

National College of Ireland

BSc in Computing

2015/2016

Location Football

Technical Report

Shane Noonan

X12435988

shanenooonan@hotmail.com

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name:

Student ID:

Supervisor:

SECTION 2 Confirmation of Authorship

The acceptance of your work is subject to your signature on the following declaration:

I confirm that I have read the College statement on plagiarism (summarised overleaf and

printed in full in the Student Handbook) and that the work I have submitted for assess-

ment is entirely my own work.

Signature:___

Date:____________

NB. If it is suspected that your assignment contains the work of others falsely represented

as your own, it will be referred to the College’s Disciplinary Committee. Should the

Committee be satisfied that plagiarism has occurred this is likely to lead to your failing

the module and possibly to your being suspended or expelled from college.

Table of Contents

Executive Summary .. 4

1. Background ... 4

2. Aims .. 5

3. Technologies ... 6

4. Structure ... 6

2. System ... 7

2.1. Requirements .. 7

2.1.1. Functional requirements ... 7

2.1.2. Data requirements .. 17

2.1.3. User requirements .. 17

2.1.4. Environmental Requirements ... 18

2.1.5. Usability requirements .. 19

2.2. Design and Architecture .. 19

2.3. Implementation .. 22

2.3.1. Technologies .. 22

2.3.2. Procedures ... 24

2.4. Testing .. 35

2.4.1. Unit Testing .. 35

2.4.2. System Testing ... 36

2.4.3. Screen Size Compatibility Testing .. 39

2.5. Graphical User Interface (GUI) Layout .. 40

3. Conclusions.. 41

4. Further development .. 42

5. References ... 43

6. Appendix .. 45

6.1. Project Proposal .. 45

6.2. Project Plan ... 47

6.3. Monthly Journals ... 51

Executive Summary

This applications goal is to address the problem of local football club information and

tickets purchasing being scattered, unreliable and sometimes unreachable. This applica-

tion aims to address this by providing a one stop place to find out all the information you

need to choose which local football club to go and see or to just find relevant information

on the football clubs around your location.

I used Swift programming language to code this project and Xcode 7 as the build envi-

ronment. I implemented a cloud based database on Parse.com. I used the web applica-

tion Import.io to scrape league table data from websites and all graphics where designed

using the open sourced image software platform Gimp. An iPhone simulator was used

initially for testing before iPhone 5 was used for user acceptance testing.

1. Background

The idea first stemmed from my second year software project where I worked on a web

application that showed all the top European clubs on a google map interface and pro-

vided their stadium location with a news feed and relevant external links. However, I then

realised that the app was somewhat irrelevant as there are plenty of football apps and

websites covering the top clubs in the world. Then when on holiday in Asia and wanting

to go see or even find out where and when their local football teams play, I found it messy

and scattered to find the necessary information. This is when I thought about altering my

second year project to be mobile and location based and to be more focused on match

and ticket information and booking. As I am not based in Asia for the duration of this

project I decided to base the application here in Ireland, were it can be used to find out

information on the professional football clubs that we have here but that the application

is set up in a way that it can easily adapt to add clubs from any country throughout the

world.

Initially I decided to build my mobile application using HTML5 CSS3 and AngularJS

through the Ionic Framework. The idea was that building through this platform would allow

my app to run on both Android and iOS devices. However, I faced some difficulty when

testing the application and also serious problems when trying to run initial application

features on iOS devices. This made me worry and feel a bit uncomfortable with using a

relatively new platform to build my final year project. I then decided to change my ap-

proach and had to make the choice on whether to build my project for Android using Java,

which is what I had been learning throughout my degree or to take an all new approach

and build it for iOS with Swift.

I decided to build my application for iPhone instead of Android because of a variety of

reasons:

1. I have a strong interest in all things Apple and was keen to learn about iOS devel-
opment.

2. Previously used Android Studio on other projects and hated it. Xcode seemed
more developed and its Simulator was by far superior.

3. I had been quite poor at Java programming so learning a relatively new language
such as Swift wasn’t such a big deal as I would have been at a beginner’s level no
matter what language I chose.

4. Compared to Android users, iOS users are typically more loyal, engage more and
spend more time per app.

5. Overall, iOS apps tend to earn more revenue than Android apps.

6. iOS users are more likely to update their OS, allowing developers to stop support-
ing older devices sooner.

7. Although Android currently dominates market share at over 80% (while iOS is at
about 15%), iOS dominates the profit share, generating 85% more revenue for app
makers than Android.

2. Aims

The primary aim of this application is to provide and easy to use and attractive way of

finding information on football clubs around your current location.

