
Performance Based Data-Distribution
Methodology In Heterogeneous

Hadoop Environment

Miss.Vrushali Ubarhande

Submitted as part of the requirements for the degree

of MSc in Cloud Computing

at the School of Computing,

National College of Ireland

Dublin, Ireland.

August 2014

Supervisor Dr. Alina-Madalina Popescu

Abstract

Hadoop has been developed to process the data-intensive applications.However, the

current data-distribution methodologies are inefficient for heterogeneous environment

such as cloud computing. Performance of Hadoop may degrade in heterogeneous en-

vironment, whenever data-distribution is not as per the computing capability of the

nodes. In this work, the existing research methodologies have been critically evaluated

to understand the current data-distribution techniques developed.

In Hadoop framework, users specify the application computation logic in terms of a map

and a reduce function, often termed as MapReduce applications. Hadoop distributed

file system is used to store the MapReduce application data on the Hadoop cluster

nodes called as Datanodes, whereas Namenode is a control point for all Datanodes.

The concept of data-locality and its impact on the performance of Hadoop are discussed.

The data-distribution is a key factor in Hadoop, because it may affect performance in

Map phase for scheduling task. The task scheduling techniques in Hadoop consider

the data-locality as a key factor to enhance performance. Various task scheduling

techniques have been analyzed to understand the affirmative effect of the emphasizing

high data-locality while scheduling. Other system factors also play a major role while

achieving high performance in Hadoop data processing.

The main contribution of this work is to prove a performance increase in Hadoop by

the effective distribution of data in heterogeneous environment. An experiment has

been proposed to adopt novel data placement strategy based on Datanodes’s capability

in Hadoop. In this experiment, Speed Analyser component is created to measure the

processing capability of each Datanode. Thus, Speed Analyser calculates the computing

ratio of each Datanode based on their response times. The Data-Distribution Technique

is integrated with the traditional Hadoop and uses the calculated computing ratio.

Based on the computing ratio, Namenode decides the assignment of the data blocks to

the Datanodes.

Thereafter, two MapReduce applications were executed to understand the performance

ii

improvement after the implementation of the proposed Data-Distribution Technique.

Further, the future scope for improving the proposed solution is identified.

Keywords: MapReduce, data placement, Hadoop, data locality, performance based

data distribution, cloud computing, heterogeneous Hadoop cluster.

iii

Acknowledgement

This dissertation work “Performance Based data-distribution methodology in Hadoop

for heterogeneous cloud infrastructure” for Masters in Cloud computing is accomplished

at National College of Ireland, Cloud competency Centre.

I am grateful to my supervisors Dr.Horacio Gonzalez-Velez and Dr.Alina-Madalina

Popescu. I would like to thank them for their guidance, efforts and discussions during

the course work. Every meeting including the dissertation clinic helped me to achieve

the desired results in the research work.

I wish to thank Dr.Keith Brittle, Mr.Michael Bradford and Mr.Robert Duncan for

their quick help for completion of this course work successfully. I would like to thank

all people who helped directly and indirectly to complete the research work.

iv

Declaration

All the work submitted as a part of this research work is solely implemeneted and edited

by me. All the sources of information and knowledge are reference properly inside the

document.

Signed .. Date

Miss. Vrushali Ubarhande

v

Contents

Abstract ii

Acknowledgement iv

Declaration v

1 Introduction 1

2 Background 3

2.1 Hadoop Background . 3

2.1.1 Hadoop Distributed File System 3

2.1.2 MapReduce programming model 4

2.2 Importance of data locality in Hadoop 6

2.2.1 Exploring Data Locality . 6

2.2.2 Replication for achieving data-locality 6

2.2.3 Node capability based data-distribution techniques 7

2.3 Need of data-locality in scheduling approaches 10

3 Design 13

3.1 Proposed Data-Distribution architecture for Heterogeneous Hadoop cluster 13

3.1.1 Speed Analyser . 14

3.1.2 Data Distribution Technique . 15

3.2 Use cases for the proposed solution . 18

3.3 Sequence diagram with the Data Flow of the Proposed Solution 18

4 Implementation 20

4.1 OpenStack Architecture . 20

4.2 Heterogeneous Hadoop cluster setup on OpenStack private cloud 22

4.2.1 Heterogeneous Hadoop cluster configuration 22

4.3 Speed Analyser . 27

4.3.1 Install Speed Analyser . 28

vi

4.3.2 Execute Speed Analyser . 28

4.4 Data-Distribution Component . 29

5 Evaluation 32

6 Conclusion 36

Bibliography 37

A Appendix 40

A.1 Speed Analyser component . 40

A.1.1 Install script . 40

A.1.2 Execute script . 41

A.2 Data-Distribution component . 42

vii

List of Figures

2.1 Hadoop distributed file system (HDFS Architecture Guide (2008)) . . . 4

2.2 MapReduce Programming Model (Xie et al. (2010)) 5

2.3 MapReduce Programming Model Hierarchy 5

3.1 Proposed Data-Distribution architecture for Heterogeneous Hadoop cluster 14

3.2 Speed Analyser . 14

3.3 Use case for the proposed solution . 18

3.4 Sequence diagram with the Data Flow of the Proposed Solution 19

4.1 OpenStack Conceptual Diagram(OpenStack Training Guides (2014)) . . 21

4.2 Heterogeneous Hadoop cluster architecture on OpenStack private cloud 23

4.3 OpenStack instances with different configurations 25

4.4 OpenStack instances with Hadoop installation working as independent

single-node cluster . 26

4.5 Hadoop setup diagram. 27

4.6 Class diagram with the dependencies for the proposed Data-Distribution

component with the current Hadoop classes. 30

5.1 Comparison between the traditional Hadoop and the proposed solution

while running the Wordcount application. 33

5.2 Comparison between the traditional Hadoop and the proposed solution

while running the Grep application. 35

viii

List of Tables

2.1 Comparison of different data-distribution techniques 9

2.2 Comparison of different task-scheduling techniques based on data-locality 12

3.1 Respose time and data proportion . 17

4.1 Configuration for cluster nodes . 24

5.1 Response times for Wordcount application on traditional Hadoop 32

5.2 Response times for Wordcount application using proposed solution . . . 33

5.3 Response times for Grep application on traditional Hadoop 34

5.4 Response times for Grep application using proposed solution 34

ix

Chapter 1

Introduction

The processing of data intensive applications is becoming complex.MapReduce is a

prototype designed by Google, which enables the processing of large datasets in het-

erogeneous environment. MapReduce uses the Map and Reduce functions to achieve

maximum data parallelization in the cluster.

Similarly, Hadoop is an open-source implementation of the MapReduce model by

Apache. Kala Karun & Chitharanjan (2013) have mentioned that Hadoop handles

data intensive applications by the division of large tasks into smaller jobs and breaking

substantial datasets into smaller partitions, so that each small job operates on an in-

dividual partition in parallel. Although, Hadoop maximizes the parallelization of data

processing, Xie, Yin, Ruan, Ding, Tian, Majors, Manzanares & Qin (2010) suggest

that the available Hadoop data processing schemes are designed for the homogenous

environment. Such schemes may not be so useful considering the dynamic nature of

Hadoop while operating applications in a cloud.

Xie et al. (2010) also point out that the current Hadoop data processing framework

considers all nodes as having equal computing capability with the same disk space.

They explain the situation in a heterogeneous environment where the performance of

nodes varies and disk space also. In such a case, data may need to be transferred from

low-speed nodes to the high-speed nodes to finish the task as early as possible. As

the amount of data is large in MapReduce Hadoop, data transfer is more expensive

and can consume the significant bandwidth in the network leading to a decrease in

performance. Therefore, in order to improve the Hadoop infrastructure performance,

an effective division of data is essential to avoid extra overheads of data transfer.

Therefore, this research work is mainly focused on the creation of the Data-Distribution

Technique which will consider the processing power of each Datanode before assigning

1

data blocks. The proposed solution intends to improve the performance of heteroge-

neous Hadoop environment by effective Data-Distribution. This is because the existing

data-distribution methodology in a Hadoop does not consider the heterogeneous nature

of Hadoop in cloud as suggested by Fan, Wu, Cao, Zhu, Zhao & Wei (2012).

This paper starts with the evaluation of the previous solutions proposed for Data-

Distribution in heterogeneous Hadoop cluster. Further, the design of the experiment

is discussed in Chapter 3. Chapter 3 includes the explanation of the component such

as Speed Analyser and Data-Distribution Technique. In addition, the implementation

details will be discussed in the Chapter 4. Thereafter, the results recorded after exe-

cution of the MapReduce application on traditional Hadoop and Hadoop system with

proposed solution is analysed. Finally, the Chapter 6 includes the conclusions of this

research work and the future scope is identified.

