
Cloud based NoSQL Data Migration
Framework to Achieve Data

Portability

Aryan Bansel

Submitted as part of the requirements for the degree

of MSc in Cloud Computing

at the School of Computing,

National College of Ireland

Dublin, Ireland.

September 2015

Supervisor Dr. Horacio Gonzalez-Velez

Abstract

Cloud computing enables the user to access various services, such as infrastructure,

platform, software, data storage with minimum efforts and cost. Adversely, the cloud

providers introduce heterogeneity among these services, which in turn, makes the end

users strictly dependent on specific solution. Though the NoSQL solution can manage

large volumes of data as well as ensure high availability, scalability and fault-tolerance,

it also provides several implementations since each cloud service storage requirements

varies causing heterogeneity. Further, the end users or enterprises which design their

application services using specific NoSQL based data model face difficulty in migrat-

ing the data according to business or technology changes. Vitally, the data portabil-

ity enables the migration of data, and enhance interoperability across several cloud

platforms. Therefore, the research aims at migration of data across cloud based het-

erogeneous NoSQL data stores since most of the cloud providers are adopting NoSQL

solutions for scalability, and availability. As a proof of concept, the research presents

a novel cloud based NoSQL data migration framework which enhances the data porta-

bility between different NoSQL implementations such as document, columnar, and

graph. The approach involves data standardization and classification stages to ensure

the data consistency and appropriate mapping. The research also compares the differ-

ent methodologies and alternatives to evaluate the most viable performance-oriented

approach to the data portability.

Keywords: Data portability, NoSQL, Key-value, Columnar, Document, Graph

Database, NoSQL migration framework, extensibility.

ii

Submission of Thesis to Norma Smurfit Library,

National College of Ireland

Student name: Aryan Bansel Student number: 14104202

School: School of Computing Course: MSc in Cloud Computing

Degree to be awarded: MSc in Cloud Computing

Title of Thesis: Cloud based NoSQL Data Migration Framework to Achieve Data Portability

One hard bound copy of your thesis will be lodged in the Norma Smurfit Library and will be available

for consultation. The electronic copy will be accessible in TRAP (http://trap.ncirl.ie/), the National

College of Ireland’s Institutional Repository. In accordance with normal academic library practice all

thesis lodged in the National College of Ireland Institutional Repository (TRAP) are made available on

open access.

I agree to a hard bound copy of my thesis being available for consultation in the library. I also agree

to an electronic copy of my thesis being made publicly available on the National College of Ireland’s

Institutional Repository TRAP.

Signature of Candidate:

For completion by the School:

The aforementioned thesis was received by__________________________ Date: _______________

This signed form must be appended to all hard bound and electronic copies of your thesis submitted

to your school.

Submission of Thesis and Dissertation

National College of Ireland

Research Students Declaration Form

(Thesis/Author Declaration Form)

Name: Aryan Bansel

Student Number: 14104202

Degree for which thesis is submitted: MSc in Cloud Computing

Material submitted for award

(a) I declare that the work has been composed by myself.

(b) I declare that all verbatim extracts contained in the thesis have been

distinguished by quotation marks and the sources of information specifically

acknowledged.

(c) My thesis will be included in electronic format in the College Institutional

Repository TRAP (thesis reports and projects)

(d) Either *I declare that no material contained in the thesis has been used in

any other submission for an academic award.

Or *I declare that the following material contained in the thesis formed part of

a submission for the award of

Master of Science in Cloud Computing awarded by QQI at level 9 on the National

Framework of Qualifications.

Signature of research student:

Date: September 19, 2015

Acknowledgement

An extensive endeavor, bliss euphoria that accompanies the successful completion of

any task would not be complete without the expression of gratitude to the people who

made it possible.

I take the opportunity to express my sincere gratitude to my project supervisor Dr.

Horacio Gonzalez-Velez for providing me such opportunity. It would have never been

possible for me to pursue the research upto this level without his relentless supervision

and encouragement.

With an immense pleasure, I would like to thank Dr. Adriana Chis, Michael Bradford

and Keith Brittle for their kind guidance and for providing all necessary information

to accomplish the research. I highly appreciate the efforts and the timely advices they

provided me to uphold motivation during studies.

I would like to extend my heartfelt thanks to my parents, family members and friends

for their kind co-operation and moral support. My thanks and appreciations also go to

my colleagues who helped in understanding the real world problems and all individuals

who have willingly helped me out with their abilities.

v

Declaration

I hereby declare that the dissertation entitled ‘Cloud based NoSQL data migration

framework to achieve data portability’, is a bonafide record composed by myself, in

partial fulfillment of the requirements for the MSc in Cloud Computing (2014/2015)

programme.

This thesis is a presentation of research and development carried under the guidance

and supervision of Dr. Horacio Gonzalez-Velez, Associate Professor and Head of Cloud

Competency Centre.

Signed Date......................

Aryan Bansel

vi

Contents

Abstract ii

Acknowledgement v

Declaration vi

1 Introduction 1

2 Literature Review 4

2.1 Data Portability across Clouds . 5

2.2 NoSQL based DataStores . 6

2.2.1 NoSQL Common Characteristics 7

2.2.2 Key-Value Stores . 9

2.2.3 Document-oriented Database . 9

2.2.4 Graph-based Database . 10

2.2.5 Column-based stores . 10

2.3 Data Migration across NoSQL DataStores 11

2.3.1 Heterogeneity in NoSQL Solutions 12

2.4 Data Migration Stratgeies . 13

3 Design 15

3.1 Specifications . 15

3.2 Design Overview . 17

3.3 Document Database to Graph-based Database 18

3.3.1 Data Transition to Graph . 19

3.4 NoSQL Data Migration Framework . 21

3.4.1 Document-based to Columnar Database 21

3.4.2 Data Translation . 23

3.4.3 Columnar NoSQL to Graph-based NoSQL 24

4 Implementation 27

vii

4.1 Data Standardization . 27

4.1.1 Document Parsing . 30

4.1.2 Meta-modeling . 31

4.2 Data Classification and Staging . 33

4.2.1 Neo4j - Graph Implementation 34

4.3 Direct Data Transformer . 38

4.3.1 Direct Mapping . 39

5 Evaluation 41

5.1 Compatibility Tests . 42

5.1.1 MongoDB vs Azure Table vs Neo4j 42

5.2 Cloud scenario . 43

5.3 Document to Columnar Database . 44

5.4 Columnar to Graph Database . 45

5.5 Document to Graph Database . 47

5.6 Query Performance . 49

5.7 In-house Scenario . 50

5.7.1 In-house Performance . 50

6 Conclusion 52

6.1 Future Work . 53

A NoSQL Data Migration Framework 56

viii

List of Figures

2.1 Comparison between NoSQL types . 9

2.2 Key Differences (Abramova & Bernardino (2013)) 12

3.1 System Layout . 17

3.2 Document to Graph-based Database . 18

3.3 Data Modeling in Document and Graph-based Databases 19

3.4 System Overview . 21

3.5 Columnar Data Model . 23

3.6 Data Translation Overview . 24

4.1 System Implementation . 28

4.2 MongoLab Connection . 29

4.3 UML Diagram for Azure Migration . 33

4.4 UML Diagram for generation of Graph Database 35

4.5 UML Diagram for Direct Graph Generation 39

5.1 Deployment Architecture of NoSQL Migration Framework 43

5.2 Migration Time vs Source Size . 45

5.3 Azure Table to Neo4j . 46

5.4 MongoDB to Neo4j . 47

5.5 Performance of Translations . 48

5.6 Throughput of Translations . 48

5.7 Query Performance . 49

5.8 In-house Deployment Architecture . 50

5.9 In-house Migration Performance . 51

5.10 In-house Migration Throughput . 51

A.1 MongoLab Database on Windows Azure 56

A.2 Real dataset (MongoDB Document) . 57

A.3 Real data on Azure Table . 57

A.4 Real data on Neo4j . 58

ix

List of Algorithms

1 Collection Classification . 18

2 Document Classification . 19

3 Translation to Graph . 20

4 Translation to Columnar Database . 24

5 Transforming to Graph Database . 25

6 Mapping to Azure Table . 32

7 Mapping MongoDB Values to Azure Table Rows 32

8 Transforming Azure Table to Neo4j Graph 36

9 Nodes and Relationships . 37

10 Generating Graph . 40

x

Listings

4.1 Parsing Sub-documents in document . 30

4.2 Parsing Conditions . 31

4.3 Azure Connection . 34

4.4 Dynamic Entity Filter . 36

4.5 Data Staging . 37

4.6 Building Processing Stores . 38

4.7 Establishing relations and properties . 40

xi

List of Tables

3.1 Document Mapping with Graph . 20

3.2 Columnar and Graph Database Mapping 25

4.1 Direct Mapping . 39

5.1 Neo4j Memory Mapping Calculations 42

5.2 MongoDB to Azure Table . 44

5.3 Azure Table to Neo4j . 46

5.4 MongoDB to Neo4j . 47

xii

Chapter 1

Introduction

With the evolution of cloud computing as a new paradigm, an ability to facilitate

computing resources and utilities has been significantly enhanced. Cloud computing

exhibits pay-as-you-go pricing schemes to support on demand access to services, namely,

infrastructure, platform and software (IaaS, PaaS, and SaaS respectively). Importantly,

the cloud computing also enables database-as-a-service (DaaS) to facilitate different

data or storage models to end users.

Unfavorably, the use of different data models introduce the heterogeneity in cloud

services which makes difficult for a user to migrate the software from one specific cloud

based storage to another. Cloud based storage models are responsible for storing and

processing large amount of data in a scalable manner. During an initial phase of

software development stage, it is difficult for developers to anticipate the growth and

storage requirements of application which in turn compells the developers to design the

application modeling specific data service.

As a matter of fact, there are two paradigms for modeling the data storage based on

cloud, namely, NoSQL and relational databases. Traditional database management

systems (RDBMS) does not supports horizontal scaling as well as suffers from poor

performance in a distributed environment. On the other hand, NoSQL (Not only SQL)

eliminates the problems that traditional RDBMS exhibits, in fact, possesses the ability

to process the large volumes of data.

Vitally, there are several implementations of NoSQL since different cloud vendors im-

plements the different strategies for managing their data models. Indeed, there is a

strong need to achieve data portability across cloud based different data stores without

any considerable cost.

1

Subsequently, the research studies the cloud based different NoSQL data stores such as

MongoDB, Azure Table, and Neo4j. In addition, the study may enable the consumer to

switch the service provider if a user is dissatisfied with service or due to some business

and technology changes.

The research problem- ‘Is it possible to migrate the data across cloud based het-

erogeneous NoSQL data stores such as MongoDB, Azure Table and Neo4j

using metamodel driven framework?’ -studies the data migration across cloud

based different NoSQL based data stores, in particular, document, columnar and graph

based databases. Significantly, the research claims that the metamodel driven frame-

work shall provide a generic model to eliminate the heterogeneity among cloud based

different NoSQL datastores.

To address the aim, the research is organized into four main phases, first, Literature

Review 2 highlights the relevance of data portability across NoSQL solutions as well

as challenges which obstructs the adoption of data portability in cloud. Moreover, the

chapter compares and contrasts the several supporting methodologies and strategies to

eliminate those challenges.

Further, the second phase of the research, Design 3 discusses the proposed metamodel

driven framework to achieve data portability among cloud based NoSQL datastores.

In brief, the study presents the system architecture which explains the working schema

of NoSQL data migration framework. Additionally, the research attempts to design a

few fundamental algorithms which shall support in establishing an efficient mapping

between multiple source and target NoSQL datastores.

Given the pivotal role that metamodel driven framework plays in migrating the data us-

ing fundamental mapping, the research implements the multiple NoSQL solutions such

as MongoDB, Neo4j, and Azure Table in Implementation 4 phase. Moreover, the

chapter provides a detailed modeling technique to develop the NoSQL data migration

framework using data classification and translation algorithms.

