
Efficiently migrating Java/JEE
prototype application to Google App

Engine PaaS Cloud

PRASANTH PRABHAKARAN

Submitted as part of the requirements for the degree

of MSc in Cloud Computing

at the School of Computing,

National College of Ireland

Dublin, Ireland.

August 2014

Supervisor Adriana Chis

Abstract

The thesis proposes a software methodology that helps to efficiently migrate Java/JEE

applications from traditional IT Infrastructure to Google App Engine(GAE). The main

aim of our software methodology is to promote greater utilization of GAE PaaS Cloud

by enabling an easier and smoother migration of existing Java/JEE web applications

to the GAE PaaS Cloud.

GAE is a Platform as a Service (PaaS) Cloud that allows building and deploying scal-

able web applications written in various programming languages such as Java, Python,

PHP and Google’s proprietary languguage Go. The software methodology is appli-

cable for migrating Java/JEE based web applications that use a Relational Database

Management System(RDBMS) from the traditional corporate IT networks to GAE. We

consider Java/JEE application that uses an RDBMS for migration is because Java/JEE

has been one of the most popular programming technology and RDBMS has been the

most widely used technology for storing the application data. We consider GAE Cloud

because it is one of the most mature PaaS Cloud Platform and provides standard fea-

tures such as scalability, reliability, performance, security and transactional datastore

to the applications deployed on GAE infrastructure.

Currently there exists a large number of Java/JEE enterprise applications using RDBM-

Ses that run on the traditional IT infrastructures. Migrating these applications to GAE

can reap the benefits of GAE platform. However migrating an application can be a

challenging task as it requires the migration of the application data from the RDBMS to

GAE Datastore, modification of the application code to remove the GAE unsupported

JRE classes and replacement of the SQL queries in data access layer with Datastore

APIs. The software methodology proposes that an application can be efficiently mi-

grated to GAE using a Java Source Code Analyzer Tool and an automated Database

Migration Tool. The Java Source Code Analyzer Tool helps to identify the usage of both

GAE unsupported JRE classes in the application’s Java source files and SQL queries

in the Data Access Layer of the application. The automated Database Migration Tool

can migrate data from the RDBMS to the GAE local Datastore in the development

ii

machine for testing purpose or to the remote Datastore on the GAE Cloud. Before

migrating the application the GAE unsupported JRE classes should be removed from

the application’s source files, the SQL queries should be replaced with Datastore API’s

and the applications’s data should be migrated to GAE Datastore.

We applied the software methodology to migrate our sample set of Java/JEE applica-

tions to the Google App Engine. The results were successful as the Java Source Code

Analyzer Tool helped significantly to reduce the re-engineering efforts that were essen-

tial to modify the applications befored deploying to GAE Platform. The automated

Database Migration Tool was able to migrate the data successfully. To conclude, we

can apply the software methodology to any Java/JEE application to efficiently migrate

to GAE and hence promote a better utilization of GAE PaaS Cloud.

Keywords: Google App Engine, Java/JEE, PaaS Migration, RDBMS, DataStore,

Cloud Computing, Java Source Code Analyzer, Database Migration Tool, Java Com-

piler API’s, Multithreading.

iii

Acknowledgements

It is a pleasure to thank those who made this thesis possible.

First of all, I would like to express my sincere gratitude to my supervisor Adriana Chis

for providing me with valuable guidance and constant motivation. I appreciate her for

her deep knowledge in Java technologies and helping me whenever I faced obstacles

during this thesis work.

A very special thanks goes Dr. Horacio González-Vélez for accepting my thesis proposal

as well as preparing to do this thesis.

I must also acknowledge Keith Brittle for helping me to prepare the literature review

and for teaching the referencing techniques.

iv

Declaration

I confirm that the work contained in this MSc project report has been

composed solely by myself and has not been accepted in any previ-

ous application for a degree. All sources of information have been

specifically acknowledged and all verbatim extracts are distinguished

by quotation marks.

Signed .. Date

PRASANTH PRABHAKARAN

v

Contents

Abstract ii

Acknowledgements iv

Declaration v

1 Introduction 1

1.1 Contributions . 3

2 Background 1

2.1 Introduction . 1

2.2 Programming language incompatibility issues 4

2.3 Database Migration Issues . 6

2.4 Google App Engine limitations . 9

2.5 Google App Engine Datastore Limitations 12

2.6 Summary . 15

3 Design 17

3.1 Summary . 26

4 Implementation 27

4.1 Java Source Code Analyzer Tool . 27

4.2 Database Migration Tool . 32

4.2.1 Database Migration Tool Architecture 33

4.2.2 Data Exporter Components . 38

4.2.3 Data Importer Components . 41

4.2.4 Data flow diagram . 43

4.3 Software Life cycle . 44

4.4 Main implementation decisions . 44

4.5 Summary . 45

vi

5 Evaluation 47

5.1 Evaluation of Java Source Code Analyzer Tool 48

5.2 Evaluation of Database Migration Tool 49

5.3 Summary . 52

6 Conclusions 54

6.1 Further work . 55

A Appendix 59

A.1 Java Source Code Analyzer Tool important Java classes and configura-

tion files . 59

A.1.1 GAE BlackList Analyzer Program important Java classes 59

A.1.2 SQL Query Analyzer Program important Java classes 66

A.1.3 Configuration properties file . 77

A.1.4 Rule table generated by the SQL Query Analyzer Program . . . 77

A.2 Database Migration Tool important Java classes and configuration files . 84

A.2.1 Database Migration Tool main Java class 84

A.2.2 Data Exporter Module important Java classes 86

A.2.3 Data Importer Module important Java classes 96

A.2.4 Configuration properties file . 105

A.2.5 The table name to entity kind mapping XML file 106

vii

List of Tables

5.1 The total number of occurences of GAE unsupported JRE classes iden-

tified by GAE BlackList Analyzer Program versus Google Plugin in the

sample applications . 48

5.2 The total number of SQL queries identified by SQL Query Analyzer

Program in the sample applications . 49

5.3 The total number of records and tables in the RDBMS of the sample

applications migrated to the GAE Datastore by the Database Migration

Tool . 50

viii

List of Figures

3.1 The steps of the software methodology for migrating Java/JEE applica-

tions to GAE Cloud. 19

3.2 UML USE Case Diagram describing user interaction with the Java

Source Code Analyzer Tool . 20

3.3 The main components of Java Source Code Analyzer Tool 22

3.4 UML USE Case Diagram describing the user interaction with the

Database Migration Tool . 23

3.5 UML Component Diagram of the Database Migration Tool 24

3.6 Working of the Database Migration Tool 25

3.7 Deployment diagram of the ‘Spring Petclinic’ application in a traditional

IT network. 25

3.8 Deployment diagram of the ‘Spring Petclinic’ application on Google App

Engine. 26

4.1 The UML Class Diagram for GAE BlackList Analyzer Program 31

4.2 The UML Class Diagram for SQL Query Analyzer Program 32

4.3 Database Migration Tool main components and workflow 34

4.4 UML Class Diagram showing the dependency between DataExporter

class and TableExporter class of Data Exporter Module. 39

4.5 UML Class Diagram showing the dependency between DataImporter

class and TableImporter class of Data Importer Module. 41

4.6 Data flow diagram . 44

5.1 Performance evaluation of the Database Migration Tool on PetClinic . . 51

5.2 Performance evaluation of the Database Migration Tool on AjaxCrud-

JTable . 52

ix

Chapter 1

Introduction

Cloud computing emerged as a new computing paradigm that provides the users a

computational environment. The Cloud Service Provider uses the cloud service models

such as Infrastructure as a Service(IaaS), Platform as a Service(PaaS) and Software as

a Service(SaaS) to deliver a computational environment to the customers. In this thesis

we propose an approach to efficiently migrating a Java/JEE application to Google App

Engine PaaS Cloud.

