
How we effectively manage
virtualization in Mobile Cloud

Computing (MCC) ?

Amrapali S. Chavan

Submitted as part of the requirements for the degree

of MSc in Cloud Computing

at the School of Computing,

National College of Ireland

Dublin, Ireland.

January 2016

Supervisor Dr. Anu Sahni.

Submission of Thesis to Norma Smurfit Library, National College of Ireland

Student name: Miss. Amrapali S. Chavan. Student number: X14123762

School: School of Computing Course: MSc in Cloud Computing

Degree to be awarded: MSc in Cloud Computing

Title of Thesis: How We Effectively Manage Virtualization In Mobile Cloud Computing (MCC)?

One hard bound copy of your thesis will be lodged in the Norma Smurfit Library and will be available for consultation. The electronic

copy will be accessible in TRAP (http://trap.ncirl.ie/), the National College of Ireland’s Institutional Repository. In accordance with

normal academic library practice all theses lodged in the National College of Ireland Institutional Repository (TRAP) are made

available on open access.

I agree to a hard bound copy of my thesis being available for consultation in the library. I also agree to an electronic copy of my thesis

being made publicly available on the National College of Ireland’s Institutional Repository TRAP.

Signature of Candidate: Amrapali S. Chavan.

For completion by the School:

The aforementioned thesis was received by__________________________ Date: 25/01/2016

This signed form must be appended to all hard bound and electronic copies of your thesis submitted to your school

Submission of Thesis and Dissertation

National College of Ireland

Research Students Declaration Form

(Thesis/Author Declaration Form)

Name: Miss. Amrapali S. Chavan Student Number: X14123762

Degree for which thesis is submitted: MSc in Cloud Computing

Material submitted for award

(a) I declare that the work has been composed by myself.

(b) I declare that all verbatim extracts contained in the thesis have been

distinguished by quotation marks and the sources of information

specifically acknowledged.

(c) My thesis will be included in electronic format in the College

Institutional Repository TRAP (thesis reports and projects)

(d) Either *I declare that no material contained in the thesis has been

used in any other submission for an academic award.

Or *I declare that the following material contained in the thesis formed

part of a submission for the award of

Master of Science in cloud computing awarded by QQI at level 9 on the

National Framework of Qualification

 (State the award and the awarding body and list the material below)

Signature of research student: Amrapali S. Chavan.

Date: 25th January 2016.

Contents

Abstract viii

Acknowledgment ix

1 Introduction x

1.1 Hypothesis . xi

1.2 Contribution . xi

2 Literature Review xii

2.1 Cloud Computing and Mobile . xii

2.2 Need to Virtualization . xv

2.3 Related Work . xvi

2.4 Memory Management for Virtualization xvii

2.5 Smart Phone Device and Server Virtualization xvii

2.6 Live Migration with virtualization . xix

2.7 What is BYOD? . xxi

2.8 Android Framework . xxii

2.9 Emerging Tizen . xxiv

2.10 Comparision of Android and Tizen Application System xxvi

3 Specification xxix

3.1 Tizen OS . xxx

3.2 Samsung Gear S Watch . xxxi

3.3 Samsung Galaxy S 5 specifications . xxxi

3.4 LINPACK . xxxii

4 Design xxxiii

4.1 Performance Criteria . xxxiv

4.2 Benchmark Technique . xxxv

4.3 FLOPS comparison . xxxv

iv

4.4 Setup configuration on PC . xxxv

5 Implementation xxxvii

5.1 Android virtual instance creation . xxxvii

5.2 Tizen Wayland kernel virtual instance creation xlii

6 Evaluation xlviii

6.1 EXT4 file system Mounting Test . xlviii

6.2 Comparison of File System Structure xlix

6.3 LINPACK Bechmarking . li

6.4 Frame Per Second (FPS) . liv

7 Conclusion lvi

A Chapter 8 lxii

A.1 Software Requirement for Wayland Tool lxii

A.2 Linpack Snapshots for Android VM and Tizen VM lxii

A.3 Linpack Snapshot for Android VM . lxii

A.4 Linpack Snapshot for Android VM . lxii

v

List of Figures

2.1 Mobile virtualization service (Roh et al., 2014) xviii

2.2 Device events management (Roh et al., 2014) xix

2.3 Creating a virtual environment (Hung et al., 2011) xx

2.4 Android Architecture (Android ArchitectureKernel Description, 2013) . xxiii

2.5 Architecture of Tizen OS (Gadyatskaya et al., 2014) xxiv

3.1 Evolution of Tizen OS . xxx

4.1 Comparison Module . xxxiv

5.1 Android x86 Virtual Machine Flow . xxxix

5.2 Install Android to harddisk . xl

5.3 Select partition to install Android-x86 xl

5.4 Select filesystem to format sda1 . xl

5.5 Android install successfully . xli

5.6 Acquire Google account . xli

5.7 Sign in into Google account . xli

5.8 Android Vitual Machine . xlii

5.9 Tizen x86 Virtual Machine Flow . xliii

5.10 Upload the Tizen image . xlv

5.11 Select IDE hard disk . xlv

5.12 Convert the disk format to support VMware xlvi

5.13 Power on Tizen wayland virtual machine xlvi

5.14 Tizen wayland kernel . xlvii

6.1 Tizen OS File System Tree . xlix

6.2 Android Lollipop OS File System Tree l

6.3 FLOPS comparison . liii

6.4 Average MFLOPS comparison using LINPACK liii

6.5 FPS Test . liv

vi

A.1 Android VM Linpack Test 1 . lxiii

A.2 Android VM Linpack Test 2 . lxiii

A.3 Tizen VM Linpack Test . lxiii

vii

Abstract

Virtualization technology is used to manage computing resources in smart phones as

well as desktops. This paper analyses the influence of virtualization on Operating

Systems (OSs) of smart phone devices. Virtualization could be on hardware level or

software level of smart phone device. Since Android Operating System was introduced,

the smart phone users were rapidly increasing. In addition, we discuss mobile security

problem can solve by encapsulating original smart phone operating system (OS) by

the virtual machine. Virtualization can help us to solve issues of storage, bandwidth,

battery and computation resources. In our study we measure the performance of An-

droid OS and Tizen OS in virtualize platform and compare it with Native platform.

Virtualization technique works as a security control mechanism for smart phones which

offers performance efficiency and protection against mobile threats. We create virtual

machines for Android and Tizen OS. We used Samsung Galaxy S 5 smart phone, to

run the Android LINPACK test. In this paper we discussed the performance analysis

between Android and Tizen operating systems. This analysis is helpful to address the

problems in Bring Your Own Device (BYOD).

Key Points- Virtualization, Android, Tizen, Samsung Galaxy S5 , Samsung

Gear S, LINPAC.

viii

Acknowledgment

Foremost, I would like to express my sincere gratitude to my supervisor, Dr. Anu

Sahni for her patience, motivation and sharing immense knowledge. She helped me

to successfully completing my research work and this thesis in all possible ways. I am

thankful for her efforts, valuable help, discussions and motivation. In each meeting

with her, she encouraged me in all ways and increase my confidence level for this study.

She always gives me better aspects of my work and implementation.

Besides my supervisor, I would like to thank Dr. Pramod Pathak, Dr. Horacio

Gonzalez-Velez, Robert Duncan, IT support department and all NCI staff for their

valuable guidance and help in the completion of my course. I would like to thank for

NCI online resources to enhance my writing and referencing skills. I am thank full to

all people who support me all the time directly and indirectly throughout this year of

MSc Cloud Computing.

I would like to thank my classmates of cloud computing and friends in other course

also, who always been motivated me in difficult time. Their motivation has given me

energy to concentrate on my work.

I express my sincere love and obligation to my parents: Shivajirao Chavan, Sushila

Chavan, Sudarshan Chavan and Karan Chavan for their continuous love, motivation

and encouragement. This work is especially dedicated to mother and father because

without their blessings, I couldn’t reach to completion.

ix

Chapter 1

Introduction

In Bring Your Own Device (BYOD) trend, many opportunities are available for mobile

virtualization. There is no single dedicated solution for BYOD, it offers a huge business

in multiple ways from a mobility device to the network. Enterprise data security is a

critical issue in BYOD. All smart phones are pre-installed with their own operating

systems like iOS, Android and windows. Even in IT industry multiple mobile users

have a lack of awareness about mobile security.

Security softwares for mobiles are specially customized for each mobile operating system

version. Extra security tools for mobiles causes computational difficulties and power

problems. Mobile virtualization is a long-term solution that gives, right sort of support

to current Android smart phones. Virtualization technique is one key solution for

BYOD issues, where we can separate storage space and data for e.g VMware Horizon

Mobile.

• Heavy duty VM

Multiple OSs can be installed on the same phone so these OS instances are affected on

a computational capacity, device power and storage space. Vendors by phone may not

supports any other OS on the same phone.

Cagalaban et al. (2012) tackled about some issues like real time support, resource

allocation, power consumption and security. These issues are critical to mobile phone.

So it is needed to detect new approaches to mobile virtualization. New Operating

Systems (OS) like Tizen have not yet taken into consideration for virtualization by any

researches. Tizen is newest operating system introduced by Linux foundation, Tizen

association, Intel and Samsung.

x

1.1 Hypothesis

Many researchers have been studied, different techniques of mobile virtualization. A

distributed computing model, that enables smart mobile devices to access different

services of cloud datacenters is called (Mobile Cloud Computing) MCC. To solve BYOD

problems, we will use three main key parts- cloud, Mobile Device OS and Virtualization.

Today there is no dedicated virtualization solution for the BYOD use case. It is needed

to create a virtualization technique for the system software environment and resolve

the complexity between hardware and software. This research question:

”How we effectively manage virtualization in MCC ?”

To solve BYOD problems such as security and isolation, we measure the performance of

the Android OS and Tizen OS. This experiment is performed on virtual environment

and native machine. Our virtual phone solutions depend on hardware backing for

devoted execution.

In this paper, we will focus on a specific case of mobile virtualization. New Operating

Systems (OS) like Tizen have not yet taken into consideration for virtualization by

any researches. For detail experiment, we will use the virtual set up of Tizen OS and

Android OS. As well as, we use native Android and Tizen devices to compare their

performance with virtual machines. We focus, to measure ability of Tizen and Android

devices to in virtual environment.

