

National College of Ireland

BSc in Computing

2015/2016

Michael Kilfeather

12420472

x12420472@student.ncirl.ie

Equilibrium

Technical Report

 - 2 -

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name: Michael Kilfeather

Student ID: 12420472

Supervisor: Eugene McLaughlin

 - 3 -

SECTION 2 Confirmation of Authorship

The acceptance of your work is subject to your signature on the following

declaration:

I confirm that I have read the College statement on plagiarism (summarized

overleaf and printed in full in the Student Handbook) and that the work I have

submitted for assessment is entirely my own work.

Signature:___

Date:____________

NB. If it is suspected that your assignment contains the work of others falsely

represented as your own, it will be referred to the Collegeôs Disciplinary Committee.

Should the Committee be satisfied that plagiarism has occurred this is likely to lead

to your failing the module and possibly to your being suspended or expelled from

college.

Complete the sections above and attach it to the front of one of the copies
of your assignment,

What constitutes plagiarism or cheating?

The following is extracted from the collegeôs formal statement on plagiarism as

quoted in the Student Handbooks. References to ñassignmentsò should be taken

to include any piece of work submitted for assessment.

Paraphrasing refers to taking the ideas, words or work of another, putting it into

your own words and crediting the source. This is acceptable academic practice

provided you ensure that credit is given to the author. Plagiarism refers to copying

the ideas and work of another and misrepresenting it as your own. This is

 - 4 -

completely unacceptable and is prohibited in all academic institutions. It is a

serious offence and may result in a fail grade and/or disciplinary action. All sources

that you use in your writing must be acknowledged and included in the reference

or bibliography section. If a particular piece of writing proves difficult to

paraphrase, or you want to include it in its original form, it must be enclosed in

quotation marks

and credit given to the author.

When referring to the work of another author within the text of your project you

must give the authorôs surname and the date the work was published. Full details

for each source must then be given in the bibliography at the end of the project

Penalties for Plagiarism

If it is suspected that your assignment contains the work of others falsely

represented as your own, it will be referred to the collegeôs Disciplinary Committee.

Where the Disciplinary Committee makes a finding that there has been plagiarism,

the Disciplinary Committee may recommend

¶ that a studentôs marks shall be reduced

¶ that the student be deemed not to have passed the assignment

¶ that other forms of assessment undertaken in that academic year by the
same student be declared void

¶ that other examinations sat by the same student at the same sitting be
declared void

Further penalties are also possible including

¶ suspending a student college for a specified time,

¶ expelling a student from college,

¶ Prohibiting a student from sitting any examination or assessment.,

¶ the imposition of a fine and

¶ The requirement that a student to attend additional or other lectures or
courses or undertake additional academic work.

