National College of Ireland
BSc in Computing
2015/2016

Michael Kilfeather
12420472
x12420472@student.ncirl.ie

Equilibrium

Technical Report

"—‘-
\ National
Collegeof

[reland

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name: Michael Kilfeather

Student ID: 12420472

Supervisor: Eugene McLaughlin

SECTION 2 Confirmation of Authorship

The acceptance of your work is subject to your signature on the following

declaration:

I confirm that | have read the College statement on plagiarism (summarized
overleaf and printed in full in the Student Handbook) and that the work | have

submitted for assessment is entirely my own work.

Signature:
Date:

NB. If it is suspected that your assignment contains the work of others falsely
represented as your own, it will be referredtotheCo | | egeb6s Di sciplinary
Should the Committee be satisfied that plagiarism has occurred this is likely to lead
to your failing the module and possibly to your being suspended or expelled from

college.

Complete the sections above and attach it to the front of one of the copies
of your assignment,

What constitutes plagiarism or cheating?

The following is extr ac tstatdmerit onophagiarismeas col | ege
guoted i n the Student Handbooks. Ref erences

to include any piece of work submitted for assessment.

Paraphrasing refers to taking the ideas, words or work of another, putting it into
your own words and crediting the source. This is acceptable academic practice
provided you ensure that credit is given to the author. Plagiarism refers to copying

the ideas and work of another and misrepresenting it as your own. This is

-3-

completely unacceptable and is prohibited in all academic institutions. It is a
serious offence and may result in a fail grade and/or disciplinary action. All sources
that you use in your writing must be acknowledged and included in the reference
or bibliography section. If a particular piece of writing proves difficult to
paraphrase, or you want to include it in its original form, it must be enclosed in

guotation marks

and credit given to the author.

When referring to the work of another author within the text of your project you
mustgi v e t h esuraame dnd theddate the work was published. Full details

for each source must then be given in the bibliography at the end of the project

Penalties for Plagiarism

If it is suspected that your assignment contains the work of others falsely

represented as your own, it will be referred

Where the Disciplinary Committee makes a finding that there has been plagiarism,

the Disciplinary Committee may recommend

T that a student 6s edcnar ks shall be reduc

71 that the student be deemed not to have passed the assignment

1 that other forms of assessment undertaken in that academic year by the
same student be declared void

1 that other examinations sat by the same student at the same sitting be
declared void

Further penalties are also possible including

suspending a student college for a specified time,

expelling a student from college,

Prohibiting a student from sitting any examination or assessment.,

the imposition of a fine and

The requirement that a student to attend additional or other lectures or
courses or undertake additional academic work.

=4 =4 -4 -4 -9

-4-

Table of Contents

EXECULIVE SUMIMAIYciiiiiii it e e e e e e e et e e e e e e e e e e e e e e eees 9
R 1 1 (0o 1§ [ox 1o o PO PP 10
3 A = = Vo 2o 01U o PP 10
N 0 1 SRR 10
R T I =Y] o] 0T =SSP 11
L3 UNIY e 11
1.3.2 Microsoft Visual Studio 2015 IDE............oooeiiiiiii, 11

1 3.3 12
1.3.4 RAIN Al 12
1.3.5 Dialogue System for UNity............ccccoeiiiiieiiiiiiiiiiieeeeeeeeeee e 13
1.3.6 MiXamO FUSE ...coooiieeeeeeeeeeeeeee 13
O T A [0] o1 o 14
1.3.8 ProBuilder BaSICccoooeeieiieieeeeeeeeeeeeeeeeee 14

2 SYSTEIM Lo 15
2.1 REQUIFEMENTS ...ccoiiiiiiiiiiiie e 15
2.1.1 User Requirements Definitionooovviiiiiiiiiiiiiieiee e 15
2.1.2 Requirements SPecCifiCationcccoovvviiiiiiiie e 15
2.1.3 Functional reqUIrEMENTSccceviiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeee e 16
2.1.4 Non-Functional Requirementscooovviiiiiiie e e, 30
2.1.5 Data reqUIrEIMENLScoieieeeiieiiiiee e e e et e e e e eeennns 32
2.1.6 USEr reqUIrEMENTScooiiiiiiiiiiiiiiiiiiie ettt 32
2.1.7 Environmental reqUIremMentsccoovriimiiiiiiiiieeeeeeeeiiiee e e e e eeeeanns 32
2.1.8 Usability reqUIrEmMENLScovviiiiiii i 32
2.2 Design and ArchiteCturecccccviiiiiiiee 34
2.2.1 Use Case Diagram........cccouuiiiieiiiiiii e 34
2.2.2 ClasS DIagramcccoiiiiiiiiiiiiiiiiieeeeee et 34
2.2.3 LOQICAl VIBW....ooiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeee e 39
2.2.4 Software ArchiteCtUre.........ooouuuiiiiii e 39
2.2.5 PerfOrMAanNCEuuiiiiii it e et e e e e eaanes 40
2.3 IMPIeMENTALiONccooiiiiiiii 41
2.3. 1 USEIINPULCS ..t aaas 41

2.3.2 CharaCterMOVEMENE.CS . e 43

2.3.3 CharaCterStatS.CSccuvviiiiiiiiiiiiiieieeeeeeeeeeeee e 44
2.3 4 GAMEMANAGEI.CS ..uuiiiriiiiiiieeiie et et e e e e ea e eaas 45
2.3.5 WeaponMaNagEI.CS.......ccouiiiiuiiiiiiii et e e e eeeenns 46
2.3.6 WeapPONCONIIOLCS ..uuuiiieeeeeieeeiicce e e e e e e eennns 47
2.3.7 GaAINREWAIT.CSooeviiiiiiiiiiiiiieeeeeeeeee e 48
2.3.8 IncrementOnDestroyModified.CS..........ccoovviviiiiiiiiiiiiiiiiiiiiiiiieieeeeeee 48
2.3.9 ENEMYALCS. .. 49
2.3.10 GraphiCSMENU.CSuuuiiieeeeieieiiiiie e e e et e e e e e et e e e e e eeennes 50
2.3.11 SKillTrEENOUE.CS..uuuuniiie ettt e et e e e e e eeeenes 52
2.3.12 MyCharaCterACtONS.CScccevuiiiiiieeeeeeeeeeie e e e e e e et eeeeeeeanns 53
2.3.13 FreeCameraloOoK.CScccccviiiiiiiiiiiiiiiiieeeeeeeeee ettt 54
2.3.14 PersistentPlayerData.CS.........ccvviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 54
2.3.15 ChooseRandomLOCAtiON.CS.......ccccvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 56
2.3.16 Dialogue Tree (Dialogue System for Unity)..........ccccevvvviiiiieeeeennnnns 57
2.3.17 Behaviour Tree (RAIN Al) ..oooiiiiiiiiiiiieeeeeeee 59
2 I =11 1T RPN 60
241 UNIETESHNG . ..coiiiiiiiiiiiiiiiieeeee e 60
2.4.2 Black-Box / Functional TESHNG........ccovviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 61
2.4.3 Performance TeSHNG.......ccovviiiiiiii e eeeaans 62
2.5 Graphical User Interface (GUI) Layoutcccooeeeeeiiiiiiiiiiiiiieeeeeeeeeenns 63
2.5.1 PAUSE MENU....couiiiiieii e 63
2.5.2 QUESE LOG WINUOW.....ciiieeieiieiiicee e e e e e e eeanes 64
2.5.3 SKill Tree panelcccccoiiiiiiiiii 65
254 Player HUD ... 65
255 MaINMENU ..cooiiiiiiiiiiiieieeeeeeeee e 66
2.5.6 OPLONS MENU.....oiiiiiiiiiiiiiiiiiiieeeeeee e 67
2.5.7 Weapon store panel........ccccccvviiiiiiiiiiii 68
2.5.8 Dialogue Uloouiiiiiiie e 69
2.6 CUSIOMEN tESHING ...coeiiiiiiiiieieeee e 69
2.7 EVAIUALION.....iii e 71
3 CONCIUSIONSeiiiee ettt e e e e e e e e et e e e e e e e eeeene 74
4 Further development Or reSEarChcccoevuiiiiiiiiiii e 76

