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Abstract 

In Artificial Intelligence, convolutional neural network has been the most widely used 

machine learning methodology of recent times for object recognition. The focus of this 

research is to identify a combination of key parameters that help improve the accuracy of 

image classification on this neural network. The network model used in this study 

comprises of an input layer for normalization and extraction of image data, three hidden 

layers for convolution, activation and pooling of the feature maps, one fully connected 

layer for extraction of consolidated image features, followed by an output layer where the 

image is classified. Sample images of size 32x32 pixels from the Kaggle’s CIFAR-10 image 

dataset belonging to 10 different classes has been used in this experiment. 

The neural net is studied across Prototyping, Training, Validation and Testing phases, 

and the concept of Feed Forward and Backward Propagation has been applied in two stages 

– first in the hidden and fully connected layers, and later in the output layer – for different 

objectives as related to error convergence. The effectiveness of various parameterizations 

has been analysed in both these stages, including weights, bias, momentum, learning rate, 

regularization strength and iterative epochs. The application of different convolution, 

activation and pooling functions, key classifiers and novel concepts such as weight decay, 

weight dropouts and cross-entropy loss has been studied as part of this research project. 

Keywords: image classification, convolutional neural network, convolution, activation, 

pooling, classifier, Softmax, CIFAR-10, error gradient and accuracy. 
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1.  Introduction 

In Machine Learning, a subset of Artificial Intelligence, object recognition and 

classification of digital images has been an important topic of continuous research in recent 

times. As pictures speak a thousand words, images are widely used at largescale for 

scientific and educational purposes, including discovery of hidden knowledge and 

prediction of future outcome, across various social media portals including Flickr and 

Google.  Image classification is more related to Image Data Mining which can be 

considered as an integration of computer vision, image processing, machine learning and 

data mining techniques [1], and has been widely in use in the field of biomedical, space 

research, meteorology and crime prevention including face recognition and handwriting 

detection. Convolutional Neural Network (CNN) is the state-of-the-art methodology 

applied in machine learning for image classification. 

1.1. Research Question 

This research is focused on finding the answer to the question; 

 “In Convolutional Neural Network, how can image classification accuracy be improved 

through parameter configuration across functions?” 

The hypothesis is that, by tweaking and refining the values set for parameters that 

are used in different functions of a specified CNN model, the overall accuracy level in the 

image classification process can be enhanced. 

1.2. Problem Definition 

When image datasets are voluminous, manual classification of the images would 

have high time and cost implications. This necessitates the need for automated object 

recognition with the use of machine learning methodologies. The focus of this research is 

to analyse the influence of parameter values in improving the accuracy of image 

classification on CNN. 

1.3. Challenges 

The challenges encountered in this project are many-fold and of various dimensions; 

1. Field of Research: Implementation of neural network is by itself a complex field of 

study in Machine Learning and CNN in specific is much more challenging to understand 

and implement, and can be considered to be a technical blackbox in many respects. 

Though there are many literatures and tutorials available for reference related to this, 

many knowledge gaps are created at each stage of the neural network. Impacting 

factors include the variation in terminologies used by the authors and the need to 

understand advanced neural network concepts and mathematical conventions such as 

calculus derivatives. For instance, though different models using classifiers such as 

Support Vector Machines (SVM) and Radial Basis Functions (RBF) as well as application 

of weight dropout mechanism were designed and developed, it could not be 

successfully implemented as the desired results were not obtained, and there was 

difficulty in causal analysis of the inaccuracy.  

2. Performance vs Accuracy: In CNN, the number of hidden layers to be used depends on 

the choice of convolution function as well as the combination of different functions to 
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be applied. For instance, if convolution is done including the border pixels (‘same’ 

mode), the size of the output feature map will be the same as the input, and is likely 

to have an overall addition of one or two more layers. Likewise if after every 

convolution and activation a pooling function is applied for downsizing the feature map, 

then as well the number of layers would increase. This leads to decision-making on 

prioritization of overall accuracy or performance of the network, as more number of 

layers with additional functions would enhance accuracy but at the same time impact 

performance as more number of parameters have to be stored and processed. This 

trade-off has to be analysed in detail when large datasets are used, where accuracy 

increase could be marginal at the cost of performance. 

3. Convolution Filters: Decision on the convolution filters to be used across hidden layers 

have to be made from different perspectives. The choice of the filter dimension, the 

number of filters to be used, the rationale for initialization of the filters and the 

combination of manual and random filters, are arbitrary as various combinations has 

been experimented earlier and are recommended by neural net experts. To overcome 

the curse of dimensionality [24] and to minimize performance impact only 16 filters 

have been used across layers. This size has been found to produce better results than 

8 or 32 filters as experimented during the design stage of this project. 

4. Random Parameters: In CNN, by process, parameters including weights (filters) and 

bias are initialized at the start of the training process. Though the rationale for 

initialization is under human control, the task of value assignment based on those 

rationale, such as random number generation, are machine controlled. As a result 

during development, detailed one-to-one feature map comparison is not feasible, as 

the output would vary across process runs; only the overall error gradient and 

classification accuracy could be measured. 

5. Result Verification: Another factor is the non-availability of reference data for 

comparative study at each stage of the CNN process to confirm the mode correctness. 

Graphical presentation and understanding of the visual representations of the different 

convolutional layers is a highly complex task. During training, it is difficult to ensure 

that the graphically visualized feature maps and weights are correct, as there is no 

similar data for comparison. Likewise, at each stage of development, such as gradient 

error and classification loss, though it can be inferred from the displayed progress 

metrics that there is a gradual error and loss convergence, it is difficult to determine 

if the convergence is good enough, as there is no similar specific output or result from 

any previous study that can be used for comparison. Hence on most occasions, 

development progress has to be made on trial-and-error basis with assumptions on 

the correctness of the algorithm and by referencing several literatures. 

6. Defect Analysis: At each stage of development, when desired accuracy or output is not 

achieved, it is difficult to determine if the issue is due to any incorrect coding of the 

algorithm, or parameter configuration or bug in the development tool used (python). 

This scenario is mostly faced during training when the model works fine for few images, 

but fails for an increased volume of few hundreds, and has huge impact on the time 

factor. 