1.2 Contribution

As discussed, mobile virtualization solution addressed the BYOD related problems.

In IT industry multiple mobile devices were used by employees. Tizen is a new OS,

were initially released in January 2013. Like Android OS, Tizen also based on Linux

kernel and GNU C library. Tizen based mobile virtualization work is not done yet by

any researcher. Our performance comparison, will help to point out the behaviour of

Android and Tizen OS in a virtual environment.

Hence we design a comparable model, for new generation mobiles and for future mobile

phones. It will identify OS comparison with LINPACK benchmark, to find out the

behaviour of Android and Tizen based devices. Our project is becoming helpful, to

isolate car management domain i.e. business domain and individual domain.

xi

Chapter 2

Literature Review

This chapter gives the literature review regarding BYOD technology. In section 2.1 we

give a detailed review about Cloud Computing and Mobile. In section 2.2 we will discuss

about, what is need of virtualization technology in Cloud Computing? Section 2.3 gives

the previous work of BYOD platform and how previous researchers were addressed and

approaches problems of BYOD. In section 2.4, we focused, smart phone device and

server virtualization technology. In section 2.5, we discussed how live migration is

possible with virtualization. Section 2.6 described, how BYOD works in real time. The

total overview of BYOD gives us an idea about how it works in enterprise sector. we

also talk about the benefits of BYOD in today’s IT world. It also highlights that,

today’s growing market of smart phones are needed new virtualization techniques. In

section 2.6, we described Android architecture in detail. The detailed overview of Tizen

architecture is given in section 2.8. Also, in section 2.9 a lot of importance should be

given to comparison of Android and Tizen application system. We have discussed about

current trends about new mobile display virtualization technology. New Operating

Systems (OS) like Tizen have not yet taken into consideration for virtualization by

many researches.

2.1 Cloud Computing and Mobile

Cloud computing (CC) has grown rapidly in the past few years. Buyya et al. (2009)

states in his research that, over the last half century computing has become the fifth

important utility after water, electric power, gas and telecommunication system. Ac-

cording to National Institute of Standards and Technology (NIST) cloud computing

reference model Liu et al. (2011) categorized the three basic service models, through

xii

which service providers can offer services. These service models are: Software as a

Service (SaaS), Infrastructure as a Service (IaaS and Platform as a Service (PaaS).

CC can provide services on demand basis by using on demand self-service and utility

business computing models. Buyya et al. (2009) argues that, now it is easy to run the

Virtual Machine (VM) in microprocessor and software level. The VM can isolate the

applications from the underlying hardware and VM is also used to allocate physical

resources on user demand.

Xing et al. (2012) confer that, one key feature of CC is virtualization, which makes

it possible to run different operating systems and applications over the same machine

or set of machines. Virtualization is more useful when user will understand resource

management issues and security problems before migrating into the cloud. With Mo-

bile Cloud Computing (MCC) research Xing et al. (2012) mention that, we can move

data storage and data processing mobile devices to the cloud. MCC interconnects, geo-

graphically distributed users all over the world using shared resources. Current service

providers did not pay enough attention, resources provisioning diversity. It includes

the type of guest OS and virtual hardware configuration (Xing et al., 2012). Armbrust

et al. (2010) mention the main factor about cloud service providers, that provides dif-

ferent services on demand basis. He also states that, to expand computing potential of

resources we can use MCC effectively. (Xing et al., 2012) and Armbrust et al. (2010)

agree on MCC, that it allows mobile devices to provide services, applications and re-

sources worldwide. By expanding storage and computing power of data centers, we can

achieve virtualization goal in MCC.

Durairaj and Manimaran (2014) research for virtualization puts MCC in the next higher

level in cloud computing. Study of Durairaj and Manimaran (2014) proves that, virtu-

alization on a mobile device would mean just one smart phone with virtual partitions,

so people could use it for both work and their personal lives. According to Buckley

(2012) while adopting virtualization in MCC, the mobile users and enterprise markets

for mobile cloud based applications will increase rapidly. The virtualization technique

creates the environment for system software and resolve the complexity between hard-

ware and software. Durairaj and Manimaran (2014) perform an experiment to prove

that, virtualization can effectively manage using Hypervisor. He states that, the Hy-

pervisor is a software program that can virtualizes system resources. Durairaj and

Manimaran (2014) confer about emulation technique also. Durairaj and Manimaran

(2014) further explain that, emulation is a virtualization technique which used to trans-

late the hardware program into the software program. Emulation provides flexibility

to guest OS, but processing speed is slow as compare to Hypervisor.

xiii

Durairaj and Manimaran (2014) explain virtualization technique in his study. Paravir-

tualization is one of the virtualization technique in which guest OS is recompiled prior

to install inside the virtual machine. Full virtualization is a virtualization that guest OS

doesn’t know about virtualize environment and therefore hardware is virtualized by the

host OS (Durairaj and Manimaran, 2014). Liang and Yu (2015) discussed about wire-

less virtualization in MCC . Liang and Yu (2015) mention that, wireless virtualization

in which cost of network deployment and operation is reduced by sharing computing

resources. It is a process of abstracting, slicing, isolating and sharing mobile resources.

For large scales Buckley (2012) discussed about virtualization solutions that can elimi-

nate the problem of data loss in corporate sectors. It can happen to storing all data and

applications on a server and simply giving users a virtual window access to these re-

sources. Charland and Leroux (2011) claim that, Apple changed our mobile experiences

with the iPhone, but its difficult for them to develop different apps for each platform

separately. Charland and Leroux (2011) further assert that, for gaming and image

processing apps Apple faced some performance penalty with well-developed business

applications and developing a new application for each mobile platform is cost effective.

In an important study on the VMware mobile virtualization platform by Barr et al.

(2010), he provides a solution for Type 2 Hypervisors. Mobile Virtual Platform (MVP)

hypervisor is mainly used for BYOD concept in corporate sectors. Barr et al. (2010)

believe that, to design hypervisor for mobile virtualization the main goals are porta-

bility, compatibility, security, low complexity, performance and manageability. ARMv7

core technology used for all mobiles, Instruction set architecture (ISA) and memory

are the two main approaches used in ARM core virtualization technology (Barr et al.,

2010).

Mobile Cloud Computing

According to Shiraz et al. (2013) MCC architecture has three major components; smart-

phone, Internet and computational cloud. Shiraz et al. (2013) claims that, virtualization

is a technique to create virtual instances of a device or resource, such as a compute

server, storage disks, network or an operating system. Shiraz et al. (2013) further de-

scribe about the services that, compute service is responsible to aggregate the server

resources across many discrete servers and assign them to applications. Storage service

is of technologies that enable the most efficient and management of storage in virtual

environment. Network service simplifies and enhance networking in virtual environ-

ments.

Hung et al. (2011) justify that, CC technology helps to solve problems like a resource

sharing, storage, computing power, energy consumption in IT industry. But still some

xiv

problems are puzzling like: application redesign and deployment, Service availability

and privacy of personal data. According to National Institute of Standards and Tech-

nology (NIST) model Liu et al. (2011) and Zhang et al. (2010), CC provides On-demand

self-service so resources can be dynamically added and manage on the network. In to-

days world, people widely used mobile devices and the number is increasing day by

day because of different applications and techniques being used in mobile device(Kemp

et al., 2012). Schüring (2011) point out some research study related to MCC like

open issues and possible solutions, services and communication network used by smart

phones and addressed different solutions associated with MCC.

2.2 Need to Virtualization

In recent study Xu et al. (2010) claims that, the mobile phones connected to the

Internet for downloading files, images, audio and video. Users personal information

like emails, contacts, debit or credit card numbers are residing into the mobile device,

so mobile phone become need to be more secure. Xu et al. (2010) confer that, IBMs

VM/370 was a first commercial Virtual machine (VM) developed in the 1960s. VM is

a copy of real time system and Virtual Machine Monitor (VMM) is used to control the

resources of VM. Xu et al. (2010) further mention that, Mobile phone virtualization

requirements are quite different from system virtualization. Virtualization techniques

for high performance system are not applicable for mobile devices because of different

hardware resources and power efficiency. So Xu et al. (2010)suggest that, for mobile

phones, high performance virtualization solutions are preferred. The main goal of

virtualization is to utilize the resources like storage, network and processor in minimum

cost of performing multiple tasks simultaneously.

Durairaj and Manimaran (2014) discuss about emulation technique in his research.

They state that, emulation is one of the virtualization technique where the guest OS

is lying over the hypervisor and converts hardware to the software layer. Durairaj

and Manimaran (2014) further categorize three types of virtualization techniques, such

as Server virtualization, Client Virtualization and virtualization of storage. In Server

Virtualization one server can be virtualized into multiple servers across the multiple

environment.

Hypervisor allows the server to manage different applications locally and remotely.

Durairaj and Manimaran (2014) point out that, using Server virtualization we can

achieve cost saving, high availability and resource sharing. Durairaj and Manimaran

(2014) further describe that, in Client Virtualization we can virtually monitor different

client machines such as a laptop, desktop system and mobile phones. Durairaj and

xv

Manimaran (2014) gives the idea behind Storage Virtualization, is to create logical

storage system from actual physical storage.

Machine to Machine Communication (M2M)

On different computing technologies Internet, wireless technology, personal computer

and mobile devices are able to create machine to machine communication (M2M).

Cagalaban et al. (2012) states that,by virtualizing software architecture of a mobile

phone we can reduce on device CPU and memory resources. Companies like Google

are starting mobile virtualization for reuse of software and hardware and for improving

host security. Using virtualization in the mobile phone can run multiple OS on the

same hardware like legacy OS in televisions and entertainment systems.

In Mobile virtualization study, citetcagalaban2012mobile focuses on migration of secu-

rity services to the cloud detection service. This architecture contains a mobile device

with a virtual machine on it that sends les to the network for security analysis. This

architecture could be deployed by the cloud service provider(Cagalaban et al., 2012).

M2M study of Cagalaban et al. (2012) tackled about some issues like real time support,

resource allocation, power consumption and security. These issues are critical to mobile

phone. So it is needed to detect new approaches to virtualization.

2.3 Related Work

In recent studies for Mobile virtualization Oh et al. (2010) suggest full virtualization

for Advanced RISC Machine (ARM) mobile systems, where multiple OSs running on

single mobile system at a same time. Oh et al. (2010) discuss about two technologies

used for virtualization: full-virtualization and paravirtualization. Oh et al. (2010) state

that, in full virtualization it is not required to make changes in the source code of a

guest OS. The OS can run on VM directly and guest OS does not even realise it (e.g.