2

Chapter 2

Background

The main purpose of this chapter is to evaluate the literature review in order to under-

stand the research gap. This chapter starts with the explanation of the Hadoop basic

architecture in Section.2.1. Further, Section.2.2 describes the evaluation of the existing

proposed methodologies for effective data distrbution for heterogeneous Hadoop cluster

with respect to the data locality. In addition, different scheduling techniques are also

studied to understand the importance of the data-locality in scheduling approaches

under Section.2.3.

2.1 Hadoop Background

Apache Hadoop is an open source implementation of Google MapReduce programming

model. The Hadoop software framework has two main parts Hadoop Distributed File

System (i.e.HDFS) and the MapReduce programming model. HDFS works as a storage

for MapReduce application data, while the MapReduce programming includes the logic

to process the MapReduce application data stored on HDFS.

Master node is a collective term used for JobTracker and Namenode. The Namenode is

a part of HDFS, whereas the JobTracker is a part of MapReduce programming model.

The HDFS and MapReduce programming model is described in detail below.

2.1.1 Hadoop Distributed File System

The Fig.2.1 describes the data flow management in HDFS.

3

Figure 2.1: Hadoop distributed file system (HDFS Architecture Guide (2008))

The master/slave architecture is a basic approach used in HDFS. Namenode is a master

server which administers the allocation of files (i.e. file system namespace), mainte-

nance of file metadata and clients data access in Hadoop cluster. Under Namenode,

many Datanodes can co-exist. Usually, there is one Datanode per node in the HDFS.

Datanode acts as storage for a node on which Datanode runs. HDFS discloses the

file system namespace and ease the storage of application data in files for clients. In

HDFS, the application data files is divided into data blocks. These data blocks are

eventually stored on datanodes. Namenode performs all the file namespace operations

such as deciding destination datanode storage, opening, closing and renaming of files.

Datanode can also perform the data read operations from client (HDFS Architecture

Guide (2008)).

2.1.2 MapReduce programming model

The below Fig.2.2 represents the execution of MapReduce applications in Hadoop.

4

Figure 2.2: MapReduce Programming Model (Xie et al. (2010))

In Hadoop system, when MapReduce applications start executing, the MapReduce

programs application data requests are processed by Namenode. The clients upload

the application data in HDFS before running MapReduce application. MapReduce

application always run in two parts, first map function and then reduce function. Na-

menode transfers the data requests to individual Datanodes which feed the data to map

functions (Xie et al. (2010)).

The below figure introduced the MapReduce programming mode hierarchy.

Figure 2.3: MapReduce Programming Model Hierarchy

The JobTracker distributes the job (i.e. MapReduce application) breaking down into

pieces called as tasks to each Datanode. In MapReduce programming model, each

Datanode acts as a TaskTracker also. The subsequent reduce function after map func-

tion also run on Datanodes. The progress of the MapReduce application can be checked

using the web interface of the Hadoop system.

5

2.2 Importance of data locality in Hadoop

2.2.1 Exploring Data Locality

Guo, Fox & Zhou (2012) define data-locality as closeness between a node with input

data and a compute node. ”Data locality is defined as how close compute and input

data are, and has different levels node-level, rack-level, etc.”(Guo, Fox & Zhou 2012,

p.26)

Nguyen, Simon, Halem, Chapman & Le (2012) remark that Hadoop exploits data-

locality for scheduling task to improve performance. Here, the exploitation of data-

locality in Hadoop means the execution of a task should be on a node or near a node

where input data is residing.

Chung, Graham, Bhagwan, Savage & Voelker (2006) have proposed one of the few

early data division techniques for distributed systems. In this methodology, minimum

data-locality is achieved for each task by reducing the number of fragments for each

task. This data division technique using minimum data-locality may not be proved

efficient in a heterogenous environment like Hadoop where the number of nodes and

data size and its nature varies according to applications. Guo et al. (2012) mention that

the achievement of data-locality can be perceived as keeping data near to the compute

node. Zhang, Feng, Feng, Fan & Ming (2011) explain that the input data for Hadoop

MapReduce is bigger in size compared to normal applications. The movement of such

a vast amount of data can affect performance of Hadoop by increasing overheads on

network bandwidth as suggested by Xie et al. (2010).

2.2.2 Replication for achieving data-locality

Eltabakh, Tian, Özcan, Gemulla, Krettek & McPherson (2011) have introduced the

approach CoHadoop in which relevant data-placement on the same group of nodes is

proposed. CoHadoop allows applications to control where data is stored and address

the performance bottleneck identified in Hadoop. They consider the data - relevance

as an important factor to separate out data in Hadoop in the data-distribution phase.

CoHadoop makes use of data replication retaining the strong fault tolerance properties

of Hadoop CoHadoop by is mainly designed to colocate files for faster query execution.

To place relevant files on the same group of nearer nodes may not be always possible in

Hadoops filesystem as the amount of space varies for each node. Moreover, Kala Karun

& Chitharanjan (2013) agree that the colocation approach in Hadoop can work well if

there is an ample amount of space on each node and failures are less. In addition, Jin,

6

Luo, Song, Dong & Xiong (2011) mention that a file is divided into a number of blocks.

So, the CoHadoop approach by Eltabakh et al. (2011) might not work where the size

of data is big which is common in Hadoop applications.

According to Xie et al. (2010), tasks may need to be transferred from a low-performance

to a high - performance node to boost response time in case of delay due to comput-

ing limitations in heterogeneous systems. Zaharia, Borthakur, Sen Sarma, Elmeleegy,

Shenker & Stoica (2010) define such a sufficiently low-performance node in Hadoop as

a straggler. They argue that the nodes can be low-performing because of many factors

such as network sharing or disk sharing in case of virtual machines.

Guo et al. (2012) explain that the reduction of network congestion by increasing the

data - locality can be considered as an effective way to improve performance as the data

size is larger in Hadoop. More data-locality, less the data transfer. Dean & Ghemawat

(2008) mention that the network bandwidth is a limited resource compared to the com-

puting power of nodes in the Hadoop infrastructure. So, reduction in data movement

in Hadoop can be considered as the key factor to improve Hadoop performance as men-

tioned by Xie et al. (2010). They mention that the measurement of heterogeneity is

essential in a dynamic Hadoop as the capability of all nodes are not same.

2.2.3 Node capability based data-distribution techniques

Xie et al. (2010) and Fan et al. (2012) have developed performance-aware data place-

ment and data-distribution techniques respectively.

In the data-distribution technique outlined by Xie et al. (2010), the data-locality factor

can be increased by a proper data distribution to the nodes on the basis of the nodes

computation ratio. Computation ratio is calculated by running small test jobs on nodes

in this data-distribution technique. Zaharia et al. (2010) mention that the distribution

of data should be very cautious as the tasks will be scheduled according to data-locality

in Hadoop.

Even though the approach developed by Xie et al. (2010) considers the heterogeneity

of the environment through calculating the computing ratio by running test jobs on

all nodes, it may not be a suitable approach in Hadoop where nodes are very large

in numbers. The distribution of test jobs may lead to congestion in the network.

Moreover, in the dynamic cloud, Fan et al. (2012) suggest that the node on which test

script runs may not actually have same capability for actual task execution in Map

phase. In case of a straggler node, to ease data transfer from low-performance node to

high-performance node, Xie et al. (2010) have used the data replication approach to

7

increase data-locality.

On the other hand, Guo et al. (2012) explain the contrary effect of a data replication

factor in the performance of Hadoop if used on a larger scale. On a broader scale,

replication may use vast amounts of disk space and network bandwidth. Even though,

replication of data improves data-locality, the performance may gradually decrease as

the amount of replicated data increases. Guo et al. (2012) prove that careful judgement

of replication policy in Hadoop is important.

In addition, Ye, Huang, Zhu & Xu (2012) proposed a unique way of replication in

Hadoop. Ye et al. (2012) have considered the default replication factor in Hadoop i.e.

3, they have focused on the realtime conditions of nodes for replication. Consideration

of real time space utilization of nodes compared to threshold platform utilization for

Hadoop, while selecting datanode in local rack and second-rack for replication can be

fruitful. This approach can be more suitable for Hadoop due to realtime situation

analysis for replication of data blocks resulting in reduction in the network traffic

because of less transfer of data.

Chervenak, Deelman, Livny, Su, Schuler, Bharathi, Mehta & Vahi (2007) have sug-

gested an earlier methodology to place data near high-performance nodes, so that the

task can be redirected to a high-performance computing resources with data easily

to gain high data-locality in distributed systems.They also emphasize moving data off

computational resources quickly when computation is complete.