Subsequently, in Evaluation 5 phase, the research demonstrates the cloud based

NoSQL migration framework using real dataset to determine the system behavior. Fur-

thermore, the chapter compares the performance of each NoSQL database and efficiency

of all the translations involved. Significantly, the study also presents the observations

while configuring the application in-house and highlights the several approaches which

shall support the extension of proposed framework.

2

Before proceeding to the next section, we must understand what points of interest, the

research shall highlight:

(i) How data consistency within a data migration process can be managed to ensure

data quality?

(ii) What are the key challenges in defining a meta format for different NoSQL

databases?

(iii) Can data standardization and classification address the fundamental issues of

metamodel driven NoSQL migration framework?

Expected Contributions

In an attempt to migrate the data across cloud based heterogeneous NoSQL data stores

(document, columnar, and graph), the research may offer the following benefits:

• Data portability shall eliminate the heterogeneity among multiple NoSQL data

models, thus, the research encourages a generic cloud based NoSQL migration

framework.

• The research would enable the service users to switch the NoSQL solutions in

case of dissatisfaction, better alternatives, or technology changes without any

considerable cost and efforts.

• The proposed approach may eliminate inaccuracy, inconsistency while migrating

the data to target data store, since the research employs data classification and

standardization mechanisms.

• The research models an extensible system which can further be extended to sup-

port multiple types of NoSQL databases.

3

Chapter 2

Literature Review

To appreciate the novel idea, it is essential to understand the necessity of data porta-

bility and various strategies adopted to adddress the challenges which results in het-

erogeneity among cloud based data models. Consequently, the review discusses and

compares the related approaches which aims to achieve data portability.

Subsequently, the review is classified into four sections, first, Data Portability across

Clouds 2.1 which discusses the need of data portability to address the heterogeneity

in multiple cloud semantics resulting in vendor lock-in situation. Further, the review

highlights the heterogeneity at different levels and how the data portability plays an

important role in eliminating the vendor lock-in problem in detail.

After learning the importance of data portability, the second section, namely, NoSQL

based DataStores 2.2 explains why the research problem attempts to migrate the

data across cloud based NoSQL datastores. To illustrate, the review compares the tradi-

tional relational database management system (RDBMS) with Not only SQL (NoSQL)

paradigm. Also, the review describes different categories of NoSQL and evaluate the

most viable one to address the research problem. Significantly, the research identifies

the various constraints and factors such as consistency, availability and scalability while

migrating the data from one cloud datastore to another.

Post to understanding the NoSQL paradigm, the research explains the data migra-

tion phenomenon and examines the feasibility of data migration across heterogeneous

NoSQL datastores. The section Data Migration across NoSQL DataStores 2.3

also discusses the differences in data format of multiple NoSQL solutions.

In the latter part of the review, different data migration strategies have been presented

to determine the most viable approach to address the research problem. Importantly,

4

the Data Migration Strategies 2.4 section attempts to model a novel approach

which shall encourage to migrate the data across different NoSQL solutions.

2.1 Data Portability across Clouds

This part of the study explains the need for data portability across different cloud

platforms such as Google App Engine (GAE), Microsoft Azure, and Amazon, etc.-

prior to this, it is important to understand the data portability.

According to Shirazi, Kuan & Dolatabadi (2012), cloud portability means an abil-

ity to move the data and application services from one cloud provider to

another. In other words, portability is an ability which challenges heterogeneity in

semantics of different clouds or cloud based different data models and eliminates ven-

dor lock-in problem. As a matter of fact, the research problem attempts to achieve the

data portability across heterogeneous data models based on cloud, therefore, it may

be advantageous to study how the vendor lock-in and semantics heterogeneity restricts

the user.

In context, Scavuzzo, Di Nitto & Ceri (2014) state that the different cloud providers

advocate the different strategies and methods in implementation which results in cloud

heterogeneity. As a consequence, the users may not be able to move their services from

one cloud provider to another without any significant cost. Further, Ranabahu & Sheth

(2010) highlight the lock-in problem at two different levels:

• Vertical Heterogeneity: A heterogeneity in infrastructure and resources i.e. when

different IaaS providers advocates different implementation policies and forms

proprietary such as Amazon, GoGrid, etc.

• Horizontal Heterogeneity: A user is unable to gain control or switch the cloud plat-

form service (PaaS) providers without efforts and cost.

Additionally, Thalheim & Wang (2013) state that in order to migrate the data, one need

to have a thorough understanding of the data source which includes different aspects

such as data availability, data constraints since different data sources are designed

by different modelling strategies and semantics. Further, the data source may have

inconsistent, duplicate or inaccurate data. On the other hand, the target systems may

require to incorporate some additional constraints on migrated data in order to ensure

consistency.

In addition, Sellami, Bhiri & Defude (2014) state that

5

Cloud environment usually provides one data store for the deployed

applications. However, in some situations, this data store model do not

support the whole applications requirements. Subsequently, an application

needs to migrate from one data store to another in order to find a more

convenient data store to its requirements. (pp.654)

Consequently, the review focusses on easy data migration across different cloud service

providers to address horizontal heterogeneity.Also, the data portability may enable the

users to switch the service providers according to the service level agreement (SLA)

benefits, cost reductions, and consistency policies.

Given the importance of data portability, it is essential to learn the different data

models and study the most viable model adopted by multiple cloud providers.

2.2 NoSQL based DataStores

Post to understanding the need of data portability, this section compares and contrasts

the different type of data models as well as the factors which make NoSQL more

prominent than others.

According to Shirazi, Kuan & Dolatabadi (2012), in a cloud computing environment,

each cloud provider models the database in different manner based on their strate-

gies. These strategies result in heterogeneous semantics for modeling the cloud storage

and makes difficult for consumers to switch. Further, Shirazi, Kuan & Dolatabadi

(2012) state that there are usually two data modeling paradigms, namely, Not only

SQL (NoSQL) and relational database. In context, Dharmasiri & Goonetillake (2013)

state that the NoSQL system significantly differs from traditional relational database

management system (RDBMS) since NoSQL does not require fixed structures

for tables unlike RDBMS. However, NoSQL systems exhibit a vast heterogeneity as

there are several numbers of implementations of NoSQL. Consequently, it is very chal-

lenging to switch from one system to another since NoSQL systems involve processing

of large volumes of data.

On the other hand, Shirazi, Kuan & Dolatabadi (2012) specify that traditional RDBMS

lacks a horizontal scaling ability as well as RDBMS does not fit well for the cloud

architecture due to poor performance in a distributed system environment. In addition,

Chen et al. (2012) mention that NoSQL system exhibits high availability, flexibility, and

can manage huge amount of data, thereby, it results in high performance.

Since NoSQL ensures high availability and scalability, North (2010) states that most

6

of the high-volume websites and cloud computing based enterprises, applications such

as eBay, Twitter, Amazon, Google and Facebook are adopting NoSQL based data

stores. Further, North (2010) mentions that BigTable is developed by Google to support

distributed data, thereby, a vast number of applications such as Google Earth, Gmail,

and Google Maps use BigTable based on NoSQL. Similarly, Amazon uses DynamoDB, a

key-value NoSQL data store for high fault tolerance, availability and efficient processing.

Additionally, Scavuzzo, Di Nitto & Ceri (2014) specify that Microsoft Azure Table

stores the structured data in key-value format without schemas, and is efficient in

managing applications that store huge amount of non-relational data.

Subsequently, it would be beneficial to study the characteristics possessed by several

NoSQL based cloud data stores.

2.2.1 NoSQL Common Characteristics

Whilst it can be seen NoSQL databases can process and store large amounts of data

more efficiently than relational databases. The efficiency and good performance are

gained by NoSQL based data stores by loosening the explicit and implicit constraints

on consistency, scaling, and availability.

Further, Sattar, Lorenzen & Nallamaddi (2013) specify that since NoSQL has a dis-

tributed and fault-tolerant model as well as does not comply with RDBMS model, it

does not guarantee ACID (atomicity, consistency, isolation, and durability). In con-

text, Frank et al. (2014) explain the ACID properties in brief such as atomicity means

all or nothing i.e. either transaction is fully completed or canceled before operation.

Secondly, consistency must be ensured by examining whether the integrity constraints

are obeyed or not. Futhermore, isolation ensures that the transactions are executed

independently of each other in the same time. Finally, the durability evaluates that

committed transactions should be persisted may be on a secondary storage.

As a matter of fact, NoSQL databases model eventual consistency, moreover, the trans-

actions may be limited to datum in some databases. In contrast to ACID model, Tauro

et al. (2013) state that NoSQL incorporates CAP (consistency, availability, and parti-

tion tolerance) theorem which describes the response of distributed systems on receiving

write and read requests.

Given the importance of CAP theorem obeyed by NoSQL, it is essential to study the

model, thus, Tauro et al. (2013) explain the CAP attributes as following:

Consistency: This property ensures that system reads the data written at last from

the same node or different node. In other words, a client shall always view the

7

newly written or updated one but won’t be able to see the older data.

Availability: A system must generate the reasonable response within a time duration,

moreoever, the rule applies to both the operations i.e. read and write request.

Significantly, availability ensures that system must remain available even when

some of nodes are down.

Partition Tolerance: The partition tolerance in distributed system ensures that the

nodes in a system mustn’t communicate with each other. Further, a partition

maybe a temporary loss of connectivity or just a packet loss, but when the network

is partitioned- distributed system still continues to work.

However, many large scale applications and ecommerce platforms adopts BASE (Ba-

sically available, soft-state and eventual consistency) model in case availability and

partition tolerance are more prominent than consistency.

Consequently, the review advocates the NoSQL based data stores for migration across

different cloud platforms. Further, it is important to study the various NoSQL types

which models CAP theorem, in context, Shirazi, Kuan & Dolatabadi (2012) illustrate

that NoSQL can be categorized into four types:

Key-value Stores : A model based on keys-values which is easy to implement, but

inefficient in updating, and querying the part of a value.

Document-oriented databases: In this, semi-structured documents are stored in

JSON format. It supports efficient querying and manages nested values with

associated keys.

Column family databases: An efficient model that stores and processes large

amount of distributed data over multiple machines.

Graph databases: Graph database enables scalability across multiple machines and

allows data-model specific queries.

Figure 2.1 describes the differences between multiple NoSQL implementations in terms

of performance, scalability, and complexity.Indeed, majority of the NoSQL solutions

possess high performance in comparison to RDBMS.

Since the research intends to migrate the data across heterogeneous NoSQL solutions

based on cloud, it is important to understand the aforementioned NoSQL types in

detail.

8

Figure 2.1: Comparison between NoSQL types

2.2.2 Key-Value Stores

In key-value store, Chandra (2015) states that the data is converted into set of keys

which are stored in the lookup table. Subsequently, the keys are transformed into

the location of the data on requirement. According to McKnight (2014a), a key-value

store shall become obsolete soon since a column store or a document store have more

prominence in market. However, the key-value store could be used in case of simplicity

and commonality.

Examples of key-value databases:

• MemcacheDB

• Riak

• BerkeleyDB

2.2.3 Document-oriented Database

According to Chandra (2015), in document-based NoSQL data store, data is stored as

documents and these documents are called collections. Further, the document based

database offers an advantage of storing the data of different types as well as porting.

Additionally, McKnight (2014a) states that the document database are far better in

logging online events even when the events have varying features.

Importantly, Chandra (2015) emphasize that document based store focusses only on

documents storage and access optimization instead of rows and records. However, the

document database performs slower than a RDBMS and sometimes require more space

for storage.

Examples of document-oriented database (supports JSON, YAML, BSON, and XML

format):

9

• MongoDB

• CouchDB

• MarkLogic

2.2.4 Graph-based Database

Chandra (2015) state that when an information is stored into multi-attribute tuples

which exhibit the relationships in a graph form i.e. involving nodes and edges, the stor-

age container is called graph data store (GD). Moreover, GDs are efficient in traversing

the edges (relationships) between several entities.