VMware ESX, Xen).

In case of paravirtualization Oh et al. (2010) state that, it is necessary to modify source

code of the guest OS by humans or tools. The main modification is made in system call

interfaces, memory and interrupt handling. Oh et al. (2010) confer the main advantage

of paravirtualization is a High Performance (e.g. L4Linux). With Virtualization for

Mobile (ViMo) architecture Oh et al. (2010) describe the full virtual mobile system

based on ARM. This virtualization technique creates, one virtual machine per each

operating system and the OS runs on that virtual machine. According to experimental

results carried out by Oh et al. (2010) in ViMo has around 37 percent overhead. So

xvi

it is essential to improve performance of all components, including CPU and memory

using better virtualization algorithms in future.

According to Andrus et al. (2011) virtualization is a relatively new concept for various

mobile and embedded devices. In study of Open Kernel Lab 4 (OKL4) Microvisor

by Andrus et al. (2011) state that, it is actually a bare metal Hypervisor which is

useful only for smaller computing operations. A solution is given in Cell architecture

of Andrus et al. (2011), but it has high overhead of virtual phone switching. VMware

and MVP are settled virtualization solutions in Android device that runs on recent

hardware. Barr et al. (2010) claims that, unlike OKL4 its trusted virtualization base

is more compatible with both Android user environment and host Linux OS.

In Virtual Ad hoc Network (VAN) system to virtualize mobile devices paravitualization

is used by Xen hypervisor. Mobile Network Layer and Mobile Link Layer are used to

support the mobility in nodes (Poylisher et al., 2010). In L4Android study by Lange

et al. (2011) they used Nitpicker component for virtualization, but it does not offer any

performance metrics. The simple way to build a virtual environment on mobile phone is

used, existing techniques but its difficult to native implementation. The reason behind

it is software and hardware related issues, effective use of memory subsystem is one of

the solution in mobile virtualization (Lee and Hsueh, 2013).

2.4 Memory Management for Virtualization

Memory Management Unit (MMU) plays an important role in mobile virtualization,

nested paging in which address translation become possible from different virtual ma-

chines (Bhargava et al., 2008). But according to a study of Lee and Hsueh (2013)

MMU is not suitable for mobile virtualization because it takes long latency for address

translations. Optimized page translation (oPT) is another method developed to solve

this problem. oPT can minimize a number of memory accesses to more than 50 per-

cent, sustained due to address translation. Virtual Machine Monitor (VMM) is a layer

to manage Virtual Machines (VMs) and every guest OS is running on the separate

VM. Guest Physical Address (GPA) is managed by VMM, Block Table bTLB address

translation allow 100 percent hit ratio rate in virtualization (Lee and Hsueh, 2013).

2.5 Smart Phone Device and Server Virtualization

A mobile virtualization system is comprised of a mobile device and virtualization server

in Figure 2.1. Roh et al. (2014) state that a mobile platform is divided into two parts:

xvii

Figure 2.1: Mobile virtualization service (Roh et al., 2014)

Terminal and Server platforms. The Terminal platform is which the operating system,

middleware and browser are mounted on a device. It is used to control hardware and

user interface (UI). Now a days UI becomes more user friendly, so user can easily access

any platform. The Server platform is which authentication, billing, gateway and online

marketplace are mounted on the server.

Roh et al. (2014) also mention that, mobile device and virtualization server, possibly-

connect by Wi-Fi, 3G and LTE. Newly evolved light-weighted platform technology

used to provide high quality web application services to different terminal platforms. It

includes content virtualization without any hardware dependency. Light weight devices

as mobile have minimum codecs and sensors. They only decode the data from servers.

An android-x86 virtual machine present in a virtualization server based cloud system,

receives events from mobile devices and send encoded data to mobile devices.

In a Server platform Android software structure works as shown in Figure 2.2 (Roh

et al., 2014). The Linux kernel is located above a hardware layer and at the bottom of

the Android system. The Android applications and C/C++ libraries are located above

the kernel layer in the system. In absence of physical GPS android x86 is unable to

identify values transmitted by the device so, we need a virtual path here. Roh et al.

(2014) confers that, driver virtualization technology is divided into two types: Virtual

device driver and Hardware Acceptance Layer (HAL). Virtual device drivers divided

into two types again: Virtual sensor driver and GPS driver. The virtual sensor driver is

used to transfer sensor values to android framework and GPS driver transmitted GPS

data towards the Hardware Acceptance Layer (HAL).

xviii

Figure 2.2: Device events management (Roh et al., 2014)

In study about, interface library layer Roh et al. (2014) discussed virtualization system

transfers, where the event values are nothing but GPS and sensor data to the android

application layer. Open Graphics Library (OpenGL) is used when the system needs

hardware acceleration. OpenGL is an interface that is connected to host OS using vir-

tual box as a Type 2 Hypervisor and it will increase performance of virtually execution

window.

2.6 Live Migration with virtualization

Hung et al. (2011) stress that, resources for computing such as data storage, network

bandwidth and battery capacity are the main issues in MCC. It is essential to develop

models for migrating applications and synchronising data between execution environ-

ments. Hung et al. (2011) further conclude that, application offloading is beneficial in

MCC where application workload is offloaded onto the server machines to save execution

time and conserve energy. Application re-design and deployment, network condition

and service availability, are the puzzling issues in current mobile cloud services. To

solve these issues a virtualized execution framework is used where application re-build

is not needed. A user may run existing application

on physical device or virtual environment. But the communication cost of migrating a

process of mobile applications is prohibitively expensive (Hung et al., 2011). Collabora-

tive Computing in that mobile devices and cloud servers work collaboratively and being

aware of quality-of-service (QoS). Where each of the virtual network devices provides

a specific QoS guaranteed communication channel. In QoS guaranteed communication

xix

Figure 2.3: Creating a virtual environment (Hung et al., 2011)

framework the communication messages can be sent over a low bandwidth channel with

high transmission probability (Hung et al., 2011).

In cloud virtual system Figure 2.3. Hung et al. (2011) states that we can run a set of

different applications on the mobile device. The user has the choice to either use mo-

bile device or virtual environment to run applications or he can migrate applications

between two virtual environments. This framework is develop for Android users, it

automatically creates and migrate applications in virtual environment. For this frame-

work developer need not to rebuild their applications. This framework will placed on

the server machine of IaaS provider.

Hung et al. (2011) described six steps, to create virtual environment: First, Install and

run user program, it provides an interface between user and applications to cooperate

with the virtual environment. Second, the agent allocates delegate system virtual

environment to host using the virtual machine from IaaS provider. In third step Hung

et al. (2011) state that, Agent sets up virtual environment for virtual phone on the

delegate system to affect an android phone.

Hung et al. (2011) further defines that, virtual phone need to be more compatible with

android device. Fourth, using image stored in the delegate system agent creates a new

virtual environment. The agent then copies data and applications from physical phone

to virtual phone. Exact copy of the environment will more compatible applications.

xx

Fifth, when a user send command to the physical machine agent then he established

communication with agent in virtual machine (Hung et al., 2011).

Hung et al. (2011) also define that,p hysical agent takes control of all operations in

a virtual environment. The user sends a request to agent to migrate applications.

Sixth, both agents on physical and virtual phone now synchronizes the applications

and keeps user data steady and coherent on both phones. But this framework has

some issues like: to copy physical environment and create a virtual one, minimize the

time required to migrate applications, minimize the costs for sharing data and secure

virtual environment (Hung et al., 2011). To cope with these issues we need to build

more secure framework in mobile virtualization.

2.7 What is BYOD?

Bring Your Own Devices (BYOD) is a new clause where, employees in IT industry

can use their personal computing devices specially smart phones at their work places.

According to Buckley (2012), employees can access enterprise resources using their

smart phones. How effective virtualization is used in smart phones will depend on

company policy and employees. In opinion of Buckley (2012), network access control

is important methodology used in many enterprises for monitoring. In today’s smart

phone era mobiles are widely used as computing device rather than desktops, PCs

and laptops. All new generation android smart phones were fully equipped with touch

screen, Graphical processing unit (GPU), Wi-Fi, Bluetooth and Global Positioning

System (GPS).

Buckley (2012) confers that, BYOD is very use full in enterprises to test their new

applications on employees computing devices before implementing in the real world.

Bring Your Own Device(BYOD) is a phrase that has become widely adopted to refer to

employees in IT industry who brings their own computing device such as smartphones,

laptops and PDAs to the workplace for use. The main idea is to provide mobile access

to corporate resources. For supervision activity authentication and Network Access

Control (NAC) is used. Network Access Control (NAC) and authentication techniques

are used for supervision process in enterprise sectors. IT companies and their employees

can effectively work on mobile virtualization technology. Data loss and data security

are major issues in BYOD. But although there are clear security issues to consider,

Buckley (2012) states that cloud, mobile device management (MDM) and virtualization

will effectively use for BYOD.

xxi

Buckley (2012) notified problem that, there will be a possibility of data loss if the

user access corporate account outside the virtualize environment. It is necessary to

provide document level security and it needs to mitigate separately. BYOD concept

is also called as Virtual Phones because a user is able to use enterprise domains and

personal domain on the same mobile device. So BYOD is depending on security as well

as isolation concern and mobile virtualization is the solution for this (Carabas et al.,

2014).

Embedded Virtualization Platform design for a BYOD where corporate’s important

information must be secured from unauthorised employee access. Traditional server

virtualization solutions are not suitable for new mobile technology as it is more user

friendly and power consuming. Today there is no dedicated virtualization solution for

BYOD use case Dong et al. (2015). For example OKL4 (Open Kernel Lab) Microvisor is

expensive in context switching, Bromium Microvisor contained only single isolated VM

to run all applications. The OS has high priority so it runs in Kernel or Supervisor mode

and all user applications run in User mode Lange et al. (2011). In case of Open Source,

Kernel Virtual Machine (KVM) is available only for Linux 3.9 onward versions, Xen

4.3 onward versions are available for ARM. In OS modification container technology

is used, one good example is Cell. The Cell can implement multiple Android virtual

mobile phones on a single mobile device (Andrus et al., 2011).