Shen & Zhu (2009) have introduced quite similar methodology to use replication ef-

fectively to increase data-locality in the network. Shen & Zhu (2009) have introduced

the making of replicas on physically high-performance close nodes. The replication

method by Shen & Zhu (2009) also includes the redirection algorithms between high-

performance replica nodes and low-performance nodes which will improve response

time.

A distinctive performance aware technique has been created by Fan et al. (2012).They

have assessed the node performance through historical logs on nodesand measure node

capability based on the executed task and computing node pair system logs. Such

measurement of node capability based on logs may fail as the performance of the node

can be affected by many other system factors suggested by Guo et al. (2012). They

have evaluated the impact of system factors such as Input/output delay, scheduling

wait time, free slots, number of tasks and the number of nodes on the data-locality.

So, node capability measured on the basis of historical logs cannot be considered an

accurate heterogeneous measurement.

8

To calculate node capability in case of an input change or termination of a job which

may influence logs, Fan et al. (2012) have used benchmarking for the ideal finish time

of faster nodes and slower nodes.They divide the nodes based on finish time to a slow

node queue and a fast node queue. When half of the map tasks in the slowest node in

slow node queue are completed, the map task load will be transferred from the slowest

node to the fastest node in the fast node queue. Monitoring of the computing capability

of nodes based on historical logs may cause issues when a large number of new nodes

are added to a cloud for which no historical logs are available.

A mixed approach have been designed by Arasanal & Rumani (2013). In this approach,

the nodes will send signals back to namenodes in Hadoop for the available hardware

resources, then the computing ratio for each node will be calculated. This computing

ratio cannot be considered as optimal because of network bottlencks, latency in I/O

operations or the type of data processed. Moreover, the signals from the nodes to

the namenodes can create unnecessary network traffic. Arasanal & Rumani (2013)

compare the computing ratio calculated in the above step with the historical logs of

the previous jobs to come up with the commensurate computing ratio. On the other

hand, they mention that the computing capability of nodes cannot be determined

properly for quadratic complexity (i.e. in which problem solving takes four times the

duration when the problem size doubles compared to original problem size) of map()

function, so they have considered the quadratic complexity of map() function as well

for distribution of data along with the computing ration.

The huge amount of tasks may need to be rescheduled on another high-performance

node if the new nodes are low-performing in the technique outlined by Fan et al. (2012).

Guo et al. (2012) explain that scheduling should be optimized globally in the case of

heterogeneous systems to improve Hadoop performance.

Table 2.1: Comparison of different data-distribution techniques

Technique Computing ratio Possible weakness

calculation

Data-distribution Run test job Unnecessary use of

by Xie et al. (2010) to know node’s speed bandwidth for distribution

Data-distribution based on May not be fruitful

by Fan et al. (2012) historical logs when history is unavailable

Data-distribution based on Complexity of map function

by Arasanal & Rumani (2013) historical logs may not affect

complexity of map() function response time

configuration available after certain

through heartbit signal cluster size.

9

2.3 Need of data-locality in scheduling approaches

The Hadoop MapReduce framework is used to process tasks in parallel as described by

Kurazumi, Tsumura, Saito & Matsuo (2012).

Zaharia et al. (2010) mention that the map task scheduler in Hadoop chooses the data-

locality of a task while scheduling over all other system factors. The task will wait for

a small amount of time to get executed on a data local node in delay scheduling as

outlined by Zaharia et al. (2010).

Guo et al. (2012) mention that the basic principle for Hadoop is that the compute node

and input node should be the same. Kurazumi et al. (2012) explain that tasks may

need to be scheduled on a different node than an input node because of the lack of

availability of input nodes, task failure or the delay in task processing in heterogeneous

environments.

Xie et al. (2010) mention that the change in input data can be a major concern after

task scheduling in Hadoop, where rescheduling and data transfer is needed. According

to Kurazumi et al. (2012), shifting map tasks as well as input data from one node to

another may reduce actual utilization of CPU resources because of the Input / Output

wait. So, to improve performance, effective distribution of data in the initial phase can

be considered as an important factor so that a maximum number of map tasks can be

completed on the same node reducing data transfer in Hadoop as suggested by Guo

et al. (2012). Similarly, Cardosa, Wang, Nangia, Chandra & Weissman (2011) suggest

that tasks scheduled on a data-local node usually tend to finish quickly as no network

transfer and latency are involved.

Zaharia et al. (2010) have proposed the delay scheduling algorithm which uses fairness

i.e. giving new jobs their fair share of resources quickly and data-locality as two key

factors to improve Hadoop performance. To achieve data-locality, Zaharia et al. (2010)

incorporate waiting for a scheduling task on a node with input data. Such a delay in

the scheduling of tasks may hamper overall runtime performance in a cloud which can

sometimes be greater than the actual delay in the transfer of data to the new node.

Jin et al. (2011) argue that the delay scheduling outlined by Zaharia et al. (2010) may

not work properly when the nodes with input data are freed up slowly.

Another scheduling technique BAR: Balance-Reduce is proposed by Jin et al. (2011)

where task schedules globally consider the overall network condition and data-locality

is achieved according to workload and network state. In BAR: Balance-Reduce by Jin

et al. (2011), data-locality is achieved by running a task on a node near to a data-local

node when Hadoop is overloaded.

10

Zhao, Wang, Meng, Yang, Zhang, Li & Guan (2012) propose a distinct approach of co-

locating relevant data during data distribution which may increase performance. The

use of method BAR: Balance-Reduce as outlined by Jin et al. (2011) with co-locating

relevant data as per Zhao et al. (2012) can increase the overall Hadoop performance as

the relevant data will be situated near to the data-local node.

Zhang et al. (2011) have explained that the response time for the execution of the map

task may be affected by the waiting time to schedule tasks on a data-local node and

data transfer time between the requesting node and an input node. In the case of a

straggler node, Zaharia, Konwinski, Joseph, Katz & Stoica (2008) have developed the

approach LATE in which the straggler node is discovered easily. In LATE, data-locality

is achieved through the effective replication of data in the first phase which increases

performance in the case of a straggler node. Zaharia et al. (2008) have improved the

speculative execution of tasks in LATE. Speculative execution of the task is defined as

running multiple copies of the same task on different nodes, whichever node finishes a

task first will report to the task scheduler.

Nguyen et al. (2012) have proposed a HybS task scheduling policy for MapReduce.

In this policy, they have given priority to data-locality instead of other factors such

as priority of jobs. Nguyen et al. (2012) decide task priority on the basis of Hadoop

historical logs in the HybS scheduling algorithm. In a similar way, Fan et al. (2012)

propose data - distribution on the basis of historical logs as we have covered in the

above data-locality approach section.

Nguyen et al. (2012) choose to implement reordering of task priority to gain the benefit

of data-availability. Scheduler by Nguyen et al. (2012) may work better than the delay

scheduling algorithm by Zaharia et al. (2010). In case of unavailability of data-local

node, scheduler by Nguyen et al. (2012) favors the data-locality as maximum as possible

by re-ordering of tasks priority.

The main issue in HybS by Nguyen et al. (2012) may arise when the vast number of

nodes are added to the network as no logs will be available for new nodes.

11

Table 2.2: Comparison of different task-scheduling techniques based on data-locality

Scheduling Technique Factor for achieving Possible weakness

data-locality

Delay-scheduling algorithm resource fairness and running

by Zaharia et al. (2010) tasks on data-local node Nodes can free up slowly

BAR: Balance-Reduce running tasks on Near nodes may

by Jin et al. (2011) node near to data-local not be free always.

in case of overhead

LATE by Zaharia et al. (2008) Effective replication and Unnecessary CPU utilization

running same task parallely, and use of storage for replicas.

whichever node finish early

will report, other copies

of same task will be stopped.

HybS task scheduler Reordering of task May not be fruitful

by Nguyen et al. (2012) priority on the basis in case of new nodes.

of historical logs

Dean & Ghemawat (2008) mention that the network bandwidth is a limited resource

compared to the computing power of nodes. To reduce the stress on bandwidth, the

scheduling of map tasks on the basis of data-locality is crucial. Data-locality can

be achieved through effective distribution of data during the data placement scheme

before Map task scheduling. Guo et al. (2012) have analyzed the Hadoop performance

in terms of different system factors and the data-locality. The impacting factors

may include the number of nodes, the overall number of tasks for particular appli-

cations, the rate of map tasks executed by each node, the replication factor and the

amount of idle time (map) slots. The effects of these system factors are explained below.

12

Chapter 3

Design

The homogeneous data placement and data distribution policies in Hadoop may not

prove efficient in long run for heterogeneous Hadoop environment. To improve the

performance of Hadoop, the effective data distribution technique is proposed which

will exploit the heterogeneous nature of slave nodes in a cluster. The different steps

involved to achieve end results are explained here. Firstly, the proposed architecture of

the Data-Distribution technique for heterogeneous Hadoop cluster is introduced. After

that all the components from the proposed experimental design are discussed below.