Table of Contents

Executive Summary .. 9

1 Introduction .. 10

1.1 Background ... 10

1.2 Aims .. 10

1.3 Technologies ... 11

1.3.1 Unity .. 11

1.3.2 Microsoft Visual Studio 2015 IDE .. 11

1.3.3 C# ... 12

1.3.4 RAIN AI ... 12

1.3.5 Dialogue System for Unity... 13

1.3.6 Mixamo Fuse .. 13

1.3.7 InControl ... 14

1.3.8 ProBuilder Basic ... 14

2 System .. 15

2.1 Requirements .. 15

2.1.1 User Requirements Definition ... 15

2.1.2 Requirements Specification .. 15

2.1.3 Functional requirements ... 16

2.1.4 Non-Functional Requirements .. 30

2.1.5 Data requirements .. 32

2.1.6 User requirements .. 32

2.1.7 Environmental requirements ... 32

2.1.8 Usability requirements .. 32

2.2 Design and Architecture .. 34

2.2.1 Use Case Diagram .. 34

2.2.2 Class Diagram .. 34

2.2.3 Logical View .. 39

2.2.4 Software Architecture .. 39

2.2.5 Performance ... 40

2.3 Implementation .. 41

2.3.1 UserInput.cs .. 41

 - 6 -

2.3.2 CharacterMovement.cs ... 43

2.3.3 CharacterStats.cs ... 44

2.3.4 GameManager.cs ... 45

2.3.5 WeaponManager.cs .. 46

2.3.6 WeaponControl.cs .. 47

2.3.7 GainReward.cs ... 48

2.3.8 IncrementOnDestroyModified.cs ... 48

2.3.9 EnemyAI.cs ... 49

2.3.10 GraphicsMenu.cs .. 50

2.3.11 SkillTreeNode.cs ... 52

2.3.12 MyCharacterActions.cs ... 53

2.3.13 FreeCameraLook.cs ... 54

2.3.14 PersistentPlayerData.cs .. 54

2.3.15 ChooseRandomLocation.cs .. 56

2.3.16 Dialogue Tree (Dialogue System for Unity) 57

2.3.17 Behaviour Tree (RAIN AI) ... 59

2.4 Testing ... 60

2.4.1 Unit Testing ... 60

2.4.2 Black-Box / Functional Testing .. 61

2.4.3 Performance Testing ... 62

2.5 Graphical User Interface (GUI) Layout .. 63

2.5.1 Pause Menu .. 63

2.5.2 Quest Log Window .. 64

2.5.3 Skill Tree panel ... 65

2.5.4 Player HUD ... 65

2.5.5 Main Menu .. 66

2.5.6 Options Menu .. 67

2.5.7 Weapon store panel .. 68

2.5.8 Dialogue UI ... 69

2.6 Customer testing ... 69

2.7 Evaluation .. 71

3 Conclusions ... 74

4 Further development or research .. 76

 - 7 -

5 References .. 77

6 Appendix ... 78

6.1 Project Proposal .. 78

6.1.1 Objectives ... 79

6.1.2 Background .. 80

6.1.3 Technical Approach .. 81

6.1.4 Special resources required ... 82

6.1.5 Project Plan .. 83

6.1.6 Technical Details .. 83

6.1.7 Evaluation ... 84

6.2 Project Plan ... 85

6.3 Requirement Specification ... 86

6.3.1 Document Control ... 86

6.3.2 Revision History .. 86

6.3.3 Distribution List ... 86

6.3.4 Related Documents .. 86

6.3.5 Introduction ... 88

6.3.6 User Requirements Definition ... 90

6.3.7 Requirements Specification .. 91

6.3.8 Interface Requirements ... 103

6.3.9 System Architecture .. 107

6.3.10 System Evolution .. 108

6.4 Product Design Specification ... 109

6.4.1 Introduction ... 111

6.4.2 General Overview and Design Guidelines/Approach 111

6.4.3 Architecture Design ... 111

6.5 Monthly Journals ... 115

6.5.1 Reflective Journal ï September .. 116

6.5.2 Reflective Journal ï October ... 117

6.5.3 Reflective Journal ï November ... 118

6.5.4 Reflective Journal ï December ... 120

6.5.5 Reflective Journal ï January ... 121

6.5.6 Reflective Journal ï February ... 123

 - 8 -

6.5.7 Reflective Journal ï March.. 124

6.6 Other Material Used .. 125

6.6.1 Evaluation Surveys ... 125

 - 9 -

Executive Summary

Equilibrium is a cyberpunk-themed third-person action role-playing stealth game

made in Unity 3D. The objective of the game is for the player to complete missions

assigned by an NPC. Upon completion of these missions, the player will be

rewarded with money and skill points. The majority of these missions take place in

a central mission area, with each mission having different objectives. Enemies will

be powered by behaviour trees, in order to implement more complex AI into the

game. With the money that the player acquires throughout the game, they will be

able to enter a shop in the óhub worldô of the game and purchase new weapons

and ammunition.

The game was developed using C# in the Microsoft Visual Studio 2015 IDE. The

game is primarily aimed at the Windows PC platform due to its graphical fidelity.

3D models for the game were acquired from various websites e.g. TF3DM as well

as the Unity asset store and some 3D character models were created through

óMixamo Fuseô software. Data is saved and stored on the userôs PC using player

preferences in Unity through the use of the Dialogue System pluginôs save and

load feature.

The target audience for this game is aimed towards those aged 16 and over, due

to the gameôs mature content, including violence.

 - 10 -

1 Introduction

1.1 Background

The games industry has grown exponentially in the past couple of years. In Ireland

alone, it has made an estimated ú206 million in revenue. In the past, the

development process for a game was a monumental task, often requiring a large

studio comprised of programmers, artists, sound designers and more. Nowadays,

many games development tools / engines are now available for free to the general

public such as the Unity game engine and more recently, the Unreal engine. This

now makes the process of developing a game from start to finish a lot more

feasible, with just a small independent studio.

The stealth genre of video games is considered a niche market. True stealth

games such as Metal Gear Solid or Splinter cell catered to a specific audience,

often due to their level of difficulty and learning curve behind them meaning that

they generally didnôt appeal to the casual gamer. In more recent years, these types

of games have tried to break away from this mould and have become more óaction-

centricô and cinematic in feel in the hopes of appealing to a wider audience. To

achieve this, many stealth games of today have incorporated open-world

environments and RPG elements, seen in extremely successful franchises such

as Grand Theft Auto, Fallout and Skyrim. Previously, stealth games were very

linear in nature. This has now changed, as evidenced by the recently released

Metal Gear Solid V: The Phantom Pain, where the player can approach missions

in creative ways in a vast, open environment, with a plethora of weapons and

gadgets at their disposal.

1.2 Aims

The aim of this project is to create an immersive third-person action stealth RPG.

The game will comprise elements seen in games like Watch Dogs, Deus Ex and

Mass Effect such as interactive NPCôs, skill treeôs, realistic weapon mechanics and

in-game item purchasing such weapons, ammunition and silencers.

 - 11 -

The game will allow the player to give their character new abilities by acquiring skill

points through the completion of objectives and purchasing these skills through the

Skill Tree menu. The player will be able to enter a shop in the óhub worldô of the

game and purchase weapons and ammunition, by using credits they have earned

in the game.

My goal for this project is to retain the elements of what make stealth games so

successful, to cater to fans of the stealth genre, while also incorporating elements

seen in other genres such as RPGôs to appeal to an even wider audience.

1.3 Technologies

1.3.1 Unity

Unity is a game engine used to develop both 3D and 2D games for various

platforms such as PC, consoles, mobile devices and websites. Unity was chosen

as the primary technology for this project. I chose the Unity game engine as the

primary technology for this project as I was already very comfortable working with

it prior to starting this project due during work placement, having originally learnt it

myself in self-study. A great benefit of Unity is that it has excellent support available

from the community through official unity forums as well as YouTube tutorials. It

also has an asset store which contains a large selection of both paid and free

assets that can be used in projects such as plugins and 3D models.

The version of Unity that is currently being used for development of this project is

Unity 5. Unity 5 is a significantly upgraded version of the game engine as it

introduced many new features, mainly related to graphics such as Real-time

Global Illumination, HDR Reflection Probes and a Physically-based Standard

Shader.

1.3.2 Microsoft Visual Studio 2015 IDE

Microsoft Visual Studio is an integrated development environment (IDE) primarily

used to develop computer programs and web applications e.g. ASP.NET. It

 - 12 -

supports plenty of programming languages such as C, C++, Visual Basic.NET, C#

and more.

Visual Studio was chosen as the IDE for my project due to the many benefits it

provides. Visual Studio works seamlessly with Unity. It is great for debugging a

Unity game that is either running in the Unity Editor or in the Unity Player, or even

debugging an external managed DLL in a Unity Project.

Code can also be written much quicker due to Visual Studioôs IntelliSense,

refactoring and code browsing capabilities.