In PaaS model the service provider provides a platform where the customers can create

and run their applications. The most popular PaaS offerings are from Google, Microsoft

and Amazon, namely Google App Engine (GAE), Microsoft Azure respectively and

AWS Elastic Beanstalk. According to Shu-Qing & Jie-Bin (2010), the GAE allows

the users to build and run scalable web applications on Google’s Infrastructure. The

GAE provides features such as URL fetch, image processing, memory cache, efficient

data storage with transactional support, query API’s, automatic load balancing, user

authorization, security mechanisms, and local development environment. Bunch et al.

(2010) mention that the GAE provides App Engine Datastore which is schemaless

object storage that provides scalable storage for the web application. A web application

deployed on the GAE can utilise these features as well as the App Engine Datastore to

store the application data.

In this thesis we select enterprise web applications built using Java/JEE and RDBMS

technologies to migrate to GAE. The Java/JEE technology has been one of the most

powerful and popular programming choice since many years. According to Bhat & Jad-

hav (2010),the RDBMS has been the proven technology for storing data but RDBMS

technology could not meet the demands of applications that require to handle large set

of unstructured data or provide elastic scalability. Therefore, by migrating a Java/JEE

1

application to GAE can benefit from utilising GAE features and can achieve application

scalability.

However,Vu & Asal (2012) mention that GAE imposes several constraints that an

application must meet in order to run on the GAE infrastructure. There are major

challenges in successfully migrating applications to GAE. Even though, GAE allows

deploying applications written in languages such as Java, Python, PHP and Go, it pro-

vides limited programming functionalities. In other words, it restricts the application

to use only a subset of programming API’s in a language. Therefore it is important to

identify the usage of JRE classes in the application which are not supported by GAE.

In addition, the application should use GAE Datastore in order to achieve application

scalability. The GAE Datastore is a proprietary schemaless NoSQL Database. Bonnet

et al. (2011) mention that for an existing system that uses SQL Database choose to

use NoSQL system it is required to handle the Database migration process. To be

more precise, the application data in the RDBMS should be moved into App Engine

Datastore. Also the application’s data access layer should be modified to support the

create,read,update and delete(CRUD) operations on the GAE Datastore. These are the

major challenges in migrating an existing Java/JEE application that uses an RDBMS

to GAE platform.

The first issue of identifying the GAE unsupported JRE classes and SQL queries in

the application can be solved by developing a Java Source Code Analyzer Tool. The

existing tools like Google Plugin for eclipse can be used for identifying unsupported

classes. However, it is observed that Google Plugin fails to identify many unsupported

JRE classes making it’s usage unreliable. Besides Google Plugin do not provide any

hints or solutions for code refactoring to the programmer who is not familier with GAE

and NoSQL Infrastructure. The thesis has came up with a tool named Java Source

Code Analyzer to handle this issue. The second issue with respect to Data migration

can be solved by developing an automated Database Migration Tool. Currently there

is no standard tool available to perform such Data migration from the RDBMS to GAE

Datastore. The GAE provides a tool named Bulkloader for exporting and importing

entities to and from Datastore in CSV and XML format files(Angabini et al. (2011)).

The Bulkloader tool is distributed as a part of GAE Python SDK and requires the

installation of both Python runtime as well as GAE Python SDK. In addition the user

has to manually export the table data from the RDBMS to CSV files which serve as

the inputs to the Bulkloader. However this process involves lot of manual work and

can be quite cumbersome if the application’s RDBMS has many tables containing large

number of records.

This research thesis discusses the issues that can comes across on migrating a Java/JEE

2

application to GAE and came up with a software methodology in order to efficiently

migrate the Java/JEE application to the GAE. The software methodology is organized

as a series of sequential steps. The application along with its data are migrated as

the end result. The software methodology orchestrates the use of the Java Source

Code Analyzer Tool and Database Migration Tool to efficiently migrate Java/JEE

applications to GAE.

1.1 Contributions

The migration of existing applications to Cloud Platforms has gathered significant at-

traction due to the perceived benefits that Cloud computing platforms offers such as

application scalability, load balancing, reduced operational cost. Most articles discuss

topics related to application migration such as feasibility of migrating applications to

various cloud platforms, cost benefits achieved, challenges involved in application mi-

gration, limitations imposed by the Cloud Platforms for migrating existing application

etc. However, less research has been conducted for efficiently migrating applications to

the Cloud Platforms.

The main contribution of this paper is the software methodology which promotes the

adoption of GAE Cloud by providing a systematic approach to migrate existing Java/-

JEE applications to GAE platform. The software methodology enables organizations

to move their existing Java/JEE application to GAE potentially saving cost as well

as achieving improved application performance. We developed a Java Source Code

Analyzer Tool and an automated Database Migration Tool to support the software

methodology. The Java Source Code Analyzer Tool is developed using the advanced

features provided by the Java Platform. It can scan an application’s Java source files

for identifying the presence of both unsupported classes JRE specified by the GAE

Platform and SQL queries in the Data access layer which needs to be replaced. The

automated Database Migration Tool developed can migrate huge quantities of data from

any SQL Database System used by the application to GAE Datastore. The Database

Migration tool relies on Java concurrency(i.e multithreading) APIs in order to make

the migration faster. Currently there do not exist such tools. Both the Java Source

Code Analyzer Tool and Database Migration Tool are designed to be run with mini-

mum configuration and reduce the migration efforts required for migrating applications

running on traditional IT infrastructures to GAE Cloud. Furthermore, we carry out an

empirical evaluation which shows that our software methodology is successfully applied

to migrate Java/JEE applications to the GAE platform.

The thesis paper is structured as follows. Chapter 2 discuss the motivation to migrate

3

the Java/JEE application to GAE, the possible challenges that can arise on migrating

to GAE Platform and proposes a software methodology. Chapter 3 briefly discuss the

design specifications, functional requirements and architecture of the proposed Java

Source Code Analyzer Tool and Database Migration Tool. Chapter 4 discuss more

about the underlying technical implementation details of the Java Source Code Ana-

lyzer Tool and Database Migration Tool. Chapter 5 discuss the results obtained on

the evaluation of the software methodology by applying the methodology to migrate

a sample set of Java/JEE application to the GAE platform. Chapter 6 presents the

conclusion of the research work as well as also briefly mentions about the further works

that needs to be followed.