Benifits of BYOD

- It helps to improve the productivity of employees.

- Developing good relations with clients.

- Increased attention of employees to work.

- Virtualization in BYOD can helps to use enterprise domain and personal domain on

the same phone.

2.8 Android Framework

We have been using Android 5.1 i.e. Lollipop for our setup. Figure 2.4 shows the

architectural overview of the Android OS. The Android OS is basically invented for

mobile devices. The Architecture contains four layers.

1. Linux Kernel: It consists of a kernel with Linux 2.6 version. Kernel offers built in

services like camera driver, WI-Fi driver, Display driver, keypad driver, flash, audio

driver and power memory (Brahler, 2010).

xxii

Figure 2.4: Android Architecture (Android ArchitectureKernel Description, 2013)

2. Libraries and Android Runtime: The second green layer is sets of C/C++ libraries

for system components. The kernel uses bluez for Bluetooth functioning and the wpa

supplicant to encrypt WI-Fi. As mobile devices are with less power and CPUs native

code is used for CPU and graphical processes. Kernel libc and libm libraries are spe-

cially built for small memory and licensing problems with Android. Surface Manager

acts as the window manager and manage successes to screen. Media Framework con-

tains video and audio features. Android Runtime layer is placed in Android kernel and

acts as host for Dalvik VM and core libraries of Java. Dalvik VM interprets the Java

byte code into byte code of Dalvik VM (Brahler, 2010).

3. Application Framework: As per Android developer guide, this layer provides a devel-

opment platform for Android development and communicate and manage applications

in the top layer. Brahler (2010) notifies that, blue colour contents in this layer are

written in Java language. The Dalvik Virtual machine is responsible to run this Java

code.

4. Android Applications: Each Dalvik virtual machine is sandboxed and apps are

running into it. Applications are consisted of various contents like service, activity,

content provider and receiver for broadcast (Brahler, 2010).

xxiii

Figure 2.5: Architecture of Tizen OS (Gadyatskaya et al., 2014)

2.9 Emerging Tizen

New mobile operating systems like Tizen or Firefox OS are invented on Android basis

and tries to overcome limitations of Android. Like Android Tizen is also Linux-based

operating system, invented in collaboration with Fujitsu, Huawei, Samsung and Intel.

Initially, it was only used for web apps, but Tizen 2.0 onwards versions are able to

run C++ applications. Tizen is now become the competitor of Android and share

the market segment of Android phones. In figure 2.5, Gadyatskaya et al. (2014) gives

a detail view of architecture of Tizen OS. The Linux kernel is the located with the

device drivers, on the underlying hardware of the system. The next layer is Tizen core,

offers functionalities like App framework, GUI, Security, System and telephony. The

third layer is about Web framework and Native framework. Web framework contains

W3C, Tizen API and web runtime. Native framework at present with functionalities

like System services, Net services and Namespaces. The top most layer of Tizen OS is

nothing but user applications including Web, Hybrid and Native.

Hoy (2011) states that, unlike Android, Tizen framework does not include VM strat-

egy. It gives vast application packaging system, SDK for web framework which offers

HTML5. Tizen acquires device profile technology, which offers a platform for differ-

ent types of devices (Willis, 2014). Tizen also make available for multiple hardware

xxiv

components and cross device platform technology like mobile devices, In-Vehicle info-

tainment (IVI) and cameras (Samsung’s NX300M smart camera is its first to run Tizen

OS, 2013). Tizen provides special packages for wearable electronic devices like watches

(Prabhakaran, 2014). SQLite have been used in both Android and Tizen platform

through fsync() system call. Both OSs used default file system EXT4 by journaling the

files in Ordered Mode (Kim and Kim, 2012).

The Tizen documentation describes in detail on its official website Tizen Web Guides

(2012) the guide for developers. Overall Tizen architecture provides secure framework

with various utilities and system tools like secure shell client and rpm package manager.

Tizen Hybrid Apps is a combination of the two frameworks. HTML5 are used to

develop high level Application Programming Interfaces (APIs). Native Applications

are developed for system services using built in programming libraries in C++.

Tizen supports mobile web apps through its web browser. Tizen App store able to

publish package applications as well as hosted applications. Packaged Apps are access-

ing the API of mobile devices as they are in category of standard web app. On the

other side Native Apps are used as service Apps or User Interface(UI). The difference

between UI and Service App is that, the UI is for graphical interface and Service Apps

can run on device background. Sandboxing is the most important feature in Tizen

OS that offers security to Tizen Apps. This security is called application sandboxing,

implemented in the OS kernel with MAC.

Asrar and irfan (sept 2014) from Intel security group defines Tizen core layer in detail

which includes following services such as:

• App Framework : It is also called AppCore, offers services for middle-level and

system hardware. The framework is interconnected with the Linux kernel to handle

hardware calls, web apps and APIs. App Framework manages the life cycle of Apps

and responsible to launch them. It handles the system events, configures applications

and able to install or uninstall applications.

• Base: It is foundation of system libraries in Linux.

• Graphic/UI: In includes in Native framework and provide graphic facility and User

Interface (UI).

• Security: Provides security to the entire system through certificates,

• Connectivity: This feature used to interconnect within the network.

• PIM : Offers features like contacts, calendar etc.

xxv

• Location: Offers GPS location with satellite metadata and geocoding.

• Messaging : Offers all communication styles like SMS, email, chat, MMS, etc.

• Multimedia: Supports feature like audio, video, images etc.

Tizen Sandboxing

Gadyatskaya et al. (2014) described that, to sandbox the application root and app

are the two IDs for the user. SMACK (Simplified Mandatory Access Control Kernel)

is used for Linux security purposes with MAC and allow the sandboxing at kernel

level. The process is marked with unique label along with its resources. SMACK is

responsible for resource allocation to processes. Application file in sandbox, is labelled

with 10 character unique key SMACK64EXEC attribute in ext file. This label is used

as default label and will be used for all resources assigned to Apps.

Gadyatskaya et al. (2014) further state that, when user installs Apps package manager

allocates the unique label to each file. In installation process SMACK rules apply to

system to offer authorized access over resources. Smalley and Craig (2013) stress about

Tizen’s built in security model, that contains application sandboxes and resource access

control. It will help us to provide better security in BYOD environment, by isolating

applications at a kernel ground with smack. Smack security is basically three domain

model used to control and manage access resources. It delivers user domain, system

domain and floor domain for user, system and public data processing activities.

Package manager sends a request to SMACK to grant permission for accessing re-

sources. Using this grant applications are able to use SMACK objects and transfer

them into security checking. SMACK sandboxes are used for all development appli-

cations. Smalley and Craig (2013) states that, in web application installation process

Tizen make AppID for SMACK rule and build a soft link for client in Web Runtime.

The soft link will run with the application and then execution will happen in the sand-

box. This sandboxing framework is different from Android, where developer uses Linux

DAC (Dictionary Access Control) model and not a MAC.

2.10 Comparision of Android and Tizen Application Sys-

tem

Gadyatskaya et al. (2014) compares Tizen applications with Android applications and

make a statement that, like Android Apps Tizen Apps able to communicate directly.

xxvi

Tizen applications are made, their functions available publicly to use for other appli-

cation and this feature is similar to Android. AppManager is maintaining records of

all App functions through AppControl technique. Gadyatskaya et al. (2014) compare

Tizen AppControl technique with Androids Intent Technique. Like Intent Technique of

Andoird, AppControl has two types: Explicit control and Implicit Control. In explicit

control application uses AppID, which is unique to each App to call other App and in

Android App system package name is used for calling. The second is Implicit control,

in this type request will be processed using MIME, URI or operation ID whereas, in

Android implicit intent resolution is used.

In Tizen there is one default implicit control for calling an application, in Android

default implicit intent is set to call the main activity function of an application. Like

content providers in Android, Tizen have mechanism of data control and message ports

to interconnect applications and established communication among them. Tizen Devel-

opers also able to establish personal communication among Tizen applications. Such

type of application is with signed privacy certificate and user cannot export its function-

ality. Android Apps uses signature permission protection with fine grained policy that

application developers can moderate access to selective components of applications.

(Kim et al., 2015).

According to previous research by Kim and Kim (2012) EXT4 file system in Android

uses asynchronous journal to commit to return the fsync() system call. When this call

returns before completion of write operation of the commit. The checksum field of

journal commits, is use to check records of journaling of the file system. On other side

EXT4 in Tizen does not use asynchronous commit for journaling.

Permissions

Tizen privileges and request to use the API are same as Android permission granting

process. SMACK rule in Tizen is nothing but granted permission during installation.

Tizen have two types of privileges: Public and platform. In the public privilege list

of contract is available to all Apps. Platform level is also called as Partner privileges,

they are only available for trusted and registered partners with company in Tizen store.

This privilege includes package manager and available for authorised Tizen consortium

developer. Platform level privilege is defined in the application with authorised sig-

nature. Dissimilar to Android Tizen Apps have two signature one is for author and

developer, second is for marketing, distributors and manufacturers Gadyatskaya et al.

(2014).

• Additional security in Tizen : Tizen uses Content Security Policy (CSP) to control

the web content sources. It also restricts the navigation of webapp to various domains

xxvii

listed in ¡tizen:allownavigat ion¿ tag of the manifest file. Against plagiarism Tizen

provides encryption service, developers can on it.

• Platform comparison of Android and Tizen: According to S.Suzuki (2013), from

Android version Jelly Bean (4.2) it completely supports data execution prevention

(DEP) and memory management security feature like address space layout random-

ization (ASLR). Tizen OS is inherited from Android, and the developer uses native

development languages and till 2014 Tizen work is going on DEP and ASLR.

• Sandboxing Comparision: Bugiel et al. (2012) states that, Android has different

approach in sandboxing than Tizen. Android utilities Linux DAC (Dictionary Access

Control) model with separate UID for every application, whereas Tizen uses unique

UID for all applications SMACK rule is uses for security in sandboxing.

xxviii

Chapter 3

Specification

We developed our experiment on the basis of virtualization theorems of Popek and

Goldberg. It states that, For any conventional third-generation computer, an effective

Virtual Machine Monitor i.e. hypervisor may be constructed if the set of sensitive

instructions for that computer is a subset of the set of privileged instructions (Popek

and Goldberg, 1974). In mobile virtualization test framework, virtualization constitutes

some challenges. The first challenge is virtualization should not be affected on the

performance of mobile, otherwise this would results weak quality of the user experience

in BYOD environment. We will try to compare the virtualization performance for

Android OS and Tizen OS.