D R B BIEINCES e e 77

G Y o] o= o | 78
6.1 ProjeCt PropoSalcoiiiiiiiiiiieii et 78
6.1.1 ODJECHIVES....cceiiiiiiiiiiiiieee e 79
0 28 = - Tt (o | o 11] o SRR 80
6.1.3 Technical APProacCh..........ccooviiiiiiiici e e e 81
6.1.4 Special resources reqUIrd...........cceuvvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 82
6.1.5 ProjECt Plancooeeiiiiie e 83
6.1.6 Technical DetallSccoovvviiiiiiiiiiieeeeeee e 83
6.1.7 EVAIUALION.....ci it e e eeene 84
2 = (o] [T A = - o PP 85
6.3 Requirement SpecifiCation............cccccceviiiiiiiiiiii 86
6.3.1 Document CONLIOL.........ccuviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 86
6.3.2 ReVISION HiSIOMYuuuiiiii e e e 86
6.3.3 DISHHBULION LISt c.evviiiiiiie e e e eeeees 86
6.3.4 Related DOCUMENTSccoeviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee et 86
6.3.5 INtrOUCHION ..ccooiiiiiiiiiiieee e 88
6.3.6 User Requirements Definitioncccovvvviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 90
6.3.7 Requirements SPecifiCationccccccvvveiiiiiiiiiiiiiiiiiiieeeeeeeeee 91
6.3.8 Interface ReqUIrEMENtS............cceiiiieiiiiiiicce e 103
6.3.9 System ArChiteCtUre..........cccovvviiiiiiiiii e 107
6.3.10 SyStem EVOIULIONccoviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 108
6.4 Product Design Specification.............ccoooiiiiiiiiiiiiie e 109
0 0t R 1 o 0T U Tox 1 o o R 111
6.4.2 General Overview and Design Guidelines/Approach.................... 111
6.4.3 ArChiteCture DeSIgN.......cceiiiiiie e 111
6.5 Monthly JOUMMAISoooiiiiiiiii 115
6.5.1 Reflective Journal i September.........cccccooiiiiiiiii, 116
6.5.2 Reflective Journal i OCtODEr..........ccovviiiiiiiii e, 117
6.5.3 Reflective Journal T NOVEMDEr.........covviiiiiiiiiiieeiieeeei e 118
6.5.4 Reflective Journal T December..........cooiiuiiiiiiieiiiiieiiee e 120
6.5.5 Reflective Journal T January..........cccccccoiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeee 121
6.5.6 Reflective Journal T Februarycccccocoiiiiiiieee 123

-7-

6.5.7 Reflective Journal T MarCh..........oouioieeie e

6.6 Other Material Used

6.6.1 Evaluation SUIVEYS ..ot

Executive Summary

Equilibrium is a cyberpunk-themed third-person action role-playing stealth game
made in Unity 3D. The objective of the game is for the player to complete missions
assigned by an NPC. Upon completion of these missions, the player will be
rewarded with money and skill points. The majority of these missions take place in
a central mission area, with each mission having different objectives. Enemies will
be powered by behaviour trees, in order to implement more complex Al into the
game. With the money that the player acquires throughout the game, they will be
abletoenterashopi n the &6hub worl dé o hewtwdaponsga me a

and ammunition.

The game was developed using C# in the Microsoft Visual Studio 2015 IDE. The

game is primarily aimed at the Windows PC platform due to its graphical fidelity.

3D models for the game were acquired from various websites e.g. TF3DM as well

as the Unity asset store and some 3D character models were created through

Mixamo Fusebs o f t war e . Data is saved and stored
preferences in Unity through the use of the Dialogue System pl uginds

load feature.

The target audience for this game is aimed towards those aged 16 and over, due

t o the @tareno®réent, imoluding violence.

1 Il ntroduction

1.1 Background

The games industry has grown exponentially in the past couple of years. In Ireland

al one, it has mad e an esti mated U206

development process for a game was a monumental task, often requiring a large
studio comprised of programmers, artists, sound designers and more. Nowadays,
many games development tools / engines are now available for free to the general
public such as the Unity game engine and more recently, the Unreal engine. This
now makes the process of developing a game from start to finish a lot more

feasible, with just a small independent studio.

The stealth genre of video games is considered a niche market. True stealth
games such as Metal Gear Solid or Splinter cell catered to a specific audience,
often due to their level of difficulty and learning curve behind them meaning that

they generally didnoét Iamopeeecaehtydars,these®wpes as u al

of games have tried to break away frem

centricd and mithe bapes ofiappealing to & widel audience. To
achieve this, many stealth games of today have incorporated open-world
environments and RPG elements, seen in extremely successful franchises such
as Grand Theft Auto, Fallout and Skyrim. Previously, stealth games were very
linear in nature. This has now changed, as evidenced by the recently released
Metal Gear Solid V: The Phantom Pain, where the player can approach missions
in creative ways in a vast, open environment, with a plethora of weapons and

gadgets at their disposal.

1.2 Aims

The aim of this project is to create an immersive third-person action stealth RPG.
The game will comprise elements seen in games like Watch Dogs, Deus Ex and

Mass Effect such a&as%kiildt @rmaeactdisv e r ddands,t i

in-game item purchasing such weapons, ammunition and silencers.

-10-

mi

t hi

c

S

w

The game will allow the player to give their character new abilities by acquiring skill
points through the completion of objectives and purchasing these skills through the
Skill Tree menu. The player will be abletoenteras hop i n the O6hub wo
game and purchase weapons and ammunition, by using credits they have earned

in the game.

My goal for this project is to retain the elements of what make stealth games so
successful, to cater to fans of the stealth genre, while also incorporating elements
seenin othergenress u ¢c h a s to Rppdaldosan even wider audience.

1.3 Technologies

1.3.1 Unity

Unity is a game engine used to develop both 3D and 2D games for various
platforms such as PC, consoles, mobile devices and websites. Unity was chosen
as the primary technology for this project. | chose the Unity game engine as the
primary technology for this project as | was already very comfortable working with
it prior to starting this project due during work placement, having originally learnt it
myself in self-study. A great benefit of Unity is that it has excellent support available
from the community through official unity forums as well as YouTube tutorials. It
also has an asset store which contains a large selection of both paid and free

assets that can be used in projects such as plugins and 3D models.

The version of Unity that is currently being used for development of this project is
Unity 5. Unity 5 is a significantly upgraded version of the game engine as it
introduced many new features, mainly related to graphics such as Real-time
Global lllumination, HDR Reflection Probes and a Physically-based Standard
Shader.

1.3.2 Microsoft Visual Studio 2015 IDE

Microsoft Visual Studio is an integrated development environment (IDE) primarily

used to develop computer programs and web applications e.g. ASP.NET. It

-11-

supports plenty of programming languages such as C, C++, Visual Basic.NET, C#

and more.

Visual Studio was chosen as the IDE for my project due to the many benefits it
provides. Visual Studio works seamlessly with Unity. It is great for debugging a
Unity game that is either running in the Unity Editor or in the Unity Player, or even

debugging an external managed DLL in a Unity Project.