It includes the Speed Analyser and the Data-distribution technique. Moreover, the

different users of the system are identified and explained with the help of use cases.

To conclude, the interaction of the user and data-flow within the Hadoop system is

presented.

3.1 Proposed Data-Distribution architecture for Hetero-

geneous Hadoop cluster

The proposed solution for this research work ensures the distribution of the data blocks

within the Hadoop cluster based on the computing capability of each slave node, in

order to improve the performance. Thus the overall view of the proposed solution is

represented in Fig. 3.1. The proposed solution is intended to be developed within a

heterogeneous Hadoop environment with seven slave nodes. First, the Speed Analyser

component will be created on Namenode, which will be installed and executed on each

slave node. Furthermore, the master node will read the response time taken by each

slave node from respective log file, and will create a file with the computing ratio.

This file will be feed to Data-Distribution algorithm through the Hadoop Distributed

13

FileSystem. More information about the Speed Analyser and Data-Distribution com-

ponents are explained in below subsections.

Figure 3.1: Proposed Data-Distribution architecture for Heterogeneous Hadoop cluster

3.1.1 Speed Analyser

To achieve the desired results for specified experiment, Speed Analyser component is

designed as below.

Figure 3.2: Speed Analyser

The Speed Analyser agent was created to measure the processing capacity of each slave

node. Namenode will install and execute Speed Analyser agent on each slave node.

14

Speed Analyser records response time taken by Speed Analyser in the log file. The

implementation details of Speed Analyser is explained in Section 4.

3.1.2 Data Distribution Technique

The Data-Distribution technique makes use of response times available after the exe-

cution of the Speed Analyser. The main motive of data distribution technique is to

distribute data according to the calculated computing ratio of the slave nodes. The

computing ratio is calculated using the response time available using Speed Analyser.

Dynamic data placement algorithm for heterogeneous nodes

The current data placement and data distribution algorithm in Hadoop is devised

for the homogeneous cluster. To exploit the resources in heterogeneous Hadoop, it

is necessary to develop a new dynamic data placement algorithm which will take the

capability of datanodes into account while data distribution.

New data placement strategy will involve below steps:

1. Get the responses from the SpeedAnalyser agent.

2. The computing ratio will be calculated based upon response times compared to

slowest node.

3. The number of data blocks processed by slowest node will be considered while

assignment.

4. Assign the number of blocks to the datanodes as per their assignment ratio.

5. The average response time will be calculated.

6. All nodes having response time more than average will be assigned replicated

data blocks for high performance nodes.

Thus, the Data-Distribution component of the proposed solution is based on the data-

distribution algorithm, which will provide the distribution mechanism to utilize across

all the slave nodes involved. In this sense, the data-distribution algorithm mainly

involves the calculation of the processing capability of each node in the specified Hadoop

cluster. This algorithm starts with the collection of the response time from the log

file of each slave node generated by the Speed Analyser execution. The computing

ratio for each slave node will be calculated based on the below formula, where the

Highest Response Time (i.e HTR) and Individual Node Response Time (i.e. INRT) are

15

considered for the computation:

CR = HRT/INRT

where CR stands for Computing Ratio, HRT stands for Highest Response Time and

NRT stands for Individual Node Response Time.

Furthermore, as a part of the Data-Distribution technique, the total number of blocks

will be calculated by dividing the input file’s size from the NameNode with the default

Hadoop block size (i.e. 64MB), as described in the below formula:

TNB = IFS/DHBS

where TNB stands for Total No. of Blocks, IFS stands for Input File’s Size, DHBS

stands for Default Hadoop Block Size and the unit of data was considered as MB.

After this, the number of blocks processed by the slowest node is calculated by dividing

the total number of blocks with the sum of computing ratios for each node.

x = TNB/

n∑
i=1

CR

Moreover, as the last step of the algorithm, the data is assigned to the nodes based on

the below formula:

y = CR ∗ x.

In order to describe all the process of the proposed data-distribution algorithm, an

example of the calculation of the processing capability of the slave nodes based on the

proposed algorithm is provided in the below subsection.

Calculation of processing capability

The amount of data processed by each node is inversely proportional to the response

time for each application. As the response time is increasing, the amount of the pro-

cessed data will be decreased for that node. Thus, the relation between the processed

data and the time taken to process it (i.e. response time) can be represented as:

y ∝∼ 1/T

16

where y is the processed data by a particular node and T is the Time taken to process

data y.

Let’s consider that the three slave nodes have the following response times as T1, T2

and T3 from Speed Analyser, whereas x is considered as a number of blocks processed

by the slowest node which has highest response time (i.e. HTR). Furthermore, the data

processed by each node can be represented with the help of inverse proportion as in

Table 5.2.

Table 3.1: Respose time and data proportion

Response Time in secs Data processed

T1 T3/T1x

T2 T3/T2x

T3 x

Let’s consider TNB as the Total Number of blocks in an MapReduce application. T3

is the highest response time (i.e. slowest node’s response time). So the equation can

be formed from above values as below:

T3/T1 ∗ x + T3/T2 ∗ x + x = TNB

So, x (i.e. no of blocks processed by slowest node) can be calculated as

x = TNB/(T3/T1 + T3/T2 + T3/T3)

where T3/T1 is the computing ratio of slave node with response time T1. The resulting

equation for x can be described as below:

x = TNB/

n∑
i=1

(HRT/INRT)

After calculating the number of blocks processed by slowest node, the data assigned to

each node can be mentioned as:

y = CR ∗ x.

In the end, data-distribution will assign y number of blocks to each node depending on

their Computing ration value.

17

3.2 Use cases for the proposed solution

The user interaction with the proposed system is explained in Fig. 3.3.

Figure 3.3: Use case for the proposed solution

There are two main identified roles of users such as client and system administrator in

the proposed system. The Admin user is responsible for setting up of the Heterogeneous

Hadoop cluster on the OpenStack private cloud. The Admin user will also carry out

the responsibilities such as: starting and stopping of Hadoop cluster, the operations

related with the maintenance and the integration of new components.

In addition, the clients will use the existing Hadoop cluster to store the application

data on HDFS storage. The clients mainly use the Hadoop cluster to run MapReduce

applications. The client user mainly comes into picture during the evaluation process

of the experiment.

3.3 Sequence diagram with the Data Flow of the Pro-

posed Solution

The set of events while storing data in Hadoop have been tracked in the below sequence

diagram (Fig. 3.4). The main purpose of this diagram is to capture the flow of the

Speed Analyser interactions with each Datanode (i.e. slave node). Thus, this diagram

explains the interaction of clients with the proposed system. This client interaction

starts with the request to store data on HDFS storage.

18

Before starting to store data on HDFS, the Speed Analyser will be installed and exe-

cuted on each Datanode. Furthermore, the response from Speed Analyser will be sent

back to namenode from each Datanode. The data storage process in HDFS starts with

calling the object of DistributedFileSystem which eventually uses the FSDataOutput-

Stream object to write data to each Datanode. FSDataOutputStream object interacts

with Namenode in order to receive the list of suitable Datanodes for storing the data

blocks.

Figure 3.4: Sequence diagram with the Data Flow of the Proposed Solution

19

Chapter 4

Implementation

The implementations details of all the components of the proposed solution are covered

in this section. Firstly, the heterogeneous Hadoop cluster environment was set up to

implement and evaluate the proposed Data-Distribution solution. In the beginning of

this chapter, the OpenStack cloud architecture is explained as the specified Hadoop

cluster was created on OpenStack private cloud. Secondly, the procedure adopted to

create a heterogeneous Hadoop cluster is described. Furthermore, the proposed Speed

Analyser implementation details are explained. The chapter ends with the description

of the implementation and the integration of the proposed Data-Distribution compo-

nent with the Hadoop source code.

4.1 OpenStack Architecture

This section provides a brief description of the OpenStack cloud architecture. The

OpenStack private cloud was selected as a environment where Hadoop cluster was cre-

ated for this proposed research work. The OpenStack is an open source software which

provides an efficient way to implement and management of scalable cloud infrastructure

as a service platform. User can manage to access different OpenStack cloud services

with the help of different Application Programming Interfaces (API) based on their

choice. The basic architecture of the OpenStack is described below in Fig. 4.1.

20

Figure 4.1: OpenStack Conceptual Diagram(OpenStack Training Guides (2014))

OpenStack can be used to implement private and public cloud infrastructures. For

the specified experiment, OpenStack private cloud at National College of Ireland is

used to create a heterogeneous Hadoop cluster. Different set of services provides the

desired functionality in OpenStack Cloud. The services offered by OpenStack can be

viewed with the help of user interface service (i.e. OpenStack dashboard). Internally,

OpenStack dashboard is addressed as Horizon (OpenStack Training Guides (2014)).