To achieve this aim the application must have comply with the following objectives:

• Show local clubs on a map interface around the user’s current location.

• Allow the user to select clubs to find out more information.

• Provide a link to the selected clubs official website.

• Provide league table details on clubs.

• Provide a link to book tickets to see selected club.

• Provide directions to the selected club location.

3. Technologies

I will be using the latest version of Apples Xcode IDE to develop this IOS application.

Here I will be using a variety of Apples Cocoa and CocoaTouch frameworks including

Mapkit, Corelocation, and also third party frameworks such as Alamofire and Parse.

I will be using the Swift programming language to code within the Xcode environment.

I will be using Parse.com as my backend to hold football club and user information as well

as importing their iOS framework into my application project.

I will be using Import.io in order to scrape relevant data from websites.

I will be using the image editing software Gimp to make my apps graphics.

4. Structure

The first section, gives the reader a general overview to the project in relation to what it

is. It outlines to the reader what the background to the project is, the main aims of the

project and an overview of the technologies that were used.

The second section details the functional requirements, describing what they are and how

they are implemented. It then goes on to explain what data requirements, environmental

requirements and usability requirements are needed. This section will go on to detail the

design and architecture of the system, how the system was implemented and how the

user interface is designed.

The third section contains the conclusions to the project. While the forth section will de-

scribe any further developments planned in relation to the project.

The fifth section shows the bibliography of all the resources used to complete the project

and finally the sixth and final chapter contains all the appendices to this document, such

as the project proposal, project plan, and the monthly reflective journals.

2. System

In this section, I will outline the structure of this technical report. I will present a detailed

description of all the requirements for this iOS Application. I will then look at the Design

and Architecture of the System and how the different components tie together to form the

overall working environment. I will also look in detail, at the technologies used and the

implementation of the project. I will discuss what testing methods I used throughout the

development process and finally, I will describe the Graphical User Interface.

2.1. Requirements

2.1.1. Functional requirements

In this section I will talk about the functional requirements. A functional requirement is a

statement that identifies what the system must do.

Requirement 1 <Registration & Login>

Description & Priority

This requirement is the Registration and login menu of the application and features a login

and register page. Its priority is to allow the user to register and then login to access the

application main interface.

Use Case

Scope

The scope of this use case is to let the user register to use the app and then login

with their created credentials.

Description

This use case describes the actions of registering as a user and then logging in with

those credentials.

Use Case Diagram

Flow Description

Precondition

The system is installed on user’s mobile device.

Activation

This use case starts when an <Actor>starts the app.

Main flow

1. The system loads the login page.
2. The <Actor> selects the register button
3. The system loads the register page
4. The <Actor> fills out required details and selects register button.
5. The system checks the required details, registers the user and presents

a success alert.
6. The <Actor> selects to go back to the login page.
7. The system loads the login page
8. The <Actor> puts in created credentials and selects login button.
9. The system checks user credentials, accepts the User and presents a

success alert.
Alternate flow

2A : <Already registered>
1. The system loads the login page.
2. The use case continues at position 8 of the main flow

Termination

The system presents the main interface after accepting user’s login.

Post condition

The system goes into a wait state.

Requirement 2 <Main Interface and Club selection>

Description & Priority

After the user logs in the main interface should take the users current location and display

their location as well as the football clubs as pins on a map interface.

Use Case

Scope

The scope of this use case is to locate the user and display their location as well as

clubs loaded from the database on a map interface and allow the user to make

selection on each of the clubs displayed on the map.

Description

This use case describes how the system gathers the user’s location and then re-

trieves the clubs coordinate data from the database and then presents it on a google

map interface. The user can then interact with this interface choosing to select clubs

from their coordinate annotations and allowing them to choose to find out more in-

formation about the selected club.

Use Case Diagram

Flow Description

Precondition

The system accepts the users login details.

Activation

This use case starts when an <Actor> logs into the system.

Main flow

1. The system identifies the user’s location, puts it onto the map interface.
2. The system loads clubs locations by onto the map interface.
3. The <Actor> selects a club on the map interface
4. The system displays an info-bar for the selected club.
5. The <Actor> selects the “more info” button from the selected club info-

bar.
Alternate flow

A1 : <A1>
1. The system identifies the user’s location, then loads their location and clubs

close by onto the map interface.
2. The <Actor> selects a club on the map interface.

3. The system displays a info-bar for the selected club

4. The <Actor> unselects the club.
5. The system closes the selected club’s info-bar.

6. The use case continues at position 3 of the main flow

Termination

The system presents the next interface.