Code can also be written much quicker due to Vi s u al Studiq
refactoring and code browsing capabilities.

1.3.3 C#

C# (pronoshaeg@o)iCi sriersed proglaireingtlanguage from
Microsoft and is one of the programming languages designed for the Common
Language Infrastructure (CLI). It is generally used in conjunction with the Microsoft
Visual Studio IDE. | chose C# as the primary programming language for this project

as it is the recommended programming language of choice to use with Unity.

Unity games can be programmed in three different languages; C#, UnityScript
(JavaScript) and Boo. C# is recommended for Unity as it supports many more
features, faster script compilation and better supported documentation. Prior to the
development of this project, | had worked with the C# programming language and
Unity game engine over the course of my internship, so | was already very familiar
with the language.

1.3.4 RAIN Al

RAIN Al is a powerful Al engine used to create complex behaviour for any
character in any game and on any platform. It uses behaviour trees for
implementing artificial intelligence. In terms of Al, a behavior tree controls the flow

of decision making of an agent. They describe switching between a finite set of

-12-

(@)
(%]

nt

tasks in a modular way. Behaviour Trees came to fruition from the games industry

as a powerful tool to model the behaviour of non-player characters (NPCs).

| chose RAIN Al for many reasons. For one, it is completely free and there are no
license fees. It is very quick and easy to use, once it is set up and the basic
fundamentals understood. It also offers full access to a moderated support forum,
which | have used a few times over the course of this project and which has been
very helpful. | used RAIN to give enemy characters in my game complex behaviour
through various states such as patrolling, detecting the player, attacking the player
and searching for the player. RAIN Al uses sensors, both audio and visual that can
be attached to the enemy / NPC. Audio sensors can be used to detect sounds from
the player or other characters within a certain radius of the enemy. Visual sensors
areusedf or the enemyods | ine of sight.

1.3.5 Dialogue System for Unity

Dialogue System for Unity is a powerful Unity plugin that allows the user to
implement interactive dialogue and quests into the game. It uses a visual node-
based editor so that the user can create branching dialogue. It also allows for the
implementation of cutscenes, quest logs, save/load functionality and more. | chose
this plugin due to the fact that it is simple to use, very efficient and provides plenty
of documentation and moderated forum support. This plugin is necessary as
dialogue will play a big part in the game as it is used to set the context of the story
for the game as well as a means of triggering missions for the player to partake in.

1.3.6 Mixamo Fuse

Mixamo Fuse is 3D character creation software developed by Mixamo in
collaboration with Adobe. It allows the user to create a plethora of unique character
designs. The user can customize values to change the shape, texture and clothing
of the character. Once the user is satisfied with the design of their character, the
character model can be uploaded to the Mixamo website, where it will be

automatically rigged and animated. This software was chosen for use in this project

-13-

as it is a big timesaver for adding characters and animating them. Manually rigging

and animating 3D models is a very complex and time consuming process.

1.3.7 InControl

InControl is an input manager for the Unity game engine. It provides input
mappings for most gamepads and controllers such as the PS4 Dualshock
controller, Xbox One gamepad and more. The asset is written in C# and makes it
easy to add cross-platform controller/gamepad support to your game. Actions can
be binded to controls. These controls can also be rebinded at runtime. This asset
was chosen for the project as it is far more efficient than binding controls through

the Unity game engine itself.

1.3.8 ProBuilder Basic

ProBuilder is a 3D tool that enables a developer to build and modify geometry
within the Unity editor itself. In other words, there is no need for the developer to
use external 3D modeling software such as Autodesk Maya or 3DS Max.
ProBuilder Basic is the free version of ProBuilder Advanced, created by ProCore.
The main purpose of ProBuilder Basic is really for prototyping basic levels and is

used early on in the development process of the game for constructing basic

geometry and droesacteinnegs .N wihhietsee ar e scenes

texture or detail and use simple geometry. In this instance, ProBuilder Basic is the
perfect tool. Vertices and faces of shapes can be modified with this tool and this is

something that the default Unity editor does not provide.

-14-

t

2 System

2.1 Requirements

2.1.1 User Requirements Definition

The objective of the game is for the player to play through missions that are
assigned to the character throughout the game. Upon completing these missions,
the player will gain money and skill points which can be used to purchase new

weapons and unlock abilities.

The user can save their progress whenever t
They can load their save data at any time during the game and system will load
the O6hub worl dé | evel and |l oad all of the

at the point they saved.

The user will be able to unlock new skills through the use of a skill tree system.
The skill tree can be accessed through the pause menu. The user will be able to
purchase new weapons for their character when they enter a shop. The user can
quit the game whenever they wish. The user can also adjust graphical options in

order to get the best performance possible out of their system.

2.1.2 Requirements Specification

After no more than 10 7 15 minutes of playing through the game, the user should
know how to access and use al ISpeoificactionse game
will show button prompts so the player will know how to perform the action in the
game. A menu can be accessed in-game which will show all of the controls in
detail. Response time should be very quick as it should take the user no more than

1 minute to start the game upon execution.

-15-

2.1.3 Functional requirements

New Game
The user should be able to start the game from the beginning when starting the
application for the first time. The user can start a new game by selectingt he o6 Ne w

Gamed button on t he niisnrequemaentthasadt changes g a me .

from the original requirements specification document.

Start Mission

This requirement enables the player to start a mission in the game. To do this, the

pl ayer can open up the O0Quest Logd window

From here, t he user can view tTFhe useni ssi on
approaches an NPCtot ri gger a mission. Once the pl
ended with an NPC, the mission wil!/ be add

where they can view the mission details.
Unlock Skill
This requirement allows the player to unlock new skill for their character to utilize.

Skills can be unlocked through the use of a skill tree which can be accessed from
the pause menu in-game. The player will accumulate skill points over the course
of the game. When they earn enough points for a skill, it will be available for
purchase. Skill points are awarded through completion of quests. This requirement

remains unchanged.

Change Settings

This requirement enables the user to modify various settings from the main menu
of the game such as the graphics level they wish to run the game on, resolution,

anti-aliasing levels and more.

-16-

This is a newly added requirement as | feel that it is important for the player to be
able to customize the game to their liking, in the event that their system cannot run

the game at optimal settings.

Purchase Weapon

This requirement allows the user to purchase new weapons for their character.
The player can enter a shop from the in-game city and purchase a variety of
different weapons. The player usesingame 6écreditsdé6 to purcha
Credits are acquired through the completion of missions and through other various

conditions.

This requirement has been changed to just weapon purchasing. Prior to this,
clothing customization was also intended to be added, but due to time constraints,

this had to be cut down to weapon purchasing.

Save Game

This requirement gives the user the ability to save their progress whenever they

are i n -wdarel dégadd. Totdb this, the user opens the pause menu.

From here, the user presses the O06Save Game
game data to a file. This is done through the Dialogue System for Unity plugin,

which saves datato 6 P1 ay er Pr e f wspthese@®layeRtiefa ateostored in

the registry under HKCU\Software\[company name]\[product name] key, where the
company and product names are the names set
Editor.

This requirement has been altered, duetosomes et backs with the O0L
requirement. Previously, the requirement should have worked in a way that the
usercan save atanytime.Thi s 1 s explained in detail i n

of the report.

-17 -

Load Game

The requirement will allow the user to pick up from where they had last saved the
game. All of the playerés progress such as

missions completed should remain intact when they load the game.

