6.1.7. Evaluation

To evaluate, if the project is working in deferent platforms and different browsers.

Result will be testing the output of my project against the information on the test

server. If the information is correct then my project is giving the correct information.

To evaluate the application with an end user, I will ask a few people I know, to use

and interpret how the application could be used and how useful they think this

application might be in their lives.

To evaluate if my project has bugs: This will be an on-going test that will take place

at all stages of development. I will do black box and white box testing.

6.2. Project Plan

 - 78 -

 - 79 -

 - 80 -

6.3. Requirement Specification

Table of Contents

1 Introduction

1.1 Purpose

1.2 Project Scope

1.3 Definitions, Acronyms, and Abbreviations

2 User Requirements Definition

3 Requirements Specification

3.1 Functional requirements

3.1.1 Use Case Diagram

3.1.2 Requirement 1 <Log In>

3.1.3 Requirement 2 <Posting Problem>

3.1.4 Requirement 3 <Automated Response>

3.1.5 Requirement 4 <Response Problem>

3.1.6 Requirement 5 <Booking Appointment>

3.1.7 Requirement 6 <Chatting System>

3.1.8 Requirement 7 <Appointment Reminder>

3.2 Non-Functional Requirements

3.2.1 Performance/Response time requirement

3.2.2 Availability requirement

3.2.3 Physical environment requirement

3.2.4 Robustness requirement

3.2.5 Security requirement

3.2.6 Reliability requirement

3.2.7 Maintainability requirement

3.2.8 Portability requirement

3.2.9 Resource utilization requirement

4 GUI

5 System Architecture

6 Process Flow Diagram

7 System evalution

file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977392
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977393
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977394
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977395
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977396
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977397
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977398
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977399
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977400
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977401
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977401
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977401
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977401
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977401
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977401
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977402
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977403
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977404
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977405
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977406
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977407
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977408
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977409
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977410
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977413
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977414
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977415
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977415
file:///D:/College/4thYear/Project/Journal%20-%20Document/Requirements%20Specification31.12.2015.docx%23_Toc316977416

 - 81 -

6.3.1. Introduction

6.3.1.1. Purpose

The purpose of this document is to set out the requirements for the development

of a social communication that allows users to interact with each other by posting

question(s) and answer(s), chatting or talking that is all happening in one location

with some extra tools to make communication more convenient.

This specification describes the functional and performance requirements for this

project. This document also defines technical terminology and illustrates factors

that affect software performance, reliability and security.

6.3.1.2. Project Scope

The scope of the project is to develop a social media communication that provides

a service which automatically suggests possible answers to queries immediately

after users (e.g. students, employees…) post their problems or their questions. It

also allows other users (e.g. counselors or consultancy or teachers…) to interact

with them by posting answer(s) or giving advice. The posts and the answers are

saved and displayed to all users without any personal information. The users can

see their own post with their information and the other users only see the problem

and the answer without any personal information.

An appointment can be arranged if the user wishes to speak or chat personally

with the counsellor or consultant. The application will have a booking appointment

if users wish to talk with consultant. The API will make provision to modify, create

and display calendar events as well as work with many other calendar-related

objects. In addition, this application will use Gmail API for chatting and speaking

functionalities. Moreover, the application will economize on the use of time and in

that, it is available at anytime and anywhere.

 - 82 -

6.3.1.3. Definitions, Acronyms, and Abbreviations

User Any person who will interact with the system. This could be
individual person who would like to share their problems and
longing for help. This could be individual person who would like
to help or give an advice or Individual person who maintain,
repair the system or monitor any issues with the system

Roles Roles are a powerful tool that allow a collection of users into a
single unit against which they can apply permissions in a
database.

API Application Program Interface - API is a set of
routines, protocols, and tools for building software applications.

The API specifies how software components should interact and
APIs are used when programming graphical user interface (GUI)
components. API makes it easier to develop a program by
providing all the building blocks. A programmer then puts the
blocks together

Ruby on Rails Ruby on Rails is a web development framework written in the
Ruby programming language

HTML Hyper Text Mark-up Language

MVC Model–View–Controller is a software architectural pattern for
implementing user interfaces

- A model stores data that is retrieved according to
commands from the controller and displayed in the view

- Controller is a server-side component of Rails that
responds to external requests from the web server to the
application, by determining which view file to rend

- A view generates an output presentation to the user
based on changes in the model

Heroku Heroku is a cloud platform as a service (PaaS) supporting
several programming languages