1.3.3 C#

C# (pronounced ñC-sharpò) is an object-oriented programming language from

Microsoft and is one of the programming languages designed for the Common

Language Infrastructure (CLI). It is generally used in conjunction with the Microsoft

Visual Studio IDE. I chose C# as the primary programming language for this project

as it is the recommended programming language of choice to use with Unity.

Unity games can be programmed in three different languages; C#, UnityScript

(JavaScript) and Boo. C# is recommended for Unity as it supports many more

features, faster script compilation and better supported documentation. Prior to the

development of this project, I had worked with the C# programming language and

Unity game engine over the course of my internship, so I was already very familiar

with the language.

1.3.4 RAIN AI

RAIN AI is a powerful AI engine used to create complex behaviour for any

character in any game and on any platform. It uses behaviour trees for

implementing artificial intelligence. In terms of AI, a behavior tree controls the flow

of decision making of an agent. They describe switching between a finite set of

 - 13 -

tasks in a modular way. Behaviour Trees came to fruition from the games industry

as a powerful tool to model the behaviour of non-player characters (NPCs).

I chose RAIN AI for many reasons. For one, it is completely free and there are no

license fees. It is very quick and easy to use, once it is set up and the basic

fundamentals understood. It also offers full access to a moderated support forum,

which I have used a few times over the course of this project and which has been

very helpful. I used RAIN to give enemy characters in my game complex behaviour

through various states such as patrolling, detecting the player, attacking the player

and searching for the player. RAIN AI uses sensors, both audio and visual that can

be attached to the enemy / NPC. Audio sensors can be used to detect sounds from

the player or other characters within a certain radius of the enemy. Visual sensors

are used for the enemyôs line of sight.

1.3.5 Dialogue System for Unity

Dialogue System for Unity is a powerful Unity plugin that allows the user to

implement interactive dialogue and quests into the game. It uses a visual node-

based editor so that the user can create branching dialogue. It also allows for the

implementation of cutscenes, quest logs, save/load functionality and more. I chose

this plugin due to the fact that it is simple to use, very efficient and provides plenty

of documentation and moderated forum support. This plugin is necessary as

dialogue will play a big part in the game as it is used to set the context of the story

for the game as well as a means of triggering missions for the player to partake in.

1.3.6 Mixamo Fuse

Mixamo Fuse is 3D character creation software developed by Mixamo in

collaboration with Adobe. It allows the user to create a plethora of unique character

designs. The user can customize values to change the shape, texture and clothing

of the character. Once the user is satisfied with the design of their character, the

character model can be uploaded to the Mixamo website, where it will be

automatically rigged and animated. This software was chosen for use in this project

 - 14 -

as it is a big timesaver for adding characters and animating them. Manually rigging

and animating 3D models is a very complex and time consuming process.

1.3.7 InControl

InControl is an input manager for the Unity game engine. It provides input

mappings for most gamepads and controllers such as the PS4 Dualshock

controller, Xbox One gamepad and more. The asset is written in C# and makes it

easy to add cross-platform controller/gamepad support to your game. Actions can

be binded to controls. These controls can also be rebinded at runtime. This asset

was chosen for the project as it is far more efficient than binding controls through

the Unity game engine itself.

1.3.8 ProBuilder Basic

 ProBuilder is a 3D tool that enables a developer to build and modify geometry

within the Unity editor itself. In other words, there is no need for the developer to

use external 3D modeling software such as Autodesk Maya or 3DS Max.

ProBuilder Basic is the free version of ProBuilder Advanced, created by ProCore.

The main purpose of ProBuilder Basic is really for prototyping basic levels and is

used early on in the development process of the game for constructing basic

geometry and creating ñwhite-boxò scenes. These are scenes that donôt have any

texture or detail and use simple geometry. In this instance, ProBuilder Basic is the

perfect tool. Vertices and faces of shapes can be modified with this tool and this is

something that the default Unity editor does not provide.

 - 15 -

2 System

2.1 Requirements

2.1.1 User Requirements Definition

The objective of the game is for the player to play through missions that are

assigned to the character throughout the game. Upon completing these missions,

the player will gain money and skill points which can be used to purchase new

weapons and unlock abilities.

The user can save their progress whenever they are in the óhub worldô of the game.

They can load their save data at any time during the game and system will load

the óhub worldô level and load all of the characterôs stats and other items they had

at the point they saved.

The user will be able to unlock new skills through the use of a skill tree system.

The skill tree can be accessed through the pause menu. The user will be able to

purchase new weapons for their character when they enter a shop. The user can

quit the game whenever they wish. The user can also adjust graphical options in

order to get the best performance possible out of their system.

2.1.2 Requirements Specification

After no more than 10 ï 15 minutes of playing through the game, the user should

know how to access and use all of the gameôs features with ease. Specific actions

will show button prompts so the player will know how to perform the action in the

game. A menu can be accessed in-game which will show all of the controls in

detail. Response time should be very quick as it should take the user no more than

1 minute to start the game upon execution.

 - 16 -

2.1.3 Functional requirements

New Game

The user should be able to start the game from the beginning when starting the

application for the first time. The user can start a new game by selecting the óNew

Gameô button on the main menu of the game. This requirement has not changed

from the original requirements specification document.

Start Mission

This requirement enables the player to start a mission in the game. To do this, the

player can open up the óQuest Logô window by accessing it from the pause menu.

From here, the user can view the mission and itôs description. The user

approaches an NPC to trigger a mission. Once the playerôs conversation has

ended with an NPC, the mission will be added to the playerôs Quest Log window

where they can view the mission details.

Unlock Skill

This requirement allows the player to unlock new skill for their character to utilize.

Skills can be unlocked through the use of a skill tree which can be accessed from

the pause menu in-game. The player will accumulate skill points over the course

of the game. When they earn enough points for a skill, it will be available for

purchase. Skill points are awarded through completion of quests. This requirement

remains unchanged.