This requirement has been altered. Previously, it was intended for the user to be
able to load the game from the main menu. Due to some setbacks, the requirement
had to be altered so the user can only load the game during gameplay. This is

further explained in the 6Conclusionsd sec

Quit Game

This requirement lets the player quit the game in two different ways, and is now
slightly different to the originawayidQui t C
which the player can quit the game is by pausing the game. This will open up the
pause menu. From here, the player can quit the game and this will then bring them
back to the main menu, but does not close the application entirely. Another way of
quitting the game is through both the main menu and pause menu. From the main
menu, the user si mpl y uttbniacdikhe applinatian ikexio Qu i t
to the desktop. Fr om t he pause menu, the player <can

button and this will carry out the same procedure.

-18-

2.1.3.1 Requirement 1<New Game>

2.1.3.1.1 Description & Priority
This allows the player to start a new game. This requirement is vital as it is required

for the player to begin playing the game for the first time.

2.1.3.1.2 Use Case

Scope
The scope of this use case is to allow the player to start a new game.

Description

Describes the process by which the player starts a new game.

Use Case Diagram

O
Va\ @
Player

Flow Description

Precondition

The system is in initialization mode

Activation

This use case starts when the player starts a new game.

Main flow
1. The system identifies the player.
2. The Player starts a new game.

3. The system loads the opening level of the game.

-19-

Alternate flow
N/A

Exceptional flow
N/A

Termination
The system presents the next screen to the player.

Post condition
The system goes into a wait state

2.1.3.2 Requirement 2<Start Mission>

2.1.3.2.1 Description & Priority
The player commences a mission. This is required so that the player can progress

through the game by completing missions.

2.1.3.2.2 Use Case
Scope

The scope of this use case is to allow the player to start a mission.
Description
This use case describes the means by which a player can start a mission.

Use Case Diagram

-20-

New Game

)

Flow Description

Precondition

The system is in a wait state after the player starts the game.

Activation

This use case starts when the player starts a mission.

Main flow

1. The player is in the main town area.

2. The player approaches the NPC in the town area.

3. The player selects the missions presented to them during the
conversation from the Dialogue user interface.

Alternate flow

N/A

Exceptional flow

N/A

Termination

The system loads a new scene, where the mission will take place.

Post condition

The system goes into a wait state

-21-

2.1.3.3 Requirement 3<Unlock Skill>

2.1.3.3.1 Description & Priority
The player unlocks a new skill / ability for them to use during missions. This is

important as it will help players approach missions in different ways.

2.1.3.3.2 Use Case
Scope

The scope of this use case is to allow the player to gain a new skill.
Description

This use case describes the means by which a player gains a skill.

Use Case Diagram

Mew Game

)

Flow Description
Precondition
The system is in a wait state after the player starts the game.
Activation
This use case starts when the player unlocks a SkKill.
Main flow
1. The player opens the Skill Tree menu.
2. The player selects the skill they wish to unlock.

3. The system unlocks the skill from the skill tree.

Alternate flow

-22-

N/A
Exceptional flow

N/A

Termination

The system stays on the Skill Tree menu, unless the player decides to exit

the Skill Tree menu.

Post condition

The system goes into a wait state

2.1.3.4 Requirement 4<Change Settings>

2.1.3.4.1 Description & Priority
The player can access the options menu in order to adjust graphical settings as
well as controls to sui especiallgifthe siserrishavinghr e e d s .

difficulty in running the game at a playable framerate.

2.1.3.4.2 Use Case
Scope

The scope of this use case is to allow the player to change various settings such

as graphics or controls.
Description

This use case describes the process by which the player can change the graphical

options of the game.

Use Case Diagram

-23-

Q
Change Settings

Player

Flow Description
Precondition
The system is in a wait state
Activation
The use case starts after the player open
Main Flow
1. The player opens the options menu from the main menu.

2. The player selects the value of the graphical setting they wish to change.
3. The system changes the quality of the graphics.

Termination

The system stays on the opti onaamed ubuwtnttond

return to the main menu.
Post Condition

The system goes into a wait state.

2.1.3.5 Requirement 5<Purchase Weapon>

2.1.3.5.1 Description & Priority
The player can purchase new weapons for the character from a shop in the game.

New weapons are used to help the player out during enemy encounters.

2.1.3.5.2 Use Case
Scope

-24-

The scope of this use case is to allow the player to purchase new weapons for

their character.
Description

This use case describes the process by which the player can purchase weapons.

Use Case Diagram

New Game

Save Game

Purchase Weapon

Flow Description
Precondition
The system is in a wait state after the player starts the game.
Activation
The use case starts when the player enters a shop.
Main flow
1. The player enters a shop.
2. A menu opens, displaying weapons that the player can purchase.

3. The player selects the item they want.
4. Money is taken from the playerds invent

Termination

The system stays on the menu unlessthe players el ect s t he &écl ose

the menu.

Post Condition

-25.

The system goes into a wait state.

2.1.3.6 Requirement 6<Save Game>

2.1.3.6.1 Description & Priority
This requirement allows the player to save at a certain point within the game. This
is required so that the player can load back to a stage within the game, in case

they need to go back to that stage for whatever reason.

2.1.3.6.2 Use Case
Scope

The scope of this use case is to allow the player to save their progress mid-game.
Description
This use case describes the process by which the player saves the game.

Use Case Diagram

Q

T owame > save Game

Player

Flow Description

Precondition

The system is in initialization mode.

Activation

The use case starts when the player saves the game.
Main flow

1. The player opens the pause menu.
2. The pl ayer Saalee Gdgortbh e 0

-26-

3. The system stores the save game data to a file.
Termination

The system returns the player to the pause screen.
Post Condition

The system goes into a wait state.

2.1.3.7 Requirement 7<Load Game>

2.1.3.7.1 Description & Priority
The player can load the game at a certain point. This use case is required so the
player can load the current state of where they are in the game after they have

saved it.

2.1.3.7.2 Use Case
Scope

The scope of this use case is to allow the player to load the game.
Description
This use case describes the process by which the player loads the game.

Use Case Diagram

Q

~F—Cowsane >—pCsam e D——Cloascoms D

Player

Flow Description

Precondition

-27 -

The system is in initialization mode.

Activation

The use case starts when the player loads the game.

Main Flow
. The player first saves the game from the pause menu.
. The player then opens up the pause menu.

1
2
3. The player selects the O6Load Gamed opt.i
4. The state of the game that was saved will then be Loaded.

Termination

The system presents the next screen to the player.

Post condition

The system goes into a wait state.

2.1.3.8 Requirement 8<Quit Game>

2.1.3.8.1 Description & Priority
The player quits the game. This function is required so that the player can shut

down the application.

2.1.3.8.2 Use Case
Scope

The scope of this use case is to allow the player to quit the game.
Description

This use case describes the process by which the player quits the game.

-28-

Use Case Diagram

O it Game
A\ @

Player

Flow Description

Precondition

The system is in initialization mode.

Activation

This use case starts when the player quits the game.
Main Flow

1. The pl ayer s eldaemetdos otphte onQuirtom t he mai n
2. The system exits the application.

Alternate Flow
Al: <Quit game from Pause Menu>
1. The player opens the Pause Menu.
2. The player selects the 6Quit Gamed opt
3. The system exits the application
Termination
The system closes the application.

Post condition

The system is off.

-29.

2.1.4 Non-Functional Requirements

2.1.4.1 Performance/Response time requirement

The game should run at 60 FPS on a useros

F

depend on the graphicsc ar d tdtaledihms henuser 6s computer.

performance and graphical fidelity, a dedicated graphics card would be
recommended e.g. Nvidia, AMD Radeon, as opposed to integrated graphics cards
such as Intel HD Graphics. Graphical settings can be adjusted before the player
launches the game so the user should still be able to play the game regardless of
their computer specifications. Response time should be almost instantaneous with

no input lag or delay when the user performs an action within the game.