Also, Chandra (2015) enumerates certain features of GD such as Neo4j, and OrientDB

are used for location-based, social, biological networks and services:

• ACID compliant

• Date model: Nodes, relations, and key-value pairs on both,

• Incorporate Euler Graph theory.

Mostly, the graph-based databases are widely used in social networking sites to establish

relations and properties between multiple elements as well as efficient in processing large

amount of data.

2.2.5 Column-based stores

According to Chandra (2015), column-oriented data stores are used in building high-

performance applications since it avoids I/O overhead as well as utilize the memory

efficiently. In addition, McKnight (2014a) specify that column data stores are excellent

for semi-structured data which exhibits commonality as well as differences. Further,

Chandra (2015) state that columnar databases operate using column rather than row

and does not comply with RDBMS rules.

A few examples of columnar stores are:

• Cassandra

• HBase

• Azure Table

10

After learning the types of NoSQL data stores, the review shall explain the phenomenon

of data migration across these data stores based on cloud platforms such as Azure Table,

MongoDB, Neo4j, and DynamoDB.

2.3 Data Migration across NoSQL DataStores

To appreciate the above inference, we must examine the data migration across NoSQL

based cloud data stores (DaaS) such as Neo4j, Microsoft Azure’s Tables, and MongoDB.

In context, Scavuzzo, Di Nitto & Ceri (2014) explain that the data migration as a

process of data transfer between multiple databases. In addition, Scavuzzo,

Di Nitto & Ceri (2014) mention that the data migration process must limit the user

interaction and should be automatic. Further, the process does not only involve transfer

of data from one datastore to another, but it is also required that data must adapt to

the target’s database format and structure. Subsequently, the phenomenon involves

huge risk to the consistency and integrity of data.

Therefore, the review proposes a system such that it should be agnostic to data gen-

eration and uses libraries for updating and maintenance. Futhermore, to address the

problem of consistency, the review attempts to design the system which is independent

of the application hosted and perform efficiently at data level. In contrast, Atzeni et al.

(2009) provide a model-independent platform for data translation and can manage

object-oriented, relational, object-relational, and XML-based variants. Though Atzeni

et al. (2009) proposes the common programming interface, but it adopts the XML in

conjunction with SQL for modeling such system, thus, the system doesn’t fit with cloud

data store specifications.

Further, Shirazi, Kuan & Dolatabadi (2012) attempts to migrate the data from NoSQL

column family to graph database using design patterns. Additionally, they suggest that

the data portability between Neo4j and HBase can be achieved using design patterns.

Since, the graph databases are good in managing the very huge amount of data, as

well as column family databases can significantly store and process the large volumes

of data.

But the document based data stores give poor performance while retrieving a record

value since it traverse the whole document structure (collection) and update unnec-

essarily. Consequently, it may be advantageous to enable the users to migrate the

data from one NoSQL data store to another on the basis of business requirements or

technology changes.

11

Indeed, it is important to learn the differences between heterogeneous NoSQL solutions

to generate the metamodel which shall define the common representation of the data.

2.3.1 Heterogeneity in NoSQL Solutions

Taking an above study into account, this section shall compare and contrast the three

essential NoSQL solutions: Document, Columnar, and Graph in order to address the

research problem.

As we have studied earlier, columnar NoSQL stores are more efficient in storing and

processing the data in comparison to document-based NoSQL data stores. In context,

Shirazi, Kuan & Dolatabadi (2012) state that the columnar NoSQL databases can

handle the large amount of data easily as well as the big enterprises such as Google,

Facebook and Twitter are adopting columnar NoSQL solution.

Likewise, Abramova & Bernardino (2013) provide the differences in performance of

Document and Columnar NoSQL solutions under different workloads and data volumes.

Further, Abramova & Bernardino (2013) demonstrate the major differences between

Document-based NoSQL store (MongoDB) and Columnar NoSQL store (Cassandra).

Figure 2.2: Key Differences (Abramova & Bernardino (2013))

To illustrate, Abramova & Bernardino (2013) highlight the key differences between

MongoDB and Cassandra, i.e. MongoDB exhibits CP (Consistency and Partition tol-

erance) type system whereas Cassandra and HBase models PA (Partition tolerance

and Availability).In contrast, columnar Azure Table model all three features, however,

consistency is more prominent over availability. Further, Cassandra or most of the

Columnar NoSQL stores uses peer-to-peer replication, namely, Multi-master whereas

MongoDB and other Document-based databases practice Master-Slave replication.

In contrast to the use of document and columnar databases, McKnight (2014b) em-

phasize that the graph database is the only NoSQL solution which fits with modern

12

workload growth and is highly performance-oriented. Importantly, McKnight (2014b)

state that

Graph databases also yield very consistent execution times that are not

dependent on the number of nodes in the graph, whereas relational database

performance will decrease as the total size of the data set increases.

Further, Qi (2014) advocates that the graph database enables a fast traversal among

nodes as well as graph databases can easily model complex relationships. As matter

of fact, McKnight (2014b) and Qi (2014) specify that graph database possess multiple

benefits as opposed to other NoSQL and SQL databases such as efficient query exe-

cution, scalability, and extensibility. Moreover, Qi (2014) state that the most of the

graph-based databases supports ACID model as described earlier.

Indeed, Gudivada, Rao & Raghavan (2014) express that big enterprises including

Google, Facebook, and Twitter adopts graph data model since graph database can de-

scribe static as well as dynamic relationships in comparison to other NoSQL solutions.

Furthermore, Gudivada, Rao & Raghavan (2014) state that some of the applications

used in industries such as airlines, healthcare, gaming, and retail incorporate the graph

database since it can serve millions of users.

Consequently, the review study the data migration between different NoSQL solu-

tions, namely, Document-based database (MongoDB), Columnar NoSQL (Azure Ta-

ble), and Graph-based (Neo4j). Significantly, the research attempts to model the graph

database from document and columnar databases to appreciate the aforementioned

graph database advantages.

2.4 Data Migration Stratgeies

To appreciate the above inference, it may therefore be advantageous to study the differ-

ent data migration approaches which shall also encourage to deduce the novel approach

for the research problem.

Thalheim & Wang (2013) illustrate the phenomenon of data migration which consists

of mainly three stages, namely, Extract, Transform, and Load (ETL).

1. Extract: At high-level of abstraction, a legacy data source is first extracted.

2. Transform: At this stage, a legacy data source is transformed into new data structure

which may also involve validation, mapping, and cleansing.

3. Load: A new data structure is loaded into target data source.

13

In context, Scavuzzo, Di Nitto & Ceri (2014) suggest the two general strategies in order

to migrate the data:

1. Direct Mapping: Translation of source database into the target database without

any intermediate stage.

2. Intermediate Mapping: When data from source data store is first translated into an

intermediate (metamodel) format and then transformed into the data structure

of target database.

Further, Scavuzzo, Di Nitto & Ceri (2014) state that although an extra transformation

occurs in second approach, but it would be much flexible and extensible strategy for

data migration. Indeed, the review advocates the use of intermediate mapping approach

in order to perform data migration between two different NoSQL solutions.

On the other hand, Thalheim & Wang (2013) enumerate several other approaches for

efficient data migration such as

• Big bang: A strategy which takes over all operational data in single execution after

transforming the source data into target database.

• Chicken little: In this approach, a source data is divided into small modules and

these modules are migrated one-by-one.

• Butterfly: This strategy uses crystalliser to translate the source data into target after

freezing the source database.

In contrast, Shirazi, Kuan & Dolatabadi (2012) use the design pattern to perform

the data migration between Columnar NoSQL (HBase) and Graph Database (Neo4j).

Moreover, Shirazi, Kuan & Dolatabadi (2012) state that design pattern supports in

designing an appropriate schema for database. In addition, design pattern also shall

address the key concerns in migration and performance such as data integrity, and

query efficiency.

As a matter of fact, the review intends to design an extensible migration system which

shall exhibit intermediate mapping. Therefore, the research proposes an metamodel

which defines the intermediate format and supports the characteristics of NoSQL stores,

Columnar, Document, and Graph-based.

14

Chapter 3

Design

3.1 Specifications

In an attempt to migrate the data across heterogeneous NoSQL data stores in cloud,

this section underlines several strategies to achieve optimal performance. Further,

the research presents a novel approach to migrate the data between different NoSQL

solutions, specifically, document-based and graph database after comparing several

performance-oriented algorithms.

The research models a data migration framework which aims to migrate the data from

document database to graph database, and indirect migration using columnar database

as intermediate source/target between document and graph-based database. Since

these NoSQL solutions advocate the different data models, the research designs an

algorithm which includes the data standardization, classification, and staging.

In order to accomplish the data migration process, the research highlights the back-

ground for the aforementioned stages involving certain key steps such as extraction,

translation, and conversion. Further, the algorithm constitutes the complete NoSQL

migration framework using metamodeling which acts as a generic template for easy

translations.

Since the research attempts in migrating the document based database to another

format, the source database (document database) is first scanned. To appreciate the

novel mechanism, the algorithm performs the document parsing to identify the data

types involved. Further, depending on the target database, the scanned data is trans-

ferred through described metamodel representation. Suppose the target database is

graph-based, then the scanned data is stored in processing stores.

15

Further, the approach explains the translation and mapping of the source database with

target database. Post to appropriate mapping, the source data and data structure will

be analyzed to retrieve properties, entities, entity key, and column. Further, the direct

translator will translate the retrieved data into generic format which could be then

used to convert to any requested NoSQL data store, for instance, if a user wants to

migrate the data from MongoDB to Azure Table, in case, data from MongoDB will be

first converted to metamodel.

Subsequently, an inverse translator will transform the metamodel data into the data

structure of requested target data store. Finally, the translated data is saved into

target database. But before saving the data into target data store, it is required that

metamodel must support formats for every NoSQL data stores. For instance, MongoDB

and other document-based databases such as DocumentDB, CouchDB supports JSON,

BSON, and XML formats with multi-valued data types whereas Azure Table encourages

single valued data types only. Importantly, the algorithm defines the source as well as

target database format before actual migration.

After the migration of data from document database to columnar database, the frame-

work designs an algorithm to translate the columnar datastore to graph database.

During this translation, the primitive and referential columns of columnar database are

scanned. In addition, the hierarchical nodes using referential columns and correspond-

ing relationships are established.

Furthermore, the research defines the direct transformation from document database to

graph-based database. The direct transformation includes the direct mapping and data

staging which adds the referential attributes of source database. After the addition

of referential nodes, the algorithm describes the properties, and relations in graph

database.

Consequently, the research studies several aspects concerning data integrity, and con-

sistency. As a proof of concept, the proposed solution establishes the novel mapping

between heterogeneous NoSQL solutions which further results in efficient data migra-

tion.

16

3.2 Design Overview

As the research presents the approach for the data migration across cloud based different

NoSQL data stores, this section presents the system overview which shall highlight the

best approach that conforms to our research goal. Importantly, the proposed solution

to the research problem also introduces the effective strategy to preserve the data

consistency and integrity.

Figure 3.1: System Layout

Consequently, the following study provides the high level detail of data migration frame-

work across heterogeneous data formats. But before learning the working of system,

it is important to understand the key elements such as extractor, parser, metamodel,

and generator, etc.

Further, Figure 3.1 represents the system architecture which involves a few logical

stages: extraction, parsing/translation, meta-modeling, identification and data staging.

In brief, in an extraction phase, a extractor retrieves the data from source data store

which then is passed to Parser. Further, a Parser translates the extracted data into

metamodel format (a standard data format).

Post to meta-modeling, an algorithm extracts the data from intermediate target and

identifies the data records/entites. After identification, the algorithm defines an appro-

priate data format for sequential processing of data records and the data is saved to

target data store.