4

Chapter 2

Background

2.1 Introduction

Cloud Computing has emerged as one of the standard computing paradigms. The

research problem that is going to be discussed for the literature review is

Can a Java/JEE prototype application be efficiently migrated to a Google

App Engine PaaS Cloud?.

Before we proceed it is necessary to have an understanding about Cloud Computing

and various cloud service models as the research problem is closely related to Google

App Engine, which is a popular cloud service model from Google.

Mell & Grance (2011) define Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing re-

sources such as networks, servers, storage, applications and services that can be rapidly

provisioned and released with minimal management effort or service provider interac-

tion. They state that the Cloud model is composed of five essential characteristics,

three service models and four deployment models. The cloud service provider relies

on cloud service models to deliver its services to its customers. According to them,

there are three kinds of cloud service models namely Infra structure as service (IaaS),

Platform as a service (PaaS) and Software as a service (SaaS).

In the IaaS cloud service model, the subscriber can choose any operating system image

to be installed in the service provider’s public data center. The subscriber is then free

to install any application software over the operating system. Amazon.com is a major

provider of an IaaS platform. In the PaaS cloud service model, the service provider

provides a computing platform which contains an operating system, program language

1

execution environments, compilers, application development tools, databases and web

servers. The PaaS model allows the developers to develop and deploy the application

in the PaaS Cloud. The key providers of PaaS are Google and Microsoft. Google App

Engine (GAE) and Microsoft Azure are popular PaaS cloud platforms from Google

Inc. and Microsoft Inc. respectively. In the SaaS cloud service model the service

providers host applications on their data centres and their subscribers can access these

applications through thin clients such as browsers from their mobile phones or personal

computers. In this model, the subscribers have limited rights to modify the underlying

cloud infrastructures. Saleforce.com is a major provider of SaaS.

Having defined cloud computing and cloud service models, we will look into other

aspects of the research problem. The Java/JEE application prototype for the research is

an application written in the Java programming language and uses a relational database

management system(RDBMS) for storing the application data. The acronym JEE

stands for Java Enterprise Edition, which is a collection of technologies and API’s for

developing enterprise applications. An RDBMS is a Database management system that

stores relational data in tables.

The research problem is highly important because there are many Java/JEE applica-

tions that run on the organization’s traditional infrastructures; migrating these appli-

cations to GAE can bring enormous benefits to the organization by saving costs as well

as leveraging the GAE infrastructure to achieve an improved application performance.

GAE is considered for the PaaS platform in this research as it has been the most

popular choice of PaaS cloud Platform in the industry. Prodan & Sperk (2013) mention

that GAE is one of the important and reputable PaaS that can support scalable web

applications and is powerful enough to handle large traffic peaks. Srirama et al. (2012)

mention that GAE supports applications written in programming languages such as

Java and Python. Another important feature of GAE is that it can scale up and

down the number of application instances based on the volumes of requests to the

application. The GAE proprietary Datastore technology is also one of the motivating

factors in choosing GAE for this thesis. According to Buyya, R., Vechhiola, C. &

Selvi, S.T (2013), the GAE Datastore is designed to scale, optimized to access data

quickly, supports transaction and provide optimistic concurrency control methods. The

purpose of selecting a Java/JEE application to be migrated to the GAE is because

Java/JEE with an RDBMS has been the popular technologies for developing enterprise

applications since a long time. Vu & Asal (2012) point out that, many organizations

are reluctant to migrate their applications to the PaaS cloud because there is a lack

of clarity on how to migrate the applications to PaaS clouds and also caution that the

application migration can be a failure if the migration is handled incorrectly. The lack

2

of clarity is because cloud computing is relatively new and less resources are available

on effective migration to the PaaS clouds.

Most of the journal articles state that migration of an application to GAE is difficult as

well as challenging. The literature review discusses the difficulties and challenges stated

by these journal articles and will also demonstrate how to deal with the difficulties

and challenges. The literature review is organized into four main sections under the

following headings: - Programming language incompatibility issues, Database

migration issues, Google App Engine limitations and Google App Engine

Datastore limitations. The sections are chosen for discussion because most of the

journal articles consider these as the major challenges affecting the migration.

Programming language incompatibility issues discusses the challenges involved due to

the difference in the version of the programming language that is supported by the GAE

and the version of the programming language used to write the application. This section

also discusses about the programming restrictions imposed by GAE Platform. Database

migration issues discusses the challenges involved in migrating from traditional RDBMS

to GAE datastore. Google App Engine limitations discusses the limitations of the GAE.

Finally, Google App Engine Datastore limitations discusses the limitations of Datastore

which is used to store application data in the GAE. A discussion on these sections will

give an answer to the research problem in hand.

In the next section we will be discussing the Programming language incompatibility

issues in more detail.

3

2.2 Programming language incompatibility issues

This section discusses one of the major issues that arise during the migration. The first

paragraph discusses how the programming language incompatibility issues arise.

According to Vu & Asal (2012), one of the challenges that occurs during the migration of

the Java application to the GAE is the programming language incompatibility issue. Vu

& Asal (2012) state that PaaS Cloud supports only limited version of the Programming

language. If the application is implemented in a different version which is not supported

by PaaS the application needs to be modified. In addition, GAE platform imposes

restrictions to increase the application security by supporting only a subset of the classes

in the Java Runtime Environment(JRE). According to Google Developers (2013g),

these subset of the classes that are supported by the GAE is called JRE white list of

classes. If the application contains JRE classes that are not present in the JRE whitelist

the application may not run on the GAE platform. The Google Developers (2013g)

also points out that the JRE classes that writes to the file system of GAE should

not be present in the application. They also state that there are some restrictions in

using Thread API classes in the application as the application can create threads but

these threads cannot outlive the request that created them. Further more, the usage

of java.lang.System API’s in the application will be ignored.

In this section various ways to identify the incompatibility issues will be discussed

and also a few ways to overcome these issues will be demonstrated as most of the

journal articles do not provide a clear picture on how to address the incompatibility

issues. Incompatibility issues can be identified by using some development tools such

as Eclipse and Google Plugin for Eclipse. Eclipse is a standard development tool

kit for developing Java/JEE applications. Angabini et al. (2011) recommend using

Google Plugin for Eclipse for its simplicity which also eases the deployment of an

application to the GAE. Once the Java/JEE application is opened with Eclipse that

uses Google Plugin will shows the classes of the application that are incompatible with

the GAE. However it is observed that the Google Plugin has serious limitation as it

identifies only a limited set of unsupported JRE classes in the application as well as

it do not offer the developer any information on how to deal with the unsupported

classes. In other words even if it identified the usage of unsupported JRE classes in

the application it will not offer the developer any constructive suggestion on how to

handle such scenarios. These shortfalls of the Google Plugin makes it less reliable.