OmniAuth OmniAuth is a library that standardizes multi-provider
authentication for web applications. It was created to be
powerful, secure, and flexible. Any developer can create
strategies for OmniAuth that can authenticate users via
disparate systems

Sublime Text Sublime Text is a sophisticated text editor for code, mark up and
prose. It is an amazing piece of software that is a clean,
functional, and fast code editor.

http://www.webopedia.com/TERM/P/protocol.html
http://www.webopedia.com/TERM/A/application.html
http://www.webopedia.com/TERM/G/Graphical_User_Interface_GUI.html
http://www.webopedia.com/TERM/P/program.html
http://www.webopedia.com/TERM/P/programmer.html
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/Programming_language

 - 83 -

6.3.2. User Requirements Definition

The application was requested by a group of consultants who are longing to help

people to discover a more meaningful ways of communicating. This application

allows users freedom to share their own problems and discus with consultants.

The application will be free to consultants. Users and consultants will not know

each other. There is no personal information shown. It is a secret room. Moreover,

the application will economize on the use of time and in that it is available at

anytime and anywhere.

This system will require the following:

- A system that will run on multiple devices computer, iPad and mobile.

- System that has a secure login system.

- A system that has a web interface.

- A system that allows user to input and display information.

- A system that can store information about user problem.

- A system that user login can operate with different roles: user, consultant

and admin.

- A system that can use automated display suggestion after user has posted

the problem

- A system that has a booking appointment.

- A system that has a chatting and talking system.

The application should be user friendly and simplistic with its user interface, so that

the different sections are easy to use.

6.3.3. Requirements Specification

The system will allow for different users as follows:

User 1: Log in with Google account as user’s role. Then users should be able to

post their problems, view their own questions and list of all problems. The user

should then be able to book an appointment and chat or talk with consultants or

counselors as they wish.

 - 84 -

User 2: Consultants log in with Google account. Consultants should be able to see

all problems and manage to give the advice.

User 3: Admin log in with Google account. Admin should be able to see all the

users, posts and have full permission on the post. This user will be a System

administrator who will have user privileges to start and shut the system and monitor

any issues with the system.

6.3.3.1. Functional requirements

- Web Based Interface: This system will have a web based interface so that

it can be viewable on multiple devices: PC and tablets or phones

- User Login: This system will have a user login to ensure only the right users

get to see the content. The user should be able to use an OAuth login to

then login to all the available social media feeds.This system will have users’

role that allow the collection of users into a single unit against which they

can apply permissions in a database.

- Automated Response: This system will display automatically the result

from outside resources which relate to users problem and give user some

suggestions.

- Chat System: This system will have a chatting system that allow user to

chat with consultants

- Booking system: This system will have a booking system so that user can

make an appointment with consultant and a calendar which displays users’

appointment. It will automatically remove the appointment when it is over.

- Posting system: This system will allow users post problems or questions.

- Responding system: This system will allow consultants or counsellors to

answer the problem which users have posted.

- Reminder system: This system will automatic remind the users about their

appointments.

 - 85 -

6.3.1.1. Use Case Diagram

The Use Case Diagram provides an overview

 - 86 -

6.3.1.2. Requirement 1 <Log In>

Description & Priority

This function is to allow a user to securely login to Anonymous Automated

Response System.

Use Case

Scope

The scope of this use case is a log in system for user

Description

This use case describes the user secure when they login to Anonymous

Automated Response System

Use Case Diagram

Flow Description

Precondition

The system is in initialisation mode. User must have Google account.

Activation

This use case starts when a user wishes to log in to Anonymous Automated

Response system.

Main flow

- The system connects Google

- The user enters email and password (See A1)

 - 87 -

- The system validates the entered email and password and logs the actor

into the system

Alternate flow

A1 : <Invalid email or password>

- The system displays error message

- The user enters email and password again

- The use case continues at position 3 of the main flow

Termination

The system stores all the login information

Post condition

The system goes into a wait state. If the use case was successful, the actor is now

logged into the system. If not, the system state is unchanged

6.3.1.3. Requirement 2 < Posting Problem >

Description & Priority

This function is to post the problem which the user wants to ask about or needs an

advice on. It will be stored in the database.

Use Case

Scope

The scope of this use case is to post a problem and store it in the database

Description

This use case describes what users do when they have a problem and need help.

Use Case Diagram

Flow Description

 - 88 -

Precondition

The system is in initialisation mode. User must login to Anonymous Automated

Response system.