Change Settings

This requirement enables the user to modify various settings from the main menu

of the game such as the graphics level they wish to run the game on, resolution,

anti-aliasing levels and more.

 - 17 -

This is a newly added requirement as I feel that it is important for the player to be

able to customize the game to their liking, in the event that their system cannot run

the game at optimal settings.

Purchase Weapon

This requirement allows the user to purchase new weapons for their character.

The player can enter a shop from the in-game city and purchase a variety of

different weapons. The player uses in-game ócreditsô to purchase these items.

Credits are acquired through the completion of missions and through other various

conditions.

This requirement has been changed to just weapon purchasing. Prior to this,

clothing customization was also intended to be added, but due to time constraints,

this had to be cut down to weapon purchasing.

Save Game

This requirement gives the user the ability to save their progress whenever they

are in the óhub-worldô of the game. To do this, the user opens the pause menu.

From here, the user presses the óSave Gameô button. This will then store the save

game data to a file. This is done through the Dialogue System for Unity plugin,

which saves data to óPlayerPrefsô. On Windows, these PlayerPrefs are stored in

the registry under HKCU\Software\[company name]\[product name] key, where the

company and product names are the names set up in óProject Settingsô in the Unity

Editor.

This requirement has been altered, due to some setbacks with the óLoad Gameô

requirement. Previously, the requirement should have worked in a way that the

user can save at any time. This is explained in detail in the óConclusionsô section

of the report.

 - 18 -

Load Game

The requirement will allow the user to pick up from where they had last saved the

game. All of the playerôs progress such as money earned, skill points attained and

missions completed should remain intact when they load the game.

This requirement has been altered. Previously, it was intended for the user to be

able to load the game from the main menu. Due to some setbacks, the requirement

had to be altered so the user can only load the game during gameplay. This is

further explained in the óConclusionsô section of the report.

Quit Game

This requirement lets the player quit the game in two different ways, and is now

slightly different to the original óQuit Gameô requirement as a result. One way in

which the player can quit the game is by pausing the game. This will open up the

pause menu. From here, the player can quit the game and this will then bring them

back to the main menu, but does not close the application entirely. Another way of

quitting the game is through both the main menu and pause menu. From the main

menu, the user simply clicks on the óQuit Gameô button and the application will exit

to the desktop. From the pause menu, the player can click the óQuit to Desktopô

button and this will carry out the same procedure.

 - 19 -

 Requirement 1<New Game>

2.1.3.1.1 Description & Priority

This allows the player to start a new game. This requirement is vital as it is required

for the player to begin playing the game for the first time.

2.1.3.1.2 Use Case

 Scope

The scope of this use case is to allow the player to start a new game.

Description

Describes the process by which the player starts a new game.

Use Case Diagram

Flow Description

Precondition

The system is in initialization mode

Activation

This use case starts when the player starts a new game.

Main flow

1. The system identifies the player.

2. The Player starts a new game.

3. The system loads the opening level of the game.

 - 20 -

Alternate flow

N/A

Exceptional flow

 N/A

Termination

The system presents the next screen to the player.

Post condition

The system goes into a wait state

 Requirement 2<Start Mission>

2.1.3.2.1 Description & Priority

The player commences a mission. This is required so that the player can progress

through the game by completing missions.

2.1.3.2.2 Use Case

Scope

The scope of this use case is to allow the player to start a mission.

Description

This use case describes the means by which a player can start a mission.

Use Case Diagram

 - 21 -

Flow Description

Precondition

The system is in a wait state after the player starts the game.

Activation

This use case starts when the player starts a mission.

Main flow

1. The player is in the main town area.
2. The player approaches the NPC in the town area.
3. The player selects the missions presented to them during the

conversation from the Dialogue user interface.

Alternate flow

N/A

Exceptional flow

 N/A

Termination

The system loads a new scene, where the mission will take place.

Post condition

The system goes into a wait state

 - 22 -

 Requirement 3<Unlock Skill>

2.1.3.3.1 Description & Priority

The player unlocks a new skill / ability for them to use during missions. This is

important as it will help players approach missions in different ways.

2.1.3.3.2 Use Case

Scope

The scope of this use case is to allow the player to gain a new skill.

Description

This use case describes the means by which a player gains a skill.

Use Case Diagram

Flow Description

Precondition

The system is in a wait state after the player starts the game.

Activation

This use case starts when the player unlocks a Skill.

Main flow

1. The player opens the Skill Tree menu.
2. The player selects the skill they wish to unlock.
3. The system unlocks the skill from the skill tree.

Alternate flow

 - 23 -

N/A
Exceptional flow

N/A

Termination

The system stays on the Skill Tree menu, unless the player decides to exit

the Skill Tree menu.

Post condition

The system goes into a wait state

 Requirement 4<Change Settings>

2.1.3.4.1 Description & Priority

The player can access the options menu in order to adjust graphical settings as

well as controls to suit the userôs needs. This is vital especially if the user is having

difficulty in running the game at a playable framerate.

2.1.3.4.2 Use Case

Scope

The scope of this use case is to allow the player to change various settings such

as graphics or controls.

Description

This use case describes the process by which the player can change the graphical

options of the game.

Use Case Diagram

 - 24 -

Flow Description

 Precondition

 The system is in a wait state

 Activation

 The use case starts after the player opens the óOptionsô menu.

 Main Flow

1. The player opens the options menu from the main menu.
2. The player selects the value of the graphical setting they wish to change.
3. The system changes the quality of the graphics.

Termination

The system stays on the options menu until the player presses the óbackô button to

return to the main menu.

Post Condition

The system goes into a wait state.

 Requirement 5<Purchase Weapon>

2.1.3.5.1 Description & Priority

The player can purchase new weapons for the character from a shop in the game.

New weapons are used to help the player out during enemy encounters.

2.1.3.5.2 Use Case

Scope

 - 25 -

The scope of this use case is to allow the player to purchase new weapons for

their character.