17

3.3 Document Database to Graph-based Database

The research presents the novel approach to migrate the data directly from document-

based NoSQL database to graph-based database, for instance , from MongoDB (BSON

based database) to Neo4j (graph) database.

But before studying the data migration framework, we must learn the key components

which supports the novel translation between two heterogeneous data stores. In context,

the algorithm defines the elements such as extractor, document parser, and generator

which constitutes complete data migration.

Figure 3.2: Document to Graph-based Database

Figure 3.2 presents the high-level overview of the complete data migration which in-

volves the aforementioned components. To illustrate, the data is extracted sequentially

from the source data store in order to ensure the data integrity. Since the research aims

at migration of complete database from document style to graph version, the algorithm

first identifies the number of collections and retrieves all collections sequentially.

Algorithm 1: Collection Classification
Pre-Condition: Database must be instantiated

1. method classifyCollection(Database)

2. collection ← classifyUserCollection(Database)

3. systemCollection ← classifySystemCollection(Database)

4. return collection

Using algorithm 1, collections are classified into the user collections (created or imported

by users) and the system collections (created by host database). After classification,

the data records (document in case of Document-based database) are processed, the

document parser classifies the data according to the data types, for instance, document

may contain sub-documents, arrays, and single-valued data types.

18

Note: A document may describe hierarchical data such as documents within documents,

arrays within documents as well as documents within arrays.

Algorithm 2: Document Classification
Pre-Condition: Document database must be instantiated

1. method classifyMainDocument(Collection)

2. SubDocument ← classifySubDocument(MainDocument)

3. Array ← classifyArray(MainDocument)

4. Single ← classifySingle(MainDocument)

5. return elements

Importantly, the document-parser identifies and categorizes the data records (docu-

ments), in other words, document parser seggregates the data such as arrays, docu-

ments, and single data type values recursively. Post to parsing the data, an algorithm

2 stores the data according to their classification type and passes the records to gener-

ator.

The generator retrieves the classified data from parser and generates the graph. There-

fore, it may be advantageous to study the generation of graph which exhibits nodes,

relationships, and related properties.

3.3.1 Data Transition to Graph

To appreciate the novel approach to translate the data from document-based NoSQL

database to Graph database, this section explains the high level steps required to

produce the graph database.

Figure 3.3: Data Modeling in Document and Graph-based Databases

Figure 3.3 represents the two NoSQL databases which model the data in different ways,

for instance, the document database stores the data in XML, YAML, JSON or BSON

format whereas the graph database uses nodes, relationships, and properties for data

19

storage. Further, the algorithm ensures the mapping of document elements to graph

nodes and properties as follows:

Table 3.1: Document Mapping with Graph

Document Datastore Graph Database

Database Name Root Node

Collection Name Sub-root node

Document’s ID Entity Node

Key Sub-Node

Referred Key Hierarchical Sub-node

Post to mapping of major attributes of document database with graph database, the

algorithm invokes the generator module. The generator performs recursive (to obtain

hierarchical data) parsing, and creates the nodes each containing key name and value,

further, these nodes are connected to origin node. And these connections describe the

relationships between nodes with appropriate property.

After connecting the collection (sub-root) nodes with root node (database), the funda-

mental keys are attached to the ID node whereas referencing keys are parsed recursively.

Subsequently, the referencing keys are scanned and added to the ID nodes in hierarchi-

cal manner.

Algorithm 3: Translation to Graph
Pre-Condition: Document must be classified

1. method generateGraph(Collection)

2. subRootNode ← generateRoot(getCollectionName)

3. mapSubRoot(subRootNode,collectionName)

4. mapEntityNode(idNode,Document.id)

5. mapSubNodes(subNodes,Document.keys)

6. mapReferenceNodes(referringNodes,DocumentReferencing.Keys)

7. return graph

In order to perform translation, the algorithm 3 creates the root node using the database

name (a database which contains several documents) and connects the collection nodes

to database (root node). Subsequently, the ID nodes (using ID of document) to distin-

guish the different documents are connected to collection node. These IDs are obtained

from document in database using document parser as discussed earlier.

Further, the algorithm 3 sequentially parses the document recursively to seggregate

the multi-valued types into single valued data types and presents the data in a hier-

archical way. Consequently, the data can be migrated efficiently from document-based

database to graph database with the help of recursive parsing and placement of data

20

in hierarchical format to form an easy network model.

The research also presents the novel NoSQL data migration framework which involves

two translations: document database to columnar database and columnar database to

graph database.

3.4 NoSQL Data Migration Framework

To appreciate the data migration phenomenon, the research attempts to describe the

translations of data from document style to columnar format and columnar database

to graph based database.

Figure 3.4: NoSQL Framework

3.4.1 Document-based to Columnar Database

In this part of the study, the research translates the source (Document-based) to inter-

mediate target (Columnar) database. From figure 3.4, the data migration is performed

using intermediate mapping as described earlier.

• Direct Mapping: Translation of source database into target database format,

• Intermediate Mapping: An intermediate model between source and target databases,

i.e. source databse is first translated into generic format and then, intermediate

formatted data is translated into data structures of target databse.

21

The research advocates an intermediate mapping which involves aforementioned com-

ponents for data migration and supports the large number of transformations. To

illustrate, a algorithm first extracts the data from source NoSQL data store (Document-

based) using extractor which is usually in XML, JSON, YAML, or BSON format. After

retrieving the documents, an extractor transfers the data to the parser which signifi-

cantly categorize the data according to the data types and stores in standardized data

format.

A meta-model (a standard data format) stores the data entities alongwith properties

such as name, value, and data type. Therefore, an parser extracts the keys with corre-

sponding values and places the entites into meta-model.

Subsequently, these entities are retrieved from meta-model representation and sequen-

tially stored in intermediate target data store. However, Shirazi, Kuan & Dolatabadi

(2012) suggest another technique to migrate the data using cloud brokers. Moreover,

Shirazi, Kuan & Dolatabadi (2012) attempt to create an abstract layer by integration

of multiple cloud provider’s resources. Further, this abstract service will be provided

by cloud broker to customers, thereby, making all resources transparent. In addition,

Shirazi, Kuan & Dolatabadi (2012) specify that design patterns could be used to mi-

grate the data from NoSQL column family to NoSQL graph database. Importantly,

there are two main constraints in migration:

1. Just as the foreign key role in RDBMs, there is probability that a specific column

of the column family database may refer to another row.

2. Difficult to support the probability to identify appropriate one among several version

of a specific column in a row generated using timestamp.

In contrast, the algorithm stores the keys and values with consistently examining the

entities and column family. Consequently, Scavuzzo, Di Nitto & Ceri (2014) defines

some of the key components of metamodel:

22

Property: Stores the characteristics of datum with its name; also defines the type of

datum and boolean attribute (indexable or not).

Entity and Key: The properties related to same element are grouped together and

referred as Entity. Entity Key is used to distinguish several entities containing

properties.

Column: Similar properties referring to different entities are grouped together, and

known as column.

Partition Group: Users are free to construct the data model according to the need,

for instance, GAE uses ancestor paths, and Azure uses a combination of table

name and partition key.

3.4.2 Data Translation

During this stage, two aforementioned translators: direct and inverse translator per-

forms translations in order to migrate the data from one data store to data store.

According to Scavuzzo, Di Nitto & Ceri (2014), partition key and table name are

combined before mapping to the metamodel partition group.

Figure 3.5: Columnar Data Model

After mapping the source database, for instance, columnar in fig.3.5, to the metamodel

as discussed earlier, it is required to transform the metamodel representation into target

data store format. Thus, an inverse translator transforms the metamodel into the data

structure used by target data store.

However, Scavuzzo, Di Nitto & Ceri (2014) raise a few issues while translation such

as strong consistency, increased overhead of writes. Though, to ensure consistency,

entities of the same partition group in metamodel could be mapped to entities referring

to the same ancestor path. A fig.3.6 represents the migrated data from Document

to Columnar database using metamodel, which would also allow to migrate the data

among other NoSQL based cloud platforms such as Amazon DynamoDB etc.

23

Figure 3.6: Data Translation Overview

Algorithm 4: Translation to Columnar Database
Condition: Parsing and Meta-modeling must be completed

1. method mappingToColumnar(entity)

2. partitionKey ← mapPartitionGroup(metamodel, DatabaseName)

3. pKey ← mapPartitionGroup(metamodel, collectionName)

4. rowKey ← mapEntityKey(metamodel, documentID)

5. columnName ← mapPropertyKey(metamodel, keys)

6. rowValues ← mapPropertyValue(metamodel, KeyValue)

7. return metamodel

An algorithm 4 describes the translation of NoSQL document database to NoSQL

columnar database after executing the document parsing and metamodel formation.

Hence, the proposed solution for the efficient data migration would exhibit extensibility

among columnar NoSQL data stores and also ensures data consistency and integrity.

3.4.3 Columnar NoSQL to Graph-based NoSQL

After the migration of data from document-based NoSQL store to columnar NoSQL, the

research attempts to migrate the data from columnar NoSQL to graph-based NoSQL.

It may therefore be advantageous to study the graph-based database in order to en-

sure the adaptability of data to target from columnar source. According to McKnight

(2014c), graph-based databases are data stores which exhibits hierarchical or network

model to store the data and allows navigation. Significantly, McKnight (2014c) enu-

merates several components of graph database:

Node: A node is an entity which defines a pair such as name and value, moreover,

there can be multiple nodes (and of multiple types) in a single graph.

Properties: All nodes or relationship among them can describe specific properties

(attributes), relationships are connections between different nodes.

24

Path: A path defines the address where an application persists the data as well as the

routes between nodes which are used for traversal.

Before translating the database, the algorithm establishes the mapping between colum-

nar database and graph database as follows:

Table 3.2: Columnar and Graph Database Mapping

Columnar Datastore Graph Database

Partition Name Root Node

Referential partition Sub-root Node

Row ID ID-Node

Primitive Columns Sub-node

Reference Columns Hierarchical-node

Subsequently, the algorithm 4 extracts the data records sequentially from columnar

database and identifies the entities in order to define the appropriate data format.

For instance, columnar data store uses partition key and row keys, thus, the algorithm

defines the root node (a main node to which all other nodes are connected) with the

partition key property and connects the row keys (ID entities) to the defined root node

recursively.

Algorithm 5: Transforming to Graph Database
Condition: Columnar object must be instantiated.

1. method fromColumnarStore(Entity)

2. rootEntity <- generateRoot(entity.partitionKey)

3. mapPartitionGroup(rootNode,rootEntity)

4. mapRootNode(rootNode,rootEntity.Value)

5. mapRowEntity(rowNode,entity.rowkey)

6. mapColumns(subNodes,entity)

7. return mainGraph

In order to ensure consistency, the algorithm 3.5 performs sequential processing of data

records:

• Entities from columnar database are described as nodes with values,

• Further, the algorithm describes the relationship to represent the connection between

entities, for example, an entity Name can be classified as First-Name and Last-

Name,

• Finally, the node and relationship properties which are entity attributes (metadata

such as timestamp) are described.

25

While performing the sequential processing, the algorithm also introduces the data

staging which identifies an additional entities stored in columnar database.

During the data staging, the reference columns of database are examined and entities

are filtered to form the hierarchical nodes. Finally, the research models a dynamic

filter which filters the primitive and reference columns. After identifying the reference

columns, the partition groups corresponding to the columns are scanned.

Subsequently, the referencing entities are retrieved and mapped to hierarchical nodes

in graph database. Indeed, the research implements the designed algorithm in chapter

4 which shall further demonstrate the different NoSQL solutions and involved transla-

tions.

26

Chapter 4

Implementation

This chapter discusses the implementation and development strategies of the cloud

based NoSQL migration framework in detail which supports data migration across

heterogeneous NoSQL data models such as document, columnar, and graph based

database. The NoSQL data migration framework has been developed using the Ap-

plication programming Interfaces (APIs) provided by MongoDB, Microsoft Azure, and

Neo4j in java archive format. Therefore, it would be beneficial to study the various

java APIs for different databases used in implementing the migration framework.