Once the incompatible classes in the application are identified the corrective measures

can be taken. These measures may involve replacing unsupportive Java classes with

alternative Java classes that are compatible with the GAE. The supported Java classes

4

are published by Google Developers (2013d). Vu & Asal (2012) state that GAE doesn’t

support third party libraries such as Enterprise Java Beans(EJB), Java Naming and

Directory Interface (JNDI), Remote Method Invocation (RMI), etc. EJB technology is

closely associated with JNDI and RMI; it is used for running a program code within

a transaction and for remotely accessing the application. A solution to the problem

would be to remove these components with a data access layer that use the transaction

support from the underlying GAE Datastore. Additionally, in order to ensure that

the modified application will successfully run on GAE, it would be good to compile the

modified application against the supported Java classes published by Google Developers

(2013d).

To conclude, Programming language incompatibility issues may arise during the mi-

gration and efficiently solving these issues helps to efficiently migrate the Java/JEE

application to the GAE. However identification of GAE unsupported JRE classes in

the application pose a serious challenge as there are no standard tools available and

even with existing tools such as Google Plugin fails to identify many of the unsup-

ported classes there by making it less reliable. In the next section Database Migration

Issues, we discuss the challenges involved in migrating from traditional RDBMS to

GAE Datastore.

5

2.3 Database Migration Issues

In this section we will be discussing Database Migration issues that needs to be con-

sidered during the migration to GAE Platform. The Database migration involves the

transition of the application from using a traditional relational database management

system to the GAE Datastore as well as extracting data from the tables in the relational

database management system to GAE Datastore in the cloud. The next paragraph

summarizes the views regarding data migration from the traditional platform to GAE.

According to Vu & Asal (2012) and Chauhan & Babar (2012), the GAE provides a pro-

prietary Datastore for storing application data. The GAE Datastore is schemaless and

different from the traditional RDBMS. Shu-Qing & Jie-Bin (2010) agree that the GAE

Datastore provides efficient storage of data and supports efficient querying, sorting and

transactions but migration of data from the traditional RDBMS system to the Google

Datastore can be a challenging task. Vu & Asal (2012) and Chauhan & Babar (2012)

agree that there will be issues when migrating an application to the PaaS platform

and the major issues arise from the database migration. Although they acknowledge

that Database migration can be challenging, complex, costly and time consuming; they

state that if it is done correctly it may achieve the benefits of GAE platform. In the

next section we will discuss about query migration, an issue which is closely related to

database migration.

Kotecha et al. (2011) discusses about the application migration from one cloud service

provider to Google App Engine. According to Kotecha et al. (2011), it is necessary

to perform data migration and query migration in order to move an application from

one platform to another. The application code should be modified to support the

database provided by the target cloud service provider. Kotecha et al. (2011) point that

query migration is an important concern which needs to be addressed for migrating the

application. Kotecha et al. (2011) suggest developing a tool backed by an algorithm

which can translate queries written in SQL to GQL queries there by easing the migration

of application to Google App Engine Platform. The acronym SQL stands for Structured

Query Language, which is used to manipulate data in a relational database management

system. The acronym GQL stands for Google Query Language, which is a query

language to access the entities stored in GAE Datastore(Google Developers (2013j))

and the GQL grammer is similar to that of SQL(Google Developers (2013b)). The

GQL can be used to retrieve entities, however, it cannot be used to modify, delete or

create an entities in the Datastore(Google Developers (2013b)). According to Google

Developers (2013b), the GAE also supports Data access technologies such as Java Data

Objects(JDO), Java Persistence API’s(JPA) as well as Google’s proprietary Datastore

6

API’s to access the GAE Datastore. Inferring from idea put forwarded by Kotecha

et al. (2011), developing a tool that can take input of SQL queries and generate its

equivalent GQL queries or Datastore API calls can helps in the process of application

migration to Google App Engine. However, in my opinion the development of such

a tool could be time consuming as the tool needs to incorporates various relational

database management systems each having different implementations of SQL. However

development of such a tool may be a promising solution to reduce the tedious work of

replacing the SQL queries with GQL queries/Datastore API’s during the migration of

application from a traditional platform/cloud platform to GAE Platform. In the next

section a trivial as well as a simple data migration procedure is discussed as most of

the journal articles do not provide clear information on how to migrate the data from

the relational database management system to the GAE Datastore.

In this section we will discuss the feasibility of Bulkloader tool to perform a database

migration. The Bulkloader is a tool that is part of GAE Python SDK to export and

import data as entities to and fro from GAE Datastore(Google Developers (2013f)).

The primary purpose of the Bulkloader tool is for taking Data backup from GAE

Datastore. However we can utilize the Bulkloader tool for Database Migration and

requires the following steps. The first step is to retrieve all the data from the tables

of the RDBMS of the application in the form of CSV files. The acronym CSV stands

for comma separated values and a CSV file contains data delimited by a comma. The

second step is to write a script in Python programming language that tells how to

translate the rows related to the tables in the CSV file into GAE Datastore entities.

The third step is to execute Bulkloader command that takes a CSV file as one of the

inputs and Python script as another input. The Bulkloader command uses Remote

API to access the GAE Datastore services and migrates the data in the CSV files to

the application’s Datastore in the GAE Cloud. Currently the Bulkloader tool comes

only with GAE Python SDK.

To conclude, the Bulkloader tool can be used to migrate the application data stored in

the RDBMS to GAE Datastore. Therefore, it potentially can solve Database Migration

Issues. However, In my opinion this may not be a practical standard solution as there

involves a lot of manual work such as exporting the data from the tables of the RDBMS

to CSV files, installation of GAE Python SDK as the Bulkloader comes along with

GAE Python SDK, writing Bulkloader python scripts to use with GAE remote API’s

to move the CSV data as entites in the Datastore and finally the manual execution of

scripts by invoking the Bulkloader commands from the console. Using the Bulkloader

to export data can be laborious if the application has many tables and have plenty of

records present in the tables. In short the data migration challenge could be simplified

7

by developing a automated Database Migration Tool that can run with minimal user

intervention. Another advantage of developing the Database Migration Tool is that

it can be used as a generic solution for migrating any application’s data to GAE. In

the next section Google App Engine Limitations, we will discuss the limitations of the

GAE Platform.

8

2.4 Google App Engine limitations

We will be discussing two major limitations of GAE that are percieved by some journal

articles namely, GAE request processing time out and restriction of uploading a file

to the GAE sandbox. These two limitations are widely considered by journal articles

as the major limitations of GAE. In the next section we will be discussing the request

processing time out limitation.

The request processing time out feature is widely considered as a limitation of GAE

by many journal articles. Vu & Asal (2012) and Buyya, R., Vechhiola, C. & Selvi,

S.T (2013) agree that GAE limits the processing of all requests within 30 seconds.

Vu & Asal (2012) suggest a workaround solution to this issue by creating two services

to process a request that may take a longer time. One of the services executes the

request and passes the request and the intermediate results to the other service for

processing, if request processing is not finished before 30 seconds. If the second service

could not finish the request, it will pass the intermediate results to the first service

and this cycle continues until the processing of the request is completed. According to

Google Developers (2013b) the request processing time out has been set to 60 seconds

and GAE is optimized for applications with short-lived requests, typically those that

take a few hundred milliseconds. Zahariev (2009) does not consider the time out limit

as a limitation instead the time out serves to assure the stability of the system as well

as conserves the resources of the system. In my opinion request processing time out

is not a limitation as the web request to a resource must be served in a shorter time

and should not keep the user waiting for a response. In short, if the server takes a

longer period to process the request it should time out the request. The next section

demonstrate how to handle the request processing time out in the application.