Activation

This use case starts, when a user presses the button to post his/her own problem

Main flow

- The system identifies the user role and displays the post page

- The user clicks on the button “post your own problem”

- The system reloads the page and opens the new post page

- The user enters problem and clicks the button “post your problem”

- The system displays the message and says that the post is created

successfully

Termination

The system stores all the post into database. The use case terminates when the

user exits

Post condition

The system goes into a wait state

6.3.1.4. Requirement 3 < Automated Response >

Description & Priority

This function is automated it displays to user some suggestions which are already

given from the other web site, while user is waiting for the answer from a

consultant.

Use Case

Scope

The scope of this use case is to automatically display some recommendations

which are related to user’s problem.

Description

 - 89 -

This use case describes what the system does when users are waiting for the

answer to the problem.

Use Case Diagram

Flow Description

Precondition

The system is in initialisation mode. User must login to Anonymous Automated

Response system.

Activation

This use case starts when a user presses the “created post” button.

Main flow

1- The user posts the problem

2- The system makes calls to the Google Custom Search API and renders a

list of relevant resources which are given from other website.

3- The system automated displays the web pages which are related to the

post.

4- The users can rate for the links

5- The system save the rating and that links

6- The system views the results which are sorted and ordered and only the

most relevant and useful hyperlinks are retained sort

7- The system gives the suggestion according to the highest average rate,

highest number rate and most number of time users click on the links.

 - 90 -

Termination

The use case terminates when the user exits

Post condition

The system goes into a wait state

6.3.1.5. Requirement 4 < Response Problem >

Description & Priority

This function is to let the consultant give an advice or an answer to the problem

which the user has posted.

Use Case

Scope

The scope of this use case is to give an answer to the problem

Description

This use case describes what the consultant does when he/she gives the answer

for the problem.

Use Case Diagram

Flow Description

Precondition

The system is in initialisation mode. User must login to Anonymous Automated

Response system.

Activation

This use case starts when a user presses the answer button

Main flow

- The system identifies the user role and displays the post page.

- The consultant clicks on the answer button.

- The system reloads the page and displays the answer page.

- The consultant enters the answer and clicks to post the answer button.

 - 91 -

- The system displays the message saying that the post has been created

successfully

- The system sends the alert to the user, saying that user’s question has

been answered.

Termination

The system stores all the post into a database. The use case terminates when the

user exits

Post condition

The system goes into a wait state

6.3.1.6. Requirement 5 < Booking Appointment >

Description & Priority

This function allows user to book an appointment with consultant.

Use Case

Scope

The scope of this use case is to book an appointment with consultant.

Description

This use case describes how to book an appointment with consultant for more

help.

Use Case Diagram

 - 92 -

Flow Description

Precondition

The system is in initialisation mode. User must login to Anonymous Automated

Response system.

Activation

This use case starts, when a user presses the booking appointment button

Main flow

- The system displays the booking window.

- The user wants to make a new appointment (See A1)

- The system displays new booking appointment window

- The user wants to cancel an existing appointment (See A2)

- The system displays cancel booking appointment window

- The user wants to change an existing appointment (See A3)

- The system displays result window

Alternate flow

A1. Make a new appointment:

- The system displays possible appointment times, dates and email of

consultants

- The user chooses date and time available

- The use case continues until the user submits booking button or want to

release it.

A2. Cancel an appointment:

- The system displays the old booking appointment with time and date.

- The use case continues until the user click cancel button or the user

wants to release it.

A3. Change an appointment

- The System shows the change appointment window where the users

can change the date and time for theirs appointment.

- The use case continues until the user click make change button or the

user wants to release it.

 - 93 -

Termination

The system stores all the post into database. The use case terminates when the

user exits

Post condition

The system goes into a wait state

3.3.1.7. Requirement 6 < Chatting System >

Description & Priority

This function allows user to chat or talk with consultant.

Use Case

Scope

The scope of this use case is to chat or talk with consultant for more help.

Description

This use case describes how user operate with the system.

Use Case Diagram

Flow Description

Precondition

The system is in initialisation mode. User must login to Anonymous Automated

Response system and book the appointment with consultant.

Activation

This use case starts when a user presses the chatting button

 - 94 -

Main flow

- The system displays the chat window

- The users send chat messages

- The system update chat window

- The system reloads the chat window.

Termination

The use case terminates when the user exits

Post condition

The system goes into a wait state

3.3.1.8. Requirement 7 < Appointment Reminder System >

Description & Priority

This function is to remind users about their appointments.

Use Case

Scope

The scope of this use case is to remind users about their appointments.

Appointment reminders allow system to automate the process of reaching out to

users in advance of an upcoming appointment.