Description

This use case describes the process by which the player can purchase weapons.

Use Case Diagram

Flow Description

 Precondition

 The system is in a wait state after the player starts the game.

 Activation

 The use case starts when the player enters a shop.

 Main flow

1. The player enters a shop.
2. A menu opens, displaying weapons that the player can purchase.
3. The player selects the item they want.
4. Money is taken from the playerôs inventory.

Termination

The system stays on the menu unless the player selects the óclose buttonô on

the menu.

Post Condition

 - 26 -

The system goes into a wait state.

 Requirement 6<Save Game>

2.1.3.6.1 Description & Priority

This requirement allows the player to save at a certain point within the game. This

is required so that the player can load back to a stage within the game, in case

they need to go back to that stage for whatever reason.

2.1.3.6.2 Use Case

Scope

The scope of this use case is to allow the player to save their progress mid-game.

Description

This use case describes the process by which the player saves the game.

Use Case Diagram

 Flow Description

 Precondition

 The system is in initialization mode.

 Activation

 The use case starts when the player saves the game.

 Main flow

1. The player opens the pause menu.
2. The player selects the óSave Gameô option.

 - 27 -

3. The system stores the save game data to a file.

Termination

The system returns the player to the pause screen.

Post Condition

The system goes into a wait state.

 Requirement 7<Load Game>

2.1.3.7.1 Description & Priority

The player can load the game at a certain point. This use case is required so the

player can load the current state of where they are in the game after they have

saved it.

2.1.3.7.2 Use Case

Scope

The scope of this use case is to allow the player to load the game.

Description

This use case describes the process by which the player loads the game.

Use Case Diagram

Flow Description

Precondition

 - 28 -

The system is in initialization mode.

Activation

The use case starts when the player loads the game.

Main Flow

1. The player first saves the game from the pause menu.
2. The player then opens up the pause menu.
3. The player selects the óLoad Gameô option from the pause menu.
4. The state of the game that was saved will then be Loaded.

Termination

The system presents the next screen to the player.

Post condition

The system goes into a wait state.

 Requirement 8<Quit Game>

2.1.3.8.1 Description & Priority

The player quits the game. This function is required so that the player can shut

down the application.

2.1.3.8.2 Use Case

Scope

The scope of this use case is to allow the player to quit the game.

Description

This use case describes the process by which the player quits the game.

 - 29 -

Use Case Diagram

Flow Description

Precondition

The system is in initialization mode.

Activation

This use case starts when the player quits the game.

Main Flow

1. The player selects the óQuit Gameô option from the main menu.
2. The system exits the application.

Alternate Flow

A1: <Quit game from Pause Menu>

1. The player opens the Pause Menu.
2. The player selects the óQuit Gameô option from the pause menu.
3. The system exits the application

Termination

The system closes the application.

Post condition

The system is off.

 - 30 -

2.1.4 Non-Functional Requirements

 Performance/Response time requirement

The game should run at 60 FPS on a userôs PC or Laptop. However this will largely

depend on the graphics card thatôs installed in the userôs computer. For optimal

performance and graphical fidelity, a dedicated graphics card would be

recommended e.g. Nvidia, AMD Radeon, as opposed to integrated graphics cards

such as Intel HD Graphics. Graphical settings can be adjusted before the player

launches the game so the user should still be able to play the game regardless of

their computer specifications. Response time should be almost instantaneous with

no input lag or delay when the user performs an action within the game.

 Availability Requirement

The game will be available to users at all times and can be accessed by launching

an .exe file.

 Robustness Requirement

Lots of beta testing and bug fixing will be done prior to the completion of the project

so that the user wonôt encounter any game breaking bugs, glitches or crashes.

 Reliability Requirement

The game should be available for the user to run successfully at all times,

especially if they have the game downloaded onto their computer.

 Maintainability Requirement

The game should be supported after its release. If there are any game breaking

bugs or glitches that may have gone unnoticed during beta testing, these will be

rectified.

 - 31 -

 Portability Requirement

The user will be able to play the game on both desktop PCôs and laptops. The user

can keep the game stored on a USB flash drive / external hard drive, or even

through cloud storage (Google Drive, Dropbox) and transfer it to another computer

and play it on that system if they wish.

 Extendibility Requirement

Additional content may be added at a later date after the gameôs initial release

which may possibly introduce new gameplay features which will add replayability

to the game.

 Reusability Requirement

If the player has finished all of the missions, they can return to the mission area of

the game at any time and face enemies to try out new weapons they have

purchased. The player can also earn more money within the game to purchase

these new weapons.

 Resource utilization requirement

The game should use as many resources as it can from what the userôs PC /

Laptop is capable of providing which will have an impact on performance and

graphical fidelity e.g. RAM size, Graphics Card, CPU frequency.

 - 32 -

2.1.5 Data requirements

Users require the ability to save their current progress they have made in the game.

This data is stored using óplayer preferencesô which is held in the registry of the

userôs computer. However, this data wonôt be large and the user will only need a

small amount of free space on their hard drive to save data.

For the final build of the game, the user should require no more than 1GB of space

on their hard drive in order for them to run and access all of the data associated

with game.

The game is saved through the Dialogue System for Unity plugin, using Unityôs

PlayerPrefs. This stores and accesses player preferences between different game

sessions. On Windows, this is stored in the Windows registry, under the

HKCU\Software\[company name]\[product name] key.

2.1.6 User requirements

The user must have either a desktop PC or laptop capable of running a modern

version of Windows OS, preferably Windows 10, or Windows 7 as the minimum.

The user should also have internet access in order to download the application.

2.1.7 Environmental requirements

The application must run on a fully stable working environment in order to ensure

the game runs smoothly. The application was designed with Windows OS in mind.

The game has been tested and confirmed to work on both Windows 7 and

Windows 10. Other versions of Windows have not been tested with the game such

as Windows 8.1, but should run without any issues.