According to Martins (2012) GAE throws an Exception named DeadlineExceededEx-

ception if the processing time of the request exceeds more than 60 seconds. Martins

(2012) outlines some possible scenarios that are the root causes for DeadlineExceed-

edException and suggests some corrective measures to follow in order to eliminate it.

In my opinion, it is also important to consider the optimization of the components of

the application so that the application can serve the request faster within the time out

limit and also the application can use the Task Queue provided by GAE wisely to pro-

cess an http request that needs a longer time to process. According to Malawski et al.

(2013), the Task Queue allows to create tasks which can be executed asynchronously

in the background and the time out limit for each task executed by the Task Queue is

10 minutes. The next section discusses the restrictions on uploading a file to the GAE

sandbox.

9

In this section we will discuss the inability to upload files to the GAE Sandbox and

provide alternate ways to overcome this limitation. Hexiao et al. (2012) explain a

successful migration of the online course application written in Java from the traditional

network to the GAE Cloud. However Hexiao et al. (2012) acknowledge that it is difficult

to move the existing application written in Java to the GAE and one of the challenges

faced is the inability of the GAE to upload the files over the internet to the GAE file

system. Since the GAE doesn’t support storing the files they have to cancel some of

the functionalities such as home work uploading and grading features. According to

Prodan & Sperk (2013), Zahariev (2009) and Buyya, R., Vechhiola, C. & Selvi, S.T

(2013), the applications running in the GAE are prevented from storing files to the

GAE file system in order to secure the GAE Infra structure. Gu et al. (2011), Yin

et al. (2011) and Buyya, R., Vechhiola, C. & Selvi, S.T (2013) state that the GAE runs

an application within a sandbox. An application running within a sandbox is heavily

restricted from accessing disc and memory of the host machine as well as prevented

from making network calls to external machines. Sandboxing is achieved by limiting

the application’s access to the Operating system calls. Gu et al. (2011) opinions that

even though the application running in the sandbox has limited access to the underlying

host infrastructure sandboxing is beneficial such as the sandbox allows the GAE to run

instances of applications on multiple servers accross the network, start and stop these

servers to meet traffic demands etc. In short these limitations are designed to achieve

some specific goals.

The restriction of uploading files to the GAE could be overcome by storing the files

to the Datastore or to the Blobstore. Google Developers (2013a) suggest the use of

predefined APIs called Blobstore APIs for handling the storage of files to the Blobstore.

The acronym API stands for Application Programming Interface, which are interfaces

available to the application for performing functions. The acronym Blob stands for

Binary large Object. When the user uploads a file to the application via a form, the

application can use the Blobstore API’s to create a blob object in the Blobstore from

the contents of the file and store the key returned by the Blobstore API’s. The key

can be used to access the file from the Blobstore in the future. According to Dewan

& Hansdah (2011), Google’s Blobstore is capable of storing blob objects of size up to

2 GB(Gigabyte). In addition, to storing the files to a Blobstore, it is also possible to

store small sized files into the Datastore. The Blob data type is supported by Datastore

and the files of limited size can be stored into the Blobproperty of the Datastore.

To conclude, the limitations associated with GAE, such as request processing time

out and in ability to write the GAE file system, can be solved by following the rec-

ommendations from Martins (2012) and using Blobstore APIs respectively. Therefore

10

solving the GAE limitations helps to efficiently migrate the Java/JEE application to

the GAE. In the next section Google App Engine Datastore Limitations, we will discuss

the limitations of the GAE Datastore.

11

2.5 Google App Engine Datastore Limitations

In this section we will discuss the limitations of GAE Datastore, delve deeper into the

concepts of GAE Datastore to have a better understanding of how Datastore works and

finally provide some solutions to overcome these limitations. Most of the journal articles

compare traditional relational database management systems to the GAE Datastore

and consider that the GAE Datastore has limitations

According to Vu & Asal (2012), the features supported by the traditional relational

database management systems are not supported by the GAE Datastore. Vu & Asal

(2012) point out that triggers, stored procedures, transactions, indexing, sequencing,

joins and predefined functions such as MIN, MAX, COUNT Etc are supported in

traditional database management systems, but these features are not supported by

GAE Datastore. Vu & Asal (2012) also mention that the GAE Datastore does not

support transactions, whereas, Bunch et al. (2010) and Yin et al. (2011) state that the

GAE Datastore provides support for transactions. Google Developers (2013e) confirm

that GAE Datastore supports transactions. According to Google Developers (2013h),

it is possible to group entities to belong to an entity group. The entities in such an

entity group can be manipulated in a single transaction. In short, GAE Datastore

supports ACID transactions like an RDBMS. The term ACID stands for Atomicity,

Consistency, Isolation and Durablility, which are transaction attributes that guarantees

the reliability of RDBMS transactions. Vu & Asal (2012) and Chauhan & Babar (2012)

point out that table joins are not supported. The table join is a SQL clause which is

used for fetching data that spreads across multiple tables.Google Developers (2013b)

and Kotecha et al. (2011) state that the Datastore does not support table joins. Kotecha

et al. (2011) rule out the need for table joins as the join table data is represented as

an aggregate of the related tables. Tran et al. (2011) state that NoSQL systems do

not support JOIN operations and an application that uses an RDBMS is migrated to a

Cloud Platform which provides a NoSQL sytem it is required to modify the application

code to compensate for the lack of features such as JOINS in order to achieve same

functionalities and operations of the application before migration. However, In my

opinion even though the table joins are not supported by GAE Datastore, it is possible

to have a workaround solution to achieve the same results as that of a table joins. The

workaround solution in this scenario will be forcing each entity to maintain a property

that holds a value which is the equal to the key of another another enitity and also

modify the application code so that when an entity is loaded the reference entity is also

loaded from the Datastore.

In order to understand why many traditional relational database management features

12

are not supported in the GAE Datastore, a brief understanding about the Datastore

is required. According to Buyya, R., Vechhiola, C. & Selvi, S.T (2013) and Lei Hu

(2012) the Datastore is built over the Google’s proprietary data storage system named

Bigtable. Sanderson (2009) agrees that Bigtable is the basis of GAE Datastore. Yin

et al. (2011) and Ramanathan et al. (2011) state that the GAE uses Bigtable as the

database system for storing the application data and it is built on top of the Google

File System (GFS),Chubby service and SSTable. Ramanathan et al. (2011) give a more

detailed insight into the Bigtable architecture and state that the Bigtable is different

from the traditional relational database management systems and it is a scattered, dis-

tributed, persistent multidimensional sorted map. Ramanathan et al. (2011) point that,

the Bigtable along with GFS has been designed and engineered to maintain a high per-

formance and availability. The Bigtable can have any number of tables and the data in

the tables is indexed using a combination of row and column names. Bigtable does not

allow direct querying of the values and requires querying the index tables first locating

the data from the Bigtable. Sanderson (2009) states that the GAE Datastore always use

an indexing mechanism for retrieving data and an index is maintained for each queries

the application is going to perform. Google Developers (2013b) state that the GAE

Datastore is flexible enough to allow the application developers to create an index table

for a combination of properties. According to Sanderson (2009), the GAE can spread

large amount of data and indexes accross many machines and get the results back from

all these machines without an expensive aggregate operation. Sanderson (2009) men-

tions that the indexing strategy has major drawbacks and acknowledges that the query

engine of the Datastore is weak when compared to those of the relational Database

systems. The query engine of the Datastore cannot execute sophisticated queries like

that of RDBMS, however it is suitable for executing simple queries and returning fast

results. This is the main reason why GAE Datastore do not support features which are

offered by the relation database management systems. However application developer

can use workaround solutions to achieve RDBMS features which are not supported by

the Datastore. The Google Developers (2014k) confirm the limitations of the Datastore

and mentions that Datastore query engine do not provide support for joins and agreg-

gate queries which are normally supported by other database technologies. The Google

Developers (2014k) also provide a detailed list of features which are not supported.