7. Sample Dataset: The CIFAR-10 dataset with image size of 32x32 pixels has been 

mainly used as the sample data in this research. There are several images with poor 

clarity and inaccurate object focus, which could confuse the network and impact the 

classification process, especially if these happen to be chosen as the class 
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representative at the Prototyping stage of CNN. In addition, during the process of the 

PNG dataset generation, due to huge memory consumption required for processing the 

36MB batch files of 10000 images in each, the python program would not exit normally, 

in spite of generating the output files correctly. 

8. Hardware: This is another major limitation factor. For this research a mid-range laptop 

with i7 CPU and 8GB memory has been used. Hence only limited data of few thousand 

images has been experimented with for the CNN training and testing. A high-end GPU 

based cloud computing environment would be required to process high volume data 

without performance degradation. 

9. Software: As Python 2.7 on Enthought-Canopy GUI has been used for  development, 

there are several open-source libraries such as ‘Numpy’ and ‘Scipy’ that are being used 

in it for various purposes including manipulation of image files, arrays and graphical 

display of the convolutional layers. Backend version updates to these libraries and 

tools, at times causes variation in their functional behaviour necessitating relevant 

code change.  

10. Process Log: When large datasets such as 10000 images were trained, capturing of 

the process output on the window or on a file through command shell execution 

resulted in incomplete data capture. When displayed on window, the initial messages 

are lost due to flushing of the buffers. When redirected to a file from the command 

prompt, on completion of the process, the shell command does not exit even long after 

the process has completed which can be inferred from the CPU and Memory usage. 

When the process is killed, the log file does not capture the last messages as on the 

buffer. This necessitates code change to capture and write the process log onto a file. 

1.4. Motivation 

This project has been undertaken despite the above challenges, in consideration of 

the fact that CNN is a novel area in the field of neural network and has a larger scope for 

practical application including image detection in video stream use as highlighted later in 

this document as part of future work. The classification of images in CNN is more accurate 

when the training datasets are larger [2]. 

In addition, the most awaited research breakthrough in computer vision accuracy is 

to resolve the problem of detecting multiple objects in an image and automatic image 

annotation with correct and meaningful lexical semantics. There is a good potential to 

participate in global competitions such as, the ‘ImageNet Large Scale Visual Recognition 

Challenge’ (ILSVRC) and ‘PASCAL Visual Object Classes’ (PASCAL VOC) which promote 

research on image classification. These have been the key motivation factors for 

considering this subject as the research topic. 

This paper is organized as follows in the forthcoming sections.  The next section on 

‘Background’ details the theoretical foundations that are required to be understood as a 

pre-requisite before reading further. The section after this is on ‘Related Work’ which 

evaluates related literatures as published by industry experts. This is followed by 

‘Methodology and Design’ which how the research question was approached. Next is the 

‘Implementation’ part which details the process flow as to how the practical aspects of 

this study was carried out. This is followed by ‘Evaluation’. The final section is on 

‘Conclusion and Future Work’. This literature ends with a list of ‘References’ used for 

study and as referenced in the earlier sections. 
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2.  Background 

The application of CNN also known as Convnets, a branch of Artificial Neural Network 

is the emerging trend in the development of computing models for automated image 

classification. CNN is very much similar to a linear neural network. The main difference is 

that it performs an activity called convolution, which has been described in detail in the 

later part of this report. The following sub-sections give an overview of the various key 

terminologies and concepts as highlighted in italics, and methodologies that are used in 

CNN for supervised machine learning. More details on Machine Learning and Neural 

Network concepts and methodologies have been referenced in [28],[29],[30] and [32]. 

2.1 CNN Development Phase 

The task of image classification is executed in four different phases on Convolutional 

Neural Network namely – Prototyping, Training, Validation and Testing. In this study the 

task of determining the class representative data has been considered as a separate 

Prototyping stage, and not included as part of training contrary to convention. 

2.1.1 Prototyping 

Prototyping is normally done as part of the training phase. But for activity 

differentiation, it has been considered as a distinct phase in this project. It involves 

defining the expected (desired) results across different classes of data. For each class of 

data, a sample image from the training dataset is selected and used as the base for 

comparison with other images of the same class in the subsequent phases. The class 

(label) to which the image belongs can either be provided in a compressed array file format 

or in a viewable format such as JPG or PNG with the label prefixed to the file name. For 

instance ‘0-ford.jpg’ denotes the image has label ‘0’ which is the ‘automobile’ class. 

Rather than selecting an image at random for each class, to obtain faster 

classification during training phase, best practice would be to choose an image from the 

training dataset that could be considered as the class representative. One of the ways to 

achieve this, as applied in this research is the use of Mean Square Deviation (MSD) method 

which computes the Euclidean Distance between images to determine the one that has 

the least feature difference across images which would act as the class centroid 

representing the desired result of the class. The final output would be a vector of expected 

(desired) features of the class to which the image belongs.  

 

2.1.2   Training 

For Training the neural net, a new dataset across classes is used. For each input 

image the class it belongs to is notified to the neural net. Training involves two main 

process stages – Feed Forward and Back Propagation, which are described later in this 

document. The output would denote the predicted features of the image that is being 

trained. The predicted features for a class would be compared with expected features 

determined earlier in the Prototyping phase. The parameters (weights and bias) get 

trained till the difference between the predicted and desired gets least significant. At the 

end of training all the feature maps as generated across layers and the final predicted 

features can be disregarded, and only the trained weights and bias be retained for use in 

the subsequent phases of validation and testing.  
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2.1.3   Validation 

Validation is the stage where the accuracy of the trained network parameters are 

verified and pre-tested using a subset of the test data. In this stage as well, the class 

value of each image can be made use of to compare and validate the desired results. This 

phase was introduced in the recent years as best practice of development to strengthen 

the training reliability. This is to ensure there is no ‘overfitting’, which refers to the scenario 

of the network model working well on the training data, but failing on the test data. All 

the trained parameters and hyper-parameters as applied during the end of training would 

be reused in this phase. 