There are multiple consistent operations on the mobile device of process switching.

Switching the interface from one domain to another domain or switching from one

application to another application in same domain requires many logical operations. In

this project we only focused on performance comparison of virtualization environment

and native environment of the Android OS and Tizen OS. The main reason behind that

is because the integral for virtualization needed less memory than guest OS. Guest OS

requires large allocation of RAM memory to run efficiently. Finally, the best solution

is working with this comparison is, we have used benchmarking tools like LINPACK to

measure performance.

In this project we use following sources:

i) We developed the framework to test and evaluate the performance of Android 5.1

(Lollipop) OS and Tizen IVI (In-Vehicle Infotainment) 3.0 on VMware Workstation.

We used LINPACK benchmark to measure the performance of the operating system

and processor in the form of number of Floating Point Operations Per Second (FLOPS).

xxix

Figure 3.1: Evolution of Tizen OS

ii) We have used Samsung Galaxy S 5 mobile to test Native performance of applications

using Benchmarking tool GameBench (Huckle and Cleaver, 2012).

iii) To measure performance of Tizen OS in wearable device we used Sumsung Gear S

wearable device. To measure performance of applications in watch we used 3D G-Mark

benchmarking tool. This tool conducts tests for wearable devices (3D Mark Technical

Guide, 2015).

iv) We have used, Wayland rendering tool to measure the rendering and graphics per-

formance of Tizen Wayland kernel. This tool gives output of frames per second status.

3.1 Tizen OS

As shown in Fig 3.1, Tizen is a cross-architecture, open source software platform. Tizen

is a Linux-based operating system with Linux kernel and the GNU-C library. The

software development kit (SDK) allows developers to use HTML5 and related Web

technologies to write applications that run on supported devices. It is an associate

project Linux Foundation with Samsung and Intel. It was developed in Linux-Kernel

and Webkit run time. The user can access source code and modify the program for

Tizen OS. Samsung merge Limo project Morita et al. (2007) and Bada project Woyke

(2012) into Tizen. Intel associates with Tizen by putting their MeeGo project work

into Tizen OS (Grabham, 2010).

xxx

3.2 Samsung Gear S Watch

We have used, Samsung Gear Watch to measure frames per second (FPS) performance

for native Tizen operating system. This watch contains inbuilt application like con-

tacts, calender, calculator and email. We have used 3D G Mark benchmarking tool, to

calculate FPS ststus of native Tizen OS.

Table 3.1: Samsung Gear S Watch Specification.

Technology GSM/HSPA
Launched August 2014

SIM Nano sIM
size 2.0 inches

Resolution 360 x 480 pixels
Display Type AMOLED Touch screen, 16 M colors

OS Tizen wearable
CPU Dual core 1 GHz

Memory 4 GB and 512 MB RAM

We used Samsung Gear S watch to measure Tizen wearable native performance, above

table 3.1 gives its specification.

3.3 Samsung Galaxy S 5 specifications

We used Samsung Galaxy mobile to measure native Android performance on phone with

GameBench Benchmarking tool. This mobile phone have Android Lollipop operating

system as a native one. In our virtual machine setup, we also used Lollipop OS to

create virtual instance. Following table 3.2 gives specification of mobile.

Our experiment setup used to check performance of FLOPS rate for Android Native

machine and Android VM and compare it with Tizen Wayland VM.

Table 3.2: Samsung Galaxy S5 Mobile Specification.

Technology GSM/HSPA/LTE
Launched Febuary 2014

SIM Micro sIM
size 5.1 inches

Resolution 1080 x 1920 pixels
OS Android OS Lollipop 5.1

CPU Quad-core 2.5 GHz Krait 400
Memory 16/32 GB, 2 GB RAM

xxxi

3.4 LINPACK

LINPACK is a very popular benchmarking tool, to measure system performance in

(Floating Point Operation Per Second) FLOPS. LINPACK contains inbuilt FORTRAN

subroutine programs to solve linear equations. LINPACK benchmark tool package built

with Basic Linear Algebra Libraries (BLAS) for matrix related operations. The main

reason to use this tool is to calculate the time and speed to solve real problems (Jack

J. Dongarra, 2012). We choose this tool to measure and compare the performance

between Android virtual machine on VMware and Android Native on mobile. Also we

compare performance between Android VM and Tizen VM.

According to (Jack J. Dongarra, 2012) the virtual machine or native machine, that

perform larger number of floating point operations per second is the best machine. In

our study we checked FLOPS rating and computational power of system with Android

OS and Tizen Os. Our main aim is to find out how these operating system behaves in

virtual environment. The performance result of LINPACK test, will helpful to identify

isolation capability of the OS in BYOD.

Jack J. Dongarra (2012) explains that, LINPACK benchmark package is contains ex-

tra package of linear algebra for numerical calculations. MFLOPS is concerned with

Megaflops, that includes millions of critical floating point operations. LINPACK also

includes loop unrolling method, it is related to measuring CPU frequency. Loop un-

rolling is responsible to reduce CPU overhead and increase the system performance.

Jack J. Dongarra (2012) also add the vector operations into this tool. Vector tool is

used to manage the reuse of data using special algorithm.

LINPACK is suitable for Android and Tizen OS benchmarking, because it’s written

in FORTRAN language. Using FORTRAN subroutines, Jack Dongarra invented LIN-

PACK benchmark in 1979. Our main focus is, to calculate how fast the virtual machine

can solve critical problems like matrix calculation. We have to take care that, the over-

all performance of the system should not be affected by this benchmarking tool. Virtual

machine performance should not be affected by benchmarking techniques. Jack J. Don-

garra (2012) point out that, to calculate computing system performance is critical thing

and depends on multiple things. From above arguments, it can be proven that, bench-

marking tools are best option to calculate the performance of native as well as a virtual

machine.

xxxii

Chapter 4

Design

As we described in chapter 2.7, Bring Your Own Device (BYOD) is now growing trend

in IT industry. Mobile devices are important paradigm in BYOD environment. It helps

to reduce company’s production cost and increases employee’s productivity. To solve

this question one answer is to run multiple virtual phones on the same mobile device.

But the question is how mobile OSs like Android and Tizen will perform in virtualize

environment.

Our aim is to measure isolated performance of virtual instances of Android and Tizen

on VMware Workstation. Also, we have measured Native performance of Android OS

using a mobile device. The mobile device which we have used is Samsung Galaxy S 5.

We installed the GameBench tool on the phone to measure the performance of mobile

applications like contacts, calculator, video, play music, YouTube and browser. Every

virtual instance contains separate memory management unit and OS kernel. So even if

one gets failure other will not be affected. To have a secure and trusted OS is also an

important requirement of BYOD. We used LINPACK benchmark tool for Android and

Tizen VM and also in Native mobile phone to check FLOPS of the system. Our design

model will compare the performance test between Native and virtualize platform for

Android OS and Tizen OS.

Figure 4.1 shows the comparison module of our experiment. We created a virtual

instance of Android 5.1 (Lollipop) as a guest OS on workstation. As well as we created

a virtual instance of Tizen Wayland kernel as a guest OS on a workstation. We install

LINPACK tool to measure the performance of computing capabilities over these two

guest OSs. Here we just benchmark the FLOPS performance on native Android of

mobile device and two VMs.

Our proposed comparison module measures the performance and Android and Tizen in

xxxiii

Figure 4.1: Comparison Module

a virtual environment and compare it. This comparison is useful in BYOD framework

where mobile virtualization is one of the solution to access personal as well as enterprise

domain.

4.1 Performance Criteria

Computing Cost

In cloud computing and virtualization framework, production cost depends on compu-

tation cost. Our design will help to identify the operating system and its computational

power. We measured this computing power by LINPACK benchmark.

Computing Power

Computing power refers to speed of processing power to solve critical tasks. We can

calculate this speed with Floating Point Operations Per Second (FLOPS). Our setup

will identify machine that can give higher FLOPS rate.

Graphical Performance In mobile operating systems, graphical performance like

video and Graphic Processing Unit (GPU) is measured by Frames Per Second. GPU

xxxiv

used in mobile device have vendor lock-in, so we have limited access over its functioning.

To measure 3D performance for mobile games and other video applications FPS tool

can be used.

Virtual Machine

Virtual Machine(VM) is software ground implementation of physical computer. The

VM can executes and run applications and programs like native machine. VM in a guest

operating system and have limited access to underlying hardware. We used Android

Lollipop and Tizen Wayland as our guest operating systems.

Hypervisor

Hypervisor is also called as Virtual Machine Monitor (VMM). Hypervisor is responsible

to manage all virtual machines. Guest OS can communicate with system hardware

through Hypervisor. We have used Type 2 Hypervisor for our set up.

4.2 Benchmark Technique

Benchmarking technique is a method, to measure the performance or compare the

computing capabilities of one content. This computing performance contains, standard

output values using a special type of indicator. For virtual machines, benchmarking is

a special technique that can be implemented easily and used to check problem solving

capability. This can be done with a special type of tools like LINPACK, in which

critical problem solving tasks can be measured.

4.3 FLOPS comparison

This solution will achieve maximum number of floating point operations and compare

them for two VMs: Android and Tizen. Number of FLOPS shows the speed of the sys-

tem to solve critical problems. It gives test for residual norms for built in mathematical

calculations.

4.4 Setup configuration on PC

We used following configuration on physical machine:

• Processor: Intel(R) Core(TM) i5 4288U

xxxv

• Clock speed: CPU @ 2.60GHz

•Installed Memory RAM: 8.00 GB

•System Type: 64 bit OS, x64-based Processor

•Host OS: Microsoft Windows 8.1

•Virtualization Platform: VMware Workstation 12.0

xxxvi

Chapter 5

Implementation

In this section, we have given the implementation and installation steps of our compar-

ison module. In section 5.2 installation of benchmarking tool LINPACK on Android

VM and Tizen Wayland kernel VM. In section 5.3 we calculate and compare the result

of FLOPS in native Android, Android VM and Tizen Wayland kernel VM.