4.1 Data Standardization

In order to implement the data migration, it is essential to standardize the source

data and classify the data according to the data type. The research demonstrates

the migration of data from MongoDB (as document-based source database) to Azure

Table (columnar- intermediate target database) and Azure Table to Neo4j (graph-

based target database), importantly, a direct data translation from MongoDB to Neo4j

i.e. document to graph database. According to Kanade, Gopal & Kanade (2014),

MongoDB is an open source, and document based schema free database which models

the data in BSON (Binary encoded JSON data), also, it exhibits the features such as

auto-sharding, map-reduce, hybrid deployments in cloud.

To appreciate the migration framework, the algorithm models two main strategies:(i)

BSON Parsing and (ii) Meta-Modeling in order to standardize and classify the data from

MongoDB. In this section, the research entails the different APIs and various methods

defined to implement the aforementioned strategies for efficient data migration.

27

Figure 4.1: System Implementation

28

But before modeling the migration strategies, it is important to establish an appro-

priate authenticated and authorized connection with source data store. Therefore,

the research attempts to deploy the MongoDB instance on Microsoft Azure which can

support large volume of data. In context, the MongoLab https://mongolab.com/

provides a fully managed MongoDB service that can be easily deployed on Microsoft

Azure (a public cloud), in addition, mongolab http://docs.mongolab.com/allows the

application to access the data using shell commands or APIs/drivers as can be seen in

fig.4.2.

Figure 4.2: MongoLab Connection

After establishing the authenticated connection with MongoLab hosted on Azure, it is

required to import the data (which is supposed to be migrated), therefore, we imported

a few large BSON data files (from appendix A.1) . Note: prior to data import, we

must create database and collection (which contains several documents). In order to

model the real-world system, the research advocates the import of real data set, thus,

real json data from http://data.gov.uk/data/search is imported. Subsequently,

the algorithm uses MongoDB libraries such as mongodb-async-driver-2.0.1.jar,

mongo-java-driver-3.0.2.jar, and mongodb-binding-0.2.0.jar in order to access

the data from MongoDB.

The algorithm involves the several java classes such as BasicDBObject,

DBCollection, DBCursor, MongoClient, and MongoClientURI which are provided

by aforementioned libraries. These pre-defined java classes ease the development and

retrieval of data from MongoDB.

As discussed in chapter 3, the research attempt to migrate the complete database from

one NoSQL format to another. Therefore, the algorithm first seggregates the different

collections constituting the document-based MongoDB database. MongoDB contains

two types of collections: User and System, the algorithm performs all processing on

user-based collections.

Since the research designs an approach which processes the data records sequentially,

thus, the algorithm performs parsing of data records and stores in metamodel respec-

tively in order to migrate the data from document database to any other format.

29

https://mongolab.com/
http://docs.mongolab.com/
http://data.gov.uk/data/search

4.1.1 Document Parsing

As MongoDB supports the data in a BSON format (BSON is superset of JSON), thus,

the algorithm models a novel BSON parser which recursively seggregates the data.

Prior to learning the BSON parser, it is essential to study the different classes and

libraries provided by bson-2.9.0-sources.jar such as BsonArray, BsonDocument,

BsonType, and BsonValue, etc. which support BSON parsing. These classes supports

in distinguishing the BSON data according to the data type such as Array, Document

and primitive. Subsequently, the BSON based parser scans the document (data record)

and classifies the data elements of document recursively.

1 /* method called recursively to identify the sub-documents inside document */

2 private HashMap<String,HashMap> parseDoc(String key, String string, DBObject ob)

3 {

4 HashMap<String, String> mapTest = new HashMap<String, String>();

5 HashMap<String, HashMap> mapMain = new HashMap<String, HashMap>();

6 BsonDocument b1 = BsonDocument.parse(ob.toString());

7 Set<String> a1 = b1.keySet(); // obtaining keys

8 for(String as:a1)

9 {

10 System.out.println(" values: "+ob.get(as).toString()+" of key "+as);

11 String val = ob.get(as).toString();

12 mapTest.put(as, val);

13 }

14 mapMain.put(key, mapTest);

15 // returning the parsed document (keys and values)

16 return mapMain;

17 }

Listing 4.1: Parsing Sub-documents in document

The program code 4.1 presents the method which performs parsing of sub-documents

which further contains several keys and values. In addition, the method stores the

keys and values after mapping to the super-document key in metamodel. Further,

the obtained keys and values are scanned to determine whether they are single-valued

(primitive) or multi-valued data elements.

If the obtained data is multi-valued, the data is scanned recursively else it is mapped

to the super-document key and stored in meta-model or processing store depending

on target database as shown in Figure 4.1. In context, the algorithm determines the

different possible data types as shown in program code 4.2:

30

1 // to identify the Sub-document inside document

2 (s11.equalsIgnoreCase(s.getKey())) && ((String.valueOf(s.getValue().getBsonType(). ←↩
toString()).equals("DOCUMENT")))

3 // to identify the Array within document

4 (s11.equalsIgnoreCase(s.getKey())) && ((String.valueOf(s.getValue().getBsonType(). ←↩
toString()).equals("ARRAY")))

5 // to determine the single valued data types

6 s11.equalsIgnoreCase(s.getKey())

Listing 4.2: Parsing Conditions

The algorithm attempts to seggregate the documents until the data is refined to single-

valued elements. Alongwith seggregation, the single-value data is stored and mapped to

super data type key. For instance, if the parser encounters an array inside document,

then, the array is parsed further to obtain the inside data elements. Further, these

array elements are scanned to determine the data type of each element, thus, the

parser continues scanning recursively depending on the data type. Therefore, the data

elements are refined to single-value elements with their corresponding keys and stored

in meta-model.

4.1.2 Meta-modeling

Post to parsing and segregating the data elements, it is essential to maintain the rela-

tionships between super and sub keys/values as well as the data-types. Consequently,

the algorithm imports the library java.util.* which provides collection and other

related classes used for meta-modeling. Since, the part of the NoSQL migration frame-

work attempts to migrate the data from document to column-based (Azure Table)

database, the algorithm implements the meta-model for appropriate mapping with tar-

get.

Subsequently, the metamodel implements the following key points:

1. MongoDB database contains different collections is mapped to partition key in meta-

model.

2. Further, the collections (attributes) are mapped to collection columns in Azure Table

using metamodel.

3. Document’s ’id’ key is directly mapped to meta model entity key which is later

stored as Row key in Azure Table.

31

4. Other keys and values are mapped to property names (column names) and property

values (row values) respectively.

Hence, the meta-model (using Figure 4.1) eases the migration of data from document

to columnar database as well as maintains the data integrity since the data propogated

is serialized first. After migration of the serialized data to the destination database,

data is deserialized using java utilities and methods.

Further, it is important to understand the translation algorithm which transforms the

meta-model to Azure Table considering the generic algorithm described in chapter 3.

Algorithm 6: Mapping to Azure Table
Condition: Parsing and Meta-modeling must be completed

1. method mappingToAzureTable(entity)

2. partitionKey ← mapPartitionGroup(metamodel, MongoDB-DatabaseName)

3. CollectionColumn ← mapCollection(metamodel, MongoDB-Collection)

4. rowKey ← mapIDKey(metamodel, documentID)

5. columnName ← mapEntityKey(metamodel, keys)

6. rowValues ← mapEntityValue(metamodel, KeyValue)

7. return metamodel

To illustrate, the algorithm 6 explains the method which is implemented in order to

translate the documents (data records) to columns entities sequentially, but it is re-

quired that meta model must be instantiated prior to migration.

Algorithm 7: Mapping MongoDB Values to Azure Table Rows
Condition: Keys are translated to Columns

1. method fromMetamodel(metamodelValues)

2. if existsReferentialEntity(metamodelValue.ReferentialBSON) then

3. newPartitionKey ← createPartitionKey(metamodelValue.BSONType))

4. for each column in metamodelValue do

5. rowValue ← new metamodel(referenceColumn,metamodelKey.Value)

6. mapColumns(azureRowValue, metamodelValue)

7. return rows

Importantly, the algorithm 7 describes the iteration of meta-model which possesses the

keys and values for the document retrieved from MongoDB database. The algorithm

creates the new partition if any new partition entity i.e. referential document from the

same collection is found. Similarly, if new key is traversed in metamodel, then a new

column is introduced in Azure Table to ensure the absolute migration with consistency.

Further, the figure 4.3 describes the implementated class and methods for performing

the aforementioned algorithms. Also, the methods represented in UML class diagrams

are executed to form the meta-model.

32

Figure 4.3: UML Diagram for Azure Migration

An important aspect which is taken into account is absolute consistency i.e. the frame-

work ensures that the each partition key contains the entities in same table.

Note: While traversing the data elements or keys from the source database, one read

and two writes operations are performed which may effect translation time but ensures

data consistency.

4.2 Data Classification and Staging

After migrating the data from document (MongoDB) to columnar (Azure Table)

database (see appendix A.3), the framework attempts to transform the data from

columnar database to graph-based data store. Consequently, the research implements

Neo4j as a NoSQL graph database which allows the framework to create tens of billions

of nodes and relationships as discussed in chapter 3.

Significantly, in order to implement the data migration from columnar to graph

database, it is important to study the data classification and staging. The data stored

in Azure Table must be traversed sequentially and placed in an appropriate processing

group. In other words, the algorithm categorizes the row values obtained from Azure

Table to create the graph which enables easy traversing and easy to understand.

Subsequently, the algorithm first establish the authenticated connec-

tion with Azure Table using Microsoft Azure Storage APIs. For in-

stance, azure-core-0.7.0.jar, azure-management-network-0.7.0.jar, and

azure-management-storage-0.7.0.jar, etc. provides multiple classes to access

33

the Azure Table in java environment.

1 /*.................. Azure Table Storage*/

2 CloudStorageAccount storageAccount =

3 CloudStorageAccount.parse("DefaultEndpointsProtocol=http;" +

4 "AccountName=abc;" +

5 "AccountKey=QxeDp0ZFW5d8XTWB9/ ←↩
a7hbT6cbmwES7WmxxTtLPfPisDwGgbEve1JyeiJxzY//u1ZXtCyEDyxA==");

6 CloudTableClient tableClient = storageAccount.createCloudTableClient();

7

8 CloudTable smallSample = tableClient.getTableReference("sampleData");

9 smallSample.createIfNotExists();

10 /*................ End of Azure Table Storage Creation...............*/

Listing 4.3: Azure Connection

After establishing the connection with Azure using programe code 4.3, the algorithm

scans the partition groups formed using partition keys. These partition keys seggre-

gate the entities in Azure Table according to the different collections (in MongoDB).

After obtaining the partition key, the framework introduces a dynamic filter which

allows to iterate the entities related to particular row key. In brief, a java class

DynamicTableEntity enables the collection filter and row filter to retrieve the related

column values for that row key. Also, the algorithm performs the data staging which

creates the nodes correspondingly, therefore, it would be advantageous to study the

graph implementation.

4.2.1 Neo4j - Graph Implementation

In this section, the research discusses a part of the algorithm which deals with

graph implementation. But before learning the implementation, it is important to

study the sevaral APIs provided by Neo4j which can be used in Java environment.

For instance: neo4j-graph-algo-2.2.3.jar, neo4j-graph-matching-2.2.3.jar,

neo4j-import-tool-2.2.3.jar, and neo4j-io-2.2.3.jar, etc. provides sev-

eral useful classes such as GraphDatabaseService, Label, Node, Relationship,

RelationshipType, Transaction, and GraphDatabaseFactory, etc.

Subsequently, the algorithm utilizes the aforementioned libraries and classes to imple-

ment the graph database. In terms of implementation, GraphDatabaseService class

can be used to specify the database path (directory where graph database is stored) as

well as it provides several methods to support Transaction class to start and shutdown

34

the transactions. Further, the Node, and Relationship classes can be used to create the

nodes and define the relationships among the associated nodes respectively.