Post condition

The system goes into a wait state

Requirement 3 <League data selection>

Description & Priority

This requirement is when the user selects the League button from the club information

menu. A live league data table then appears were the user can view the selected clubs

league position and league table details.

Use Case

Scope

The scope of this use case is to allow the user to execute the league option dis-

played on the club information menu.

Description

This use case describes the user choosing to select the league button from the

selected club menu and how the system accepts this and then retrieves live league

data relating to the club chosen and presents it to the user.

Use Case Diagram

Flow Description

Precondition

The <Actor> selects the more info button.

Activation

This use case starts when the system loads the club menu page displaying the op-

tions available.

Main flow

1. The <Actor> makes the League selection from the options menu.
2. The system loads the League option to display the live club league table

data.

Termination

The system presents the option the user requested.

Post condition

The system goes into a wait state.

Requirement 4 <Club website selection>

Description & Priority

This requirement is when the user selects the Club website button from the club infor-

mation menu. An external link to the official website of the club selected then appears in

an internal webview.

Scope

The scope of this use case is to allow the user to execute the club website option

displayed on the club information menu.

Description

This use case describes the user selecting the club website option, the system re-

trieving the relevant club website information from the database and then presenting

it to the user. The system opens the link using an internal webview.

Use Case Diagram

Flow Description

Precondition

The <Actor> selects the more info button.

Activation

This use case starts when the system loads the club information page displaying

the options available.

Main flow

1. The <Actor> makes the club website selection from the options menu.
2. The system loads club website details and presents the website in an

internal webview.

Termination

The system presents the option the user requested.

Post condition

The system goes into a wait state.

Requirement 5 <Ticket selection>

Description & Priority

This requirement is when the user selects the Tickets button from the club information

menu. An external link to a ticket provider for the club selected then appears in an internal

webview.

Use Case

Scope

The scope of this use case is to allow the user to execute the options displayed on

the club information menu.

Description

This use case describes the user selecting the tickets option, the system retrieving

the relevant club ticket information from the database and then presenting it to the

user in an internal webview.

Use Case Diagram

Flow Description

Precondition

The <Actor> selects the more info button.

Activation

This use case starts when the system loads the club menu page displaying the op-

tions available.

Main flow

1. The <Actor> makes the Ticket selection from the options menu.

2. The system loads the required ticket link and presents it to the user in
an internal webview.

Termination

The system presents the option the user requested.

Post condition

The system goes into a wait state.

Requirement 6 <Directions selection>

Description & Priority

This requirement is when the user selects the Directions button from the club information

menu. The system then takes the user and the club locations into account before drawing

a directions route onto a map interface for the user.

Use Case

Scope

The scope of this use case is to allow the user to execute the directions option

displayed on the club menu list.

Description

This use case describes the user selecting the directions option, the system retriev-

ing the relevant club address from the database and before displaying a direction

route from the user’s location to the selected club’s stadium.

Use Case Diagram

Flow Description

Precondition

The <Actor> selects the more info button.

Activation

This use case starts when the system loads the club menu page displaying the op-

tions available.

Main flow

1. The <Actor> makes the Directions selection from the options menu.

2. The system loads required club address from database and retrieves the user’s
location.

3. The system displays a directional route from the user’s location to the selected
clubs stadium on a map interface.

Termination

The system presents the option the user requested.

Post condition

The system goes into a wait state.

2.1.2. Data requirements

In this section, I will describe the data requirements, which are essential for the application

to run efficiently.

 Parse.com Integration: The app will connect to a cloud based database powered by
Parse.com. This database will store information about the users and also football club
information. The application has the Parse SDK installed allowing the app access the
data in order retrieve an edit information through the use of the application.

 Import.io Integration: The app will also have to connect with my Import.io API in order
to get league table information. The application will have the Alamofire Framework
installed allowing it to make a HTTP call to Import.io Restful API service and return
the relevant information in JSON format.

 Other Data: The app will hold some data within the ViewControllers of the application,
this allows for quick manipulation of data.

2.1.3. User requirements

In this section, I will outline the user requirements. These are essential requirements that

the user must have in order to use the application.

 IPhone: The user must possess an iPhone.

 IOS 9: The user should preferably have the latest iOS software installed, but the ap-
plication is not limited to iOS 9 and will be backwards compatible.

 AppStore Account: The user should have an Apple AppStore account in order to
download the application.

 Internet Access: The user will need Internet access in order to download and use the
application.

 Location Enabled: The user will have location features turned on in order for the ap-
plication to display the user’s current location. However the application can still func-
tion if user doesn’t allow it but will be limited in what features work.