Programmatically, the two key differences in the processing logic for validation 

compared to the training phase is that, there is no back-propagation performed and the 

network is not pre-notified of the class to which the input image belongs. If the desired 

classification accuracy is not achieved, then the Training phase is re-executed. 

 

2.1.4   Testing 

This is the final stage of development where the trained weights and bias are 

validated across classes using untrained image repository. The same code as used for 

validation will be applied on a different test dataset. 

2.2    CNN Processes 

In artificial neural network including CNN, training phase comprises of two key 

stages, which are Feed Forward and Back Propagation [16]. 
  

2.2.1   Feed Forward 

  Feed Forward includes all tasks done from the input layer to the output classifier 

layer, starting from image normalization to loss computation. All phases of CNN excluding 

Training phase, terminate with the completion of this process.  

2.2.2   Back Propagation 

In the Training phase, at the end of Feed Forward, once the loss is computed and 

determined to be higher than the predefined loss threshold, the weights and bias across 

all layers have to be refined to minimize the loss. As a result, the process of back 

propagation is initiated. This combination of feed forward and back propagation is executed 

several times, to adjust the parameters and to re-compute the feature maps across layers 

till the loss converges to within the threshold limit and the desired classification is 

obtained. 

In order to revise the parameters of weights and bias, CNN makes use of several 

additional parameters which are termed as the hyper-parameters. This mainly includes 

learning rate and momentum that are used to expedite the error convergence and would 

have a value in the range of (0,1). The dataset would be trained for multiple epochs, until 

the gradient error is within the predefined threshold. Each epoch refers to one round of 

training of the entire dataset. Whereas for verification of data loss and regularization loss, 

each image undergoes multiple loops of iterations. The maximum number of epochs and 

iterations are configured through parameters. A large learning rate can result in over-

fitting or over-training [10]. The first stage of back propagation is to determine the error 
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gradient across layers in the reverse order, starting from the fully connected layer to the 

first hidden layer.  For the fully connected layer error gradient is computed as the product 

of the difference between the expected (desired) output and the predicted (actual) output, 

and the derivative of the activation function used in this layer. Then the weighted sum of 

the gradient is computed using the product of the weights and the previously computed 

gradient error of the fully connected layer.  The weights in the fully connected layer are 

later adjusted accordingly using the product of the derivative and the error. 

This is followed by back propagation for all the hidden layers starting from the last 

to the first. As done earlier, based on the activation function used, the corresponding 

derivative is applied to the weighted sum of the gradient error in the previous layer. These 

values are used along with the earlier computed gradients to determine the delta values 

for the weight and bias update in each hidden layer. Care has been taken to ensure that 

the manually generated kernels as used for edge detection are not updated while 

processing the weights of the first hidden layer. 

2.3    CNN Layers 

Convolutional neural network comprises of three layers, namely the Input, Hidden 

and the Output. Unlike Single Layer Perceptron (SLP), CNNs are similar to Multilayer 

Perceptron (MLP) and have more than one set of network connectivity with the layer. 

2.3.1   Input Layer 

In the input layer raw images are first pre-processed through normalization which 

involves data reduction through mean subtraction to reduce the scale of pixel values into 

a vector. This is done for eliminating computational errors due to large values especially 

during exponential and logarithmic calculations. In addition, conversion of colour images 

to grayscale images are done. Colour images have three channels of ‘RGB’ and comprise 

of three dimensional (3-D) array data which are complex to process. Hence they are 

simplified to grayscale images that have only one channel of two dimensional (2-D) array 

of pixels. Grayscale images have the advantage of not having data discrepancies due to 

variation in colour contrast.  The value of each pixel in a grayscale image ranges from 0 

(white) to 255 (black) with a gradation for the in-between shades of grey. 

2.3.2   Hidden Layer 

The hidden layer is the heart of CNN, and comprise of neurons which perform the 

key convolution, activation and pooling functions. For the first hidden layer the normalized 

image data would be the input. For the subsequent layers, feature maps generated in the 

previous hidden layer would become the input. The number of hidden layers required in a 

network model is determined based on the size of the image and filter. 

Weights and bias factors, which are described more in detail in later sections, are 

the main configurable parameters that are to be tuned in the hidden layer to obtain the 

desired image classification output. In each layer, the number of output feature maps 

would be equal to the number of filters used in the convolution process. The feature of 

weights being shared across feature maps is what makes CNN perform better on vision 

problems [35]. 
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2.3.3   Fully Connected Layer: 

Following the last hidden layer is the fully connected layer where the single-node 

output feature maps of the previous layer are consolidated into a single vector. The data 

is then processed with the weights and bias of this layer, and the resulting output is sent 

to the final output layer. There is no need to perform pooling operation as the features are 

already in a single vector and there is no scope for further dimension reduction.  

During training, the accuracy of the neural net is measured at two stages – in this 

layer and in the subsequent output layer. Here the difference between the class features 

and predicted feature are verified to be within a predefined error threshold limit which 

would normally be close to 0.  The error is referred to as the loss or cost of the training. 

For instance an error threshold of 0.1% signifies an expected training accuracy of 99.99%. 

The overall loss comprises of Data Loss, that quantifies the difference in the predicted 

score and actual score of all examples, and the Regularization Penalty which refers to the 

correction of large weights. If the total loss is above the defined loss threshold, back-

propagation process is initiated to train the weights and bias across layers.  

2.3.4 Output Layer 

The output layer performs the classification of the input image based on pre-defined 

classes. Some of the popular and widely used classifiers include Softmax, Multiclass 

Support Vector Machines (SVM), and Radial Basis Function Network (RBFN) which is 

claimed to produce high level of classification accuracy and ease of computation as 

compared to its former counterparts [4]. 

Score, Loss and Thresholds: 

Second level of accuracy verification is done at the output layer to confirm the correct 

classification by computing the Score to determine the class of the image data, which is 

done using the product of the predicted features and the weights and bias of each class. 

The image is labelled after the class with the maximum score. 

The classifiers make use of different hyper-parameters which are used to control the 

speed of convergence. For instance the Softmax Classifier applies the Learning Rate (Step 

size) and L2 Regularization Strength parameters for the said purpose as detailed in [26]. 

In Softmax, Data Loss which quantifies the dissatisfaction with the correctness of score 

and class prediction in a dataset, is to be determined for the entire training dataset [26]. 