Importantly, the research hosts the Neo4j on Microsoft Azure (virtual machine) and

deployed a cloud service to store graph database.

Figure 4.4: UML Diagram for generation of Graph Database

The fig.4.4 represents the dependencies among the classes and enum prototype

which further describes the different type of nodes and relationships used to cre-

ate the graph. The main class AzureToNeo retrieves the data records from Mon-

goDB hosted on MongoLab (at Microsoft Azure) by extending TableServiceEntity.

The class TableServiceEntity enables the sub class to retrieve partition key,

row key, and entities from Azure Table, moreover, DynamicTableEntity supports

TableServiceEntity to retrieve the records dynamically. After retrieving the entities

from Azure, the algorithm sets the data path using GraphDatabaseService as discussed

earlier. Prior creating the graph, it is important to initialize the main nodes, sub-nodes,

and relationships using Neo4j class methods and enumeration. Consequently, the al-

gorithm initializes the nodes, relationships, and Relationship Types such as KNOWS,

Contains, ChildOf, etc.

The algorithm 8 explains the generation of root node, and aforementioned sub nodes,

thus, it would be beneficial to study the translation of row values into sub nodes after

creating root node. For instance, partition key from Azure Table is mapped to root

node and collectionColumn to sub-root node as well as row key is mapped to ’id’

node in graph. Subsequently, the primitive columns (Name, Title, Notes, Type) are

mapped to sub nodes but it is also important to translate the referred columns such

as Reference1 and Reference2. Therefore, the proposed graph algorithm traverses the

35

Algorithm 8: Transforming Azure Table to Neo4j Graph
Condition: Azure Table object must be instantiated.

1. method fromAzureTable(Entity)

2. rootNode ← generateRoot(entity.partitionKey)

3. mapPartitionGroup(sub-rootNode,entity.collectionColumn)

4. mapSubRootNode(sub-rootNode,collectionColumn.Value)

5. mapRowEntity(IDNode,entity.rowkey)

6. mapColumns(subNodes,entity.primitiveColumns)

7. return mainGraph

referred columns in Azure to establish hierarchical structure in Neo4j.

Consequently, the program code 4.4 illustrates the working of dynamic filter and

building of graph from referential columns. The referential columns are scanned using

row keys in different partitions since multiple partitions can exhibit same row keys.

1 String partitionFilter1 = TableQuery.generateFilterCondition(PARTITION_KEY, ←↩
QueryComparisons.EQUAL,pk);

2 TableQuery query1 = new TableQuery().take(1);

3 TableQuery<MigrateToAzure> partitionQuery1 = TableQuery.from(MigrateToAzure.class) ←↩
.where(partitionFilter1);

4

5 for (MigrateToAzure entity1 : cloudTable.execute(partitionQuery1))

6 {

7 String rowFilter1 = TableQuery.generateFilterCondition(ROW_KEY, ←↩
QueryComparisons.EQUAL,entity1.getRowKey());

8 /*combining two filters..........*/

9 Iterable<DynamicTableEntity> rslt12 = cloudTable.execute(query1.from(←↩
DynamicTableEntity.class).where(partitionFilter1));

10

11 if((entity1.getRowKey()).equalsIgnoreCase(entity.getRowKey()))

12 {

13 for(DynamicTableEntity d1:rslt12)

14 {

Listing 4.4: Dynamic Entity Filter

Significantly, the graph algorithm defines the relationships alongwith the instantiation

of nodes with the appropriate properties. Consequently, the algorithm 9 describes the

phenomenon of defining relationships among main nodes and sub-nodes. Moreover, the

algorithm defines the properties that enable the users to view the value of the selected

node or relationship at runtime.

After instantiating the primitive and referential nodes and relationships in graph

36

Algorithm 9: Nodes and Relationships
Pre-Condition: GraphDataService must be enabled.

1. Create Root Node

2. map(idNode, rowKey)

3. method createMainRelationship(RootNode, idNode)

3.1. relation ← idNode.createRelationship(RootNode, RelationshipType)

3.2. relation.setProperty("relationship", "Unique entity")

4. create sub-Node

5. method createSubRelationships(idNode, sub-Node)

5.1. relation ← sub-Node.createRelationship(idNode, RelationshipType)

5.2. relation.setProperty("relationship", "sub-nodes")

database, the proposed framework adds the properties to the nodes. During traversal,

the algorithm performs the data staging i.e. adding the additional or hierarchical

nodes depending on the processing node in order to ensure data consistency.

1 else if(set.equalsIgnoreCase("friends"))

2 {

3 Node reference = grSvc.createNode();

4 Node id, f_name;

5 int no = entity.getTheme-primary();

6 reference.setProperty("Friends", no);

7 for (int k=1;k<=no;k++)

8 {

9 Node ent = grSvc.createNode();

10 relation = ent.createRelationshipTo(reference, RelType.ChildOf);

11 relation.setProperty("relationship", "resources");

12 ent.setProperty("Extras", k);

13 id = grSvc.createNode();

14 theme = grSvc.createNode();

15 if(k==1)

16 {

17 id.setProperty("ID", entity.getId1());

18 theme.setProperty("", entity.getTheme-primary1());

19 }

Listing 4.5: Data Staging

In context, the program code 4.5 shows the data staging while traversing the ref-

erenced columns in Azure Table. To illustrate, when an algorithm encounters the

referred columns in Azure Table, it iterates the entities until the column size. Dur-

ing this iteration, several sub nodes are created (as many entities) and added to the

parent node (main reference node). Correspondingly, the relationships and properties

are established at runtime to describe the hierarchical graph database which ensures

37

consistency in data structuring.

Note: Retrieving data records or entities from Azure Table and generation of graph

nodes/relationships are performed simultaneously to reduce the number of reads, thus,

the algorithm may ensure efficiency in migration.

4.3 Direct Data Transformer

In this section, the algorithm transforms the document NoSQL database to graph based

database i.e. from MongoDB to Neo4j as discussed in chapter 3.

In order to implement the direct transformation, the algorithm parses the BSON based

documents from the MongoDB recursively. Therefore, the framework performs the pre-

viously described BSON parsing in section 4.1.1. Importantly, the algorithm creates

different processing stores for each type of data elements present in document as rep-

resented in figure 4.1. Consequently, it is important to identify the data elements to

ensure the appropriate placement of elements in processing store.

The processing stores define the elements type, for instance, data element can be an

array type, document type or single-valued type. Suppose if data element is an array

type, then again the array may contain document, array or single-value. There-

fore, the array is placed in specific processing store which is scanned during nodes

generation, similarly, sub-document is stored in different processing group for further

execution.

1 HashMap<String,HashMap> h1 = buildDocStore(s.getKey(), ob.get(s11).toString(),od, ←↩
docKey); // for Document Type

2

3 HashMap<String,String> buildPrimitive = new HashMap<String,String>();

4 buildPrimitive.put(s.getKey(),ob.get(s11).toString()); // for Primitive Type

5

6 HashMap<String,HashMap> h12 = buildArray(str, dps.get(str).toString(),od); // for ←↩
Array Store

Listing 4.6: Building Processing Stores

Considering the programe code 4.6, the algorithm implements the processing stores

using java.util.collection classes. The methods such as buildDocStore(),

buildPrimitive() and buildArray() creates the processing stores and retrieves the

corresponding keys and values from BsonParser.

As a consequence, the algorithms ensures the consistency by processing different types

of data elements and enabling appropriate scanning of each sub-element.

38

Figure 4.5: UML Diagram for Direct Graph Generation

Figure 4.5 presents a UML class diagram for defined algorithm which produces

the graph database from document-based NoSQL database (MongoDB). The fig-

ure also shows the different methods for multiple processing stores, for instance,

getArrayKeyValues(), and parseDoc(). Since the framework is focussing on direct

translation, it is important that documents from MongoDB must be scanned sequen-

tially and processed simultaenously. Further, this will enhance the efficiency of data

migration which involves direct mapping. Therefore, the following section will explain

the implementation of direct mapping between two different databases.

4.3.1 Direct Mapping

To appreciate the direct transformation of data, the algorithm retrieves the data ele-

ments according to the priorities i.e. first it retrieves the database, collections, doc-

ument ID’s and then all descendents. The approach ensures the proper placement of

data elements to the processing group and appropriate mapping.

Table 4.1: Direct Mapping

MongoDB Datastore Neo4j Graph Database

Database Name Root Node

Collection Name Sub-root Node

Document’s ID ID Node

Primitive Keys Primitive Sub-Nodes

Referred Keys Hierarchical Nodes

Key Values Properties

The table 4.1 explains the direct mapping between document based MongoDB and

graph based Neo4j database. In terms of implementation, database name from Mon-

goDB is mapped to root node of Neo4j graph. Further, the collections in MongoDB are

39

seggregated based on system and user defined criteria. Each collection contains certain

set of douments with unique ID, thus, the IDNodes are generated and connected with

collectionNode. After learning the mapping of elements, the algorithm performs certain

set of operations to save the data in graph format, as following:

Algorithm 10: Generating Graph
Pre-Condition: MongoDB must be instantiated

1. method generateGraph(Collection)

2. sub-rootNode ← generateRoot(getCollectionName)

3. mapSubRoot(sub-rootNode,collectionName)

4. mapSubRootNode(idNode,DocumentID)

5. mapSubNodes(subNodes,Document.keys)

6. mapReferenceNodes(hierarchicalNodes,Document.ReferentialKeys)

7. return graph

The algorithm 10 maps as well as saves the data in form of nodes and establishes

the relationships same as defined in algorithm 9. Moreover, the steps in algorithm

4, 5, and 6 are repeated recursively in order to build the hierarchical structure for

referencing nodes (see appendix A.4). In addition, the properties alongwith the nodes

are stored directly which are retrieved during scanning the keys in document.

1 Label docLabel = DynamicLabel.label(s11);

2 docKey.addLabel(docLabel);

3 docKey.setProperty("DocValue", s11);

4 relation = docKey.createRelationshipTo(entities, RelType.ChildOf);

5 relation.setProperty("relationship",s11+" is a child of Entity");

Listing 4.7: Establishing relations and properties

The program code 4.7 describes the implementation of establishing relations and prop-

erties of the nodes. As a proof of concept, the framework involves efficient mapping

and standardization concepts which ensures the data consistency in migration. Con-

sequently, the NoSQL database migration framework enables the user to migrate the

data across heterogeneous NoSQL solutions.

40

Chapter 5

Evaluation

In this chapter, the research performs a few tests/experiments to verify the behavior and

performance of the designed NoSQL data migration framework. Since the framework

involves three data translations between heterogeneous NoSQL solutions (document-

based, columnar, and graph database), the research reports several relevant evaluations.

Consequently, the research uses the real json dataset (see appendix

A.2) available on UK government site (http://data.gov.uk/dataset/

england-national-crime-mapping) to evaluate the migration system. The dataset

describes the crime and neighbourhood policing information which can be accessed

using police API for crime statistics.

Further, the research focusses on the evaluation of the (1) overhead (system perfor-

mance), (2) total migration time, and the (3) throughput of framework in data transi-

tioning from:

(i) Document-based (MongoDB) to Columnar (Azure Table)

(ii) Columnar (Azure Table) to Graph database (Neo4j)

(iii) Document-based (MongoDB) to Graph database (Neo4j).

Also, the research monitors the CPU usage in execution of aforementioned data transi-

tions. Hence, the overall time duration is calculated i.e. the time required to complete

the entire migration. Importantly, the research studies the variance of performance of

executed data transitions.

Before learning the evaluation of NoSQL data migration framework, it is important to

examine the compatibility between heterogeneous NoSQL solutions.