Gregorio, J. (2008) recommends the use of Sharding counters to achieve the relational

database management feature COUNT in the GAE Datastore. The COUNT function

is used to get the number of records in a table or the count of non null values in a

column. The Datastore do not support functions such as MIN and MAX. The MIN

function retrieves the smallest value in the specified column and MAX function retrieves

the biggest value in the specified column. The workaround solution could be executing

13

a query on an entity kind with a sort order as ASC or DESC on the entity property

returning just a single entity. Da-sheng & Sheng-yu (2010) and Li et al. (2010) explain

about the Database stored procedures and Triggers. According to them, a stored

procedure is comprised of a set of SQL statements as well as optional flow control

statements and resides in the database. They also explain that a Trigger is a special

kind of stored procedure that is automatically executed when the data in the table

is modified due to an insertion, deletion and updation of records in the table. They

state that stored procedure is compiled during the creation and it can execute faster

when compared to SQL queries when called from an application. However the GAE

Datastore do not support stored procedures and triggers. In my opinion the work

around solution will be developing classes that contains methods that can access the

Datastore and calling these methods whenever it is appropriate. Another feature which

is not supported by the Datastore is sequencing. Some Database management systems

support creating Database sequence objects which are used to generate unique identifier

values. These values normally may be used as primary key values in tables. Each time

a value is retrieved from the sequence object it increments the value stored internally by

a predefined count so that each time a new value is generated on accessing the sequence

object. Since the GAE Datastore do not support the creation of sequence object, the

workaround solution to support database style sequencing is to create a new datastore

entity that belongs a new Entity Kind and create a utility function. The newly created

entity can have one or more properties which are initialized to numeric values. The

property value will serve as the unique sequence value. Whenever the application needs

a unique sequence value, the utility function can be invoked which will read the entity

from the Datastore and returns the value of the entity property. The utility function

also increment the property value by a count and update the entity in the Datastore

so that on accessing the entity property each time returns a new value.

To conclude, the Datastore is different from the traditional RDBMS and the Datastore

has limitations in supporting some features of RDBMS. Some of these limitations could

be overcome by providing workaround solutions as well as following suggestions from

Google Developers (2013b) and Gregorio, J. (2008) thereby enabling the Java/JEE

application to efficiently migrate to the GAE.

14

2.6 Summary

The background for the research has considered the challenges such as Programming

language incompatibility issues, Database Migration Issues, Google App Engine limi-

tations and Google App Engine Datastore limitations that may be encountered during

the migration of Java/JEE application to the GAE. In short, Programming language

incompatibility issues can be solved by using only white listed Java classes as well

as replacing any unsupported class with alternative Java classes. Database Migration

Issues can be solved by the use of bulk loader tool or develop a Database Migration

Tool that can migrate the application data from the traditional infrastructure to the

GAE Datastore in the PaaS Cloud. The request processing time out limitation of GAE

can be efficiently solved by following the recommendations from Martins (2012). The

inability to upload files to GAE file system can be efficiently solved by either using

Blobstore APIs or storing files to the Datastore instead of storing files to the GAE file

system. Google App Engine Datastore limitations can be efficiently solved by using the

indexes, reference properties for supporting join operations, Sharding counters wisely.

The background for the research has found that some of the limitations that are pointed

out by journal articles are in fact designed or characteristics of the GAE platform.

However, the Google Developers acknowledge that there are limitations with the GAE

and the Datastore and recommend solutions to overcome most of these limitations.

However, further research is highly recommended for the following reasons.

The traditional RDBMS have been around since 1980’s, it’s powerful, continues its

prominence and is an established technology. Migrating the application to the GAE

may not be easy as it involves replacing the established RDBMS system with Datastore,

which is relatively new and lacks support for some RDBMS features. In addition fitting

the Java/JEE application to the GAE infrastructure may also pose major challenges as

GAE supports only a subset of Java classes in the Java Standard Library. The research

problem is highly important because most journal articles state that the migration of

existing applications are difficult and challenging and there are many Java/JEE appli-

cations running on organization infrastructures. Moving these applications efficiently

to the GAE would help the organizations to save costs and leverage the GAE infra

structure to achieve improved application performance.

The research thesis is of the opinion that a Java/JEE prototype application can be

efficiently migrated to a Google App Engine PaaS Cloud but this requires a deeper un-

derstanding about the working of Google App Engine as well as a different perspective

of thinking from traditional computing to Cloud Computing. Moreover the migration

of the application and data should be handled in a organized manner. Currently there

15

is no well defined migration process for moving existing applications to GAE. The re-

search thesis has also identified the need to develop efficient tools to resolve some open

issues such as identifying the GAE unsupported JRE classes present in the application,

identifying the SQL queries in the Data access layer of the application and migrating

the application data from the RDBMS of the application to the GAE Datastore. In this

thesis paper, we present an efficient and standard software methodology in coordina-

tion with the tools developed to efficiently migrate an existing Java/JEE applications

to GAE Platform.

In the next chapter Design we describe the proposed software methodology as well as

the design and functional requirements for the tools which are developed to support

the methodology.

16

Chapter 3

Design

This chapter discuss the proposed software methodology as well as the design and

functional requirements of the Java Source Code Analyzer Tool and Database Migration

Tool. These tools are developed in order to support the software methodology. The

proposed software methodology is an organized way to efficiently migrate the Java/JEE

application to the GAE Platform. The software methodology is composed of a series

of steps.

1. The first step is to identify the usage of GAE unsupported JRE classes in the Java

sources files of the Java/JEE application. This is achieved with the help of a Java

Source Code Analyzer Tool that can scan the application’s Java source files for

the presence of GAE unsupported JRE classes. The scan results generated should

contain information such as the names of the Java classes that contains the GAE

unsupported JRE classes, the various ways in which an GAE unsupported JRE

classes are used (whether used as interface, superclass or declared as field/method

variable), the exact locations in the Java source files where GAE unsupported

JRE class are present and refactoring guidelines/hints to follow to remove the

identified GAE unsupported JRE classes. The Java Source Code Analyzer Tool

is designed and developed to perform this step.