On the OpenStack dashboard, user can opt for many OpenStack services. One of the

crucial service is the management and administration of virtual machines. For this

purpose, Nova acts as a main compute system controller and administrator of virtual

machines. In addition, Nova also keeps track of all the metadata related to images.

Apart from Nova, Cinder is the OpenStack block storage which provides permanent

storage volumes for the virtual compute. These volumes can be attached or detached

from virtual machine easily (OpenStack Training Guides (2014)).

Moreover the Network component also called as Quantum provides the network com-

munications between different virtual machines. Furthermore, Swift acts as an object

storage which stores the disk and image files with the help of OpenStack image com-

ponent (i.e. Glance). To access OpenStack services, users need to authenticate their

identity which is achieved with the help of identity mechanism (OpenStack Training

Guides (2014)).

21

4.2 Heterogeneous Hadoop cluster setup on OpenStack

private cloud

The Hadoop cluster has been set up on the Openstack private cloud of National College

of Ireland, Cloud Competency Centre (see Fig.4.2). Openstack private cloud is chosen

because of the easy management of Hadoop cluster. Moreover, Openstack Savanna

provides easy Graphical User Interface (GUI) to add extra volumes to the machines,

which is useful in case of large data.

The Hadoop cluster for this research work was setup using a heterogeneous architec-

ture with one Master and seven Slaves (see Figure. Heterogeneous Hadoop cluster

architecture) , where different configurations were used for the nodes as follow:

• The master node has the OpenStack basic A4 configuration.

• Three of the slave nodes are small OpenStack instances.

• Two of the slave nodes are medium OpenStack instances.

• Two of the slave nodes are large OpenStack instances.

Their configuration is explained below in the next subsections.

4.2.1 Heterogeneous Hadoop cluster configuration

The steps followed for the creation of Hadoop cluster are described in the below steps:

• Step 1: Creation of instances in OpenStack private cloud.

• Step 2: Preparing instances ready with Hadoop installation. (i.e. Independent

single node Hadoop cluster)

• Step 3: Configuring Hadoop cluster using independent eight single node Hadoop

instances.

After installing Hadoop on each instance, the instances have been configured to as-

sign the particular responsibilities such as Namenode, JobTracker, TaskTracker and

Datanode (i.e. slaves).

22

Figure 4.2: Heterogeneous Hadoop cluster architecture on OpenStack private cloud

Step 1: Creation of instances in OpenStack private cloud.

Hadoop cluster setup was achieved by creating eight instances with different configu-

rations in the OpenStack private cloud. The configurations of the instances are:

• Three instances have 2GB RAM, 1CPU and 20 GB hard-disk resources each (i.e.

OpenStack small instance called m1.small), where three Hadoop slave nodes were

configured;

• Two instances have 4GB RAM, 2 CPU and 40 GB hard-disk each (i.e. OpenStack

medium instance called m1.medium), where two Hadoop slaves were configured;

• Two instances have 8GB RAM, 4 CPU and 60 GB hard-disk each (i.e. OpenStack

large instance called m1.large), where two Hadoop slaves were configured.

• The master node is with 14 GB RAM, 8 CPU and 20 GB hard-disk (i.e. Open-

Stack basic A4 instance called Basic A4).

Public IPs (i.e. floating IPs) have been assigned to all eight instances in order to

allow the connection to the instances from the remote machines. Moreover, a separate

security group and a private key are created for the specified Hadoop cluster. Thus,

23

the actual IPs are used in the Hadoop cluster formation and all the instances are on

the same network (same private cloud). It is important to note that all eight instances

are available under the zone Nova in OpenStack private cloud, and that all instances

have the same operating system (i.e. Ubuntu 12.04.3).

As described in Section 4.1, Nova is the main compute component which provides

compute to all instances for this Hadoop cluster. Usually, Nova-api handles the requests

for creation of instances and enforces the created security rules. After the submission of

the requests, Nova compute process (i.e. Nova compute daemon) manages the creation

and termination of virtual instances with the help of hypervisors APIs. The new

volumes can be created and added to existing instances using Nova-volume component.

The communication and networking among the instances is administered by Nova-

network. The virtual instance requests are stored in the queue. Nova makes use of

queue to process the requests and communication between different Nova components.

Nova-schedule daemon decides in which server the virtual instance requests will be

executed. All the details related to the virtual instances will be stored in the SQL

database.

Additionally, two rules were created for the specified security group (see Table.4.1):

Table 4.1: Configuration for cluster nodes

Direction IP Protocol Port Range Remote

Ingress TCP 22 0.0.0.0/32(CIDR)

Ingress TCP 22 193.1.209.100/32(CIDR)

The first rule from above table is opening Port 22 in all instances for all machines, it

means any machine can connect to these instances remotely using private key.

The second rule from above table is opening port 22 in all instances for my own machine

with IP address 193.1.209.100.

The resulting node structure is highlighted in Fig.4.3

24

Figure 4.3: OpenStack instances with different configurations

Step 2: Preparing independent Single node Hadoop cluster.

In order to create the Hadoop cluster, the above eight instances should work as inde-

pendent single-node Hadoop cluster. The similar below process was repeated on each

instance to install Hadoop.

First, the necessary software packages for Hadoop such as Python and Java were in-

stalled. All the Hadoop files should have separate dedicated username. In this sense,

the separate user called “hduser” and the group called “hadoop” were created for in-

stalling Hadoop. In addition, Secure Shell (i.e. SSH) key for Hadoop setup was created.

SSH key is used to check Hadoop setup which run on localhost. Moreover, the access

to localhost has been enabled by copying the public key into the list of authorized

keys. The creation of key on each instance is important during formation of cluster.

In addition, the IPV6 was not required, so it was disabled, because it might create an

issue during cluster formation.

Further, the Hadoop 1.2.1 has been downloaded from https://archive.apache.

org/dist/hadoop/core/hadoop-1.2.1/hadoop-1.2.1.tar.gz, and unzipped under

“hadoop” directory. The environmental variable file (i.e. “.bashrc” file) for the

“hduser” has been configured for Hadoop environment variable. To store Hadoop tem-

porary files, the separate directory “/app/hadoop/tmp” was created. The Hadoop

configuration files were configured in each instance to act as a master node or as a slave

node depending on their roles.

After installing the Hadoop on all instances, the Hadoop setup has been checked on

each instance by starting Hadoop on localhost. The resulting nodes can be viewed in

Fig.4.4:

25

https://archive.apache.org/dist/hadoop/core/hadoop-1.2.1/hadoop-1.2.1.tar.gz
https://archive.apache.org/dist/hadoop/core/hadoop-1.2.1/hadoop-1.2.1.tar.gz

Figure 4.4: OpenStack instances with Hadoop installation working as independent
single-node cluster

Step 3: Creation of cluster using eight independent Hadoop nodes.

The instances created in the above step were used to build specified Hadoop cluster.

The Hadoop cluster involved a master node and seven slave nodes. The configurations

setup for master node and slave nodes are described as below:

• Master node is configured to act as a Namenode and JobTracker. Here, instance

Basic A4 is configured as a master node. In “/etc/hosts” file on basic A4 instance,

the IP addresses and proposed name of the each instance in Hadoop cluster are

mentioned as in the below code:

1 10.1.2.20 master

2 10.1.2.21 slave1 slave1.localdomain

3 10.1.2.7 slave2 slave2.localdomain

4 10.1.2.9 slave3 slave3.localdomain

5 10.1.2.11 slave4 slave4.localdomain

6 10.1.2.12 slave5 slave5.localdomain

7 10.1.2.2 slave6 slave6.localdomain

8 10.1.2.14 slave7 slave7.localdomain

The Basic A4 instances Hadoop configuration file named “masters” has been

edited under “conf” directory to act as master in Basic A4 instance. The other

configuration file named “slaves” under the same folder “conf” has been config-

ured with the names of slaves in a cluster.

• On slave nodes, the IP addresses of master and the slave nodes are mentioned in

/etc/hosts file as mentioned in master node.

To ease the SSH from master node to slaves (i.e. datanodes), the public key was

updated from master node to each slave node using the below command:

26

1 ssh-copy-id -i $HOME/.ssh/id_rsa.pub hduser@slave

Configuration files on slave nodes and master node signify the port through which mas-

ter node is going to communicate with slave nodes. The Hadoop configuration files on

each node in cluster including master node and slave nodes have been changed to master

ports, so that the master node can distribute data to slave node through the common

port and run application through the port dedicated for MapReduce application. The

advancement of the MapReduce application can be checked using web interface.

After setting up the configurations of Hadoop cluster, the Hadoop cluster setup is

viewed as in Fig.4.5:

Figure 4.5: Hadoop setup diagram.