41

http://data.gov.uk/dataset/england-national-crime-mapping
http://data.gov.uk/dataset/england-national-crime-mapping

5.1 Compatibility Tests

Since the chapter 4 discusses the implementation of NoSQL data migration framework

using MongoDB, Azure Table, and Neo4j as document store, columnar, and graph

database respectively, this section highlights a few compatibility aspects which must

be considered before an experiment.

The first evaluation aims to address the different modeling prototype (format, size, and

attributes) supported by MongoDB, Azure Table, and Neo4j.

5.1.1 MongoDB vs Azure Table vs Neo4j

In order to deduce the differences, the research refers the documentation provided by

these organizations. Subsequently, http://docs.mongodb.org/master/reference/

limits/ illustrates the MongoDB limits and thresholds, for instance, MongoDB sup-

ports the 16 MB as maximum size of any BSON document and 100 levels of nesting per

document only. Further, the MongoDB models eventual consistency under which the

system needs not to reflect the latest writes but changes propagate gradually. MongoDB

uses namespace exhibiting certain attributes (namespace length, number of names-

paces, and size of namespace file), for instance, 16 MB namespace file may support

nearly 24000 namespaces which includes index and collection.

Likewise, the Neo4j documentation available at http://neo4j.com/developer/

guide-performance-tuning/ explains the Neo4j data modeling which stores the

graph data (e.g. nodes, properties, and relationships)in a number of different store

files such as neostore.nodestore.db (N), neostore.propertystore.db (P), and

neostore.relationshipstore.db (R). Moreover, the site entails the memory config-

uration guidelines which are necessary to counter the heap space overhead.

Neo4j Properties Metrics

neostore.nodestore.db.mapped memory (14 * N) / (1024 * 1024)M

neostore.relationshipstore.db.mapped memory (34 * R) / (1024 * 1024)M

neostore.propertystore.db.mapped memory (41 * P) / (1024 * 1024)M

neostore.propertystore.db.strings.mapped memory (128 * P) / (1024 * 1024)M

Table 5.1: Neo4j Memory Mapping Calculations

Using Table 5.1, the research determines the heap space to allocate the Neo4j graph

42

http://docs.mongodb.org/master/reference/limits/
http://docs.mongodb.org/master/reference/limits/
http://neo4j.com/developer/guide-performance-tuning/
http://neo4j.com/developer/guide-performance-tuning/

processing:

heap (H) = Total memory - OS memory (OS) - total mapped memory (MM)

(5.1)

Further, the site https://msdn.microsoft.com/en-us/library/azure/dd179338.

aspx provides the documentation explaining Azure Table attributes. The site high-

lights that the Azure Table supports an entity with only 255 properties, which includes

3 system properties, thus, the user can define 252 properties. Also, the data size of all

entity’s properties can not exceed 1MB. Furthermore, the partition keys and Row keys

used mustn’t exceed 1KB size because Azure Table supports the string value for these

keys upto 1KB only.

Consequently, the different NoSQL models present the compatibility issues and chal-

lenges in data migration. So, in a particular case, the NoSQL data migration framework

should be modeified to appreciate the original data types and properties.

5.2 Cloud scenario

As the NoSQL data migration system is executed in cloud environment, the tests

are performed on the Microsoft Azure platform. An azure platform supports many

programming languages such as .NET, Java, PHP, etc. as well as selection of different

OS, tools, databases, frameworks. Azure provides VHD (Virtual Hard Disk) which can

be pre-defined, or user-defined in order to create virtual machine (VM). An user can

specify the number of cores and amount of memory with each VM.

Figure 5.1: Deployment Architecture of NoSQL Migration Framework

43

https://msdn.microsoft.com/en-us/library/azure/dd179338.aspx
https://msdn.microsoft.com/en-us/library/azure/dd179338.aspx

Subsequently, to conduct the tests, using synthetic benchmarking: a virtual machine

(VM) with eight virtual cores and 14GB of RAM is created. Further, the virtual

machine is physically hosted by Azure in Western-Europe. The virtual machine runs a

Windows Server 2012 Datacenter, and the test environment has been configured:

(i) log4j library is integrated in the NoSQL migration system which provides the

details such as overall time requirement for migration completion, and throughput

of each translation,

(ii) Azure monitor provides a certain relevant information concerning migration, for

instance, disk read and write (Bytes/second), CPU percentage, etc.

Using Figure 5.1, all three databases, namely, MongoDB, Azure Table, and Neo4j

were hosted on virtual machine created on Azure platform. Further, the translation

models (metamodel, parsing, and processing stores) are deployed as cloud service.

5.3 Document to Columnar Database

Since the research implements the direct data transformation from document database

to columnar database using section 4.1, this part of the study evaluates the data mi-

gration process from MongoDB to Azure Table.

To appreciate the working of NoSQL data migration framework, the research con-

ducts the five tests concerning the migration of data from MongoDB to Azure Table,

each with different number of data records (documents) to be migrated. Based on

MongoDB and Azure Table compatibility, an average size of MongoDB document is

1024 Bytes. Hence, the appropriate json data from http://data.gov.uk/dataset/

england-national-crime-mapping has been considered to translate 16MB, 32MB,

64MB, 128MB, 256MB, and 512 MB data.

Metrics set#1 set#2 set#3 set#4 set#5

Source size(MB) 16 64 128 256 512
Records 16384 65536 131072 262144 524288

Migration Time(sec) 1281 1946 3551 6433 12051
Throughput(records/s) 12.7 33.6 36.9 40.7 43.5
Avg. CPU Usage (%) 4.2 5.3 8.7 10.1 14.5

Table 5.2: MongoDB to Azure Table

Using table 5.2, it can be seen that with the increment in source size, the migration

time accelerates linearly. Importantly, the throughput of the migration system i.e. data

44

http://data.gov.uk/dataset/england-national-crime-mapping
http://data.gov.uk/dataset/england-national-crime-mapping

0 100 300 400 500

0.2

0.4

0.6

0.8

1

1.2
·104

Source Size(MB)

M
ig

ra
ti

on
T

im
e

(s
ec

)

Migration Time

Figure 5.2: Migration Time vs Source Size

records per second increases with the increasing data records (documents). Further,

Figure 5.2 presents the increment in migration time which involves extraction, transla-

tion, and writing time to target datastore with respect to different source sizes. Also,

it is noted that the migration time increases significantly while migrating 16MB, and

64MB data. Subsequently, the average CPU usage in migrating the source data also

shows the similar pattern. Note: The average CPU usage (%) lies between 4% and

15% depending on source dataset size while performing the migration from MongoDB

to Azure Table.

5.4 Columnar to Graph Database

In this section, the research attempts to examine the same metrics, namely, Migration

Time, Throughput, and average CPU usage. Taking section 4.2 into account, an

aforementioned metrics will be evaluated while migrating the five different dataset

sizes (16MB, 64MB, 128MB, 256MB, 512MB) from Azure Table to Neo4j.

Considering Table 5.3, it can be seen that migration time increases drastically with

the increase in source dataset size. In comparison to previous migration (MongoDB

to Azure Table), the column to graph database shows poor performance. Since the

migration from Azure Table to Neo4j involves filtering and staging of entities

45

Metrics set#1 set#2 set#3 set#4 set#5

Source size(MB) 16 64 128 256 512
Entities 16384 65536 131072 262144 524288

Migration Time(sec) 1553 2961 5938 10395 17183
Throughput(records/s) 10.54 22.13 22.07 25.21 30.51
Avg. CPU Usage (%) 5.3 7.9 11.8 17.5 24.8

Table 5.3: Azure Table to Neo4j

while MongoDB to Azure Table exhibits only metamodeling. Due to this

reason, the throughput of the migration system does not enhance radically. Further,

there was significant gain in average CPU consumption in migrating the different size

datasets (especially large datasets) from Azure Table to Neo4j comparatively.

0 100 200 300 400 500

0.3

0.6

0.9

1.2

1.5

1.8
·104

Source Size(MB)

M
ig

ra
ti

on
T

im
e

(s
ec

)

Migration Time

Figure 5.3: Azure Table to Neo4j

Figure 5.3 demonstrates how the migration time on varying the source database size.

For instance, the migration time for dataset#2 and dataset#3 i.e. 64MB and 128MB

respectively, becomes approximately twice since the throughput of the system remains

invariable. In particular, the CPU usage almost got doubled but the outcome (through-

put) does not enhance conventionally.

Whilst the above study evaluates the NoSQL data migration framework involving (i)

MongoDB to Azure Table, and (ii) Azure Table to Neo4j, it is also important to study

the performance of direct transformation of Document database to Graph database.

46

5.5 Document to Graph Database

In order to evaluate the performance metrics, this part of the study takes the section

4.3 into account which implements the direct translation from MongoDB to Neo4j.

Further, the section also compares the outcome with afore performed translations.

Metrics set#1 set#2 set#3 set#4 set#5

Source size(MB) 16 64 128 256 512
Documents 16384 65536 131072 262144 524288

Migration Time(sec) 1096 2673 4796 7743 11869
Throughput(records/s) 14.9 24.51 27.32 33.85 44.17
Avg. CPU Usage (%) 3.9 5.6 8.4 14.7 19.3

Table 5.4: MongoDB to Neo4j

Using Table 5.4, it can be noted that the throughput of the migration system while

translating the documents directly into the nodes increases linearly. Subsequently, it

takes less time to migrate different datasets from MongoDB to Neo4 in comparison

to Azure Table to Neo4j translation. Though the average CPU usage also increases

linearly with the throughput yet the system performs better in comparison to data

translation from Azure Table to Neo4j.

0 100 200 300 400 500

0.1

0.3

0.5

0.7

0.9

1.1

·104

Source Size(MB)

M
ig

ra
ti

on
T

im
e

(s
ec

)

Migration Time

Figure 5.4: MongoDB to Neo4j

47

Furthermore, on comparing the graphs 5.2 and 5.4, we can deduce that the transla-

tion from MongoDB to Azure Table performs better than MongoDB to Neo4j data

translation.

Figure 5.5: Performance of Translations

Figure 5.5 clearly demonstrates the difference in performances of aforementioned trans-

lations. To illustrate, for smaller data sets such as 16MB and 64MB, all the three transla-

tions performs nearly same. But when the translations are executed on larger datasets

(128MB, 256MB, and 512MB), an experiment shows significant performance differences.

For instance, while migrating the datasets #4 and #5, a translation from Azure Table

to Neo4j was much inefficient in comparison to other two translations.

Figure 5.6: Throughput of Translations

To appreciate the comparison between three translations, it is essential to study

the throughput variance. Subsequently, figure 5.6 presents the contrast between the

throughput of the three different migrations.

48

As a proof of performance, throughput of the translation from Azure Table to Neo4j is

significantly low than other two translations. Also, the CPU overhead was maximum

in translating the data from Azure Table to Neo4j depending on the datasets size. Con-

sequently, the NoSQL migration framework demonstrates the best performance while

migrating the database from MongoDB to Columnar, however, the direct translation

from MongoDB to Neo4j performs more efficiently for large datasets.

The research also evaluates the performance of query execution in order to determine

the behavior of all three NoSQL solutions. In addition, it would be beneficial in

5.6 Query Performance

In this section, the research studies the variation of query performance in MongoDB,

Azure Table, and Neo4j under different dataset sizes (16MB, 256MB, and 512MB). In

order to evaluate the query performance, the research executes the ’search query’ on

aforementioned sized datasets. Subsequently, a few unit test classes have been imple-

mented to conduct the Read/Search query tests on all NoSQL solutions.

Figure 5.7: Query Performance

A graph in figure 5.7 depicts that when a search query is executed on different sizes of

MongoDB database, the results are retrieved much faster than in case of Azure Table

and Neo4j. Further, it can be seen Neo4j is inefficient in processing a search/read query

in comparison to Azure Table.

Further, it would be interesting to evaluate the performance metrics on NoSQL mi-

gration framework in-house which shall highlight the differences between in-house and

cloud computation of NoSQL databases.