2.1.4. Environmental Requirements

In this section, I will outline the environmental requirements. These are the essential
requirements that are needed to develop the application.

 MacBook: A MacBook is required to run Xcode.

 iPhone: An iPhone is needed to run application during development and testing.

 Xcode: Xcode is essential as it is the only way to build a native iOS application through
the development environment provided by Apple.

 iPhone Simulator: This provides a way of testing the application quickly through the
development. It is usually included in the Xcode package.

 Internet Access: This is required to access Apple documentation and other various
resources as well as the apps Parse database and also league table data through
Import.io

 Parse.com Account: This is required to add/update club or user information.

 Import.io Account: This is required in order to access/add league table data for the
application to retrieve it in JSON format.

2.1.5. Usability requirements

This section will highlight usability requirements. These will provide the objectives during

the interface and design process.

 Reliability: The system should be capable of allowing many users to access and use
the app at the same time.

 Understandable: The interface will be easy to use and understand.

 Operable: Each action should be consistent. Error messages should explain problems
if they occur.

 Attractiveness: The application layout and graphics should be visually attractive and
appealing. The colour scheme should be appealing and the layout should be simple
in order for customers of all levels be able to use it.

2.2. Design and Architecture

The main architectural aim of this iOS application is to make it is as lightweight and fast

as possible. This is important as the user will have to have space on their device to hold

the application. It will have to be fast and responsive to ensure user satisfaction. MVC is

central to a good design for an iOS application.

Model: Represents the business logic of your application

View: Represents what the user sees in the device

Controller: Acts as a mediator between the Model and View.

COMMUNICATION ARCHITECTURE

My application will need to communicate with my cloud based database in order to get

and display club information to the user as well as authenticating the user at the regis-

ter/login pages. It will also have to communicate with the Import.io RESTful API in order

to retrieve live league table information.

2.3. Implementation

The purpose of this section is to describe the technologies used in the implementation of

the iPhone application. It was also cover the methods used in the implementation.

2.3.1. Technologies

Xcode

Xcode is Apple’s own IDE. It contains a suite of tools developed by Apple that forms the

basis of their developing platform for iOS and MacOS. It also provides an iOS device

simulator which can be used to run and test developing applications.

Swift

According to Wikipedia, Swift is a multi-paradigm, compiled programming language cre-

ated for iOS, OS X, watchOS and tvOS development by Apple Inc. Swift is designed to

work with Apple's Cocoa and Cocoa Touch frameworks and the large body of existing

Objective-C code written for Apple products. Swift is intended to be more resilient to er-

roneous code ("safer") than Objective-C and also more concise. It is a fairly new program-

ming language being originally released in 2014.

Parse.com

Parse is a Backend as a service providing company which was acquired by Facebook in

2013. They provide a cloud based application development platform.

All data in my application will be stored in a cloud database on Parse.com. The Parse

SDK is then installed within the application development folder which allows the app to

connect to the online database.

Cocoapods:

CocoaPods is a dependency manager for Cocoa projects that provides a standard format

for managing external libraries. CocoaPods focuses on source-based distribution of third

party code and automatic integration into Xcode projects. CocoaPods runs from the com-

mand line and I used this to install the Alamofire framework on my application.

Alamofire:

Alamofire is an HTTP networking library written in Swift. It provides an interface on top of

Apple’s Foundation networking framework that simplifies a number of common network-

ing tasks. It provides chainable response/request methods, JSON parameter and re-

sponse serialization, authentication, as well as other features. For this project I will be

using it to perform the basic networking task of requesting data from my Import.io RESTful

API.

Import.io

Import.io is a web-based platform for extracting data from websites without writing any

code. The tool allows you to create an API using their point and click interface. The data

that users collect is stored on Import.io’s cloud server. You can also generate an API from

the data collected and easily integrate live web data into your own applications.

JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format. As well as

being easy for humans to read and write, it’s also easy for machines to parse and gener-

ate. It is completely language independent but uses conventions that are familiar to pro-

grammers of the C-family of languages. Together these properties make JSON an ideal

data-interchange language.

Gimp

Gimp is a free and open-source graphics and image editor used for image retouching,

editing more specialized tasks. I used this software to develop all graphics and icons used

in my application.

2.3.2. Procedures

Project Creation

In order to create this project I chose the single-view application template created within

Xcode.

I found using the Single-View Application setup suited my applications interface and it

allowed me to easily add and customize scenes and their controllers.

I then chose my projects name, the language used and which devices the application will

run on. I then chose to include Unit Tests, this allowed for a quicker setup when unit

testing my app later on.