The loss function initiates backpropagation in the output layer to update the weights and 

bias of the classifier. 

2.4    CNN Functions 

2.4.1   Convolution and Filters 

Convolution is the first process of a hidden layer. In simple terms convolution 

involves scanning a data filter over the image data. For ease of understanding, it can be 

visualized as a magnifying lens that is used to view the pixels of the image, a small portion 

at a time. The filter also referenced as the kernel or weights are a 2-D array of data, 

usually of the size 3x3, 5x5 or 7x7 pixels. Filters are scanned over the image from the top 

left corner to the bottom right at a specified interval. The centre pixel of the filter will be 

made to overlap with the centre of the Receptive Field on the image. The filter will shift 

horizontally and vertically at a defined span size, and in each position the product of the 
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image pixels and filter pixels will be computed. Swapping and transformation of image 

pixels is also done are part of convolution. The size of the Receptive field would be similar 

to the filter size. The concept of stride also needs to be understood which refers to the 

number of pixels the filter has to shift horizontally and vertically over the receptive field 

during convolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-1: Convolution on three feature maps. The centre of the receptive field is 

highlighted in blue. In every convolution the filter is applied across all feature maps at the 

same depth location, as highlighted in red. The sum of convolution at each receptive field 

across all feature maps becomes the node value at (0.0) on the output feature map. 

During convolution, as shown in figure-1, the filter would be applied to the depth at 

each receptive field location, across all input channels of that layer. Each convolution 

produces a single pixel value or an output node to which a bias parameter of value 0 or 1 

is added. The weights and bias would be used in linear regression equations for computing 

the output based on the input across each layer. For ease of computation instead of having 

a separate bias, an additional weight (W-0) is added to the weight parameter and a dummy 

input with value 1 is included as well to facilitate matrix product computation.  

A set of nodes produced as part of a convolution is termed as the feature map. It 

has to be ensured that the size of the input feature map of the last hidden layer does not 

fall below the size of the filter. The filters are usually odd-sized for the benefit of having a 

defined centre which would be used as the focal point during convolution. The size of the 

output feature map depends on the type of convolution applied. If it is a ‘valid’ mode, then 

additional extended pixels will not be used while convolving the boundary pixels with the 

filter centre, and hence the output feature map size will not be the same unlike as obtained 

in the ‘same’ mode of convolution method. 

Likewise, the size and number of filters used in each hidden layer can be varied 

depending on the feature extraction needs at each layer. It should be noted that as the 

number and size of filters, and number of layers increase, there would be a proportionate 

increase in the total number of parameters to be computed and stored. This could result 
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in the need for a high end computing environment with increased memory and processing 

capabilities to avoid performance degradation. In the first layer of convolution manual 

filters can be applied in combination with randomly generated filters. Manual filters would 

involve programmatic hardcoding of array values based on filter dimension to be used for 

purposes such as horizontal and vertical edge detection. Random filters would be a set of 

random numbers usually in the range of (-1,+1). 

2.4.2   Activation Function 

The output obtained from convolution is passed through activation function for a linear 

and non-linear transformation, such as; 

 Logistic Sigmoid function (f(x) = 1/(1 + exp(- x))  

 Softmax function (f(x) =max(0,x)) 

 Hyperbolic Tangent Sigmoid function (f(x) =tanh(x)) and  

 Rectified Linear Unit (ReLU) function which is similar to Softmax.  

 Different activation functions can be applied across layers, if need be. These linear 

functions produce an output in the range of either (0,1) or (-1,+1). Each of these functions 

have a derivative as listed below, which is applied during back propagation to correct the 

gradient error.  

 Logistic Sigmoid function (f(y) = f(x) * (1.0 – f(x), where f(x) is the related logistic sigmoid   

activation function) 

 Softmax function (f(y) = (1 - x) * x)  

 Hyperbolic Tangent Sigmoid function (f(y) =(1 - x) * (1+ x)) and  

 Rectified Linear Unit (ReLU) function (f(y) =1, if x>0, and f(y)=0, if otherwise). 

2.4.3   Pooling Function 

The feature map thus derived after convolution, bias addition and application of 

activation function, is then processed through a pooling function. The most frequently 

applied pooling operations are the max-pooling and mean-pooling.  In this research, max-

pooling approach has been applied. The pooling function helps to down-sample and 

downsize the input feature map to half its size.  
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3. Related Work 

1. Parameters across layers have to be properly trained. Significant performance 

enhancement can be achieved with proper weight initialization and use of simple 

heuristics [2]. To achieve higher level of classification accuracy it is proposed to linearly 

combine multiple neural network classifiers [18]. 

2. In some of the literatures it is recommended that a very small learning rate such as 

0.0005 be used [11]. But in this model, the gradient error fails to converge if such a 

low learning rate is given. It has been found that 0.45 is the best Hence such 

discrepancies could arise due to variation in the combination of activation functions, 

kernel size and setting of hyper-parameters, which needs to be further explored. 

3. Padding the filter during convolution has been proved to be ineffective [11]. Hence the 

alternate option would be to use the ‘same’ mode, but this would increase the 

computational time as more receptive fields need convolution, and the output feature 

map would be much higher, leading to the need to have additional hidden layers for 

the feature map to get smaller with nodes of size 1x1 or 2x2. 

4. Another factor that needs to be experimented is the better stride to be used for 

convolution. During a convolution with the use of a 5x5 filter, if the stride is too small 

say 2, then for each convolution shift there would be an overlap of 2 pixels, resulting 

in higher number of feature map nodes, but at the same time has the advantage of 

more feature recognition. Hence a trade-off is required to determine the size of the 

stride. A novel concept of tiled CNN has be introduced [13] which claims to reduce the 

number of parameters. It has been recommended [14] that the use of smaller window 

size and stride in the first convolution layer improves performance. 

5. Many of the researches have used the MINST handwritten digit dataset which are in 

grayscale. Also the general understanding is that processing grayscale images reduces 

the first layer complexity. Whereas in [18] it is mentioned that use of grayscale images 

increases error rate, and hence it is recommended to use the colour images.  