2.1.4.2 Availability Requirement
The game will be available to users at all times and can be accessed by launching

an .exe file.

2.1.4.3 Robustness Requirement
Lots of beta testing and bug fixing will be done prior to the completion of the project

sothattheus er wondét encounter any game br

2.1.4.4 Reliability Requirement
The game should be available for the user to run successfully at all times,

especially if they have the game downloaded onto their computer.

2.1.4.5 Maintainability Requirement
The game should be supported after its release. If there are any game breaking
bugs or glitches that may have gone unnoticed during beta testing, these will be

rectified.

-30-

eaki

ng

2.1.4.6 Portability Requirement

The user will be abl e to planglaptopselheguseme on &
can keep the game stored on a USB flash drive / external hard drive, or even

through cloud storage (Google Drive, Dropbox) and transfer it to another computer

and play it on that system if they wish.

2.1.4.7 Extendibility Requirement
Addi ti onal content may be added at a | at el
which may possibly introduce new gameplay features which will add replayability

to the game.

2.1.4.8 Reusability Requirement

If the player has finished all of the missions, they can return to the mission area of
the game at any time and face enemies to try out new weapons they have
purchased. The player can also earn more money within the game to purchase

these new weapons.

2.1.4.9 Resource utilization requirement
The game shouduse as many resources as it can f
Laptop is capable of providing which will have an impact on performance and

graphical fidelity e.g. RAM size, Graphics Card, CPU frequency.

-31-

2.1.5 Data requirements

Users require the ability to save their current progress they have made in the game.

This data is stored using O0player preferen

user 6s ckHowaver, this data wonot be |

small amount of free space on their hard drive to save data.

For the final build of the game, the user should require no more than 1GB of space
on their hard drive in order for them to run and access all of the data associated

with game.

Thegame i s saved through the Dialogue
PlayerPrefs. This stores and accesses player preferences between different game
sessions. On Windows, this is stored in the Windows registry, under the

HKCU\Software\[company name]\[product name] key.

2.1.6 User requirements

The user must have either a desktop PC or laptop capable of running a modern
version of Windows OS, preferably Windows 10, or Windows 7 as the minimum.

The user should also have internet access in order to download the application.

2.1.7 Environmental requirements

The application must run on a fully stable working environment in order to ensure
the game runs smoothly. The application was designed with Windows OS in mind.
The game has been tested and confirmed to work on both Windows 7 and
Windows 10. Other versions of Windows have not been tested with the game such

as Windows 8.1, but should run without any issues.

2.1.8 Usability requirements

There are a number of different usability requirements that are relevant to this

project. The following requirements should be adhered to:

-32-

ar ge

Syst e

Understandability:

T

Ul elements such as menus, fonts and in-game HUD (heads-up display)
should be clearly visible to the player and easy to understand.
The player should understand how to play through the main portion of the

game and also how to access secondary features of the game.

Learnability:

1
)l

Special actions should be context sensitive e.g. button prompts

Tips or hints should be provided in the game to aid the player

Operability:

1

All actions described in documentation and through in-game control options
should work as described.
Options such as graphics should be

needs.

Attractiveness:

1

Graphical fidelity should be set to a certain standard e.g. shading, lighting,

textures

1 Ul elements should be visually appealing to the user.

-33-

custo

2.2 Design and Architecture

2.2.1 Use Case Diagram

Game

>

<X

Purchase Weapon

p

Player
Change Settings

2.2.2 Class Diagram

This class diagram displays each main class individually and shows the
relationship between each of these classes. The majority of these classes inherit
from the MonoBehaviour class, which is a default Unity class. Some classes,

however, inherit from custom made classes.

-34-

Userlnput.cs

MonoBehaviour

Userlnput

CharacterMovement.cs

MonoBehaviour

]

CharacterMovemeant

CharacterStats.cs

MonoBehaviour

]

CharacterStats

GameManager.cs

-35-

MonoBehaviour

]

GameManager

WeaponManager.cs

MonoBehaviour

]

WeaponManager

WeaponControl.cs

MonoBehaviour

]

WeaponControl

GainReward.cs

MonoBehaviour

]

GainReward

-36-

IncrementOnDestroyModified.cs

MonoBehaviour

|

IncrementOnDestroyModified

EnemyAl.cs

MonoBehaviour

]

EnemyAl

GraphicsMenu.cs

MonoBehaviour

]

GraphicsMenu

SkillTreeNode.cs

MonoBehaviour

]

SkillTreeMode

-37-

MyCharacterActions.cs

FPlayerActionSet

]

MyCharacterActions

FreeCameralLook.cs

MonoBehaviour
A

FollowTarget

Pivot

]

FreeCameralook

PersistentPlayerData.cs

MonoBehaviour

|

PersistentPlayerData

-38-

ChooseRandomLocation.cs

RAINAction

ChooseRandomLocation

2.2.3 Logical View

2: Launch
Application ‘

MainMenu

1: Open ‘ :UnityGamel auncher |

3.2: Move to
3.1: New Options
Garme Menu

Player

‘OptionsMenu
‘BeginningScene OptionsMenu

4: Load
Game

:SavedState

A simple logical view of how the user can launch the game and choose between starting
a new game or moving to the options menu to adjust graphical settings. Once the player
starts the game, they can also save and load the game.

2.2.4 Software Architecture

A simple diagram detailing the software (Unity) and the primary assets (packages)

it contains is outlined below.

-39-

Unity

Scripts Graphics Sound Effects RAIN Al (Plugin)l Dialogue System (Plugi n)|

2.2.5 Performance

In terms of in-game performance, | am currently aiming for a consistent 60 FPS.

Assets will be added to the project overtime such as detailed geometry for levels,

lighting effects e.g. light probes and reflection probes which can be taxing on the

gameds performance. Towacrtddss tlhief eecnydc loef, tlh ew
the game to ensure that the FPS is smooth and consistent for the user. Graphical

Settings can also be adjusted before the player starts the game, so they can adjust

the performance of the game on their computer.

Save times and Load times should be fast so that there is not a long wait for the
user to resume playing.

The Unity Profiler tool will be used to analyse performance and gather usage
statistics e.g. CPU usage, RAM, GPU, Physics, animation. This tool is used to help
optimize in-game performance.

-40-

2.3 Implementation

2.3.1 Userlnput.cs

This class is pivotal to the game is it handles mostof t he pl ayer 6s
through inputs by using the keyboard, mouse, or PS4 controller. It handles
many actions including and not limited to: aiming, crouching, switching
weapons, picking up weapons as well as special actions like rolling and slow

motion.
(aim)

Camera.main.GetComponent<DepthOfField>().enabled =

(weaponManager.ActivelWleapon.weaponType != .WeaponType.Unarmed)
{

canFire = SharedFunctions.CheckAmmo(weaponManager.ActiveWeapon);

('weaponManager. ActivelWeapon.CanBurst)
{
(characterActions.Fire.WasPressed && !anim.GetCurrentAnimatorStateInfo(2).IsTag("Re
{
(canFire)
I
L
anim.SetTrigger(“"Fire");
weaponManager . FireActivelWeapon();

(!weaponManager.ActiveWeapon.silenced)
{

weaponManager.ActiveWeapon.muzzle.SetActive()G
1T
I

cameraFunctions.WiggleCrosshairAndCamera(weaponManager.ActiveWeapon,

This block of code is from the Update() method in the Userlnput class. It is
essential for allowing the player to fire their weapon. It checks if the weapon
can fire automatically or semi-automatically (CanBurst) and if the player
pressed the O0fired button and the char e
weapon. It also checks to see the weap

silenced, the weapon will emit a muzzle flash.