2.1.8 Usability requirements

There are a number of different usability requirements that are relevant to this

project. The following requirements should be adhered to:

 - 33 -

Understandability:

¶ UI elements such as menus, fonts and in-game HUD (heads-up display)

should be clearly visible to the player and easy to understand.

¶ The player should understand how to play through the main portion of the

game and also how to access secondary features of the game.

Learnability:

¶ Special actions should be context sensitive e.g. button prompts

¶ Tips or hints should be provided in the game to aid the player

Operability:

¶ All actions described in documentation and through in-game control options

should work as described.

¶ Options such as graphics should be customizable in order to meet the userôs

needs.

Attractiveness:

¶ Graphical fidelity should be set to a certain standard e.g. shading, lighting,

textures

¶ UI elements should be visually appealing to the user.

 - 34 -

2.2 Design and Architecture

2.2.1 Use Case Diagram

2.2.2 Class Diagram

This class diagram displays each main class individually and shows the

relationship between each of these classes. The majority of these classes inherit

from the MonoBehaviour class, which is a default Unity class. Some classes,

however, inherit from custom made classes.

 - 35 -

UserInput.cs

CharacterMovement.cs

CharacterStats.cs

GameManager.cs

 - 36 -

WeaponManager.cs

WeaponControl.cs

GainReward.cs

 - 37 -

IncrementOnDestroyModified.cs

EnemyAI.cs

GraphicsMenu.cs

SkillTreeNode.cs

 - 38 -

MyCharacterActions.cs

FreeCameraLook.cs

PersistentPlayerData.cs

 - 39 -

ChooseRandomLocation.cs

2.2.3 Logical View

A simple logical view of how the user can launch the game and choose between starting
a new game or moving to the options menu to adjust graphical settings. Once the player
starts the game, they can also save and load the game.

2.2.4 Software Architecture

A simple diagram detailing the software (Unity) and the primary assets (packages)

it contains is outlined below.

 - 40 -

2.2.5 Performance

In terms of in-game performance, I am currently aiming for a consistent 60 FPS.
Assets will be added to the project overtime such as detailed geometry for levels,
lighting effects e.g. light probes and reflection probes which can be taxing on the
gameôs performance. Towards the end of the projectôs lifecycle, I will be optimizing
the game to ensure that the FPS is smooth and consistent for the user. Graphical
Settings can also be adjusted before the player starts the game, so they can adjust
the performance of the game on their computer.

 Save times and Load times should be fast so that there is not a long wait for the
user to resume playing.

The Unity Profiler tool will be used to analyse performance and gather usage
statistics e.g. CPU usage, RAM, GPU, Physics, animation. This tool is used to help
optimize in-game performance.

 - 41 -

2.3 Implementation

2.3.1 UserInput.cs

This class is pivotal to the game is it handles most of the playerôs actions

through inputs by using the keyboard, mouse, or PS4 controller. It handles

many actions including and not limited to: aiming, crouching, switching

weapons, picking up weapons as well as special actions like rolling and slow

motion.

This block of code is from the Update() method in the UserInput class. It is

essential for allowing the player to fire their weapon. It checks if the weapon

can fire automatically or semi-automatically (CanBurst) and if the player

pressed the ófireô button and the character is not currently reloading their

weapon. It also checks to see the weapon is silenced or not. If itôs not

silenced, the weapon will emit a muzzle flash.

 - 42 -

This is another method in the UserInput script which is very important as it

allows the user to aim correctly. It gets the spine from the characterôs

skeleton and applies the x, y and z coordinates, defined in the script,

depending on the type of weapon that the character is aiming with.

This is the óVisionActionô method. This method works if the óVisionô skill is

unlocked by the player from the skill tree. The method works as a toggle,

 - 43 -

using a boolean value. If the player presses the button used to activate the

skill, it checks if the boolean is set to ófalseô. If so, the skill will activate.

Otherwise, the skill will be disabled.

2.3.2 CharacterMovement.cs

 This class is responsible for handling the character motor and the physics of

the character. It is also used to initialize and update the Animator component

attached to the player character. It handles extra features such as footsteps, using

Inverse Kinematics (IK). It determines which foot is stepping on the floor when the

player moves and plays a sound accordingly. This class is also used to handle the

óStealth Takedownô system which allows the character to approach an enemy from

behind and knock them out, without having to use a weapon.

This is a code block contained within the óUpdateô method of the

CharacterMovement class. It is used for the Stealth Takedown system. Itôs used to

calculate the angle between the player character and the enemy that the player is

facing. It checks to see if the player is facing the back of the enemy. If so, the

takedown sequence is initiated and the animations for the player and enemy are

called.

 - 44 -

This boolean method is used to check the height of the player characterôs feet and

calculates the position of the foot relative to the position of the character. The first

line of code in this method uses a ternary operator which is basically a shorter way

of using if and else statements. This line of code checks to see if the óikGoalô is

equal to óleftô. If so, then the óAvatarIKGoal.LeftFootô is left.

2.3.3 CharacterStats.cs

This class handles all base stats of the player such as their health, skill points,

money as well as the abilities that the player has unlocked. It also has some

functions which are used for health regeneration over time, when the player is hurt

as well as bringing the player back to the óhub worldô scene if they die during a

mission.

This method handles the procedure for when the player character dies during a

mission. If an enemy kills the player and their health reaches 0, the screen fades

to black over 3 seconds.

 - 45 -

This is the next method that is called when the player character dies. A timer starts.

After 5 seconds, the óhub worldô scene will then load.

2.3.4 GameManager.cs

The GameManager class is used for a couple of different functions, mainly for

when the player moves between scenes and when the player dies when facing an

enemy.

This method, óOnLevelWasLoadedô in the GameManager class, is inherited from

the base class óMonoBehaviourô which is a default Unity class. This method will

always be called after a new scene has loaded. I used this method to handle any

conflicts that occurred, for example, when the player dies, I need to make sure that

when the player moves into a new scene, after dying, that they are alive again, so

I used this method to handle the logic.