Description

This use case describes how the System Appointment Reminders work in the

Anonymous Automated Response System.

Use Case Diagram

 - 95 -

Flow Description

Precondition

The system is in initialisation mode. User must book appointment in Anonymous

Automated Response system

Activation

The use case starts when a user submits a booking appointment.

Main flow

- The system stores booking information in the database.

- The system checks the appointment list and configured time, in advance of

the appointment.

- The system sends out a reminder

Termination

The use case terminates when the user exits

Post condition

The system goes into a wait state

6.3.2. Non-Functional Requirements

6.3.2.1. Performance/Response time requirement

The server itself will require a high speed connection in order to process all of the

information that the users send to it in a timely manner.

The specifications of the server’s hardware should include that of a powerful

processor to allow for faster processing of the data received from users over the

web so that the server responds to the user with as short a delay as possible.

6.3.2.2. Availability requirement

Availability is a measure of how often the application is available for use. More

specifically, availability is a percentage calculation based on how often the

application is actually available to handle service requests when compared to the

total, planned, available runtime. The formal calculation of availability includes

repair time, because an application that is being repaired is not available for use.

 - 96 -

6.3.2.3. Physical environment requirements

The system will require a server on which to operate .The server will be hosted on

a free cloud service called Heroku. Heroku is a platform as a service (PaaS) that

enables developers to build and run applications entirely in the cloud.

6.3.2.4. Robustness requirement

The App shall continue to work correctly even after it has taken invalid input from

the user and will notify the user of any errors that may occur.

The App shall continue to work if one part of it fails or throws an error.

6.3.2.5. Security requirement

The system will require a password to access private parts of the site or server.

The system is also auto backed up to GitHud to deal with any potential data loss

due to possible hardware failure.

6.3.2.6. Reliability requirement

The system should be up and running at all times.

The system should reset a user session if a crash happens.

The system’s web service should have two or more connections to ensure if one

is down then the others can take up the slack.

6.3.2.7. Maintainability requirement

The server used to host on cloud the service will need to have as little down time

as possible and as a result, must be easily maintained.

The system should have admin access to the underlining code so that fixes or

changes can be made

The system should have admin access to the database so that fixes or changes

can be made

6.3.2.8. Portability requirement

The system is a web based app it will be available for systems that support modern

web browsers.

6.3.2.9. Resource utilization requirement

The system needs an admin to maintain and manage the system. It also needs a

back-up server, just in case the cloud server is out of service.

 - 97 -

6.3.3. Interface requirements

6.3.3.1. GUI

The user interface will be shown in a web browser. The user will be able to access

the GUI from an internet enabled device. The application will have a navigation bar

at the top. All problems and answers will be available to all users without any

identification. Users will be able to ask questions or post their problems by signing

in with the Google account. Once users sign in, they will be able to see their own

posts and their information

The system will automatically suggest possible answers to queries immediately

after users post their problems or their questions. The consultant can interact with

users problems by posting answer(s) or giving advice

The application will have a booking appointment system if the user wishes to speak

or chat personally with the counsellor or consultant. The system also automatically

removes an appointment after user has seen a consultant. In addition, this

application will use Gmail API for chatting and speaking functionalities.

Posting Problem

Automated Response and suggestion

 - 98 -

An appointment can be arranged if the user wishes to speak or chat personally

with the counsellor or consultant.

Booking Appointment

 - 99 -

Consultant can interact with user’s problems by posting answer(s) or giving advice

List of client appointment

 - 100 -

6.3.3.2. Application Programming Interfaces (API)

- API will be created

- The application will use Google login API, simple Calender API for the

booking system, Google Custom search API for automated response and

suggestion.

- The system’s web service will be based on ruby on rails

6.3.4. System Architecture

Use a class diagram to outline the structure of the system. Explain briefly why you

have chosen this architecture. You might want to use Visio or Rational Rose to

create these.

The application is implemented using the Model-View-Controller (MVC)

architecture.

Controller Browsers
Sends request

1

2 4 View to

 - 101 -

When interacting with a Rails application, a browser sends a request, which is

received by a web server and passed on to a Rails controller, the controller

interacts with a model, which is a Ruby object that represents an element of the

site and is in charge of communicating with the database. Controller Invokes view

and View renders to browser screen.