2. The second step uses the scan results generated from the step 1. In this step

the detected GAE unsupported JRE classes in the application are replaced with

solutions that are in conformance with GAE platform. A good example is an

application Java class that has a functionality which requires storing a file to the

file system using Java FileWriter API’s. The GAE do not permit an application

to use Java FileWriter API class for creating files on the GAE infrastructure. So

in this scenario the solution is to modify the code to replace the FileWriter API’s

17

with Blobstore API or Datastore API’s for storing the files to the Blobstore or

GAE Datastore.

3. The third step involves migrating the data from the existing RDBMS that is used

by the application to the GAE local Datastore on the development environment

for testing. A Database Migration Tool should be designed to perform data

migration activities.

4. The fourth step involves modifying the data access components of the application

to support the GAE datastore. This step involves replacing the SQL queries

present in the Java classes of data access layer with the Datastore APIs. The Java

Source Code Analyzer Program designed earlier has an additional functionality

to scan for the usage of SQL queries in the Java source files of the Data access

layer and generate scan results. The scan result should contains information such

as the names of Java classes, the names of the methods in which SQL queries are

present, the line numbers in the Java files at which the SQL query strings are

declared and also recommends the equivalent Datastore operations to replace the

SQL queries.

5. The fifth step is about testing the application in the local development environ-

ment and fixing any bugs or issues that are found during the testing phase.

6. The sixth step involves moving the re-engineered application from the local de-

velopment environment to the GAE platform using the tools provided by GAE

SDK.

7. The seventh step involves using the Database Migration Tool once more to extract

data from the Database to the remote Datastore in the GAE Cloud.

The Figure 3.1 shows a pictorial representation of these steps which are employed

in the software methodology.

18

Figure 3.1: The steps of the software methodology for migrating Java/JEE applications
to GAE Cloud.

19

Next we will present the main issues which impede the migration of Java/JEE appli-

cations to GAE.

1. Currently there are no mature tools available to identify the Java classes in the

application that contain both GAE unsupported JRE classes and SQL queries.

2. The Absence of an automated Database Migration Tool that can migrate the

application data from the RDBMS to the GAE (local or remote)Datastore.

In order to efficiently solve the first issue we propose to develop a Java Source Code

Analyzer Tool. The tool should provide interfaces to identify the usage of JRE classes

which are not supported by the GAE Platform and SQL queries in the applications

Java files. The Figure 3.2 describes the user’s interaction with the Java Source Code

Analyzer Tool.

Figure 3.2: UML USE Case Diagram describing user interaction with the Java Source
Code Analyzer Tool

20

On invoking the interface to find occurence of JRE classes which are not supported by

GAE platform, the Java Source Code Analyzer Tool scans the application’s Java source

files to detect the usage of GAE unsupported JRE classes. On successful completion the

results are presented to the user. Using the scan results, the user can easily re-engineer

the application code to remove the GAE unsupported JRE classes with recommended

work around solutions.

On Invoking the interface to find the presence of the SQL queries, the tool scans through

the data access layer Java files in the project and identifies the usage of SQL queries

that performs CRUD operations on the Database tables. The user can refer to the scan

results and easily replace the SQL queries with Datastore API’s. The scan results also

should display a rule table which the developers can refer to get an idea how the JDBC

APIs and Datastore APIs are mapped.

The Figure 3.3 shows an overview of the components of Java Source Code Analyzer

Tool, the input parameters, the output results and the process flow. The main modules

or components of the Java Source Code Analyzer Tool are the GAE BlackList Analyzer

Program, SQL Query Analyzer Program and rule repository. The inputs to both the

GAE BlackList Analyzer Program and SQL Query Analyzer Program are the Java

Source files of the application. The rule repository contains the rules that aid to

refactor the application and it is used by both GAE BlackList Analyzer Program and

SQL Query Analyzer Program.

21

Figure 3.3: The main components of Java Source Code Analyzer Tool

The output of GAE BlackList Analyzer Program is the scan results containing the list of

Java classes in the application that uses GAE unsupported JRE classes to perform their

function. The scan results also provide additional informations such as line number at

which an GAE unsupported JRE class appears, whether the GAE unsupported JRE

class is used as a superclass, or as an interface or as a field variables within a class or as

a local variable in a method etc. Finally the scan results also contain the work around

solutions in order to replace the GAE unsupported JRE class from the application so

that there will be no change in the application’s functionality after migration to GAE

Platform. The work around solutions in the scan results are fetched from the rule

repository.

The output of SQL Query Analyzer Program is the scan results containing the list of

Java classes that have SQL query strings declared in the methods. The scan results

provides information about the line number at which a query string is declared in the

method, the kind of operation the SQL query performs (whether it corresponds to

create, read, update or delete Database operation). The scan result also provides some

22

generic information from the rules repository or displays a rule table that shows how

to replace a SQL query with equivalent Datastore API’s. The output of both GAE

BlackList Analyzer Program and SQL Query Analyzer Program are intended to the

developers to aid the code refactoring.

Having discussed about the Java Source Code Analyzer Tool components we discuss

about the Database Migration Tool. The second issue related to data migration can be

solved by developing an efficient automated Database Migration Tool. The Database

Migration Tool that is to be developed should be able to automate the extraction of

data from the RDBMS used by the application to GAE application local Datastore or

to GAE application remote Datastore. The research has identified that the Database

Migration Tool is the most crucial to achieve an efficient migration of the application

to the GAE.

The Database Migration Tool that will be developed should run with minimal manual

configuration. The tool should be able to extract data from any database used by the

application irrespective of the database vendor. It is also important that the tool should

use concurrency techniques to optimize the speed of data migration. The Figure 3.4

describes the user’s interaction with the Database Migration Tool.

Figure 3.4: UML USE Case Diagram describing the user interaction with the Database
Migration Tool

The tool will have two main components or modules namely a Data Exporter and Data

Importer. The tool provides an interface called migrate that can be invoked to start

the data migration process. The Figure 3.5 shows the overall component diagram.

23

Figure 3.5: UML Component Diagram of the Database Migration Tool

The Database Migration Tool is designed to run a DataExporter and DataImporter

thread. Initially the main program thread of the Database Migration Tool creates and

starts the DataImporter thread. The DataExporter thread maintains a thread pool

object containing a fixed number of worker threads. The number of worker threads

in the thread pool is configurable. Each worker thread in the thread pool at a time

exports the records in the database table to a set of CSV files. Once a worker thread

finishes the task of exporting a table, the worker thread is reused to export another

table. Once the worker threads in the thread pool exports all the tables to CSV files

the DataExporter thread signals back to the main program thread indicating that all

tables are successfully exported. The main program thread then creates and starts a

DataImporter thread. The DataImporter thread also maintains a thread pool object

containing a fixed number of worker threads. The number of worker threads in the

thread pool is configurable. Each worker thread in the thread pool at a time is assigned

the task to read the CSV files related to a specific table to create Datastore entities

in the GAE local or remote Datastore based on configuration. The worker threads

can use remote API’s provided by the GAE SDK to access an GAE web application’s

Datastore. Once the worker threads in the thread pool imports all the data in the

CSV files as entities into the Datastore, the DataImporter thread signals back to the

main program thread indicating that all data in the CSV files are imported to GAE

Datastore. The main program thread resumes execution to completion.