This method was also useful for setting the point that the player should spawn in,

whenever a new scene was loaded.

 - 46 -

This method is used to add enemies to a list in this class. It is called in the

óOnLevelWasLoadedô method. This óAddEnemiesô method works by essentially

searching for GameObjects in the scene that are tagged with the name óEnemyô.

These enemy GameObjects populate the óenemiesô list inside the GameManager

class. The purpose of adding enemies to this list is so that whenever the player

wishes to use their special ability (Vision ability), the effect of this ability can be

applied to each and every enemy on the list.

2.3.5 WeaponManager.cs

WeaponManager is a base class for handling all of the weapons that the player

carries. Weapons are stored in a list and weapon types are stored in an óenumô.

This class also handles the logic for switching weapons as well as reloading the

current weapon that the player is carrying. Itôs also used for handling the Inverse

Kinematics (IK) of the characterôs left hand, so the hand can be positioned

depending on what weapon itôs carrying.

This method is used with the óMecanimô Animator system in Unity for the player

character. It checks to see if the player is carrying a weapon, and if so, it will adjust

the position and rotation of the characterôs left hand, depending on the transform

coordinates defined in the inspector in the Unity editor.

 - 47 -

2.3.6 WeaponControl.cs

WeaponControl is more of a sub class to WeaponManager. It is attached to each

and every single weapon that the character can use. Itôs used to determine the

amount of ammo thatôs currently in the weapon, itôs clip size, the firing rate, the

position of where the bullet should spawn from, sound effects as well as the

position of the weapon when itôs equipped (hands) and the position of the weapon

when itôs holstered (back / leg).

To decide what position the weapon should be holstered in, we use an enum,

called óRestPositionô, with the two rest positions being right hip and waist.

Inside the Update() method in the script, we use a switch statement along with the

enum to position the weapon on either the right hip or waist. To do this, we get the

transform of the spine (Waist) and transform of the right upper leg (RightHip).

These lines of code are used to correctly assign the position of the weapon, when

the weapon the character is using is equipped. It sets the position of the weapon

to the characters right hand and also sets the rotation of the weapon to whatever

coordinates are defined by the developer in the inspector.

 - 48 -

2.3.7 GainReward.cs

This is a custom class that coincides with the óDialogue System for Unityô plugin.

The óPixelCrushers.DialogueSystemô library is imported into this class to access all

the features of the Dialogue System Plugin.

This is the main method of the class. It uses parameters, in this case, skill points

and credits (money) parameters using the ódoubleô data type. Using the Dialogue

System plugin, you input the amount of credits / skill points the user should be

rewarded upon completing a mission.

2.3.8 IncrementOnDestroyModified.cs

This class is based on the óIncrementOnDestroyô class that is included with the

Dialogue System for Unity plugin that I modified, for the purposes of this project.

This class is attached to gameobjects that are part of a mission in the game that

may need to be destroyed by the player. The primary purpose of the class is to

check when an object has been destroyed. If so, an integer is incremented.

 - 49 -

This is the main method of the class. The method constantly checks to see if the

gameobject has been destroyed. It uses a condition which checks to see if the

integer value is greater than or equal to the maximum value of objects that need

to be destroyed. If so, then the Quest Log is updated and sets the current mission

to ócompleteô. The playerôs óCharacterStatsô script is then updated, by increasing

the skill points and credits in the class, as a reward for completing the mission. The

Dialogue Manager object will then display an alert with a string that can be defined

by the developer in the inspector in the Unity editor.

If, however, the object with this script is destroyed and the integer value is less

than the maximum value, the Dialogue Manager will display an alert detailing the

current amount of objects that have been destroyed and the amount remaining that

need to be destroyed.

2.3.9 EnemyAI.cs

This class is essentially the main class for all enemies in the game. This class also

refers to variables stored in the AI rig of the enemy which is used with the RAIN AI

plugin. The weapon system works differently for AI agents, so variables such as

óattackRateô and óattackTimerô which are ófloatô data types are stored here as well

as the current ammo. Agents donôt require complex weapon systems that the

player character requires.

The óAttackô logic is also stored in this class which allows the enemy to fire bullets

whenever the player is in its line of sight.

This condition checks if the boolean ñcanFireò is true, which is stored in the

ómemoryô of the agentôs AI rig. It also checks the agentôs animator component to

see if the ñReloadò state is not currently running. If both of these conditions return

true, the Attack() method is called.

 - 50 -

This is the Attack() method. It assigns the GameObject variable ñenemyToAttackò

as the óvarPlayerô GameObject variable that is stored in the memory of the agentôs

AI rig. This method also calculates the current direction of the player and the agent

will look at wherever the player is moving. The agent will then fire, as long as the

playerôs health is greater than 0.

2.3.10 GraphicsMenu.cs

The GraphicsMenu script is used for changing the settings of various graphical

options, from the main menu of the game. It allows the user to modify the

resolution, overall graphics quality, anti-aliasing and v-sync. These are modified

by selecting values on a dropdown list.

 - 51 -

These ódelegatesô are initialized in the Start() method of the script meaning that

they will be called when the scene that has this script is loaded. These delegates

are used for encapsulating references to the methods that are inside the delegate

objects. These delegate objects can then call the referenced method. The purpose

of these delegate objects for this script is so that the different dropdown lists that

need to have a number of different values can be populated instantly.

 - 52 -

This is one of the methods called in one of the delegate objects

(antiAliasingDropdown.OnValueChanged.AddListener). It uses a switch

statement. The switch is the value that is to be assigned, in this case, each value

in the drop down list.

2.3.11 SkillTreeNode.cs

The SkillTreeNode script is a component that is attached to each óskill buttonô in

the skill tree user interface. Its primary function is to call a method that unlocks the

skill when the user clicks on the button. Itôs also used to display information about

the skill such as skill points required to unlock it.