6.3.5. Process Flow Diagram

 - 102 -

Use-Case: sign in

DFD 1:

 - 103 -

DFD 2:

Use-Case: Posting Problem

DFD 1:

DFD 2:

 - 104 -

Use-Case: Automated Response

DFD 1:

DFD 2:

Use-Case: Response Problem

 - 105 -

DFD 1:

DFD 2:

Use-Case: Booking Appointment

DFD 1:

DFD 2:

 - 106 -

Use-Case: Appointment Reminder

DFD 1:

DFD 2:

Use-Case: chatting

DFD 1:

DFD 2:

 - 107 -

6.3.6. System Evolution

Additionally a mobile and/or tablet friendly version of the application could be

developed in the future to adapt to the currently expanding mobile device market.

It can be run with android and ios.

6.4. Monthly Journals

Reflective Journal

Student name: x11113065 - Thuy Linh Vo Thi

Programme : BSc in Computing

Month: September

My Achievements

For the month of September I had to set up my environment for my application. I

decided to use PHP for my application and have XAMPP installed. I learned step

by step how to use PHP.

I researched information for my project proposal project.

I came up with my project idea and got the Project Proposal completed and handed

in to Moodle

My Reflection

I felt that my initial idea was workable and I was happy to complete the proposal

project early.

However, I found, it difficult as I didn’t know whether or not my idea would make

the project possible. I was to discover that I couldn’t find the resources to support

 - 108 -

the application so I have to change to an alternative. I was distressed and spent a

lot of time trying to research other possible resources which might suit my project.

I knew that I had to do my project based on a cloud application, because I am in

the Cloud Stream. This highly influenced my decision about what project I wanted

to do. I took a lot of time to research what I needed and what resource would

support my project.

Selecting a new direction for my project using PHP with which I am not familiar

meant that I would have to spend time to study PHP in relation to the project.

Intended Changes

Once my Project Supervisor has been assigned. I will try to see him/her on a

weekly basis.

I will also try to source out a real client, document their requirements for the

proposal, and based on that information, create requirement specifications.

Create font-end using Foundation

Sign up with Heroku cloud platform, APIs keys

Reflective Journal

Student name: x11113065 - Thuy Linh Vo Thi

Programme : BSc in Computing

Month: October

In the month of October, I set up the environment for my application. I wanted to

use PHP for my application but I could not find information to support it, so I

decided to use Ruby on Rails for the application which I installed. I also focused

on the Requirement Specification document. This included all the details of the

 - 109 -

application. I found it very difficult because I had to relearn UML for use cases and

class diagram.

My Achievements

This month, I was able to finish the Requirement Specification document.

I also have learnt ruby syntax online and followed a tutorial in “Agile Web

Development with Rails” and “Ruby on rails tutorial”. I started the omniauth on ruby

with Google and Facebook login and had foundation installed for the font end. I

also did market research about my application to find its feature.

My Reflection

I felt disappointed that I had wasted time finding information about PHP and setting

up PHP as the environment for my application. If I chose Ruby on Rails from the

beginning I could have had more time to learn Ruby which I am unfamiliar with. I

now have to learn everything from scratch, but at least it works for me. I find Ruby

is very powerful language.

I felt that doing certain parts of the Requirement Specification was difficult, like

Non-functional requirements, class diagram and System Evolution. I spent a lot of

time doing it and researched how to do it. Once I had it done I felt I had

accomplished something significant.

After meeting with the project supervisor, I asked myself what make my application

more advantages than the present one or is any other application the same as

mine? For this reason, I researched and compared with the other. I also asked

people from different backgrounds, what they thought about my idea and what they

expected, if they used this application. I discovered that there are many strong

points in my application but there are also many challenges to meet the users’

requirements.

Intended Changes

 - 110 -

Next month, I will try to have the SignIn page for Anonymous Automated Response

system and push it into Heroku cloud platform.

Supervisor Meetings

Date of Meeting: every week

Items discussed: Features of the application

Action Items: Research and compare my application with other application.

Reflective Journal

Student name: x11113065 - Thuy Linh Vo Thi

Programme : BSc in Computing

Month: November

During the month of November, I focused on the Analysis Design document. This

included all activities, which help the transformation of requirement specification

into implementation. This is the intermediate stage, which helps human-readable

requirements to be transformed into actual code.

My Achievements

This month, I was able to finish the Analysis Design document. I have also started

programming the prototype with post and response system and then deployed it

into Heroku platform.

I have gained the knowledge of ruby syntax and HTML/CSS. I have learnt how to

build an application on ruby on rails and understand how to use Model, View and

Controller in Rails.

My Reflection

 - 111 -

I felt that doing certain parts of the Analysis Design document were difficult, such

as Logical View, Software Architecture, Communication Architecture, System

Design, … I have no idea what they are. It took me a lot of time to review Software

Engineering subject which I did in second year. I spent lots of time doing it and

finding the way to apply it in my application. Once I had it done I felt like I had

accomplished something significant.