5.1 Android virtual instance creation

In this section we will give detail implementation steps of Android VM. We have used

Android 5.1 Lollipop version as our first instance of VM. In figure 5.1 we give an

overview of Android installation Steps. We have used Android 5.1 Lollipop iso image

for virtual machine. This image supports the following file systems:

• ext3

• ext2

• NTFS (New Technology File System)

• FAT 32 (File Allocation Table)

Table 5.1 shows the instance specification of Android VM. Following are the detailed

steps to create an Android VM

i) Download an iso image of Android 5.1 from: http://www.android-x86.org/download

website

ii) In VMware Workstation, click on ”Create New Virtual Machine”, upload the down-

loaded iso image from ”Browse” option.

xxxvii

Table 5.1: Instance specification for Android VM

Sr. No Device Specification
1 Operating System Android 5.1
2 Memory 1GB
3 Processors 1
4 Core 1
5 Network Adapter NAT
6 Cache 512 MB
7 Hard Disk 3.5 GB

iii) Allocate memory 1 GB, CPU 1, HDD 3.5 GB, select Network Adapter NAT . Select

the path for disk storage space. In VMware we have to change the virtual disk type to

the IDE (Integrated Drive Electronics) from SCSI (Small Computer System Interface)

default type. This can be done by changing VM settings.

iv) Power On the VM.

v) We used USB device to boot the Android OS from it. For windows host OS adds

following code in Listing 5.1.

vi) An shown in figure 5.2, select option : ”Installation− Install Android to hard disk”

from selection dialog box. It will boot automatically for few seconds.

1 title Windows 8

2 rootnoverify (hd0,0)

3 chainloader +1

Listing 5.1: Bootable USB for windows

vii) After a few seconds it will show second selection dialog box as shown in fig 5.3

to select a partition to install Android−x86. Select ” sda1 Linux VMware Virtual

partition”.

viii) We coexist Android with another OS. To format sda1 disk, select ext3 file system

as shown in figure 5.4. Other file systems like FAT 32 aren’t supported Android −x6.

ix) To install Android on hard disk, it is necessary to install boot loader GRUB. The

next step will display a question :” Do you want to install boot loader GRUB ?” .

Click on ”Yes”.

x) Android installation will start and it will show progress bar.

xi) After completing the progress bar, it will display a message as in figure 5.5. The

Android −x86 will install and we can reboot and run the VM.

xxxviii

Figure 5.1: Android x86 Virtual Machine Flow

xxxix

Figure 5.2: Install Android to harddisk

Figure 5.3: Select partition to install Android-x86

Figure 5.4: Select filesystem to format sda1

xl

Figure 5.5: Android install successfully

Figure 5.6: Acquire Google account

Figure 5.7: Sign in into Google account

xli

Figure 5.8: Android Vitual Machine

xii) Once Android Virtual machine is created, we have to acquire Google account and

sign in. It will ask for important credentials to authenticate the Google account, as

shown in figure 5.6 and figure 5.7.

Xiii) Android x86 virtual machine is then ready to use, as shown in figure 5.8. It will

show all applications on the screen.

5.2 Tizen Wayland kernel virtual instance creation

In this section we will give detail implementation of Tizen VM. We have used Tizen

Wayland kernel version as our second instance of VM. In figure 5.9 we give overview

of Tizen installation Steps. We have used Tizen IVI image and convert it by using

qemu−img. Qemu−img is a disk image utility which is used to convert default raw

image format into a VMware compatible image format. Following are the detail steps

to create Tizen VM.

i) Download Tizen ivi image from the following link:

http://www.download.tizen.org/release . Choose Fedora 64 bit OS image for virtual

machine.

ii) Extract the downloaded image using following command shown in Listing 5.2:

1 $ bunzip2 -k ivi-tizen-3.0_20151119.2_ivi-mbr-i586-sdb.raw.bz2

2 $ dd if=ivi-3.0-wayland-tizen-3.0_20151119.2-sdb.raw of=/dev/sdd bs=8M

Listing 5.2: Extract the ivi file

xlii

Figure 5.9: Tizen x86 Virtual Machine Flow

xliii

iii) To convert the Tizen ivi image into Wayland kernel, we need to add Tizen reposi-

tories. This can be using following code in listing 5.3.

iv) We have used the qemu−img to convert the ivi image to Wayland. The code we

have used is given in Listing 5.4.

v) Create a new Tizen virtual machine in VMware. Select ” I will install the operating

System later”. Use Linux− > Fedora 64−bit for 64−bit virtual vmdk Tizen image.

1 $ sudo zypper addrepo http://download.tizen.org/tools/latest-release/Fedora_17/tools ←↩
.repo

2

3 $ sudo yum makecache

4 $ sudo yum install lthor

Listing 5.3: Add the Tizen tools repository

1

2 $ qemu-img convert f raw ivi-tizen-3.0_20151119.2-sdb.raw O vmdk ivi-tizen-3.0 ←↩
_20151119.2-sdb.vmdk

3

4 Transfer that vmdk ivi-tizen-3.0_20151119.2-sdb.vmdk VMware disk image to your ←↩
system

Listing 5.4: Convert ivi image to vmdk

vi) Allocate new IDE(0:0) type virtual disk as a single file. Go to edit virtual machine

and uncheck all the connections for CD/DVD, printer,sound card and display.

vii) As shown in figure 5.10, upload the VMware vmdk image that we have created in

step iv.

viii) Add a new hard disk and select disk type IDE as shown in figure 5.11.

ix) Convert the disk format to support VMware workstation as shown in figure 5.12.

viii) Select Tizen Wayland 3.0.vmdk image file. Power on the Tizen Wayland kernel

virtual machine as shown in figure 5.13. Tizen is still in developing state, so Tizen

kernel shows multiple Tizen launcher like carol, developer, bob, alice and guest as

shown in figure 5.14.

xliv

Figure 5.10: Upload the Tizen image

Figure 5.11: Select IDE hard disk

xlv

Figure 5.12: Convert the disk format to support VMware

Figure 5.13: Power on Tizen wayland virtual machine

xlvi

Figure 5.14: Tizen wayland kernel

xlvii

Chapter 6

Evaluation

This chapter evaluates the performance comparison of virtual instances of Android and

Tizen operating systems. In section 6.1, we describe the first test that compares EXT4

Filesystem of Android and Tizen. In section 6.2 we describe the difference file system

structure of Android and Tizen.

6.1 EXT4 file system Mounting Test

According to Sobell (2013) practical guide on Fedora, EXT4 filesystem is an extension

of EXT3 file system. In this test, we compare mounting methods of EXT4 file system

on Android and Tizen platform. For this test we have used Android VM, Tizen VM

and Android Native platform. EXT4 file system contains ”atime” field in its inode. In

table 6.1, we differentiate methods to mount EXT4 file system.

Table 6.1: EXT4 Filesystem mounting comparision between Android and Tizen

EXT4 mounting method- Android
adb -d shell

mount
/dev/block/mmcblk0p9 /system ext4 ro,relatime,barrier=1,data=ordered 0 0

/dev/block/mmcblk0p7 /cache ext4 rw,nosuid,nodev,noatime,barrier=1,
journalasynccommit, data = ordered

/dev/block/mmcblk0p10 /data ext4 rw,nosuid,nodev,noatime,barrier=1,data=ordered,
EXT4 mounting method- Tizen

mke2fs -t ext4 /dev/hda1
mount -t ext4 /dev/hda1 /wherever
/opt relatime,user xattr,barrier=1
/var relatime,user xattr,barrier=1

/opt/usr relatime,user xattr,barrier=1

xlviii

Figure 6.1: Tizen OS File System Tree

The analysis of this comparison includes, Android and Tizen EXT4 file system mouting

methods. The Tizen OS structure uses an old Linux directory format like /var and

/opt. Whereas, Android uses updated Linux directory format including /data and

/system. Android uses asynchronous journal commit, to check records of file system.

Asynchronous journal commit is use to track records of read, write and open operations

of file. EXT4 file system in Tizen have inode with atime field, it will update for each file

accessed. In each file access or read operation inode become dirty every time. Whereas,

in Android atime field is already disabled and set to notime, so it will reduce the IO

traffic. In Tizen EXT4 mounting method, user can extend and add extra attributes in

/opt and /var directory.

6.2 Comparison of File System Structure

In file system comparison we observed the folder structure of Tizen Os and Android

Lollipop OS. Although both the operating systems are based on Linux, the file system

structure is different. Tizen is Linux based operating system. Unlike Android , Tizen

used legacy structure of Linux file system. Figure 6.1 gives detailed overview of Tizen

file system hierarchy.

•Tizen File Sytem

• adaption: This folder is used to save external projects. These projects are made by

external parties with open source libraries. To integrate such open source projects like

openGL, in Tizen OS adaption folder is used. This folder is consider for Hardware

Abstraction Layer (HAL).

• Apps : Tizen in built apps like contacts, calculator, calender and email can be make

available in this folder. We can access and manage these apps through apps folder.

xlix

Figure 6.2: Android Lollipop OS File System Tree

• external: The library functions and all other external apps can be found in external

folder.

• framework: Tizen framework folders and core level access code is contain in framework

folder. Source code of OS is available here.

• meta: Meta folder offers, all the configuration files for related operating system type.

This folder contains IVI, mobile or computer OS configurations.

• pkgs: This file stores packages of source code. To find perticular packages in this

folder, we can use separate tool called mtool.

• pre-built: This folder contains important packages for ARM and x86 system. These

packages are need to be pre-install.

• profile: All system configuration related files are stored here. Configuration files are

used for specific device.

• SDK: Software Development Kit folder offers the source code for developers.

Android Lollipop File System

Unlike Tizen, Android does not use old Linux file system structure. Figure 6.2 shows

the hierarchy of Android File System.

• art: In this folder virtual machine sources are stored, that the Android operating

system supports.

• bionic: This folder contains the operating system version with C library.

• bootable: The failure recovery files and bootable files are stored in bootable folder.

• build: The source code and important script files, needed to configure the system are

stored in the build file. Using build folder system configuration can run.

l

• dalvik: Dalvik is the one virtual machine system, that Android supports. All the files

related to this virtual machine are stored in the dalvik file.

• development : Development tools and files stored here.

• device: All device related files and source codes are available here.

• external: All third party or external programs are save here. This file is use to import

such external programs in Android operating system.

• frameworks: Application framework layer and system library can be found in frame-

work folder. The sources to access library are stored in framework file.