6. It has been experimented that the trained layers and parameters can be reused for 

alternate datasets instead of creating the new network all from scratch [21]. An 

alternate and a more effective approach to initialization of weights, is to select random 

images from the dataset, and then to extract random patches at random positions on 

the images [20]. 

7. In many literatures subsampling is termed synonymous to max-pooling.  But in [22] it 

has been considered as a distinct process as it has been stated that max pooling 

produces a much lesser error rate compared to subsampling. Also in [22] even 

dimension filters of size 6x6 has been used, as opposed to the convention of odd-sized 

filters. 

8. SVM is stated to have limitations in comparison with other classifiers [7]. Whereas [27] 

has researched and highlighted that Deep Learning SVM offer better results in 

comparison to Softmax. 
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4.   Methodology 

For image classification and feature detection, CNN model has been applied with the 
Feed Forward and Back Propagation mechanism during the training phase. Two different 
activation functions have been applied in this model – (a) Hyperbolic Tangent Sigmoid 
function in all the hidden layers, as it has been verified to produce higher accuracy by many 
researchers; and (b) Softmax function in the fully connected layer as the Softmax Classifier is 
used in the output layer. Convolution is done in ‘valid’ mode which results in a slight 

dimension reduction after convolution, as the border pixels of the input image or feature 

map get ignored. 

4.1   Design 

The CNN designed for this project as shown in Figure-2 has a total of eight layers 

comprising one initial input layer (L-0), five hidden layers (L-1 to L-5) , followed by one 

fully connected layer (L-6) and then terminating with the output classifier layer (L-7). The 

number of hidden layers is not extended beyond five, as the output feature map of the 

last hidden layer converges to one node per map, and there is no further requirement to 

convolve or max-pool it. In this model, three hidden layers (L-2. L-3 and L-4). In the 

proposed model, pooling is done only after the first two convolution and activations, and 

not applicable to the last hidden layer as the output feature map is already of 1x1 

dimension which is below the filter size of 5x5 pixels. 

The network architecture with reduction in dimensionality of the feature maps across 

layers is designed very much similar to [10] and is as follows; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-2: CNN architecture and process flow. 
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The details of various layers are as below; 

 L-0 Input Layer: the raw input colour image is converted to grayscale, then 

normalization and produced as an output of same 32x32 single channel 2-D array of 

data. 

 L-1 Hidden Layer: the 32x32 normalized input data is convolved on a ‘valid’ mode with 

16 5x5 size filters, to obtain 16 feature maps of dimension 28x28 pixels.  

 L-2 Hidden Layer: This undergoes activation and then max-pooled to generate 16 

feature maps of 14x14 pixel dimension. 

 L-3 Hidden Layer: the 16 input feature maps undergo similar process as in L-2. After 

convolution and activation the map size is reduced to 10x10. 

 L-4 Hidden Layer: After max-pooling the inputs gets downsized to 5x5 pixels. 

 L-5 Hidden Layer: this is the last hidden layer where the inputs after convolution and 

activation create 16 feature maps of size 1x1, with each feature map containing only 

one node. 

 L-6 Fully Connected Layer: Here the 16 single-node input feature maps are 

consolidated into a single vector output. Instead of convolution, linear regression is 

performed with the use of weights and bias, followed by activation function execution.  

 L-7 Output Layer: This is the final layer where classification is done using Softmax 

classifier which gives probability of scores and has been widely used in many research 

developments including [15]. For classification two sets of weight matrices are applied. 

4.2   Processing 

In the Prototyping phase, the weights and bias parameters across layers are 

initialized with normalization to minimize the weights. A set of seven manual filters for 

edge detection including horizontal lines, vertical lines (Prewitt edge detector) and 

diagonal lines (Sobel edge detector) are used in combination with weights that are 

randomly generated using the size of the filter as the base. The weights are initialized in 

line with normal Gaussian distribution to be in the range of -1.0 to +1.0, and the bias 

parameters of the output nodes are initialized to 0.001, rather than 0 as recommended in 

[26] to avoid zero saturation in the computed regression value. 

For the initial Training, the weights and bias saved during Prototypying are uploaded 

into relevant arrays, and the Feed Forward and Backward Propagation process are 

cyclically executed for the hidden layers based on the error gradient of the predicted 

features.  Subsequently the Softmax Classifier computes the score and cross-entropy loss 

before classifying the image. In case batch processing of the training dataset is done to 

overcome the hardware limitation, the trainable parameters that had been saved in the 

earlier training can be uploaded through a configuration change and used instead of 

applying the initial set of parameters as initialized during prototyping. On completion of 

training, the parameter data across layers are later saved for use in the validation and 

testing phases. 
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5.   Implementation 

The CNN model for image processing as proposed in this research, comprises of eight 

different neural net layers as in Figure-2 which are interconnected starting with an input 

layer, followed by hidden layers, a fully connected layer, and terminating with the final 

output layer.  

5.1   Dataset 

For this research a subset of about 1200 images from the Kaggle’s CIFAR-10 dataset [3] as 

available on https://www.kaggle.com/c/cifar-10/data has been considered, as it comprises large 

volume (60,000 images) of smaller uniform dimensional images of 32x32 pixels, which are easy to 

compute on mid-range laptops. Moreover, this dataset has 10 different classes (airplane, automobile, 

bird, cat, deer, dog, frog, horse, ship and truck). The class labels are specified as part of the data. Also 

benchmark results of various testing done earlier by neural network experts using this dataset over a 

period is available for comparison. 

The CIFAR-10 dataset as downloaded from the internet are in a compressed file 

format, and hence have to be converted to ‘PNG’ files using a separate extraction program 

developed by me. Though the compressed data can also be directly used in the neural net, 

the images are first extracted and then used for classification. This has the benefit of 

possibility to view the quality of the images before processing them, and the option to 

randomly choose and manipulate the batch contents of image files that are to be used 

across phases, by varying the number and type of images in a batch. The extraction code 

appends the class label to each image file, which is used as the indicator in the Prototyping 

and Training phases to determine the correct class of the image. 