(Note: For devices I chose iPhone not universal and also did not include UITests)

Adding Parse SDK Framework

In order for my application to connect to my online database I had to install and add the

Parse SDK Framework and libraries to my project in Xcode. I did this by downloading all

the Parse frameworks from their official GitHub account and then adding them and the

other required frameworks to my project as seen in the screenshot below.

Also my Parse API client Key and application ID had to be added to the app delegate file

of my project in order for my application to communicate with my Parse database.

Adding Alamofire Framework via Cocoapods

In order for my application to make http calls to my Import.io API I decided to use the

popular swift networking framework Alamofire. To install this framework I decided to use

the very popular dependency manager Cocoapods. It is installed via Terminal (Command

Line) as seen below

Once Cocoapods was installed the latest version of Alamofire was integrated into my

Xcode project using CocoaPods in Terminal

Creating Storyboard

In Xcode the UI of the application you are building is designed through storyboard. This

is a graphical representation of what your application will look like on an iOS mobile de-

vice. Storyboard is made up of scenes which are graphical representations of each inter-

face of your application. Here you can use Xcodes drag and drop option to add visuals

representations of various object features and views to each scene such as textfields,

imageviews, tableviews, buttons and many more. I chose to add a navigation controller

into my application, this allowed each of the scenes I created to be connected to each

other via a navigation bar which contains a title and also a back button to make it easier

for the user to navigate throughout the application.

In the screenshot below you can see one of the scenes I have created for the club menu

interface of my application. The arrows going and coming from the club menu view are

connections. This type of connection is known as a segue (pronounced: seg-way) and

represents a transition from one scene to another. Segues are triggered by taps on but-

tons, table view cells, gestures, etc. You can also pass data between scenes

Auto Layout and Adding Constraints:

According to Apple’s developer website, Auto Layout dynamically calculates the size and

position of all the views in your view hierarchy based on constraints placed on those

views. This basically means that when you position a button under a under an imageview

so that it is horizontally centered. If the images size changes the button size will change

automatically to match. This was hugely beneficial when building this application as it

made it much easier to adjust the layout of the application to support different screen

sizes and resolutions. I added constraints manually in some cases but also used Xcode's

powerful suggested constraints tool as well to add the required constraints to my apps

objects and views.

Creating outlets:

In order for the objects created via the storyboard to communicate with the code in the

corresponding Controller, Outlets must be created to connect them. This is done through

a drag and drop approach were you select them object and drag it onto the corresponding

controller, then giving it a name and a type.

Creating ViewControllers

In Xcode ViewControllers are swift code files used to control each scene (storyboard) of

your application. Within my project I created separate ViewControllers for each of the

scenes of my application.

Importing Frameworks:

In order for each scene to use its required frameworks you must import them in the scenes

corresponding controller as seen below

Getting the users location

Getting the users location is an essential part of this application, as the whole app is built

around this key objective. To achieve this I first had to import Apple’s CoreLocation

Framework as well as conforming the ViewController to the CLLocationManagerDelegate

Protocol. I then used the created location manager object to ask the user to enable loca-

tion tracking when using the app and enable the user’s location to be shown on the map

interface.

I then created a function to center the map around the user’s location and zoom to the

level I deemed most appropriate. The user’s location is then stopped from updating.

Query Parse and create map annotations for clubs:

In order to load and display all clubs from my parse database onto the map I first query

my clubs database on Parse using the Parse frameworks PFQuery function. Once suc-

cessful it then takes the clubs found, conforms them to my created class and then put

them on the mapView as pin annotations.

I then created a custom class (ClubAnnotation.swift). This is used to create an object

conforming to Apples Mapkit MkAnnotation protocol to hold the queried clubs from my

Parse database and display them onto the mapView interface created.

Passing club and data to next view:

An important aspect of my application was to allow the user to select a club on the map

interface and select a more info button to bring them to the next menu page allowing the

user to choose options relevant to the club selected. In order to do this I had to figure out

a way to pass the selected club and its data onto the next view. I first created a button

within the annotation view, once tapped this would then open the next scene. I also cre-

ated a selected club object to which I made it equal whichever club was selected via the

club annotation.

The next step was to use swift’s prepareForSegue function in order to pass the selected

clubs relevant data onto the next view. In order to pass each data object, I had to make

sure to create a relevant data object in the next view controller to hold the incoming data.

This function was used throughout the app to pass relevant data from scene to scene.

Using Alamofire:

In order to get the relevant league table for the selected club, I used the Alamofire frame-

work to make a HTTP Get request on my import.io API and return the response in JSON.

I also placed the request in an if statements to take into consideration whatever league

the selected club is in. This means the app will only get the league data for the league

corresponding to the selected club rather than every league in my import.io API.