I feel I have finally got going on my project and from now on will be heavily involved

in my application .Having finished the use cases and the preparation of the

application, I feel confident that I will develop this application with no problems.

The meeting with my supervisor was very helpful. We met as a group. Each person

shared about their project and the difficulties in implementing it. The supervisor

and members of the group gave advice and recommendations. I was appreciative

of their help. Now if they discover anything that relates to my project, they draw my

attention to it.

My supervisor suggested some functionalities that would make my application

more professional. I am spending more time in researching and finding the best

way to proceed with my project.

Intended Changes

Next month, I will try to work on SignIn, Post and Response pages.

Supervisor Meetings

Date of Meeting: every week

Items discussed: Prototype

Action Items: Research and implementation of the application

Reflective Journal

Student name: x11113065 - Thuy Linh Vo Thi

Programme : BSc in Computing

Month: December

 - 112 -

I need to submit a Distributed System’s Project on 12th December. I spent most of

my time focusing on it and I am still working on how to build the chat system and

booking system for the project.

My Achievements

This month, I was able to finish Distributed System’s Project which has used Ruby

on Rails. So I have learnt how to use Geolocation API in Ruby, how to use curl

sending a request through HTTP. This led me understand what is meant by API

and how it works. I also learnt how to upload pictures and file in the Ruby on Rails

project by using the gem file. I have learned how to build API application using

Ruby on Rails.

My Reflection

I feel I have finally got going on my project, having finished the use cases, analysis

design and the preparation of the application. Using new language to build the

project is a big challenge. There were some errors I didn’t know how to correct. I

spent a lot of time searching for a way to fix problems. I felt distressed. It took me

two weeks to find out the errors. I have been working with Ruby on Rails since. I

feel confident that I will develop this application with no problems.

This month, I didn’t have much time for the project. I am preparing for the January

exam, but I will try to have prototype done for the midterm presentation.

Intended Changes

Next month, I will try to work on Automated Response, Booking Appointment

prototype.

Reflective Journal

Student name: x11113065 - Thuy Linh Vo Thi

Programme : BSc in Computing

Month: January

 - 113 -

For the month of January, I spent most of my time focusing on prototype and

midpoint presentation documentation.

My Achievements

This month, I was able to do a booking system done and simple calendar which

display all appointments events to users by days, weeks and months. I worked on

styling the navigation menu which tells the user where they are in the application.

Finally I got automatic response worked. I was able to have a midpoint presentation

documentation done.

My Reflection

I feel, I am making progress at last on my project. Sometime I find stressful

because I have spent too much time finding out how to use Google search API

which will automatic search possible information that related to users’ post after

they have submitted. It took me a month to look up different online tutorials. Finally,

I found a tutorial which helped me to solve the problem. I am so happy about that.

I found new information in Rails while I was working on styling, the navigation menu

which tells the user where they are in the application. The link text colour is green

if the current page is active. Otherwise the link text colour is white. To do this, I

needed to check if the user was on the current page. Dynamically, I set the class

of the list tag to “active” (so that the navigation link would appear green due to

foundation css style sheets).I first created a helper method to check whether the

current page was the active page

ApplicationHelper#active_tab? Takes a path string and compares it to the current

path string. It returns true or false. If this method returned true I set the class of the

navigation link to active. To do this I created another helper method

ApplicationHelper#list_class. This method takes a path string. It is called

active_tab? with the passed parameter and returns a string. It returns “Active” if

true and “” if false.

 - 114 -

A content_tag helper in Rails lets you wrap one tag in another and allows you to

pass options about the outer tag. I used this to wrap a link tag in a list tag. I used

the helper methods above to set the class on the list tag if the current page was

the active page.

I also worked on appointment form and Simple Calendar which views all

appointments and events of users by day view, week view or month view. The

appointment automatically disappears after the time has passed.

Intended Changes

Next month, I will work on Chatting and appointment reminder

Reflective Journal

Student name: x11113065 - Thuy Linh Vo Thi

Programme: BSc in Computing

Month: February

After midpoint presentation, I reflected on the midpoint feedback and focus on

implementation of the rating for Anonymous Automated Response System.

My Achievements

This month, I focused on implementation of the rating for Anonymous Automated

Response System and have showcase profile completed.