-41-

CorrectIK()

weaponType = weaponManager.weaponlype;

(!ik.Debughim)

(weaponType)

e WeaponType.Pistol:
ik.aimingZ 7f;

ik.aimingX

ik.aimingy

ik.aimingZ
ik.aimingX
ik.aimingY

»

This is another method in the Userlnput script which is very important as it
allows the user to aim correctly. | t gets the spine
skeleton and applies the x, y and z coordinates, defined in the script,

depending on the type of weapon that the character is aiming with.

VisionAction()
(characterActions.Vision.WasPressed &% charStats.VisionMode)
{
(!vision)

main.GetComponent<T

StartCoroutine(visionSoundSeq());

(t go gM.enemies)

go.GetComponentInChildren< K >().rend.material go.GetComponentInChildren<

(vision)
main.GetComponent<

(t go gM.enemies)

go.GetComponentInChildren<V k >().rend.material go.GetComponentInChildrenc

This is the oO6VisionActiond met hod.

unlocked by the player from the skill tree. The method works as a toggle,

-42-

from

Thi

using a boolean value. If the player presses the button used to activate the
skill, it checks if the boolean is set
Otherwise, the skill will be disabled.

2.3.2 CharacterMovement.cs

This class is responsible for handling the character motor and the physics of
the character. It is also used to initialize and update the Animator component
attached to the player character. It handles extra features such as footsteps, using
Inverse Kinematics (IK). It determines which foot is stepping on the floor when the
player moves and plays a sound accordingly. This class is also used to handle the

60Steal t h Tak evhich alows theschasacter to approach an enemy from

behind and knock them out, without having to use a weapon.

This is a code block contained within the d&JJpdate6 method of the
Character Movement <class. 1t is wused for the
calculate the angle between the player character and the enemy that the player is
facing. It checks to see if the player is facing the back of the enemy. If so, the
takedown sequence is initiated and the animations for the player and enemy are

called.

-43-

CheckFootPosition(left)

oal ikGoal left AvatarIKGoal.leftFoot AvatarIKGoal.RightFoot;
footBottomHeight left anim. leftFeetBottomHeight anim.rightFeetBottomHeight;

footPos anim.GetIKPosition(ikGoal);

footPos transform.position;

footPos.y footBottomHeight + @.003f;

Thisbooleanmet hod i s used to check t hefeehaed ght of
calculates the position of the foot relative to the position of the character. The first
line of code in this method uses a ternary operator which is basically a shorter way
of using if and else statements. This line of code checkstoseei f t he 6i kGoa
equal to thehthdotPAov.atlafr IskoGoal . Left Footd i s | ef

2.3.3 CharacterStats.cs

This class handles all base stats of the player such as their health, skill points,
money as well as the abilities that the player has unlocked. It also has some
functions which are used for health regeneration over time, when the player is hurt
as wel | as Dbringing the player back to the
mission.
PlayerDying()
dead

StartCoroutine(PlayOneShot(

PlaySequence(

(!playAudio)

[
L

GetComponent<] >() .PlayOneShot(deathSound) ;
playAudio

This method handles the procedure for when the player character dies during a
mission. If an enemy kills the player and their health reaches 0, the screen fades

to black over 3 seconds.

-44-

LevelReset()

deathTimer +

(deathTimer > e terDeathTime)
r
L

(dead)

gM. LoadNewScene();

This is the next method that is called when the player character dies. A timer starts.

Af ter 5 seconds, the O6hub worl dé scene wil

2.3.4 GameManager.cs

The GameManager class is used for a couple of different functions, mainly for
when the player moves between scenes and when the player dies when facing an

enemy.

OnLevelWasLoaded()

r
L

Player.GetComponent:+ () -Health = 18ef;
Player.GetComponents tats>().dead = E
Player.GetComponent<Chara ats>() .deathTimer = &f;

(Player.GetComponent<UserInput>().CanPickUp ==)

Player.GetComponent<UserInput>().CanPickUp =

SpawnPoint = Game ect.FindGameObjectWithTag("SpawnPoint"}.transform;
PersistentObjects[2].transform.position = SpawnPoint.position;
AddEnemies();

This method, 6OnLevel WaslLoaded6 in the Gam
the base cl ass 0MonoBe l@niy clags.rThis methodovil i s a
always be called after a new scene has loaded. | used this method to handle any

conflicts that occurred, for example, when the player dies, | need to make sure that

when the player moves into a new scene, after dying, that they are alive again, so

| used this method to handle the logic.

This method was also useful for setting the point that the player should spawn in,

whenever a new scene was loaded.

-45-

AddEnemies()

enemies = Game ect.FindGameObjectsWithTag(" Enemy");

This method is used to add enemies to a list in this class. It is called in the
00OnLevel WasLoadedd method. This OAddEnemi e
searching for GameObjects in the scene tha
These enemy GameObjects populate the O6enem
class. The purpose of adding enemies to this list is so that whenever the player
wishes to use their special ability (Vision ability), the effect of this ability can be

applied to each and every enemy on the list.

2.3.5 WeaponManager.cs

WeaponManager is a base class for handling all of the weapons that the player
carries. Weapons are stored in a I|Iist and
This class also handles the logic for switching weapons as well as reloading the
current weapon that the pl ayedlingthelnverser ryi ng
Kinematics (1 K) of the characteros | eft F

depending on what weapon itodés carrying.

OnAnimatorIK()

(weaponType != WeaponType.Unarmed)

anim.SetIKPositionWeight(AvatarIKGoal.LeftHand, IKweight);
anim.SetIKRotationWeight(AvatarIKGoal.LeftHand, IKweight);

Vector3 pos = ActiveWeapon.HandPosition.transform.TransformPoint(V r3.zero);

anim.SetIKPosition(AvatarIKGoal.lLeftHand, ActiveWeapon.HandPosition.transform.position);
anim.SetIKRotation(AvatarIKGoal.lLeftHand, ActiveWeapon.HandPosition.transform.rotation);

This method is used with the 6édMecani mdé Ani
character. It checks to see if the player is carrying a weapon, and if so, it will adjust

the position and rotation of the character
coordinates defined in the inspector in the Unity editor.

-46-

2.3.6 WeaponControl.cs

WeaponControl is more of a sub class to WeaponManager. It is attached to each

and every single weapon that the charactercanuse. | t 6s used to deter
amount of ammo thatoés currently in the wee
position of where the bullet should spawn from, sound effects as well as the
position of the weapon when itdés equipped

when i1itds holstered (back [/ | eg).

RightHip,
Waist

To decide what position the weapon should be holstered in, we use an enum,
call ed 6Rest Posi t iositods,being rightthip dantiweaist wo r est p

(restPosition)

sition.RightHip:

nt transform.GetComponentInParent< >().transform.GetComponent< tor>().GetBoneTransform(HumanBodyBones .RightUpperLeg);

transform.GetComponentInParent< >().transform.GetComponent< 3 >() .GetBoneTransform(Hum nes.Spine);

Inside the Update() method in the script, we use a switch statement along with the
enum to position the weapon on either the right hip or waist. To do this, we get the

transform of the spine (Waist) and transform of the right upper leg (RightHip).

transform.parent = transform.GetComponentInParent<WeaponManager>().transform.GetComponent<Animator>().GetBoneTransform(HumanBodyBones.RightHand);
transform.localPosition = EquipPosition;

transform.localRotation = Quaternion.Euler(EquipRotation);

These lines of code are used to correctly assign the position of the weapon, when
the weapon the character is using is equipped. It sets the position of the weapon
to the characters right hand and also sets the rotation of the weapon to whatever

coordinates are defined by the developer in the inspector.