• hardware: In hardware folder, Android Hardware Abstraction Layer information and

device implementation sources are stored.

• ndk: The Native Development Kit is also called as ndk. This folder contains, the

development kits to manage and develop applications for Android operating system.

• packages: Android system default applications like contact, calender, calculator and

email are available here. The source code of these in built application can easily avail-

able in this folder.

• pre-built: The special type of Android tools like emulator or misc tools are stored

here.

• sdk: The Software Development Kit is also called as sdk. This folder contains, the

development kits to manage and develop applications for Android operating system.

• system: All bootable and network programs are stored here.

6.3 LINPACK Bechmarking

In this section, we performed a comparison of Android VM, Tizen VM and Android

Native. We installed the LINPACK benchmarking tool on these three machines. In

this test we point out and measure the performance of FLOPS for multiple operations.

As LINPACK is a highly efficient tool, to calculate FLOPS and matrix calculations.

The main focus is to estimate, how speedily system can resolve real time issues. Our

main goal to observe floating point power, residuals and time to calculate operations.

LINPACK calculates aggregate time to perform difficult tasks and then convert this

aggregation into performance rate. It uses partial pivoting technique where, any high

absolute value is set as a pivoting matrix value. LINPACK also uses, SMP parallelism

to synchronize number threads and number of cores in system. As per LINPACK

li

benchmark, the machine that gives high performance in FLOPS rate is the best machine

to solve real time problems.

Based on this test we find out, which operating system will perform well in a virtual

environment as compared to native. We launch LINPACK tool on Samsung Galaxy S

5 to measure native performance.

Table 6.2 and 6.3 depicted the test result with FLOP rates, time and residuals.

Table 6.2: LINPACK Test table for virtual environment

Test Tizen VM Android VM
MFLOPS Time Residual MFLOPS Time Residual

Test 1 5000 0.015 2.03 1982.223 9.063s 1.6
Test 2 2108.6 0.040 2.03 2195.616 9.144s 1.6
Test 3 8240.2 0.010 2.03 2280.986 7.815 1.6
Test 4 5862.2 0.014 2.03 1862.218 9.04s 1.6

Average 5302.75 0.020 2.03 2080.26075 8.7655s 1.6

Table 6.3: LINPACK Test table for Native environment

Test Android Native Machine
MFLOPS Time Residual

Test 1 1394.276 7.655s 1.6
Test 2 1415.277 7.667s 1.6
Test 3 1403.523 7.557s 1.6
Test 4 1431.268 7.810 1.6

Average 1096.086 7.67255s 1.6

This test result is conducted according to Gaussian elimination with partial pivoting.

Partial pivoting is used to reduce round off errors. For pivoting, it selects a matrix

operation with largest absolute value from column of the matrix and it considers as a

pivot element. We use LINPACK to measure speed in terms of FLOPS.

The floating point operation used by LINPACK for partial pivoting is 2/3∗N3+2∗N2.

We conduct four tests for Tizen VM and Android VM and calculate the average

MFLOPS. Figure 6.3 clearly shows the graphical representation of Table 6.2 and Table

6.3. The average MFLOPS output of Tizen VM is greater than Android VM, as shown

in figure 6.4. The analysis of this test is, in average MFLOPS rate comparison Tizen

VM give high performance than Android VM and Android Native machine.

Figure 6.4 clearly depicts the comparison of average MFLOPS performance among

Tizen VM, Android VM and Android native machine. The average value of MFLOPS

is greater than Android VM and Android Native machine.

Tizen OS gives performance in a virtualize environment as compare to Android OS in

lii

Figure 6.3: FLOPS comparison

Figure 6.4: Average MFLOPS comparison using LINPACK

liii

Figure 6.5: FPS Test

a virtual environment. On the other hand Native Android OS gives less performance

as compared to Android VM and Tizen VM.

6.4 Frame Per Second (FPS)

In this section we perform Frame Per Second (FPS) test for Tizen native device. We

used Samsung Gear S wearable device with Tizen OS. For this test we install Samsung

Gear Manager tool on Samsung Galaxy S 5 mobile phone. This tool is used to install

and manage applications on the wearable device. We launch 3D G Mark benchmark

tool on wearable device trough Samsung Gear Manager.

Table 6.4: FPS test

Test Android Native Tizen Native Tizen VM Android VM
WebGL Detected Detected Detected Detected

Graphics FPS 29.8 (25.7− 60.0) 27 63.2 NA
Particles(FPS) 30 (20.6−60.0) 34 53.6 NA

S/W Rendering (FPS) 13.6 (12.2−16.6) 8.5 29.2 NA

3D G− Mark is the first developed benchmarking tool for smart wearable devices. In

mobile device, we install 3D Mark tool which performs the same test as 3D G− Mark.

To measure the performance in Tizen VM, we have used Wayland rendering tool. This

tool gives FPS output for graphics, particles and software rendering tests.The table 6.4

shows the FPS test performance.

• Wayland Tool in Fedora

liv

1 - Download Source Code

2 git.clone git://github.com/quanxianwang/wr-graph.git

3 - Install Python packages

4 zypper install python2.7

5 Zypper install python-cairo

6 Zypper install python-wxgtk2.0

7 Zypper install python-wxglade

8 Zypper install python-wxmpl python-wxtools python-wxversion

9 - Download Logs in Weston

10 git clone https://reviwe.tizen.org/git/platform/upstram/weston

11 git checkout tizen

12 - Run tool

13 cd wr-graph/src

14 ./gui.py --output=./output/motion/ --config=../config/config.xml --log=./weston.log ←↩
--show=false

Listing 6.1: Run Wayland Tool (Fedora)

Figure 6.5 represents, the graph of FPS benchmark for the Android Native device,

Tizen Native device and Tizen VM. As we mention in the table 6.4, Android VM is not

supported this test. As we tried to install 3D Mark tool to conduct FPS test, but it does

not run properly. Overall FPS performance is almost double in Tizen Wayland than

Android Native and Tizen Native. In another test for particles, Tizen VM achieved a

higher FPS rate than Android and Tizen Native. In software rendering test, Tizen VM

achieved almost double FPS rate than Android Native device. Tizen smart watch only

8.5 FPS rate, which is very less as compare to Tizen VM. As we have used Samsung

Gear smart watch for this test, the FPS performance may increase for smart phone

device.

lv

Chapter 7

Conclusion

Virtualization in desktop and network servers are not compatible with new generation

mobile devices. Hardware requirements of high performance system is different from

a mobile device. So here we conclude need of new virtualization technique for mobile

cloud computing. This thesis recommends a virtualization solution for new generation

mobile operating systems like Android and Tizen. Even if Android is a well established

OS since many years, it’s the FLOPS rate is less as compare to Tizen OS. Tizen OS

is available for many things from IVI, wearable to mobile devices. Tizen VM achieved

more than double FLOPS performance than Android VM and Android Native. As

Tizen give a better virtualize performance than Android and it is available for many

smart devices, it can be use to effectively manage virtualization in MCC. Moreover,

BYOD enables the virtualization environment for mobile devices. As Tizen give a

better virtualize performance than Android and it is available for many smart devices,

it can be use for BYOD.

In evaluation study, we conduct the EXT4 Filesystem mounting test. The Tizen OS

structure uses an old Linux directory format like /var and /opt and Android updates

Linux directory format including /data and /system. EXT4 file system in Tizen have

inode with atime field, it will update for each file accessed. In each file access or read

operation inode become dirty every time. Whereas, in Android atime field is already

disabled and set to notime, so it will reduce the IO traffic.The evaluation chapter also

compared, the FPS performance of Android and Tizen. We achieved, greater FPS

rate in Tizen Wayland VM. On the other hand, we analyzed than Android VM is not

supported graphic and FPS test.

The performance measurement taken in this study, is our first step and only focused on

FLOPS and FPS tests. This thesis study is helpful in BYOD environment where, the

lvi

employee can access their organization domain and personal domain on the same mobile

device. Using the virtualization technique, we can provide isolate and secure BYOD

environment. In future work, we consider to implement virtualization on mobile device.

We will try to create virtual instance on mobile devices and check its performance. We

will perform this task, on Android and Tizen based Mobile phones.

lvii

Bibliography

3D Mark Technical Guide (2015), http://s3.amazonaws.com/download-aws.futuremark.com/

3DMark_Technical_Guide.pdf. [Online] [Accessed: 2015-11-02].

Android ArchitectureKernel Description (2013), http://developer.android.com/about/versions/

lollipop.html. [Online] [Accessed: 2015-10-30].

Andrus, J., Dall, C., Hof, A. V., Laadan, O. and Nieh, J. (2011), Cells: a virtual mobile smartphone ar-

chitecture, in ‘Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles’,

ACM, pp. 173–187.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D.,

Rabkin, A., Stoica, I. et al. (2010), ‘A view of cloud computing’, Communications of the ACM

53(4), 50–58.

Asrar and irfan (sept 2014), ‘Attack surface analysis of the tizen os’.

Barr, K., Bungale, P., Deasy, S., Gyuris, V., Hung, P., Newell, C., Tuch, H. and Zoppis, B. (2010),

‘The vmware mobile virtualization platform: is that a hypervisor in your pocket?’, ACM SIGOPS

Operating Systems Review 44(4), 124–135.

Bhargava, R., Serebrin, B., Spadini, F. and Manne, S. (2008), ‘Accelerating two-dimensional page walks

for virtualized systems’, ACM SIGOPS Operating Systems Review 42(2), 26–35.

Brahler, S. (2010), ‘Analysis of the android architecture’, Karlsruhe institute for technology .

Buckley, R. (2012), ‘How to cope with BYOD?’, SC Magazine UK pp. 23–26. [Online] [Accessed on

2015-07-15].

URL: http://www.scmagazineuk.com/how-to-cope-with-byod/article/264855/

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R. and Shastry, B. (2012), Towards

taming privilege-escalation attacks on android., in ‘NDSS’.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J. and Brandic, I. (2009), ‘Cloud computing and

emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility’, Future

Generation computer systems 25(6), 599–616.