My Reflection

I feel that my progress has been slow. I spent time prepare for the midpoint

presentation. After the presentation, I got feedback from the teachers; reflecting

on that feedback; I focused on implementation of rating. I got the rating shown in

Google Custom search result. The system searches possible information that

related to users’ post and display relevant result with highest rate first.

I have learnt how to show the rating in Google Custom Search result. It seems very

simple but I have spent a lot of time finding the way to do it. Custom Search extracts

a variety of structured data for use by structured search operators, including dates,

 - 115 -

authors, ratings and prices; this is the same data available for use in custom

snippets.

PageMap: A PageMap explicitly represents structured data as DataObjects with

Attributes and values, encoded as an XML block embedded in a web page. Custom

Search makes all well formed PageMap data available for structured search

operators; it can also be used in custom snippets.

In controller:

@results = GoogleCustomSearchApi.search(@post.description.to_s)

In html.erb page if I put <%= @results.to_yaml %> it will display all the information

related with what I have put in the search. The code below shows how to display

rating in Google search result.

 <% if item["pagemap"] %>

 <% if item["pagemap"]["aggregaterating"]%>

 <p>Aggregate Rating: <%= item["pagemap"]["aggregaterating"] %></p>

 <p>Rating: <%= item["pagemap"]["aggregaterating"][0]["ratingvalue"]

%></p>

 <p>No of reviews: <%=

item["pagemap"]["aggregaterating"][0]["ratingcount"] %></p>

 <% end %>

 <% end %>

 <% end %>

Intended Changes

Next month, work on the ratting links

Reflective Journal

Student name: x11113065 - Thuy Linh Vo Thi

Programme: BSc in Computing

Month: March

https://developers.google.com/custom-search/docs/snippets
https://developers.google.com/custom-search/docs/snippets
https://developers.google.com/custom-search/docs/structured_data#pagemaps
https://developers.google.com/custom-search/docs/snippets#creating_snippets

 - 116 -

My Achievements

This month, I have the rating for Anonymous Automated Response System, send

email reminder done and have showcase profile completed.

My Reflection

I feel that my progress has been slow. I spent time for Distributed System

assignment and project.

I worked on sort result for a search, rating for Anonymous Automated Response

System and send email to remind users about their appointments.

User submits a search query using Google custom search API. System receives

a result set from Google custom search API, create an array of Ruby objects called

result. System uses its own custom algorithm to intelligently sort results that takes

into account users' feedback and online behaviour, namely; the number of times a

link or response has been rated, the average rating for a link or response and the

number of times a link has been clicked.

I got the send email reminder work. When consultant clicks button send, the email

will send to user. I tried to set up email send automated a night before the

appointment but I unfortunately I couldn’t get it.

I learnt how to use the form tag to get the feedback from user. For example below:

<%= form_tag update_rating_path do %>
 <%= label_tag 'rating' %>
 <%= select_tag 'rating', options_for_select(Rating::VALUES) %>
 <%= hidden_field_tag 'title', result.title.to_s %>
 <%= hidden_field_tag 'link_url', result.link_url.to_s %>
 <%= submit_tag 'Rate this link' %>
 <% end %>

And Action View Partials which render sub templates within the current controller

that depends on a single object. With partials, you can extract pieces of code from

your templates to separate files and also reuse them throughout your templates.

For example result.html.erb below:

<div class="inner-wrap">
 <h4><%= link_to result.title, update_link_path(title: result.title.to_s, link_url:
result.link_url.to_s), {:style=>'color:blue;', :class => "css_class"} %></h4>
 <div style="color:green"><%= result.link_url %></div>

 - 117 -

 Click Count: <%= result.click_count %>
 Average Rating: <%= sprintf('%.2f', result.average_rating) || "No ratings
yet" %>
 Number of Ratings: <%= result.number_of_ratings %>
 <p>Rate this link</p>
 <%= form_tag update_rating_path do %>
 <%= label_tag 'rating' %>
 <%= select_tag 'rating', options_for_select(Rating::VALUES) %>
 <%= hidden_field_tag 'title', result.title.to_s %>
 <%= hidden_field_tag 'link_url', result.link_url.to_s %>
 <%= submit_tag 'Rate this link' %>
 <% end %>
 </div>
It is reused in another place, for example result.html.erb is reused in

Posts/show.html.erb

<%= render partial: "results/result", locals: {result: item} %>

The links and rating are saved in the a database and used sort algorithm to sort

the result by the number of times a link or response has been rated, the average

rating for a link or response and the number of times a link has been clicked.

require 'result'
class Data
 def self.parse(results)
 result_set = []
 results.items.each do |result|