-47-

2.3.7 GainReward.cs

This iIs a custom class that coincides with
The O6Pi xel Crushers. DialogueSystemdasshli brary

the features of the Dialogue System Plugin.

GiveReward(amount,

charstats.SkillPoints += ()} amount;

charStats.Credits += (} cash;

This is the main method of the class. It uses parameters, in this case, skill points
and credits (money) par amet er s usi ng t.Wsengthebialogyee 6 da't
System plugin, you input the amount of credits / skill points the user should be

rewarded upon completing a mission.

2.3.8 IncrementOnDestroyModified.cs

This class is based on the &6l ncrement OnDe s
Dialogue System for Unity plugin that | modified, for the purposes of this project.
This class is attached to gameobjects that are part of a mission in the game that
may need to be destroyed by the player. The primary purpose of the class is to

check when an object has been destroyed. If so, an integer is incremented.

OnDestroy() {
(!listenForOnDestroy) ;
oldvalue = Dialoguelua.GetVariable(ActualvariableName).AsInt;
newValue = Mathf.Clamp(oldvalue + increment, min, max);
Dialoguelua.SetVariable(ActualVariableName, newValue);

(newValue »= max && QuestlLog.GetQuestState(questName) == QuestState.Active)
{
Reward>().GiveReward(skillPointReward, creditReward)
alogueManager.ShowAlert(alertMessageComplete, 71);
AudioManager.instance.PlaySoundOneShot(FindObjectOfType<GameManager>().GetComponent<AudioSource>(), missionComplete);
T
I

DialogueManager.SendUpdateTracker();
(newvalue < max)

(I .IsNullOrEmpty(alertMessage) || DialogueManager.Instance ==

{
DialogueManager.ShowAlert(alertMessage);

}

This is the main method of the class. The method constantly checks to see if the

gameobject has been destroyed. It uses a condition which checks to see if the

integer value is greater than or equal to the maximum value of objects that need

to be destroyed. If so, then the Quest Log is updated and sets the current mission

to Ocommpmleetpddayer 6s O6Character Statsodé script
the skill points and credits in the class, as a reward for completing the mission. The

Dialogue Manager object will then display an alert with a string that can be defined

by the developer in the inspector in the Unity editor.

If, however, the object with this script is destroyed and the integer value is less
than the maximum value, the Dialogue Manager will display an alert detailing the
current amount of objects that have been destroyed and the amount remaining that
need to be destroyed.

2.3.9 EnemyAl.cs

This class is essentially the main class for all enemies in the game. This class also
refers to variables stored in the Al rig of the enemy which is used with the RAIN Al
plugin. The weapon system works differently for Al agents, so variables such as
6attackRated and O6at tdataypes areestordéd herb asavbll ar e 6
as the current ammo. A g e nt st requoencdOmplex weapon systems that the

player character requires.

The O60Attacko6 | ogic is also stored in this

whenever the player is in its line of sight.

if (rig.AI.WorkingMemory.GetItem<bool>("canFire"™) == true && !anim.GetCurrentAnimatorStateInfo(2).IsTag("Reload”))
I
L

Attack();

1
¥

This condition checks i fe, whick is &taved linetten fic an
6memory6 of the agentds Al rig. I't al so ch
see if the AReloadod state is not currently

true, the Attack() method is called.

-49-

Attack()

enemyToAttack = rig.AI.WorkingMemory.GetItem<G
weaponManager.aim = H

Vector3 direction = enemyToAttack.transform.position - transform.position;
angle = V 3.Angle(direction, transform.forward);

transform. LookAt (enemyToAttack. transform.position);

attackTimer += Time.deltaTime;

(attackTimer > attackRate && enemyToAttack.GetComponent<Char erStats»().Health > @)

ShootRay();
attackTimer = @;

Thisis the Attack()met hod. It assigns the GameObject

as the oOovar Pl ayerd GameObject variabl
Al rig. This method also calculates the current direction of the player and the agent
will look at wherever the player is moving. The agent will then fire, as long as the
pl ayerés health is greater than O0.

2.3.10 GraphicsMenu.cs

The GraphicsMenu script is used for changing the settings of various graphical
options, from the main menu of the game. It allows the user to modify the
resolution, overall graphics quality, anti-aliasing and v-sync. These are modified
by selecting values on a dropdown list.

-50-

e

t ha

qualitySettingsDropdown.onValueChanged.AddListener(

[

SetQualityLevel();
)5

antiAliasingDropdown.onValueChanged.AddListener(

SetAntiAliasing();

)

vSyncCountDropdown.onValueChanged . AddListener(

[

SetVSyncCount();
)3

resolutionDropdown.onValueChanged.AddListener(

SetResolution();

These 6del egatesd are initialized 1in

they will be called when the scene that has this script is loaded. These delegates

are used for encapsulating references to the methods that are inside the delegate

objects. These delegate objects can then call the referenced method. The purpose

of these delegate objects for this script is so that the different dropdown lists that

need to have a number of different values can be populated instantly.
SetAntiAliasing()

(antiAliasingDropdown.value)
0:
antiAliasing a;

antiAliasing

antiAliasing

antiAliasing

-51-

t

he

This is one of the methods called in one of the delegate objects
(antiAliasingDropdown.OnValueChanged.AddListener). It uses a switch
statement. The switch is the value that is to be assigned, in this case, each value
in the drop down list.

2.3.11 SkillTreeNode.cs

The Skill TreeNode script is a component th
the skill tree user interface. Its primary function is to call a method that unlocks the

skill when the user clicks on the button.1 t 6 s al so used to displ ay
the skill such as skill points required to unlock it.

PurchaseSkill()
(charstats.SkillPoints »>= cost && !unlocked)

charstats.skillPoints -= cost;
unlocked =
lockIcon.SetActive(73
(skillname)
{
"Dodge Roll™:
FindObjectOfType<CharacterStats>().DodgeRoll =

"Vision”

FindObjectOfType<Char ts>().visionMode =

"Sleight of
FindObjectOfType< t>() .GetComponent<Animator>().SetFloat("Re ed”, charStats.sleight);

s>().regenPoints = 2.0f;

erStats»().FocusMode -

This is the method used to unlock the skill that is selected by the user. It uses a

condition to check first that the player has enough skill points to unlock the desired

skil |l and checks the boolean (unlocked) to
clicking the button as they will keep losing skill points even though they already

unlocked the skill.

In order to determine which skill should be unlocked when the user clicks on the
skill button, this method uses a switch statement and uses a string variable as the

switch. For example, if the user clicks on the button and string O0sKki

-52-

AVisiono, wta swi |iBfrors themswile statement as the skill to be

unlocked.
2.3.12 MyCharacterActions.cs
MyCharacterActionsisa custom cl ass made to inheri

cl ass provi dedoplugn, whicheconfainaGet of player actions that

the player can bind to their input device e.g. PS4 controller, Keyboard.

on Left;
n Right;
n Up;
n Down;
n Aim;

n Fire;
n Focus;
n Roll;

n SwitchWeapon;
n Pickup;
n Pause;
n Vision;
on Reload;
n Interact;
on ToggleSilencer;

This is from the MyCharacterActions script, where the character actions are
created. Each action i s RIraydreAlc tfiroomd tchlea sés

6l nControl 6 I|library.
MyCharacterActions()

Left = CreatePlayerAction(”
Right = CreatePlayerAction(
Up = CreatePlayerAction(”

Down = CreatePlayerAction(”

Aim = CreatePlayerAction{"Aim
Fire = CreatePlayerAction("F
Roll = CreatePlayerAction(”
Focus = CreatePlayerAction(
Vision = CreatePlayerAction(
Interact = CreatePlayerAction(

This method: MyCharacterActions, is where each of the actions from above are
constructed and given a name, using a string. This class is instantiated and these

actions in this method are called from the Userlnput class.