Creating League table

To create a league table for the received JSON league data, I firstly created a UITa-

bleView onto the league table scene. I then created a custom class for a league object to

hold the relevant data received in JSON as a dictionary.

I then created a custom tableView cell in which I put three labels each of which corre-

sponded to a club detail (name, played, points).

Finally I used each label in the custom cell to hold each clubs league details from the

League class dictionary.

2.4. Testing

Software testing is a vitally important aspect in the software development lifecycle. In

order to test effectively and efficiently, I dedicated a lot of time to it. These are the steps I

took:

2.4.1. Unit Testing

Unit testing ensures that the functionality of each core component is correct. As I created

each function or requirement, I carried out unit testing. This involved running the applica-

tion on the Simulator and later on my iPhone and monitoring to see if any errors are

triggered or any problems occur in Xcode's debug area. This was a hugely beneficial way

of unit testing as it allowed me to correct mistakes early on in development and stop them

from recurring later.

2.4.2. System Testing

To test the system, I gathered a group of people with no programming experience and of

the broadest possible customer base, I gave the selected group of people my application

on a phone for 24 hours and performed black box testing with them by having them inter-

act with the app. The results showed that all users successfully performed the tasks they

were set and navigated efficiently throughout the application. I also asked them to rate

the ease of use of each task and also the overall performance of the app.

The Results can been seen it the charts below:

Test Name Try To Sign In with Wrong / No Credentials

Before

Access To Internet
Application is opened

Steps

Enter random/no username
Enter random/no password
Select Sign In Button

Expected

Alert will respond with error message corresponding to what was entered.

Result

Pass Pass Pass Pass

Test Name Sign Up and Login Ease of use 1-5 Comments

User 1 Pass 5 Very Simple and quick

User 2 Pass 3 Took a minute to navigate back to login

User 3 Pass 4 Good

User 4 Pass 3 A bit annoying having to log in after signing up

Test Name Map Displays User
location and clubs

Ease of use 1-5 Comments

User 1 Pass 4 Showed clubs and my location

User 2 Pass 3 Took a few seconds for the clubs to load

User 3 Pass 2 On first try map was empty but tried later and it
worked ok

User 4 Pass 5 Showed both myself and clubs accurately and quickly

Test Name Navigate to menu
of a club

Ease of use 1-5 Comments

User 1 Pass 4 Moved quickly after pressing info button

User 2 Pass 3 Took me a few minutes to realise “I” was a button
but work perfect when I pressed it

User 3 Pass 4 Worked well

User 4 Pass 4 Worked fine

Test Name Navigate back and
select different club

Ease of use 1-5 Comments

User 1 Pass 5 Back button responded quickly

User 2 Pass 4 Back button worked well

User 3 Pass 4 Back button worked well and quickly

User 4 Pass 5 Back button was clearly visible and worked perfectly

Test Name Try each of the
menu options for
the selected club

Ease of use 1-5 Comments

User 1 Pass 4 All worked and provided the information for the se-
lected club

User 2 Pass 3 All options worked but tickets and league table were
slower to respond

User 3 Pass 4 All of them worked well and were in line with the
club I selected

User 4 Pass 3 They all worked but the website and tickets options
were a bit slow to load.

Test
Name

Application Over-
all Performance

Ease of use 1-5 Comments

User 1 Pass 5 App worked quite perfectly , did what it was supposed to do
and provided me with all the information for the football
clubs around me

User 2 Pass 4 The app was good overall, all features worked and was gen-
erally quick to respond. Maybe change the info button to
make it more obvious it’s a button.

User 3 Pass 3 The app worked fine except for when the clubs and location
didn’t load which meant nothing else worked apart from the
login at the time, once the clubs showed up it worked ok.

User 4 Pass 3 Everything worked well and good. Improvements could be
made on the speed of the website and tickets options re-
sponding.

2.4.3. Screen Size Compatibility Testing

In order to test how the application looked on the various screen sizes and resolutions

the iPhone comes in. I used the iPhone simulator to run the application on each of the

devices released by Apple. Initially this took time to configure the app to look as it should

on the various devices but after some constraint and frame altering and adjustments the

application displayed on each screen size and resolution as it should have.

2.5. Graphical User Interface (GUI) Layout

On opening the application the user is required to sign in using valid user credentials or

else sign up as a new user. Once logged in the user is brought to the main interface which

consists of a large map showing the users location as well as showing football clubs as

pin annotations. The user can then select these clubs and click the information button to

bring them to the next menu interface. Here the user can select various options in relation

to the club they selected on the map interface. The options included for the user to find

information on the selected club include club website, league table, tickets and directions.