 # item = SavedLink.find_by_link_url(result.link.to_s) ?
SavedLink.find_by_link_url(result.link.to_s) : Result.new(result.title,
result.link.to_s)
 if SavedLink.find_by_link_url(result.link.to_s)
 link = SavedLink.find_by_link_url(result.link.to_s)
 item = Result.new link.title, link.link_url,
link.click_count, link.average_rating, link.ratings.count.to_i
 result_set << item
 else
 item = Result.new result.title.to_s, result.link.to_s
 result_set << item
 end
 end
 result_set # return the result set
 end

 def self.sort(results)

 - 118 -

 results.sort_by! {|object| [object.average_rating,
object.number_of_ratings, object.click_count] }.reverse
 end
end
By using Action Mailer in rails allows me to send emails from my application using

mailer classes and views. Mailers inherit from ActionMailer::Base and live

in app/mailers, and they have associated views that appear in app/views.

By default rails tries to send emails via SMTP. It will provide SMTP configuration

in environment settings /config/environments/production.rb. Before proceed it

needs to save sensitive information such as username and password as

environment variables. It will do so by using the gem figaro.

Intended Changes

Next month, I will work on the chatting system and testing the system

Reflective Journal

Student name: x11113065 - Thuy Linh Vo Thi

Programme: BSc in Computing

Month: April

My Achievements

This month, I prepared for my exam, worked on chat room, have testing done and

have poster designed.

My Reflection

I feel that my progress has been slow. I spent time for my exam and Cloud project.

After exam, I worked on a chat system for Anonymous Automated Response

System. I found that the first beta of Rails 5 was released recently. The biggest

new feature is Action Cable, which provides support for implementing WebSockets

with a pair of libraries for JavaScript (for the client) and Ruby (for the server).

WebSockets are a convenient way to stream data between the client and server,

https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://weblog.rubyonrails.org/2015/12/18/Rails-5-0-beta1/

 - 119 -

making it easy to build apps that require real-time message passing. A chat room

is the usual example of such an app: without anyone having to refresh the page, a

message sent from one user to appear for all other connected users. In the past,

implementation this by having each client poll the server for new messages.

WebSockets lets me replace polling with two-way channels that stream messages

to where they're needed, as soon as they're created, avoiding the overhead and

latency of continuous polling over HTTP.

In order to build chat room in rails 5, I have to transfer my system which is used

rails 4 into rails 5. After that I have to check all functions which are working in

rails to make sure that they are working in rails 5.

I used online tutorial learn who to build chat room. I learnt that chat room in the

system is built on ActionCable. First I added a channel which can use to

communicate via websockets between the client and the server.

Rails has already generated some client side code for us. Let’s start by handling

the event when enter is pressed in the chat input field. Add this at the end of

app/assets/javascripts/channels/room.coffee

Active Job allows Rails application to work with common queres in a single

interface. The job class is where the code that will executed by queue. There is a

perform method which is called and sent whatever parameters were sent when the

job was first enqueued.

I also worked on testing system, made testing plan for each function, preparing

questions for user testing and correct the errors or change the layout according to

users’ suggestions. I learnt how to use unit testing in rails. By default, every Rails

application has three environments: development, test, and production. The

database for each one of them is configured in config/database.yml.

Rails creates a test folder for us as soon as we create a Rails project using rails

new Anonymous Automated Response System (AARS).

Rails will generate a default test for any Models or Scaffolds AARS generate,

here is an example: The default test stub in test/models/post_test.rb looks like this:

 - 120 -

require 'test_helper'

class PostTest < ActiveSupport::TestCase

 # test "the truth" do
 # assert true
 # end

end

Running a test is as simple as invoking the file containing the test cases

through rake test command.

$ rake test test/models/post_test.rb
.
Finished tests in 0.009262s, 107.9680 tests/s, 107.9680 assertions/s.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

I worked on the report document and have it finished by the end of this month. I

am really grateful that I have all the functions of the project working. There were a

problem with chat and email when the application deploy to Heroku because these

functions are supported by adds on which require verification account with credit

card. Has account verify and fix the errors in Heroku which allow to send email and

chat.

6.5. Survey

Thank you very much for taking part in the testing of the AARS. Could you kindly

take a few minutes to answer the questions below, please?

1. What do you think the purpose of this system is?

2. Did you find what you were looking for?

 - 121 -

3. How did you find the design of the system?

4. How are the icons used in the system?

5. If you could only change one thing about this page, what would you

change? Why?

 - 122 -

6. What do you think of the colour used in the system?