49

5.7 In-house Scenario

This section discusses the tests which have been performed on an Intel Core i5-4200U

Processor @1.6GHz (3M Cache, up to 2.30 GHz) with 6GB of RAM running Windows

8.1. In particular, the NoSQL migration framework executes inside Apache Tomcat

application server.

Figure 5.8: In-house Deployment Architecture

The NoSQL migration framework has been deployed on Apache Tomcat while the three

databases are hosted on Microsoft Azure platform. Note: Neo4j has been hosted on

GrapheneDB (GrapheneDB is a cloud platform for the Neo4j) which further enables

the Neo4j to deploy on Azure.

5.7.1 In-house Performance

On conducting the same tests, the in-house configuration successfully performs all three

translations but fails in migrating the large datasets especially the migrations headed

to Neo4j.

Figure 5.9 demonstrates the performance of all three translations, (i) MongoDB to

Azure Table, (ii) Azure Table to Neo4j, and (iii) MongoDB to Neo4j. Since the migra-

tion of larger datasets (128MB, 256MB, and 512MB) failed due to HTTP 500 and heap

space overhead, the research evaluates the migration performance on smaller datasets

(16MB and 32MB). However, the system was able to translate the data (128MB and

50

Figure 5.9: In-house Migration Performance

256MB) from MongoDB to Azure Table. Additionally, it has been noted that migration

from MongoDB or Azure Table to Neo4j results in maximum CPU overhead as well as

memory leakage problem. Subsequently, a memory management method was required

to be implemented in order to maximize the migration performance.

Figure 5.10: In-house Migration Throughput

As can be seen in figure 5.10, the throughput of the NoSQL migration framework also

reduced significantly in comparison to cloud based NoSQL data migration. Conse-

quently, the in-house configuration of NoSQL data migration framework is inefficient

and not feasible for executing larger datasets.

51

Chapter 6

Conclusion

The research presents a novel approach that enables the migration of data across cloud

based heterogeneous NoSQL solutions, in particular, focusing on document, columnar,

and graph-based databases. Since there is a broad set of NoSQL implementations as

well as each of the NoSQL implementation exhibits different properties and charac-

teristics, the research attempts to address the horizontal heterogeneity among NoSQL

databases as explained in chapter 2. Importantly, the chapter 2 discusses the challenges

that are required to be addressed while migrating the data on cloud from one NoSQL

format to another such as assurance of data adaptability, consistency, and integrity.

In an attempt to eliminate the aforementioned challenges and limitations, the chap-

ter 3 presents the detailed analysis of the state of the art on NoSQL solutions and

effective strategies. Furthermore, the research models a NoSQL data migration frame-

work, composed of data standardization and classification strategies. The cloud based

NoSQL data migration framework has been designed after considering the latest model

driven software engineering techniques which enables an efficient data classification and

translation.

To appreciate the data adaptability and consistency, the research implements an ef-

ficient strategy to establish the effective mapping between source and target cloud

based NoSQL datastore such as Azure Table, MongoDB and Neo4j. Subsequently, the

first part of the chapter 4 implements an effective data classification approach which

parses the source database and generates the metamodel according to the target NoSQL

database. Further, the proposed algorithm maps the metamodel with target database

to ensure the data adapatability. Significantly, the algorithm involves a dynamic filter-

ing and data staging strategies which also contributes in preserving data consistency,

however, these strategies also influence the performance to an extent.

52

Whilst it can be seen that the cloud based NoSQL data migration framework addresses

the major challenges, the research also attempts to examine and analyse the perfor-

mance of migration system under different scenarios. To determine the behavior of

system, the research has conducted a few relevant tests which determines the efficiency

of three translations, namely, MongoDB to Azure Table, Azure Table to Neo4j, and

a novel direct transformation from MongoDB to Neo4j. To illustrate, the chapter 5

demonstrates all three translations using different sizes of NoSQL databases such as

16MB, 64MB, 256MB, and 512MB. Further, the chapter 5 helps in understanding the

impact of sequential processing and filtering on performance (migration time) as well

as compares the three translation to draw the most efficient NoSQL solution. In other

words, it has been evaluated that the document-based database supports efficient migra-

tion of data wheras graph database ensures the effective management of huge volumes

of data. An experiment also suggests that columnar database could model a more vi-

able strategy to incorporate the referential entities which shall enhance the Read/Write

efficiency.

6.1 Future Work

Given the pivotal role that data portability plays in eliminating the heterogeneity

among cloud based different NoSQL solutions, the research also investigates the three

main directives which shall contribute in enhancing the migration system.

Migration System Extensibility: The NoSQL data migration framework shall sup-

port large number of databases with the addition of new mappings. Further, the

extensible system will enable a user to migrate the data on multiple NoSQL solution

without any considerable cost and efforts.

Paradigm shift: To appreciate the performance of migration, it would be beneficial to

introduce map-reduce model which shall support efficient processing and management

of large volumes of data. Subsequently, it shall be possible to reduce the huge processing

workload and enhance latencies.

Versioning and lock procedure: A mechanism shall be integrated with the system

which may enable the migration of latest inserted or updated data while ensuring data

consistency.

Consequently, the integration of proposed approach with the aforementioned directives

may prove beneficial for commercial use and further academic research without any

re-engineering process.

53

Bibliography

Abramova, V. & Bernardino, J. (2013), Nosql databases: Mongodb vs cassandra, in ‘Proceedings of

the International C* Conference on Computer Science and Software Engineering’, C3S2E ’13, ACM,

New York, NY, USA, pp. 14–22.

URL: http://doi.acm.org/10.1145/2494444.2494447

Atzeni, P., Bellomarini, L., Bugiotti, F. & Gianforme, G. (2009), A runtime approach to model-

independent schema and data translation, in ‘Proceedings of the 12th International Conference on

Extending Database Technology: Advances in Database Technology’, EDBT ’09, ACM, New York,

NY, USA, pp. 275–286.

URL: http://doi.acm.org/10.1145/1516360.1516393

Chandra, D. G. (2015), ‘{BASE} analysis of nosql database’, Future Generation Computer Systems

52, 13 – 21. Special Section: Cloud Computing: Security, Privacy and Practice.

URL: http://www.sciencedirect.com/science/article/pii/S0167739X15001788

Chen, Z., Yang, S., Zhao, H. & Yin, H. (2012), An objective function for dividing class family in

nosql database, in ‘Computer Science Service System (CSSS), 2012 International Conference on’,

pp. 2091–2094.

Dharmasiri, H. & Goonetillake, M. (2013), A federated approach on heterogeneous nosql data stores,

in ‘Advances in ICT for Emerging Regions (ICTer), 2013 International Conference on’, pp. 234–239.

Frank, L., Pedersen, R. U., Frank, C. H. & Larsson, N. J. (2014), The cap theorem versus databases

with relaxed acid properties, in ‘Proceedings of the 8th International Conference on Ubiquitous

Information Management and Communication’, ICUIMC ’14, ACM, New York, NY, USA, pp. 78:1–

78:7.

URL: http://doi.acm.org/10.1145/2557977.2557981

Gudivada, V., Rao, D. & Raghavan, V. (2014), Nosql systems for big data management, in ‘Services

(SERVICES), 2014 IEEE World Congress on’, pp. 190–197.

Kanade, A., Gopal, A. & Kanade, S. (2014), A study of normalization and embedding in mongodb, in

‘Advance Computing Conference (IACC), 2014 IEEE International’, pp. 416–421.

McKnight, W. (2014a), Chapter ten - operational big data: Key-value, document, and column stores:

Hash tables reborn, in W. McKnight, ed., ‘Information Management’, Morgan Kaufmann, Boston,

pp. 97 – 109.

URL: http://www.sciencedirect.com/science/article/pii/B9780124080560000102

54

McKnight, W. (2014b), Chapter twelve - graph databases: When relationships are the data, in W. McK-

night, ed., ‘Information Management’, Morgan Kaufmann, Boston, pp. 120 – 131.

URL: http://www.sciencedirect.com/science/article/pii/B9780124080560000126

McKnight, W. (2014c), Chapter twelve - graph databases: When relationships are the data, in W. McK-

night, ed., ‘Information Management’, Morgan Kaufmann, Boston, pp. 120 – 131.

URL: http://www.sciencedirect.com/science/article/pii/B9780124080560000126

North, K. (2010), ‘The nosql alternative’, InformationWeek (1268), 33–35,38–39. Copyright - Copy-

right United Business Media LLC May 24, 2010; Last updated - 2015-03-09; CODEN - INFWE4;

SubjectsTermNotLitGenreText - United States–US.

URL: https://ezproxy.ncirl.ie/login?url=http://search.proquest.com/docview/347837209?accountid=103381

Qi, M. (2014), Digital forensics and nosql databases, in ‘Fuzzy Systems and Knowledge Discovery

(FSKD), 2014 11th International Conference on’, pp. 734–739.

Ranabahu, A. & Sheth, A. (2010), Semantics centric solutions for application and data portability in

cloud computing, in ‘Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second

International Conference on’, pp. 234–241.

Sattar, A., Lorenzen, T. & Nallamaddi, K. (2013), ‘Incorporating nosql into a database course’, ACM

Inroads 4(2), 50–53.

URL: http://doi.acm.org/10.1145/2465085.2465100

Scavuzzo, M., Di Nitto, E. & Ceri, S. (2014), Interoperable data migration between nosql columnar

databases, in ‘Enterprise Distributed Object Computing Conference Workshops and Demonstrations

(EDOCW), 2014 IEEE 18th International’, pp. 154–162.

Sellami, R., Bhiri, S. & Defude, B. (2014), Odbapi: A unified rest api for relational and nosql data

stores, in ‘Big Data (BigData Congress), 2014 IEEE International Congress on’, pp. 653–660.

Shirazi, M., Kuan, H. C. & Dolatabadi, H. (2012), Design patterns to enable data portability between

clouds’ databases, in ‘Computational Science and Its Applications (ICCSA), 2012 12th International

Conference on’, pp. 117–120.

Tauro, C., Ganesan, N., Easo, A. & Mathew, S. (2013), Convergent replicated data structures that

tolerate eventual consistency in nosql databases, in ‘Advances in Computing and Communications

(ICACC), 2013 Third International Conference on’, pp. 70–75.

Thalheim, B. & Wang, Q. (2013), ‘Data migration: A theoretical perspective’, Data and Knowledge

Engineering 87(0), 260 – 278.

URL: http://www.sciencedirect.com/science/article/pii/S0169023X12001048

55

Appendix A

NoSQL Data Migration

Framework

Figure A.1: MongoLab Database on Windows Azure

56

Figure A.2: Real dataset (MongoDB Document)

Figure A.3: Real data on Azure Table

57

Figure A.4: Real data on Neo4j

58

	Abstract
	Acknowledgement
	Declaration
	Introduction
	Literature Review
	Data Portability across Clouds
	NoSQL based DataStores
	NoSQL Common Characteristics
	Key-Value Stores
	Document-oriented Database
	Graph-based Database
	Column-based stores

	Data Migration across NoSQL DataStores
	Heterogeneity in NoSQL Solutions

	Data Migration Stratgeies

	Design
	Specifications
	Design Overview
	Document Database to Graph-based Database
	Data Transition to Graph

	NoSQL Data Migration Framework
	Document-based to Columnar Database
	Data Translation
	Columnar NoSQL to Graph-based NoSQL

	Implementation
	Data Standardization
	Document Parsing
	Meta-modeling

	Data Classification and Staging
	Neo4j - Graph Implementation

	Direct Data Transformer
	Direct Mapping

	Evaluation
	Compatibility Tests
	MongoDB vs Azure Table vs Neo4j

	Cloud scenario
	Document to Columnar Database
	Columnar to Graph Database
	Document to Graph Database
	Query Performance
	In-house Scenario
	In-house Performance

	Conclusion
	Future Work

	NoSQL Data Migration Framework