-B3-

t

wh i

2.3.13 FreeCameraLook.cs

The FreeCameralLook script is used to handle most of the main camera functions.

|l t6s used to get the camera in the scene t
whenever the player moves and also handle camera rotation. | t 6s al so wuse
conjunction with the WeaponControl script for weapon recoil.

HandleRotationMovement()

(canControl)
handleOffsets();
inputDevice t ActiveDevice;

X inputDevice.RightStickX + offsetX;

inputDevice.RightStickyY + offsety;

xMouse GetAxis(X") + offsetX;

yMouse I GetAxis() + offsety;

(turnsmoothing 9)

smoothX thf.SmoothDamp(smoothX, x, smoothXvelocity, turnsmoothing);
smoothy f .SmoothDamp(smoothy, vy, smoothYvelocity, turnsmoothing);

smoothX thf.SmoothDamp thX, xMouse, smoothXvelocity, turnsmoothing);
smoothY thf.SmoothDamp othY, yMouse, smooth¥Yvelocity, turnsmoothing);

This is the method used for handling camera rotation, whenever the user moves
the mouse or analog stick on the PS4 controller. This is done by assigning x and

y ooaftl6 variables to the x and y I nputs of b

2.3.14 PersistentPlayerData.cs

PersistentPlayerData is the main script used for Save and Load operations within
the game. Its purpose is to keep objects and variables defined in the script
persistent For exampl e, when the player saves, [
of the variables defined in the script at that point in time. Whenever the player loads

the game, it will apply the saved value of those variables defined in the script.

Thescri pt works in conjunction with the 06Ga
the Dialogue System for Unity plugin. This Game Saver component is attached to

the O0ODial ogue Manager 0 Thg RarsstentPjagerdDatascript t he s

-54-

is also attached to this same gameobject with the Game Saver component so the

PersistentPlayerData script can find the Game Saver component easily.

There are two main methods used in the PersistentPlayerData script:

OnRecordPersistentData() and OnApplyPersistentData().

OnRecordPersistentData()

(!FindComponents())

a.SetActorField(playerActorName, “health”, charStats.Health);
a.SetActorField(playerActorName, " ", charStats.SkillPoints);

a.5etVariable(” its", charStats.Credits);
a.5etVariable(" harStats.VisionMode);

0 charStats . FocusMode) ;

ght™, charStats.sleight);

In the OnRecordPersistentData() method, we set the values of the variables we
want to save and assign them names, using strings. These are then recorded and
stored in the O6Luad environment in the Dia

OnApplyPersistentData()

(!FindComponents())

charStats.Health = Dia
charStats.SkillPoints

charStats.Credits = Di
charStats.VisionMode
charStats. FocusMode
charStats.sleight)ialo £™). at;

In the OnApplyPersistentData() method, we get the variables from the object that
we stored in the Dialogue System Lua environment and apply those values that
were stored to the object. We can also choose what type of data type to apply them

as e.g. AsFloat, Asint, AsBool.

-B55.-

2.3.15 ChooseRandomLocation.cs

ChooseRandomLocation is an example of a custom action that is created for use
in the RAIN behaviour tree, for an agent. The main function of this script is to allow
the Al agent to search the map, within a certain distance defined by the developer,
when the player character is out of the line of sight of the enemy after the player is

discovered.

This script uses a timer, which is created by using a float variable called _startTime.

Start(AI ai) |

.Start(ai);

_startTime += Time.time;

On this start method, the timer will then increment by Time.time, which is the time

at the beginning of the frame.

ActionResult Execute(RAIN.Core.AI ai)

h> tGraphs = Navi i er.Instance.GraphForPoint(ai.Kinematic.Position);
(tGraphs
ActionResult.FAILURE;

raph)tGraphs[@];

>(ai.DeltaTime, ai.WorkingMemory);

List< y> tPolys = List 15
tGraph.PolyTree.GetCollisions(B (ai atic.Position, Vector3. * tDistance * 2), tPolys);
(tPolys.Count == 8)
ActionResult.FATLURE;

oly tRandomPoly = tPolys[Unity ine.Random.Range(®, tPolys.Count - 1)];

(Target.IsVariable)
ai.wWorkingMemory.SetItem< »(Target.variableName, tRandomPoly.Position);

ai.WorkingMemory.SetItem< >("ra tion", tRandomPoly.Position);

-56-

This is part of the main method of the script. This method (ActionResult Execute),
runs whenever the action node that has this script attached to it runs. The purpose
of this is to find polys on the navigation mesh on the map, within the specified
distance by the developer, and then assign a target position for the Al agent to
move towards on this navigation mesh. A navigation mesh is essentially, a flat
plane made out of polygons that specifies which parts of the map / terrain can be

traversed by the agent.

Once the timer in this script exceeds the value specified by the developer, then the

agent moves from its search state to the patrol state.

2.3.16 Dialogue Tree (Dialogue System for Unity)

Thisisa Di al ogue Tree thatodés used with the 6L
allows the player to interact with an NPC. For this game, the intended use of this
Dialogue Tree is for the player to be able to trigger missions by interacting with the
NPC. Each node in the Dialogue Tree contains text fields. The developer inputs

-57-

whatever text they want to appear into the node. Whenever the player interacts
with the NPC and a node fires, this text that was put into the node will be displayed.
The blue nodes in the Dialogue Tree are nodes that the player can choose to select
when the player is given the option during conversation, usually as a response.
MyDatabase @
(Open_

Dialogue Entry

i (v] 40

Title MNew Dialogue Entry

Description

Actor | [1] Player : |
Conversant | [2] Clarke : |
Group N

Menu Text

Dialogue Text

I'm on it

Sequence |+

[JAdd Response Menu Sequence

False Condition Action [Block s |
Conditions Lo
Script "
Quest["Modular_Weapon"].State == "active”

b All Fields
Links To: | (Link To) L]

When a node is selected from the Dialogue Tree, this inspector is displayed in the
Unity editor. It allows the developer to modify the contents of the node in the tree.
Fields in this node can be modified. For
developer can set it so that this node will only become visible in the dialogue tree

for the playerifacertaincondi t i on i s met e.g. the state of
This i nspector also contains a field callec
can input code into the field, by wum®ming 0S

commands from the Dialogue System for Unity plugin. An example of a Sequencer
Command would be enabling an object in the game scene e.g.

SetActive(object_name, true);

-B58-

2.3.17 Behaviour Tree (RAIN Al)

This is a segment of the behaviour tree used for the enemy characters in the game.
The behaviour tree is composed of nodes such as sequencers, constraints,
selectors and parallels. Sequencer nodes run actions in sequence e.g. character
moves to target position. Character then pauses for 5 seconds. Character plays
an animation. Parallel nodes allow actions to run at the same time e.g. enemy
walks towards player while firing weapon. Other nodes, such as Audio and Visual,
allow the Al agent to hear entities within a specified radius and see entities within
a specified line of sight. For more complex behaviour that cannot be done through
the default nodes used with RAIN, custom action / decision nodes need to be
added to the behaviour tree. These actions / decisions are essentially C# scripts,
but instead of inheriting from MonoBehaviour, the script uses the RAIN library to

-59-