Cagalaban, G., Kim, S. and Kim, M. (2012), A mobile device-based virtualization technique for m2m

communication in cloud computing security, in ‘Computer Applications for Security, Control and

System Engineering’, Springer, pp. 160–167.

lviii

http://s3.amazonaws.com/download-aws.futuremark.com/3DMark_Technical_Guide.pdf
http://s3.amazonaws.com/download-aws.futuremark.com/3DMark_Technical_Guide.pdf
http://developer.android.com/about/versions/lollipop.html
http://developer.android.com/about/versions/lollipop.html

Carabas, M., Mogosanu, L., Deaconescu, R., Gheorghe, L. and Tapus, N. (2014), Lightweight display

virtualization for mobile devices, in ‘Secure Internet of Things (SIoT), 2014 International Workshop

on’, IEEE, pp. 18–25.

Charland, A. and Leroux, B. (2011), ‘Mobile application development: web vs. native’, Communications

of the ACM 54(5), 49–53.

Dong, Y., Mao, J., Guan, H., Li, J. and Chen, Y. (2015), ‘A virtualization solution for byod with

dynamic platform context switching’, Micro, IEEE 35(1), 34–43.

Durairaj, M. and Manimaran, A. (2014), ‘The international journal of science & technoledge’.

Gadyatskaya, O., Massacci, F. and Zhauniarovich, Y. (2014), ‘Security in the firefox os and tizen mobile

platforms’, Computer (6), 57–63.

Grabham, D. (2010), ‘Intel and nokia merge moblin and maemo to form meego’, t echradar. com.

Retrieved 15.

Hoy, M. B. (2011), ‘Html5: a new standard for the web’, Medical reference services quarterly 30(1), 50–

55.

Huckle, D. and Cleaver, J. (2012), ‘Game bench final project report eecs 395spring 2012’.

Hung, S.-H., Shih, C.-S., Shieh, J.-P., Lee, C.-P. and Huang, Y.-H. (2011), An online migration envi-

ronment for executing mobile applications on the cloud, in ‘Innovative Mobile and Internet Services

in Ubiquitous Computing (IMIS), 2011 Fifth International Conference on’, IEEE, pp. 20–27.

Jack J. Dongarra, Piotr Luszczek, A. P. (2012), ‘The LINPACK Benchmark: Past, Present, and Fu-

ture’, http://cluster.earlham.edu/project/curriculum-modules/JOCSE_PetaKit/Resources/

LINPACK.pdf. [Online] [Accessed: 2015-11-15].

Kemp, R., Palmer, N., Kielmann, T. and Bal, H. (2012), Cuckoo: a computation offloading framework

for smartphones, in ‘Mobile Computing, Applications, and Services’, Springer, pp. 59–79.

Kim, H.-J. and Kim, J.-S. (2012), Tuning the ext4 filesystem performance for android-based smart-

phones, in ‘Frontiers in Computer Education’, Springer, pp. 745–752.

Kim, M., Lee, H.-U. and Won, Y. (2015), Io characteristics of modern smartphone platform: An-

droid vs. tizen, in ‘Wireless Communications and Mobile Computing Conference (IWCMC), 2015

International’, IEEE, pp. 142–147.

Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A. and Peter, M. (2011), L4android: a generic

operating system framework for secure smartphones, in ‘Proceedings of the 1st ACM workshop on

Security and privacy in smartphones and mobile devices’, ACM, pp. 39–50.

Lee, Y.-C. and Hsueh, C.-W. (2013), An optimized page translation for mobile virtualization, in ‘Pro-

ceedings of the 50th Annual Design Automation Conference’, ACM, p. 85.

Liang, C. and Yu, F. R. (2015), ‘Wireless virtualization for next generation mobile cellular networks’,

Wireless Communications, IEEE 22(1), 61–69.

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L. and Leaf, D. (2011), ‘Nist cloud computing

reference architecture’, NIST special publication 500, 292.

lix

http://cluster.earlham.edu/project/curriculum-modules/JOCSE_PetaKit/Resources/LINPACK.pdf
http://cluster.earlham.edu/project/curriculum-modules/JOCSE_PetaKit/Resources/LINPACK.pdf

Morita, M., Ichikawa, Y., Terunuma, K. and Seung, H. (2007), ‘Limo foundation: toward a common

linux-based mobile platform’, NTT DoCoMo Tech. J 9(2), 41–46.

Oh, S.-C., Kim, K., Koh, K. and Ahn, C.-W. (2010), ‘Vimo (virtualization for mobile): a virtual

machine monitor supporting full virtualization for arm mobile systems’, Proc. Advanced Cognitive

Technologies and Applications, COGNITIVE .

Popek, G. J. and Goldberg, R. P. (1974), ‘Formal requirements for virtualizable third generation

architectures’, Communications of the ACM 17(7), 412–421.

Poylisher, A., Serban, C., Lee, J., Lu, T.-C., Chadha, R., Chiang, C.-Y., Orlando, R. and Jakubowski,

K. (2010), ‘A virtual ad hoc network testbed’, International Journal of Communication Networks

and Distributed Systems 5(1-2), 5–24.

Prabhakaran, V. (2014), ‘Samsung announced tizen-based gear 2 and gear 2 neo’.

Roh, H.-s., Lee, H.-w. and Lee, S.-h. (2014), A study on mobile virtualization, in ‘Advanced Commu-

nication Technology (ICACT), 2014 16th International Conference on’, IEEE, pp. 593–596.

Samsung’s NX300M smart camera is its first to run Tizen OS (2013), http://www.engadget.

com/2013/11/11/samsungs-nx300m-mirrorless-camera-is-its-first-to-run-tizen-os/. [On-

line] [Accessed: 2015-10-01].

Schüring, M. (2011), Mobile cloud computing–open issues and solutions, in ‘15thTwente Student Con-

ference on IT, Enschede, The Netherlands’.

Shiraz, M., Abolfazli, S., Sanaei, Z. and Gani, A. (2013), ‘A study on virtual machine deployment for

application outsourcing in mobile cloud computing’, The Journal of Supercomputing 63(3), 946–964.

Smalley, S. and Craig, R. (2013), Security enhanced (se) android: Bringing flexible mac to android., in

‘NDSS’, Vol. 310, pp. 20–38.

Sobell, M. G. (2013), A Practical Guide to Fedora and Red Hat Enterprise Linux, Pearson Education.

S.Suzuki (2013), http://www.ffri.jp/assets/files/monthly_research/MR201305_Tizen_Security_

ENG.pdf. [Online] [Accessed: 2015-11-30].

Tizen Web Guides (2012), https://developer.tizen.org/development/guides/web-application.

[Online] [Accessed: 2015-11-01].

Willis, N. (2014), ‘Tizen Common and open hardware’, Tizen Developer Summit .

URL: https://www.sharelatex.com/project/55b3b2dcd2ca043251bce938

Woyke, E. (2012), ‘Samsung merging its bada os with intel-backed tizen project. 13.01. 2012’,

URL http://www. forbes. com/sites/elizabethwoyke/2012/01/13/samsung-merging-itsbada-os-with-

intel-backed-tizen-project/, Abruf am 8, 2012.

Xing, T., Huang, D., Ata, S. and Medhi, D. (2012), Mobicloud: a geo-distributed mobile cloud com-

puting platform, in ‘Proceedings of the 8th International Conference on Network and Service Man-

agement’, International Federation for Information Processing, pp. 164–168.

Xu, Y., Bruns, F., Gonzalez, E., Traboulsi, S., Mott, K. and Bilgic, A. (2010), Performance evalua-

tion of para-virtualization on modern mobile phone platform, in ‘Proceedings of the International

Conference on Computer, Electrical, and Systems Science, and Engineering’.

lx

http://www.engadget.com/2013/11/11/samsungs-nx300m-mirrorless-camera-is-its-first-to-run-tizen-os/
http://www.engadget.com/2013/11/11/samsungs-nx300m-mirrorless-camera-is-its-first-to-run-tizen-os/
http://www.ffri.jp/assets/files/monthly_research/MR201305_Tizen_Security_ENG.pdf
http://www.ffri.jp/assets/files/monthly_research/MR201305_Tizen_Security_ENG.pdf
https://developer.tizen.org/development/guides/web-application

Zhang, Q., Cheng, L. and Boutaba, R. (2010), ‘Cloud computing: state-of-the-art and research chal-

lenges’, Journal of internet services and applications 1(1), 7–18.

lxi

Appendix A

Chapter 8

A.1 Software Requirement for Wayland Tool

1 Software package requirements

2 * python (>=2.7)

3 * python-wxgtk2.8 - wxWidgets Cross-platform C++ GUI toolkit (wxPython binding)

4 * python-wxglade - GUI designer written in Python with wxPython

5 * python-wxmpl - Painless matplotlib embedding in wxPython

6 * python-wxtools - wxWidgets Cross-platform C++ GUI toolkit (wxPython common files)

7 * python-wxglade - GUI designer written in Python with wxPython

8 * python-wxversion - wxWidgets Cross-platform C++ GUI toolkit (wxPython version ←↩
selector)

9 * python-cairo

10 * python-gi-cairo

A.2 Linpack Snapshots for Android VM and Tizen VM

This section, we include snapshots for test result of Linpack benchmarking for Android

OS. Figure A.1 and A.2 shows, the Test results in MFLOPS.

A.3 Linpack Snapshot for Android VM

A.4 Linpack Snapshot for Android VM

lxii

Figure A.1: Android VM Linpack Test 1

Figure A.2: Android VM Linpack Test 2

Figure A.3: Tizen VM Linpack Test

lxiii

	Abstract
	Acknowledgment
	Introduction
	Hypothesis
	Contribution

	Literature Review
	Cloud Computing and Mobile
	Need to Virtualization
	Related Work
	Memory Management for Virtualization
	Smart Phone Device and Server Virtualization
	Live Migration with virtualization
	 What is BYOD?
	Android Framework
	Emerging Tizen
	Comparision of Android and Tizen Application System

	Specification
	Tizen OS
	Samsung Gear S Watch
	Samsung Galaxy S 5 specifications
	LINPACK

	Design
	Performance Criteria
	Benchmark Technique
	FLOPS comparison
	Setup configuration on PC

	Implementation
	Android virtual instance creation
	Tizen Wayland kernel virtual instance creation

	Evaluation
	EXT4 file system Mounting Test
	 Comparison of File System Structure
	LINPACK Bechmarking
	Frame Per Second (FPS)

	Conclusion
	Chapter 8
	Software Requirement for Wayland Tool
	Linpack Snapshots for Android VM and Tizen VM
	Linpack Snapshot for Android VM
	Linpack Snapshot for Android VM