According to the Fig.4.5, the Basic A4 instance (i.e. master node) carries the respon-

sibility of a Namenode and a JobTracker. Three small instances are slave1, slave2 and

slave3 respectively. Two medium instances are named as slave4 and slave5 respectively

and two large instances are called as slave6 and slave7 respectively.

4.3 Speed Analyser

To measure the processing capability (i.e. heterogeneity) of each slave node in the

mentioned Hadoop cluster, the Speed Analyser component was implemented. The

Speed Analyser was installed and executed on each slave node. The Speed Analyser

achieved the functionality of measuring the speed for individual slave nodes using the

27

following two shell scripts: Install Speed Analyser and Execution of Speed Analyser,

which are described below.

4.3.1 Install Speed Analyser

A shell script was created for installing the Speed Analyser agent, which takes a file

containing slave node’s name as an argument. First, the script makes the connection

of the master node to each slave nodes. Further, the script is copying the Matrix

multiplication application together with the input files to each individual slave node as

in the below code:

1

2 for slave in ‘cat "$HOSTLIST"|sed "s/#.*$//;/^$/d"‘; do

3 ...

4 ssh hduser@$slave "mkdir -p $HOME/speedinstall; chmod 777 *"

5 scp -r hduser@master:$HOME/speedinstall/* hduser@$slave:$HOME/speedinstall

6 ...

4.3.2 Execute Speed Analyser

A shell script was created to execute the Speed Analyser. This execution script takes

the file containing slave node’s names as an argument as in the code below:

1 for slave in ‘cat "$HOSTLIST"|sed "s/#.*$//;/^$/d"‘; do

2 ...

3 ssh -q hduser@$slave "cd /home/hduser/speedinstall; touch out log response;(/usr/bin ←↩
/time --format="%E" java MatrixMultiplyRA input.txt out) |& tee log"

4 ...

Initially this script executes the Matrix multiplication application using the input files

which are available from the Install Speed Analyser script on each slave node. In

addition, the script is able to record the response time taken by each slave node to

process the Matrix multiplication application. The recording of the response time is

stored in a log file on each slave node of the Hadoop cluster.

The computing ratios for the existing nodes were calculated after collecting the re-

sponses from each slave node. These responses were written in the file named “com-

putingratio.txt”.

28

4.4 Data-Distribution Component

The Data-Distribution component is based on the Data-Distribution algorithm men-

tioned in Section 3. The implementation of Data-Distribution component was inte-

grated inside the Namenode under HDFS. The development environment for Hadoop

was setup on Namenode for integration. In this case, master node was acting as Na-

menode.

To achieve the implementation of Data-Distribution component, the source code for

HDFS was cloned from git:

1 git clone git://git.apache.org/hadoop-hdfs.git

To build the downloaded HDFS source code, Maven 3.2.2 was installed on master

node. Apache Maven is open-source project management tool. The above cloned

HDFS project was built with the help of the below commands:

1 mvn install -DskipTests

2 mvn eclipse:eclipse -DdownloadSources=true -DdownloadJavadocs=true

After building the source code using Maven, Gooogle’s ProtocolBuffers was installed.

The instructions from the Apache Hadoop contribution page were followed to install and

configure ProtocolBuffers. ProtocolBuffers is an open source project which acknowledge

Google’s platform-neutral and language neutral interprocess-communication (IPC) and

serialization framework. Hadoop uses ProtocolBuffers to communicate between differ-

ent language platform during the compilation and execution. In addition, the Eclipse

Java EE IDE was used as Integrated Development Environment.

All the HDFS source code was imported in the Eclipse IDE for Data-Distribution com-

ponent implementation. The interaction of the different classes inside Hadoop source

code was studied to understand the exact dependency of Namenode’s decision-making

in terms of the selection of Datanodes for storage. After exploring the source code, it

was understood that “FSNamesystem.java” is the class who provides the list of Datan-

odes to the “DistributedFileSystem.java” class. The dependencies of the proposed

Data-Distribution implementation with other current Hadoop classes are highlighted

in Fig. 4.6:

29

Figure 4.6: Class diagram with the dependencies for the proposed Data-Distribution
component with the current Hadoop classes.

As a part of Data-Distribution component implementation, “getcomputingratio()”

method was added to the class “FSNamesytem.java”. The method is implemented

as below:

1 public int getcomputingratio(DatanodeSecriptor node)

2 {

3 try{

4 Path pt=new Path("hdfs://master:54310/user/hduser/computingratio.txt");

5 ...

6 while (line != null){

7 if (words[0] == node.hostname)

8 {

9 y = words[1];

10 return y;

11 }

12 ...

13 }

14 ...

15 }

In the implementation of “getcomputingratio()”, the method accepts the “Datanod-

eDescriptor” class’s object as a parameter. Further, function accesses the file “comput-

ingratio.txt” to read the computing ratio of each Datanode. The method “getcomput-

ingratio()” matches the hostname of the passed “DatanodeDescriptor” object to the

hostname presented in the file “computingratio.txt”. At the end, this method returns

the number of blocks which is allowed to store on the Datanode parameter.

30

Furthermore, Namenode keeps track of all the HDFS related operations with the help of

class “FSNamesystem.java”. Class “FSNamesystem.java” creates the binding of blocks

and it’s suitable Datanodes. So, this class was selected to implement the decision

part of new Data-Distribution technique. The method “getAdditionalBlock()” in “FS-

Namesystem.java” class decides the suitable datanodes. As the data blocks are written

after sending the list of suitable Datanodes, alteration of data-distribution should be

reflected in Namenode.

1 DatanodeDescriptor targets[] = replicator.chooseTarget(src,

2 replication,

3 clientNode,

4 excludedNodes,

5 blockSize);

6 if (oldtargets == null)

7 {

8 oldtargets = targets[0];

9 i = getcomputingratio(targets[0]);

10 i = i -1;

11 }

12 else

13 {

14 if (i == 0)

15 {

16 //targets = targets;

17 oldtargets = target[0];

18 i = getcomputingratio(targets[0]);

19 i = i -1;

20 }

21 else

22 {

23 targets[0] = oldtargets;

24 i = i - 1;

25 }

26 }

The “getAdditionalBlock()” method asks to the replication policy about the suitable

nodes by invoking “chooseTarget()” method. So, here the targets variable will include

the list of Datanodes based on the replication factor. In this logic, the same first

Datanode will be served to the “DistributeFileSystem.java” class for subsequent “y”

blocks, which “getcomputingratio()” method will return to the variable “i”.

31

Chapter 5

Evaluation

To confirm the improvement in the performance of a heterogeneous Hadoop cluster

after the implementation of the proposed Data-Distribution technique, two MapReduce

applications were executed on the traditional Hadoop system and on the Hadoop system

extended with the proposed Data-Distribution Technique.

First, the behavior of the Wordcount MapReduce application is analysed for the tra-

ditional Hadoop data-distribution using different data sizes. The response times were

obtained as below:

Table 5.1: Response times for Wordcount application on traditional Hadoop

Data-Size Real-time

512 MB 54 secs

1 GB 56 secs

2 GB 92secs

4 GB 143 secs

8 GB 265 secs

For the same set of data, the response times were recorded for the proposed Data-

Distribution Technique using the Wordcount MapReduce application. The improved

performance was shown by the new Data-Distribution Technique.

32

Table 5.2: Response times for Wordcount application using proposed solution

Data-Size Real-time

512 MB 52 secs

1 GB 54 secs

2 GB 91 secs

4 GB 137 secs

8 GB 258 secs

Above two sets of response times are graphically represented as below Fig.5.1

Figure 5.1: Comparison between the traditional Hadoop and the proposed solution
while running the Wordcount application.

Fig.5.1 presents the response times taken by Wordcount application for each data size

ranging from 512 MB to 8192 MB. As per the graph, the performance times of Word-

cound MapReduce application is approximately similar for the initial set of data which

were 512 MB, 1024 MB and 2048 MB. On the other hand, when the data size increases

(i.e. 4096MB and 8192MB), the proposed solution signifies the improvement in the

response time.

Similarly, the Grep MapReduce application is executed on the traditional Hadoop sys-

tem. The response times are presented in the Table.5.3 below:

33

Table 5.3: Response times for Grep application on traditional Hadoop

Data-Size Real-time

512 MB 117 secs

1 GB 129 secs

2 GB 227 secs

4 GB 387 secs

8 GB 706 secs

Likewise, the Grep MapReduce application was executed on the Hadoop system with

proposed solution for the same data sizes.