There is a consistent green colour scheme throughout the application layout in keeping

with the application logo and graphics in order to make the app more visually appealing

and vibrant to the user. There is also a navigation bar throughout the app to help the user

identify which scene they are currently on and allow the user to navigate back to previous

scenes.

3. Conclusions

Success

Overall I have enjoyed developing this project. It has been very challenging and through

my attempts to overcome these challenges, I have learned so much more about mobile

application development particularly iOS development. I have also greatly improved my

knowledge and understanding of programming languages specifically the Swift program-

ming language. It has given me a huge boost of confidence that I could build an applica-

tion like this in a short period of time while completing my other studies and balancing

other activities.

Problems Faced

The main problem faced at the beginning of this project was my lack of programming

skills. I was worried this would deeply affect my project and I would not be able to get a

good grade. However after a lot of hard work and practice I continually gained confidence

and began to take major leaps in my learning process and my project development.

Throughout my project build I would often get coding errors but I found using the internet

as a way of finding out more about what each error means and how to fix them allowed

me to get a greater understanding on the most common errors and also how to fix them

quickly and efficiently. Other more complex errors took more time to evaluate but I found

that taking a break and working on other requirements gave me a chance to take a step

back and take a different approach towards the error the next time.

4. Further development

I intend on continuing to develop this project into a practical application that could be used

in the real world. I will continue to tweak the application until it is visually and structurally

perfect and ready to be introduced onto the AppStore.

I would also like expand the apps resources outside of Ireland and include maybe Amer-

ican or other countries football clubs.

With more resources and time I would be able to further the ability of allowing in app

purchasing of tickets for selected clubs and matches. This would involve bringing in a

third party API such as Ticketmaster or Eventbright in order to correctly distribute tickets

for the respected football clubs.

I would also like to be able to generate a bit of revenue from the application from in-app

advertising. To do this I feel the app first needs to first establish a greater user base and

then take advantage of Apples iAd Framework which allows developers to set up add

banners and pages within their application and gain revenue through user views and in-

teractions.

With even further development I would expand the apps features to expand and provide

more club information options such as club fixture lists and news feeds.

Finally if all the above is completed I would then consider releasing the application on

other platforms such as Android and Windows.

5. References

App.pluralsight.com, (2015). Build with Swift Pluralsight. [online] Available at:

https://app.pluralsight.com/library/courses/swift-ios-application-real-world/table-of-con-

tents [Accessed 12 Dec. 2015 - Onwards].

App.pluralsight.com, (2015). iOS Fundamentals Pluralsight. [online] Available at:

https://app.pluralsight.com/library/courses/ios-9-fundamentals/table-of-contents [Ac-

cessed 7 Dec. 2015 - Onwards].

App.pluralsight.com, (2015). iOS whats new - Pluralsight. [online] Available at:

https://app.pluralsight.com/library/courses/ios9-whats-new/table-of-contents [Accessed 2

Jan. 2016].

Developer.apple.com, (n.d.). iOS Developer Library. [online] Available at: https://devel-

oper.apple.com/library/ios/navigation/ [Accessed 5 Dec. 2015 - Onwards].

Crew.co. (2016). Should you build an iOS app or Android app? | Crew. [online] Available

at: https://crew.co/how-to-build-an-online-business/build-ios-app-or-android-app/ [Ac-

cessed 2 Jan. 2016 - Onwards].

AppCoda. (2016). AppCoda Community - Learn iOS Programming and Build iPhone App.

[online] Available at: https://www.appcoda.com/ [Accessed 4 Jan. 2016- Onwards].

Raywenderlich.com. (2016). Ray Wenderlich | Tutorials for iPhone / iOS Developers and

Gamers. [online] Available at: https://www.raywenderlich.com/ [Accessed 9 Nov. 2015-

Onwards].

YouTube. (2016). CodeWithChris. [online] Available at:

https://www.youtube.com/user/CodeWithChris [Accessed 7 Feb. 2016- Onwards].

YouTube. (2016). GeekyLemon. [online] Available at:

https://www.youtube.com/user/GeekyLemon [Accessed 7 Feb. 2016- Onwards].

YouTube. (2016). Jared Davidson. [online] Available at:

https://www.youtube.com/user/Archetapp [Accessed 5 Feb. 2016- Onwards].

YouTube. (2016). London App Brewery. [online] Available at:

https://www.youtube.com/channel/UCVD5Vh9LhLBxp3o1vRNyf_w [Accessed 7 Feb.

2016- Onwards].