This is the method used to unlock the skill that is selected by the user. It uses a

condition to check first that the player has enough skill points to unlock the desired

skill and checks the boolean (unlocked) to make sure that the player canôt keep

clicking the button as they will keep losing skill points even though they already

unlocked the skill.

In order to determine which skill should be unlocked when the user clicks on the

skill button, this method uses a switch statement and uses a string variable as the

switch. For example, if the user clicks on the button and string óskillnameô is

 - 53 -

ñVisionò, it will choose ócase ñVisionòô from the switch statement as the skill to be

unlocked.

2.3.12 MyCharacterActions.cs

MyCharacterActions is a custom class made to inherit from the óPlayerActionSetô

class provided by the óInControlô plugin, which contains a set of player actions that

the player can bind to their input device e.g. PS4 controller, Keyboard.

This is from the MyCharacterActions script, where the character actions are

created. Each action is created from the óPlayerActionô class which is from the

óInControlô library.

This method: MyCharacterActions, is where each of the actions from above are

constructed and given a name, using a string. This class is instantiated and these

actions in this method are called from the UserInput class.

 - 54 -

2.3.13 FreeCameraLook.cs

The FreeCameraLook script is used to handle most of the main camera functions.

Itôs used to get the camera in the scene to lock on to the player, follow the player

whenever the player moves and also handle camera rotation. Itôs also used in

conjunction with the WeaponControl script for weapon recoil.

This is the method used for handling camera rotation, whenever the user moves

the mouse or analog stick on the PS4 controller. This is done by assigning x and

y ófloatô variables to the x and y Inputs of both the mouse and controller.

2.3.14 PersistentPlayerData.cs

PersistentPlayerData is the main script used for Save and Load operations within

the game. Its purpose is to keep objects and variables defined in the script

persistent. For example, when the player saves, itôll record the current value of all

of the variables defined in the script at that point in time. Whenever the player loads

the game, it will apply the saved value of those variables defined in the script.

The script works in conjunction with the óGame Saverô component which is part of

the Dialogue System for Unity plugin. This Game Saver component is attached to

the óDialogue Managerô gameobject in the scene. The PersistentPlayerData script

 - 55 -

is also attached to this same gameobject with the Game Saver component so the

PersistentPlayerData script can find the Game Saver component easily.

There are two main methods used in the PersistentPlayerData script:

OnRecordPersistentData() and OnApplyPersistentData().

In the OnRecordPersistentData() method, we set the values of the variables we

want to save and assign them names, using strings. These are then recorded and

stored in the óLuaô environment in the Dialogue System database.

In the OnApplyPersistentData() method, we get the variables from the object that

we stored in the Dialogue System Lua environment and apply those values that

were stored to the object. We can also choose what type of data type to apply them

as e.g. AsFloat, AsInt, AsBool.

 - 56 -

2.3.15 ChooseRandomLocation.cs

ChooseRandomLocation is an example of a custom action that is created for use

in the RAIN behaviour tree, for an agent. The main function of this script is to allow

the AI agent to search the map, within a certain distance defined by the developer,

when the player character is out of the line of sight of the enemy after the player is

discovered.

This script uses a timer, which is created by using a float variable called _startTime.

On this start method, the timer will then increment by Time.time, which is the time

at the beginning of the frame.

 - 57 -

This is part of the main method of the script. This method (ActionResult Execute),

runs whenever the action node that has this script attached to it runs. The purpose

of this is to find polys on the navigation mesh on the map, within the specified

distance by the developer, and then assign a target position for the AI agent to

move towards on this navigation mesh. A navigation mesh is essentially, a flat

plane made out of polygons that specifies which parts of the map / terrain can be

traversed by the agent.

Once the timer in this script exceeds the value specified by the developer, then the

agent moves from its search state to the patrol state.

2.3.16 Dialogue Tree (Dialogue System for Unity)

This is a Dialogue Tree thatôs used with the óDialogue System for Unityô plugin. It

allows the player to interact with an NPC. For this game, the intended use of this

Dialogue Tree is for the player to be able to trigger missions by interacting with the

NPC. Each node in the Dialogue Tree contains text fields. The developer inputs

 - 58 -

whatever text they want to appear into the node. Whenever the player interacts

with the NPC and a node fires, this text that was put into the node will be displayed.

The blue nodes in the Dialogue Tree are nodes that the player can choose to select

when the player is given the option during conversation, usually as a response.

When a node is selected from the Dialogue Tree, this inspector is displayed in the

Unity editor. It allows the developer to modify the contents of the node in the tree.

Fields in this node can be modified. For example, in the óConditionsô field, the

developer can set it so that this node will only become visible in the dialogue tree

for the player if a certain condition is met e.g. the state of a quest is set to ósuccessô.

This inspector also contains a field called óSequenceô. With this sequence field, you

can input code into the field, by using óSequencer Commandsô, which are built-in

commands from the Dialogue System for Unity plugin. An example of a Sequencer

Command would be enabling an object in the game scene e.g.

SetActive(object_name, true);

 - 59 -

2.3.17 Behaviour Tree (RAIN AI)

This is a segment of the behaviour tree used for the enemy characters in the game.

The behaviour tree is composed of nodes such as sequencers, constraints,

selectors and parallels. Sequencer nodes run actions in sequence e.g. character

moves to target position. Character then pauses for 5 seconds. Character plays

an animation. Parallel nodes allow actions to run at the same time e.g. enemy

walks towards player while firing weapon. Other nodes, such as Audio and Visual,

allow the AI agent to hear entities within a specified radius and see entities within

a specified line of sight. For more complex behaviour that cannot be done through

the default nodes used with RAIN, custom action / decision nodes need to be

added to the behaviour tree. These actions / decisions are essentially C# scripts,

but instead of inheriting from MonoBehaviour, the script uses the RAIN library to