The response times recorded are mentioned in below Table.5.4:

Table 5.4: Response times for Grep application using proposed solution

Data-Size Real-time

512 MB 121 secs

1 GB 125 secs

2 GB 220 secs

4 GB 357 secs

8 GB 691 secs

For comparing the behaviour of both the traditional Hadoop system and Hadoop sys-

tem with proposed solution during the execution of Grep application, the Fig.5.2 is

described:

34

Figure 5.2: Comparison between the traditional Hadoop and the proposed solution
while running the Grep application.

In Fig.5.2, it is understood that for the initial set of datasizes 512 MB, 1024 MB and

2048 MB were taking similar time to complete Grep application. On the contrary, when

the data size crosses 4GB, the response time taken by the Hadoop system with proposed

solution was less than the traditional Hadoop system. So, it is assured that the proposed

Data-Distribution is showing improvement in Hadoop performance. The maximum

data size was limited to 8 GB because of the storage constraint in the OpenStack

instance that was created for representing the Master node. Thus, the evaluation could

not be accomplished for bigger data size.

After discussing the execution of Wordcount MapReduce application and Grep appli-

cation on the Hadoop system with proposed solution, it can be seen that there are

certain improvement in the performance because of proposed solution.

35

Chapter 6

Conclusion

This paper proposed a solution to improve the performance of the heterogeneous

Hadoop cluster by assigning the data blocks on the basis of processing speed of the

Datanodes. The traditional Hadoop system assigns the same set of data to each Datan-

ode, which may not be fruitful for heterogeneous Hadoop cluster environment. The

proposed solution includes Speed Analyser and Data-Distribution component. Speed

Analyser component measure the processing speed of each Datanode in terms of com-

puting ratio. The Data-Distribution component is integrated as a part of Hadoop

software and it assigns data blocks to Datanodes based on their computing ratio.

To verify the advancements in the response time of Hadoop system with proposed

solution, two MapReduce applications were tested. The evaluation section describes

outcomes of the testing. Using the proposed solution, there are improvements in the

heterogeneous Hadoop clusters performance when the data size increases.

Thus, the proposed solution has the advantage of understanding Datanode processing

speed and Data-Distribution Technique which assigns blocks as per computing capacity

of Datanodes.

Although, there are certain improvement in the performance because of proposed so-

lution, the improvements are not so much significant. One of the probable reason for

this behavior might be the data size. In addition, even after assignment of data blocks

to Datanodes based on their processing speed, some Datanodes might have struggled

during execution period. However, this behavior will be investigated as part of the fu-

ture work. In addition, the effect of replication factor on the proposed solution is also

not considered on the implementation of the proposed solution. Thus, the proposed

solution can be improved by handling a straggler node issue and understanding the

impact of replication over the proposed solution.

36

Bibliography

Arasanal, R. & Rumani, D. (2013), Improving mapreduce performance through complexity and per-

formance based data placement in heterogeneous hadoop clusters, in C. Hota & P. Srimani, eds,

‘Distributed Computing and Internet Technology’, Vol. 7753 of Lecture Notes in Computer Science,

Springer Berlin Heidelberg, pp. 115–125. [Online]. Available from: http://dx.doi.org/10.1007/

978-3-642-36071-8_8 [Accessed 22 February 2014].

Cardosa, M., Wang, C., Nangia, A., Chandra, A. & Weissman, J. (2011), Exploring mapreduce ef-

ficiency with highly-distributed data, in ‘Proceedings of the Second International Workshop on

MapReduce and Its Applications’, MapReduce ’11, ACM, New York, NY, USA, pp. 27–34. [Online].

Available from: http://doi.acm.org/10.1145/1996092.1996100 [Accessed 9 December 2013].

Chervenak, A., Deelman, E., Livny, M., Su, M.-H., Schuler, R., Bharathi, S., Mehta, G. & Vahi, K.

(2007), Data placement for scientific applications in distributed environments, in ‘Proceedings of the

8th IEEE/ACM International Conference on Grid Computing’, GRID ’07, IEEE Computer Society,

Austin, Texas, pp. 267–274. [Online]. Available from: http://dx.doi.org/10.1109/GRID.2007.

4354142 [Accessed 5 December 2013].

Chung, F., Graham, R., Bhagwan, R., Savage, S. & Voelker, G. M. (2006), ‘Maximizing data locality

in distributed systems’, J. Comput. Syst. Sci. 72(8), 1309–1316. [Online]. Available from: http:

//dx.doi.org/10.1016/j.jcss.2006.07.001 [Accessed 7 December 2013].

Dean, J. & Ghemawat, S. (2008), ‘Mapreduce: Simplified data processing on large clusters’, Commun.

ACM 51(1), 107–113. [Online]. Available from: http://doi.acm.org/10.1145/1327452.1327492

[Accessed 7 December 2013].

Eltabakh, M. Y., Tian, Y., Özcan, F., Gemulla, R., Krettek, A. & McPherson, J. (2011), ‘Cohadoop:

Flexible data placement and its exploitation in hadoop’, Proc. VLDB Endow. 4(9), 575–585. [On-

line]. Available from: http://dl.acm.org/citation.cfm?id=2002938.2002943 [Accessed 7 Decem-

ber 2013].

Fan, Y., Wu, W., Cao, H., Zhu, H., Zhao, X. & Wei, W. (2012), A heterogeneity-aware data distribution

and rebalance method in hadoop cluster, in ‘ChinaGrid Annual Conference (ChinaGrid), 2012 Sev-

enth’, Beijing, pp. 176–181. [Online]. Available from: http://ieeexplore.ieee.org/stamp/stamp.

jsp?tp=&arnumber=6337296&isnumber=6337273 [Accessed 6 December 2013].

Guo, Z., Fox, G. & Zhou, M. (2012), Investigation of data locality and fairness in mapreduce, in ‘Pro-

ceedings of Third International Workshop on MapReduce and Its Applications Date’, MapReduce

’12, ACM, New York, NY, USA, pp. 25–32. [Online]. Available from: http://doi.acm.org/10.

1145/2287016.2287022 [Accessed 5 December 2013].

37

http://dx.doi.org/10.1007/978-3-642-36071-8_8
http://dx.doi.org/10.1007/978-3-642-36071-8_8
http://doi.acm.org/10.1145/1996092.1996100
http://dx.doi.org/10.1109/GRID.2007.4354142
http://dx.doi.org/10.1109/GRID.2007.4354142
http://dx.doi.org/10.1016/j.jcss.2006.07.001
http://dx.doi.org/10.1016/j.jcss.2006.07.001
http://doi.acm.org/10.1145/1327452.1327492
http://dl.acm.org/citation.cfm?id=2002938.2002943
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6337296&isnumber=6337273
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6337296&isnumber=6337273
http://doi.acm.org/10.1145/2287016.2287022
http://doi.acm.org/10.1145/2287016.2287022

HDFS Architecture Guide (2008). [Online].Available from:http://hadoop.apache.org/docs/r1.2.1/

hdfs_design.html [Accessed 6 July 2014].

Jin, J., Luo, J., Song, A., Dong, F. & Xiong, R. (2011), Bar: An efficient data locality driven task

scheduling algorithm for cloud computing, in ‘Proceedings of the 2011 11th IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing’, CCGRID ’11, IEEE Computer Society,

Newport Beach, CA, pp. 295–304. [Online]. Available from: http://dx.doi.org/10.1109/CCGrid.

2011.55 [Accessed 5 December 2013].

Kala Karun, A. & Chitharanjan, K. (2013), A review on hadoop ; hdfs infrastructure extensions, in

‘Information Communication Technologies (ICT), 2013 IEEE Conference on’, JeJu Island, pp. 132–

137. [Online]. Available from: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

6558077&isnumber=6558050 [Accessed 7 December 2013].

Kurazumi, S., Tsumura, T., Saito, S. & Matsuo, H. (2012), Dynamic processing slots scheduling for i/o

intensive jobs of hadoop mapreduce, in ‘Networking and Computing (ICNC), 2012 Third Interna-

tional Conference on’, Okinawa, pp. 288–292. [Online]. Available from: http://ieeexplore.ieee.

org/stamp/stamp.jsp?tp=&arnumber=6424579&isnumber=6424528 [Accessed 7 December 2013].

Nguyen, P., Simon, T., Halem, M., Chapman, D. & Le, Q. (2012), A hybrid scheduling algorithm for

data intensive workloads in a mapreduce environment, in ‘Utility and Cloud Computing (UCC), 2012

IEEE Fifth International Conference on’, Chicago, IL, pp. 161–167. [Online]. Available from: http:

//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6424941&isnumber=6424908 [Accessed 6

December 2013].

OpenStack Training Guides (2014). [Online].Available from:http://docs.openstack.org/

training-guides/training-guides.pdf [Accessed 6 April 2014].