 CNN Stage CIFAR-10 

Batch 

Images 

Used 

1. Prototyping 

and Training 

Batch-2 100 

2 -same- Batch-2 500 

3 -same- Batch-1 1000 

4 -same- Batch-3 10000 

5 Validation Batch-4 100 

6 Testing Batch-4 200 

Table-1: CIFAR-10 batch datasets used across CNN phases. 

For the different CNN phases, sample datasets of different CIFAR-10 batches were 

made use of as in table-1. For Prototyping and Training, the same datasets are used, so 

as to extract the mean features across classes.  

5.2   Technology 

Python 2.7 on the User Interface tool Enthought’s Canopy has been used for 

developing this CNN model. Additional python libraries such as numpy, scipy, matplotlib, 

cv2, math, and glob had been installed as part of the code. The data was tested on a 

standard laptop with Intel Core i7 processor, AMD Radeon graphics card, 8 Gb RAM and 

500 Gb disk space and running on Windows 8.1. 

https://www.kaggle.com/c/cifar-10/data
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5.3   Assumption 

Some of the development assumptions and applicable pre-requisite conditions are; 

 Each class should have minimum one and have the same number of records, to have 

equality in the determination of the mean image. 

 Input Image dimension can be any size but should be symmetric. eg.32 x 32  

 Number of filters used across layers is configurable but can be the same. 

 Input images can be grayscale (1 channel) or colour (3 channels-RGB). 

 The images can be of any file type (PNG, JPG, BMP etc.). 

5.4   Key Features 

Some of the common features applicable across processes are; 

 The raw image files are initially converted to normalized before processing, wherein the 

colour intensities are removed and mean subtraction is done. 

 In Prototyping and Training, on completion of the process, the parameters (weights and 

bias) of the hidden layer and fully connected layers along with the class features are 

saved in a numpy file format, for encrypted data security. 

 The number of hidden layers required are dynamically determined based on the image 

and filter size. 

 For convolution, 16 distinct 2-D filters of dimension 5x5 are used in each hidden layer. 

5.5   Process Output 

During execution of the application scripts across phases, informative details such 

as list of images being processed, error gradient and class predictions are displayed. 

Statistical summary of the classification to highlight the percentage of accuracy on correct 

and incorrect classes is reported at the end of training. 

5.6   Visualization: 

As part of the training, we can graphically visualize the feature maps and weights across 
hidden layers and across all kernels. 

 

 

 

 

 

 

 

 

Figure-3: Sample 30 filters used as weights in the first convolutional layer 
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From Figure-3, we can clearly differentiate the initial manual filters used to identify 
horizontal lines, vertical lines and blur, and the random generated filters from filter 07 
onwards. These filters are used only in the first convolutional layer. In subsequent layers all 
filters are random filters. 

Figure-4 is the sample visualization of the feature maps of an image belonging to the 
class ‘aeroplane’ as in the file ‘0-fighter_aircraft_s_000655.png’.  

0-fighter_aircraft_s_000655.png 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample CIFAR-10 Image explanation:  

The source and the normalized images are shown 
at the top for comparison. It can be seen that the 
under ‘Normalization’ mode the image is 
displayed without colour intensities. 

Features of the first three hidden layers (L-1 to L-
3) are shown as column data.  

Each row represents the graphical 
representation of the first 9 kernels across the 
hidden layers L-1 to L-3. 

In the first column the initial 7 feature maps as 
highlighted have been created after the input 
image was convolved with the 7 manual kernels 
made up of Prewitt, Sobel and Gaussian filters. 

In the subsequent, layers the feature maps look 
distorted due to gradual the downsizing of the 
image. 

The dimension of the image and feature map 
shown here are as follows; 

1. Source Image          : 32x32 pixels 

2. Normalized Image : 32x32 pixels 

(After first convolution and activation) 

3. L-1 Feature Map    : 28x28 pixels 

(After first max-pooling) 

4. L-2 Feature Map    : 14x14 pixels 

(After second convolution and activation) 

5. L-3 Feature Map    : 10x10 pixels 

L-4 and L-5 are not show as the feature map 

dimensions are small – 5x5 and 1x1.  

 

Figure-4: Sample Hidden Layers of a CIFAR-10 image. 

 

 

 

 

L-1                 L-2                 L-3 
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6. Evaluation 

CIFAR-10 dataset has been used to evaluate the CNN model developed for this project. This 
dataset has been used earlier in many other experiments, one of which is [31] where smaller 
size filters of 3x3, and large number of filters in the range of 100 – 400 have been used, and 
an error rate of 19.51% has been reported. 

Following are the results of the experiment done on training and testing using the model 
developed for this project. The main objective was to observe the model behaviour with 
variation across a range of parameters including choice of functions across layers. 

Activation function of Fully Connected Layer: 
Initially Hyperbolic Tangent was used in all layers including fully connected layer. But the best 
accuracy obtained was 52% for 100 images. But subsequently it was learnt that while using 
Softmax as the Classifier the input should also be a Softmax output; as a result of which 
Softmax activation function was applied to the fully connected layer, and an accuracy of 98% 
was achieved proving the theory. 

Number of Kernels: 

Preliminary tests were done on a small dataset of 100 images to determine the number of 
kernels to be used across layers as in table-2-b. 

 Kernels Classifier 
Epochs 

Min. Loss Accuracy 

1 8 6 2.17 18% 

2 32 6 1.80 34% 

Table-2: Kernel assessment 

When 32 kernels were used, with a momentum of 0.01 the accuracy level was similar to what 
was achieved with 16 kernels. Hence 16 kernels has been standardized for this model. 

Impact of change in Learning Rate (LR) of Error Gradient: 

While testing for 100 images, with 16 filters and momentum of 0.1, the metrics  as in table-3 
were gathered for different values of the learning rate. 

 LR High Gradient Errors Min. Loss Accuracy 

1 1e-10 Yes 2.05 27% 

2 1e-5 Low 2.03 28% 

3 1e-3 Low 2.24 14% 

Table-3: Learning Rate assessment 

It can be inferred that as the learning rate was increased from 1e-10 to 1e-5, high gradient 
errors were not encountered in the hidden layers, and the minimum cross-entropy loss 
marginally declined, with a proportionate marginal 1% increase in accuracy. When the 
learning rate was increased further, to 1e-3, the loss increased and the accuracy declined 
drastically. Thereby it was concluded that a learning rate of 1e-5 was the best for this model. 
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Impact of change in Momentum: 

Subsequently, a test was done to check the impact of change in momentum by keeping the 
Learning Rate as 1e-5 and number of filters constant at 16. 