YouTube. (2016). Vea Software. [online] Available at:

https://www.youtube.com/user/veasoftware [Accessed 7 Feb. 2016- Onwards].

GIMP. (2016). GIMP. [online] Available at: https://www.gimp.org/ [Accessed 2 Sep. 2015].

GitHub. (2016). Alamofire/Alamofire. [online] Available at: https://github.com/Ala-

mofire/Alamofire [Accessed 2 Mar. 2016].

Import.io. (2016). Import.io | Web Data Platform & Free Web Scraping Tool. [online] Avail-

able at: https://www.import.io/ [Accessed 17 Dec. 2015].

Parse.com. (2016). Parse. [online] Available at: https://parse.com/ [Accessed 12 Sep.

2015].

Team, C. (2016). CocoaPods.org. [online] Cocoapods.org. Available at: https://co-

coapods.org/ [Accessed 4 Mar. 2016].

6. Appendix

6.1. Project Proposal

Project Proposal

LOCATION FOOTBALL

Shane Noonan

x12435988

x12435988@student.ncirl.ie

BSc (Hons) in Computing

Specialisation: Networking and Mobile Technologies

Date: 28/09/2015

1. Objectives

Location Football will be a fun and easy mobile application that provides club information,

league details and ticket booking information on football clubs based around your mobile

location.

Objectives:

• To show local clubs on a map interface around your current location.

• To allow the user to select clubs to find out more information.

• To provide league table details on clubs.

• To provide a link to book tickets to see selected club.

• To provide directions to the desired club.

2. Background

I originally came up with this idea for my second year project and worked on a similar web

application that showed all the top European clubs on a google map interface that pro-

vided their stadium location with a news feed and relevant external links. However I then

released that the app was somewhat irrelevant as there are plenty of football apps cov-

ering the top clubs in the world. Then when on holiday in Asia and wanting to go see or

even find out where and when their local football teams play, I found it messy and scat-

tered to find the information necessary. This is when I thought about altering my second

year project to be mobile and location based and to be more focused on match and ticket

information and booking.

3. Technical Approach

I will begin by researching similar applications to see what’s already out there and what I

could do to be different with my app. I will then research and decide on what approach to

take in terms of technologies, libraries and api’s to use. After deciding, I will then begin to

draw out storyboards before deciding on the look and feel of my app before beginning my

app development. Also I will do two key testing phases mid-point and towards the end of

the app completion. I will also upload reflective journals each month to track my progress

and development throughout this project.

4. Special resources required

An Apple Macbook is required as it’s the only device you can use the Xcode application

to build an ios app. An Iphone will also be required to run the application to provide testing.

6. Technical Details

Swift, Xcode IDE. Parse.com SDK

7. Evaluation

I will evaluate on a small scale using the ionic mobile simulator and my own Iphone by

testing each section on the app after completion before moving on to the next section. I

will then do a full mid-term evaluation before doing my mid-point presentation by giving

the app to my friends and family to test and note any problems or changes they would

consider for the app. I will then take these suggestions giving myself time to make any

changes before my mid-point presentation.

I will then do a final evaluation after app completion to which I will again give the app to

friends and family to note any problems or any suggestion they might have to improve the

app. I will then give myself time to fix/make changes before submitting my project as

complete on May 11th.

Shane Noonan. 02/10/2015

6.2. Project Plan

Task Name Duration Start Finish

Project 166 days Wed 23/09/15 Wed 11/05/16

Requirement Specification Document 11 days Fri 23/10/15 Fri 06/11/15

Analysis & Design 11 days Fri 20/11/15 Fri 04/12/15

Prototype Presentation 9 days Mon 25/01/16 Thu 04/02/16

Stage 1 Preparation & Planning 23 days Wed 30/09/15 Fri 30/10/15

 1.1 Analysis of Similar Apps

 1.2 Analysis of platforms and technol-

ogies

 1.3 Mock-ups and Ideas

Stage 2 Design and Development 46 days Mon 02/11/15 Mon 04/01/16

 2.1 Storyboards and Layouts

 2.2 Code Work

 2.3 UI Development

Stage 3 Prototype Build & Testing 22 days Tue 05/01/16 Wed 03/02/16

 3.1 User & Data Testing

 3.2 Prototype Presentation Prep

Stage 4 Final Development & Design 25 days Fri 05/02/16 Thu 10/03/16

 4.1 Prototype Review

 4.2 Further development

Stage 5 Final Testing & Completion 24 days Fri 08/04/16 Wed 11/05/16

 5.1 Data Testing

 5.2 User Testing

 5.3 Final app configuration

6.3. Monthly Journals