Shen, H. & Zhu, Y. (2009), ‘A proactive low-overhead file replication scheme for structured {P2P}
content delivery networks’, Journal of Parallel and Distributed Computing 69(5), 429 – 440. [On-

line]. Available from: http://www.sciencedirect.com/science/article/pii/S0743731509000264

[Accessed 3 December 2013].

Welcome to Apache Hadoop! (2008). [Online].Available from:http://hadoop.apache.org/ [Accessed

5 April 2014].

White, T. (2012), Hadoop: The Definitive Guide, O’Reilly Media, Inc.

Xie, J., Yin, S., Ruan, X., Ding, Z., Tian, Y., Majors, J., Manzanares, A. & Qin, X. (2010), Improving

mapreduce performance through data placement in heterogeneous hadoop clusters, in ‘Parallel Dis-

tributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium

on’, Atlanta, GA, pp. 1–9. [Online]. Available from: http://ieeexplore.ieee.org/stamp/stamp.

jsp?tp=&arnumber=5470880&isnumber=5470678 [Accessed 2 December 2013].

Ye, X., Huang, M., Zhu, D. & Xu, P. (2012), A novel blocks placement strategy for hadoop, in

‘Computer and Information Science (ICIS), 2012 IEEE/ACIS 11th International Conference on’,

Shanghai, pp. 3–7. [Online]. Available from: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=6211069 [Accessed 20 February 2014].

Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S. & Stoica, I. (2010), Delay

scheduling: A simple technique for achieving locality and fairness in cluster scheduling, in ‘Pro-

ceedings of the 5th European Conference on Computer Systems’, EuroSys ’10, ACM, New York,

38

http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://dx.doi.org/10.1109/CCGrid.2011.55
http://dx.doi.org/10.1109/CCGrid.2011.55
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6558077&isnumber=6558050
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6558077&isnumber=6558050
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6424579&isnumber=6424528
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6424579&isnumber=6424528
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6424941&isnumber=6424908
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6424941&isnumber=6424908
http://docs.openstack.org/training-guides/training-guides.pdf
http://docs.openstack.org/training-guides/training-guides.pdf
http://www.sciencedirect.com/science/article/pii/S0743731509000264
http://hadoop.apache.org/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5470880&isnumber=5470678
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5470880&isnumber=5470678
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6211069
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6211069

NY, USA, pp. 265–278. [Online]. Available from: http://doi.acm.org/10.1145/1755913.1755940

[Accessed 4 December 2013].

Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. & Stoica, I. (2008), Improving mapreduce perfor-

mance in heterogeneous environments, in ‘Proceedings of the 8th USENIX Conference on Operating

Systems Design and Implementation’, OSDI’08, USENIX Association, Berkeley, CA, USA, pp. 29–

42. [Online]. Available from: http://dl.acm.org/citation.cfm?id=1855741.1855744 [Accessed 6

December 2013].

Zhang, X., Feng, Y., Feng, S., Fan, J. & Ming, Z. (2011), An effective data locality aware task schedul-

ing method for mapreduce framework in heterogeneous environments, in ‘Proceedings of the 2011

International Conference on Cloud and Service Computing’, CSC ’11, IEEE Computer Society, Hong

Kong, pp. 235–242. [Online]. Available from: http://dx.doi.org/10.1109/CSC.2011.6138527 [Ac-

cessed 5 December 2013].

Zhao, Y., Wang, W., Meng, D., Yang, X., Zhang, S., Li, J. & Guan, G. (2012), A data locality opti-

mization algorithm for large-scale data processing in hadoop, in ‘Computers and Communications

(ISCC), 2012 IEEE Symposium on’, Cappadocia, pp. 000655–000661. [Online]. Available from: http:

//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6249372&isnumber=6249257 [Accessed 6

December 2013].

39

http://doi.acm.org/10.1145/1755913.1755940
http://dl.acm.org/citation.cfm?id=1855741.1855744
http://dx.doi.org/10.1109/CSC.2011.6138527
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6249372&isnumber=6249257
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6249372&isnumber=6249257

Appendix A

Appendix

A.1 Speed Analyser component

A.1.1 Install script

1 usage="Usage: slaves.sh [--config confdir] command..."

2

3 # if no args specified, show usage

4 if [$# -le 0]; then

5 echo $usage

6 exit 1

7 fi

8

9

10 bin=‘dirname "$0"‘

11 bin=‘cd "$bin"; pwd‘

12

13 # If the slaves file is specified in the command line,

14 # then it takes precedence over the definition in

15 # hadoop-env.sh. Save it here.

16 HOSTLIST=$1

17

18 #if [-e "$bin/../libexec/hadoop-config.sh"]; then

19 # . "$bin"/../libexec/hadoop-config.sh

20 #else

21 # . "$bin/hadoop-config.sh"

22 #fi

23

24

25 if ["$HOSTLIST" = ""]; then

26 if ["$HADOOP_SLAVES" = ""]; then

40

27 export HOSTLIST="${HADOOP_CONF_DIR}/slaves"

28 fi

29 fi

30

31 for slave in ‘cat "$HOSTLIST"|sed "s/#.*$//;/^$/d"‘; do

32 if ssh hduser@$slave stat $HOME/speedinstall/rational.jar \> /dev/null 2\>\&1

33 then

34 echo "SpeedAnalyser is already installed on $slave..."

35 else

36 ssh hduser@$slave "mkdir -p $HOME/speedinstall; chmod 777 *"

37 scp -r hduser@master:$HOME/speedinstall/* hduser@$slave:$HOME/speedinstall

38 fi

39 done

40

41 wait

A.1.2 Execute script

1 usage="Usage: slaves.sh [--config confdir] command..."

2

3 # if no args specified, show usage

4 if [$# -le 0]; then

5 echo $usage

6 exit 1

7 fi

8

9

10 bin=‘dirname "$0"‘

11 bin=‘cd "$bin"; pwd‘

12

13 HOSTLIST=$1

14

15

16 speed="/home/hduser/speedinstall"

17 if ["$HOSTLIST" = ""]; then

18 if ["$HADOOP_SLAVES" = ""]; then

19 export HOSTLIST="${HADOOP_CONF_DIR}/slaves"

20 fi

21 fi

22

23 for slave in ‘cat "$HOSTLIST"|sed "s/#.*$//;/^$/d"‘; do

24 if ssh hduser@$slave stat $HOME/speedinstall \> /dev/null 2\>\&1

25 then

26 if ssh hduser@$slave stat $HOME/speedinstall/log \> /dev/null 2\>\&1

27 then

28 ssh -q hduser@$slave "cd /home/hduser/speedinstall; rm log"

41

29 fi

30 files=‘ssh hduser@$slave ’ls -l $HOME/speedinstall | wc -l’‘

31 if [$files -ge 5]

32 then

33 ssh -q hduser@$slave "cd /home/hduser/speedinstall; touch out log response;(/usr/bin ←↩
/time --format="%E" java MatrixMultiplyRA input.txt out) |& tee log"

34 ssh -q hduser@$slave "scp -r hduser@$slave:/home/hduser/speedinstall/log ←↩
hduser@master:/home/hduser/speedinstall/log"

35 fi

36 else

37 echo "Install Speed Analyser on $slave........................"

38 fi

39 done

40

41 wait

A.2 Data-Distribution component

1 DatanodeDescriptor targets[] = replicator.chooseTarget(src,

2 replication,

3 clientNode,

4 excludedNodes,

5 blockSize);

6 if (oldtargets == null)

7 {

8 oldtargets = targets[0];

9 i = getcomputingratio(targets[0]);

10 i = i -1;

11 }

12 else

13 {

14 if (i == 0)

15 {

16 //targets = targets;

17 oldtargets = target[0];

18 i = getcomputingratio(targets[0]);

19 i = i -1;

20 }

21 else

22 {

23 targets[0] = oldtargets;

24 i = i - 1;

25 }

26 }

42

	Abstract
	Acknowledgement
	Declaration
	Introduction
	Background
	Hadoop Background
	Hadoop Distributed File System
	MapReduce programming model

	Importance of data locality in Hadoop
	Exploring Data Locality
	Replication for achieving data-locality
	Node capability based data-distribution techniques

	Need of data-locality in scheduling approaches

	Design
	Proposed Data-Distribution architecture for Heterogeneous Hadoop cluster
	Speed Analyser
	Data Distribution Technique

	Use cases for the proposed solution
	Sequence diagram with the Data Flow of the Proposed Solution

	Implementation
	OpenStack Architecture
	Heterogeneous Hadoop cluster setup on OpenStack private cloud
	Heterogeneous Hadoop cluster configuration

	Speed Analyser
	Install Speed Analyser
	Execute Speed Analyser

	Data-Distribution Component

	Evaluation
	Conclusion
	Bibliography
	Appendix
	Speed Analyser component
	Install script
	Execute script

	Data-Distribution component