 Momentum High Gradient Errors Min. Loss Accuracy 

1 0.01 Low as before Marginally 
higher 

27% 

2 0.5 No change 2.03 28% 

Table-4: Momentum assessment 

It is worth noting that in one of the subsequent tests an accuracy of 34% was achieved 

with momentum at 1.0 and output weights initialized with a normalization factor of 0.0001 

as against 0.01 as used in the above two tests. But the accuracy deteriorated when the 

dataset was increased from to more than 100 images. Hence it was determined to use a 

momentum of 0.5 as the standard for this model. 

The following four constants as in table-5 have been used for further analysis as reported in 
the subsequent paragraphs. 

Momentum  0.5 

Error LR 1e-6 

Weight Regularization 1e-6 

Classifier LR 1.0 

Table-5: Constants related to error gradient and loss minimization. 

Prototyping using 10000 images took about an hour of processing time, whereas for 100 
images the time taken was only 2 seconds. 

  Classifier Classifier Epochs  Final    

Images 
Loop 
Size 1 2 3 4 Min. Loss Remarks 

100 25000 70 90 97 98 0.10 

In the final epoch, threshold was 
reached below 14000 loops and the 
loss Gradient peaked to 2.72 before 
falling immediately below 0.1. 

100 10000 26 30 34 33 1.94 Using dropout in Output layer 

500 10000 31 39 39 40 1.65 Without dropout 

Table-6: Epoch-Image Accuracy Matrix 
 
The matrix presented in table-6 specifies the classification accuracy across 4 epochs during 
training phase with the use of 100 and 500 images. It can be observed that the accuracy has 
fallen drastically when the image count was increased from 100 to 500. Also it can be seen 
that the use of dropout algorithm in the output layer is not favourable to the model.  
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Hidden 
Layer   

Classifier 
Loss   

Accuracy 
/ 
Classifier 
Epochs         

Run LR MTM LRSS WRS           E-0 E-1 E-2 E-3 E-4 

0 1e-5     0.5     1.0    1e-10 83 83 87 92 92 

1 1e-5     0.5     1.0    1e-10 84 91 92 92 93 

2       1e-5    54 72 87 65 85 

3       1e-1    10 10 10 10 10 

4     0.5      75 92 96 96 97 

5     0.1      34 56 72 80 86 

6     1.5   34 56 72 80 86 

7 1e-10           76 84 77 94 96 

8 1e-1         84 93 94 97 NA 

9   1.0          75 88 87 94 95 

10   0.1     78 88 80 87 92 

11 1e-1   0.5 0.5    1e-10 74 93 95 97 NA 

 
Table-7: Combination of parameters changes using 100 images 
 
It can be inferred from the above table-7 that the parameters used in run-11 has the best 
results so far for training 100 images. 
 
Chart-1 and Chart-2 below highlight the impact of variation in the hyper-parameters of the 
hidden layers on the error gradient. 
 

 
 

Chart-1: Accuracy impact due to variation in the Learning Rate. An overlapping of run-8 and 
run-11 values can be observed from epoch E-1 onwards. 
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Chart-2: Accuracy impact due to variation in the Momentum 
 
 
Chart-3 and Chart-4 below are related to variations that impact the classifier output. 
 

 
 
Chart-3: Accuracy impact due to variation in the Step Size of the Classifier 
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Chart-4: Accuracy impact due to variation in the L2 Regularization Strength of the Classifier 
 
 

 

 
 

 
Chart-5: Accuracy comparison across image count and classifier epochs. 
 
From chart-5, it can be inferred that the proposed model is more suitable for classifying small 
datasets, where the accuracy level is much higher. Also it can be seen that the accuracy 
stabilizes after 3 epochs for 100 image training. 
 
Various sample output as generated during the training of 100 images are in the Appendix-A. 
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The summary of findings is that the model performs well and the predefined error threshold 
of 0.5 and loss threshold of 0.1 is achievable when the number of images is less – about 100. 
But as the input image count is increased, though a low error gradient is maintained, the 
desired accuracy in the loss minimization is not achieved in spite of multiple epochs. 
 
 

7. Conclusion and Future Work 

Based on this research it has been found that convolutional neural networks is a 

highly challenging subject to understand and implement. It is evident from this study that 

the various parameters of the CNN have a great influence on the image classification 

accuracy. Hence in addition to the use of right combination of activation functions, choice 

of number and size of kernels, the tuning of hyper-parameters such as learning rate and 

weight regularization strength are vital for a successful implementation of the model. 

The proposed model is able to successfully classify within the expected threshold 

limits for small datasets.  But with further analysis of the model and its algorithm, and 

fine-tuning of the parameters and hyper-parameters, the accuracy of this neural net model 

can be further enhanced. 

Similar experiments using different datasets had been done for extended duration to 
see how the model performance after several 100 epochs. As referred in [34], MINST dataset 
had been used for training the CNN model using around 800 epochs with a time factor of 14 
hours to achieve accuracy improvement. Likewise this neural net also can be studied for 
variation in its classification behaviour when trained for extended hours with large datasets. 

Following are some of the key factors that can be considered with variations for 

further research as an enhancement to this project; 

1. Input: images of higher dimension can be used to see the impact in the creation of 

additional hidden layers. Also direct processing of the colour images can be tested to 

understand the complexity involved in processing three channel inputs. 

2. Kernel: The network can be experimented with the use of different number of filters 

along with variation in the size of filters across hidden layers. As the size and shape 

of the images progressively decline over the different layers, larger size kernels, for 

instance 7x7 pixels, can be used in the initial layers and a smaller size in the latter 

layers, such as 5x5 dimension. It has to be noted that more the number of kernels, 

better would be the feature detection. But implications would be increased 

computational time and memory requirements, as there will proportionate increase in 

the parameters being stored and trained. Decision to increase the number of kernels 

has to be rationally done based on the size of the image. In addition more manual 

filters can be introduced such as Gaussian blur in the first layer.  

3. Convolution: Other modes of convolution, such as ‘same’, can be tried out, wherein 

the border pixels are also made use of especially in layers L-3 and L-5 where the 

number of pixels are less, and the border pixels could be of more value. 

4. Activation: The model can be tested using other non-linear activation functions such 

as ReLU which are considered to have the feature of non-saturating non-linearity and 

have been tested to be several times faster [9] than Hyperbolic Tangent as used in 

this project.  
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5. Classification:  In place of Softmax Classifier, the model can be modified to test 

using other proven classifiers mentioned earlier, especially RBF neural network, so as 

to improve the classification accuracy.  

6. Dataset:  To refine and test the model using large volume of CIFAR-10 dataset which 

would require a high-end computing GPU environment [9] to process such as the 

Amazon or Google cloud services.  To make use of different image repositories such 

as ILSVRC and MNIST dataset. 

7. Application:  The neural net can be applied to classify snapshot of video images [12] 

and for identifying multiple objects within a single image. [5] have presented an 

approach for automatically annotating objects within images [17], using bag-of-

visual-words concept. An advanced version of CNN could be applied to detect multiple 

objects in a single image. 

8. Overfitting: The reason for the model proposed in this project not obtaining good 

level of accuracy, is very likely to be due to overfitting. Hence attempts could be 

made to refine it by adapting effective regularization method called ‘dropout’ [9], 

[23] has been suggested as a solution to the problem of overfitting. In dropout 

algorithm, during training neurons in each layer are randomly disabled using a drop-

out map. These neurons are later activated during testing [36]. Another approach to 

minimize overfitting is the use of Rectified Linear Units (ReLU) as activation functions 

[24]. In addition, in every epoch of training, the dataset can be randomized before 

processing every image, to avoid overfitting of the training parameters. 

9. Parameter Tuning: Performance of the model can be tested by further varying the 

values of the hyper-parameters such as momentum, learning rate etc. and also can 

see if any of those could be avoided as done by [11]. It has been mentioned in [33] 

that aspects such as decision on how weights and these parameters should be 

initialized has great impact on model performance and complexity. For instance, 

learning rate has been kept fixed in this experiment.  But in [31] it has been tested by initializing 

to 0.001 and subsequently multiplied it by a factor of 0.993 after each epoch. 

10. Pyramid Reduction: Experiments can also be done to see how the filters behave in 

tandem with pyramid reduction feature wherein large objects in an image are 

downsized so as to make it detectable as per the filter size [35]. 

11. Process Output: In addition to the on-window display, the process out can be 

written onto a file as part of the code. This will overcome the related challenges 

highlighted earlier. 
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Appendix-A 
 
 

Constants and Standard Settings: 

Images = 100       

Filters        = 16 

HL Error Gradient related : 

Error Convergence Loop   = 10 

Error Epochs         = 2   
Error Threshold  (ET) = 0.5    
  

Initial Settings: 

Learning Rate (LR)      = 1e-5     

Momentum (MTM)       = 0.5     
 

Classifier Loss related 

Loss Convergence Loop     = 50000 

Epochs      = 5 
Loss Threshold   = 0.1     # denotes 99 % accuracy 
 

Initial Settings: 

LR Step Size (LRSS)        = 1.0   #  Learning Rate 
Weight Regularization Strength (WRS)    = 1e-10   #  L2 
Regularization  

 

Table-8: Initial Parameter settings 
 

99 : 9-car_transporter_s_000146.png 

1 High Gradient Error 0.103181320938 

2 High Gradient Error 0.103179733317 

3 High Gradient Error 0.103178146519 

4 High Gradient Error 0.103176560542 

5 High Gradient Error 0.103174975387 

http://vis.berkeley.edu/courses/cs294-10-fa13/wiki/images/f/fd/DeepVizPaper.pdfA
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6 High Gradient Error 0.103173391052 

7 High Gradient Error 0.103171807538 

8 High Gradient Error 0.103170224844 

9 High Gradient Error 0.103168642969 

10 High Gradient Error 0.103167061912 
Table-9: Sample output of convergence with high gradient error 
 
 
95 : 9-camion_s_000388.png 

1 Low Output Error 0.0715191300508 

 

96 : 9-camion_s_000397.png 

1 Low Output Error 0.133343497208 

 

97 : 9-camion_s_001322.png 

1 Low Output Error 0.0118169552257 

Table-10: Sample output of convergence with low gradient error 
 
TRAIN A LINEAR CLASSIFIER - Output Score and Loss Verification 

 

iteration 0: loss 0.154869 

iteration 2000: loss 1.511902 

iteration 4000: loss 0.133649 

iteration 6000: loss 0.126749 

iteration 8000: loss 0.135375 

iteration 10000: loss 0.129675 

iteration 12000: loss 2.728299 

Exiting Convergence Loop - Loss Threshold achieved 

 

Table-11: Cross-Entropy loss convergence 
 
 

 STATISTICS: 
---------- 

(0, 'airplane') Images Correct: 9/10   Accuracy: 90.00 % 

(1, 'automobile') Images Correct: 10/10   Accuracy: 100.00 % 

(2, 'bird') Images Correct: 10/10   Accuracy: 100.00 % 

(3, 'cat') Images Correct: 10/10   Accuracy: 100.00 % 

(4, 'deer') Images Correct: 10/10   Accuracy: 100.00 % 

(5, 'dog') Images Correct: 10/10   Accuracy: 100.00 % 

(6, 'frog') Images Correct: 10/10   Accuracy: 100.00 % 

(7, 'horse') Images Correct: 9/10   Accuracy: 90.00 % 

(8, 'ship') Images Correct: 10/10   Accuracy: 100.00 % 

(9, 'truck') Images Correct: 10/10   Accuracy: 100.00 % 

 

Total Images: 100   Overall Accuracy: 98.00 % 

Saving Trained Kernels and Predicted Features 

Processing Time excluding Statistics and File Saving time 

Started at : 2015-08-29 07:29:58 

Finished at: 2015-08-29 07:30:05 

 

Table-12: Final Classification Summary   
 