It is also important that the Database Migration Tool logs the results of the execution of

these components to a persistent storage. The Database Migration Tool should log data

exporter execution details such as the names of the tables that have been exported,the

number of rows in each table that have been exported to the CSV files, the status of the

exportation(ie whether a table export is successful or not) and the date of execution.

24

It should also log data importer execution details such as the Kind of entities that are

created in the Datastore, the number of entities that has been created for each Entity

Kind, the status of the importation and the date of execution. The following diagram

shows an overview of the working of Database Migration Tool.

Figure 3.6: Working of the Database Migration Tool

Next, we present “Spring Petclinic” one of the applications used in this thesis to demon-

strate and validate our software methodology. The Figure 3.7 shows the deployment

diagram for the “Spring Petclinic” application deployed in a traditional way.

Figure 3.7: Deployment diagram of the ‘Spring Petclinic’ application in a traditional
IT network.

In the Figure 3.7 an application is deployed on a web server that is running on a machine

and connects to an RDBMS Database. In the RDBMS the application data will be

stored as records in the tables. The application on successful migration to the GAE will

have a different architecture. The Figure 3.8 shows the new deployment architecture

of the “Spring Petclinic” application after a successful migration.

25

Figure 3.8: Deployment diagram of the ‘Spring Petclinic’ application on Google App
Engine.

After migration the “Spring Petclinic” application will be running over the GAE infras-

tructure and have the following architecture as shown in the Figure 3.8. The “Spring

Petclinic” application instances will be running on the application server pool and will

be using GAE Datastore for storing application data instead of using RDBMS. However

in the GAE Datastore, the “Spring Petclinic” application data is stored as entities or

objects. Each entity belongs to a particular Kind. The entities of a Kind are analogous

to records of table in the RDBMS. The “Spring Petclinic” application is also free to use

other platform specific features provided by the GAE such as Memcache, Mail, URL

fetch, Task Queues etc.

3.1 Summary

In this chapter we described the steps involved in the proposed software methodol-

ogy which is designed for migrating Java/JEE applications to the GAE Platform. This

chapter also discusses about the functional requirements, design, architecture and work-

ing of both the Java Source Code Analyzer Tool and Database Migration Tool.

In the next chapter we will be discussing more in detail about the underlying technical

implementation of the Java Source Code Analyzer Tool and Database Migration Tool.

26

Chapter 4

Implementation

This Chapter describes the implementation details of the Java Source Code Analyzer

Tool and Database Migration Tool that are developed to support the software methodol-

ogy for migration. Both tools are developed using the API’s provided by Java Standard

Edition 6. First we will discuss about the Java Source Code Analyzer Tool before we

proceed to the Database Migration Tool.

4.1 Java Source Code Analyzer Tool

The Java Source Code Analyzer Tool is comprised of two main programs, namely the

Google App Engine BlackList Analyzer Program and SQL Query Analyzer Program.

Both the Google App Engine BlackList Analyzer Program and SQL Query Analyzer

Program are implemented using Java Compiler API’s. In this section we discuss about

the usage of Java Compiler API’s classes which are profoundly used for developing the

Google App Engine BlackList Analyzer Program and SQL Query Analyzer Program.

The Google App Engine BlackList Analyzer Program maintains a repository of JRE

classes which are unsupported by GAE and detects if these unsupported JRE classes

are used within the application. These unsupported JRE classes may be used in a

Java application in different ways and must be removed from the application before

it is deployed to GAE Platform. These GAE unsupported classes may be used in

the application’s Java source files such as declared as a field variables within the Java

classes, used as as a super class, used as a method parameters, declared as return

type of method, declared as a local variable within a method etc. The SQL Query

Analyzer Program checks the use of SQL queries within the methods of all Java classes

which are present in application’s the Data Access Layer. Both the programs, helps

27

the developers to refactor the application efficiently so that an existing application can

be run on GAE Platform. The developers can run both programs and identify which

part of the application code to be refactored.

The next paragraph gives a brief description how the Compiler API’s are used for

the Java Source Code Analyzer Tool as well as the high level architecture of both the

Google App Engine BlackList Analyzer Program and SQL Query Analyzer Program of

the Java Source Code Analyzer Tool.

The Compiler API’s allows to access the Java Compiler from a Java Program (Oracle

(2011)). The API’s to access a Java compiler is present in the tools.jar file which is a

part of JDK. The tools.jar file contains classes which can be used by Tools and Utility

Programs. The Java compiler works closely with the StandardJavaFileManager class.

The StandardJavaFileManager Class has a method getJavaFileObjects which takes

input as the list of File objects representing Java source files to return a list containing

objects of class JavaFileObject. A JavaFileObject is an abstract representation of

Java source file which can be on the disc, memory, database etc. The next step is to

obtain a CompilationTask object from the Java compiler object by passing the list

containing objects of JavaFileObject class. The CompilationTask object represents

a future compilation task and can compile a set of source files by invoking the method

call() on the CompilationTask object. Before invoking the call() method on the

CompilationTask object an annotation processor object is registered. On invoking

the call() method on the CompilationTask object the Java compiler calls the process

method of the annotation processor object which was registered earlier before it begin

to compile the Java source files. The process method is supplied with an object of

class RoundEnvironment. The RoundEnvironment object can be used to get a set of

Element objects representing the instances of JavaFileObject that was passed to the

CompilationTask object. The Element is a Java type that can be used to represent a

class, package, interface or variable. Each Element object is accessed from the Element

set and it’s representation as a tree of nodes is obtained using Java Tree Compiler API’s.

For example an element representing a Java class can be represented as a tree of nodes.

Each children in the nodes represents a meaningful construct. In otherwords a Java

class can be represented as a Class tree containing method declarations are represented

as MethodTrees, variable declarations are VariableTrees etc. The tree representation

of the element is then passed to a custom tree visitor object. The custom tree visitor

object’s class extends a built-in Java Tree visitor class named TreePathScanner. The

TreePathScanner class visits all the child nodes in a tree. The custom tree visitor class

override the appropriate methods from the built-in TreePathScanner class in order to

process a language construct such as a class, method, variable declaration etc. The

28

overridden methods will contain the processing logic such as whether an application

Java class has declared the GAE unsupported classes as a field variables or used as super

classes or used as method parameters,or as method return types, or used as method local

variables, whether a String variable declared within a method of Java class contains an

SQL query string etc. The overridden methods may also use Java Reflection API’s,

URLClassLoader class and other utility classes for its functioning. The Reflection API’s

are used to examine or modify the run time behaviour of applications in the virtual

machine and the URLClassLoader is used for loading classes.

Having described about the usage of Compiler API’s for implementing the programs

of Java Source Code Analyzer Tool, next we will explain it clear with the help of the

program code that is developed for Google App Engine BlackList Analyzer Program.

The program code 4.1 shows obtaining a Java compiler and registering an annotation

processor object. The annotation processor object that is used is an instance of class

BlackListCodeAnalyzerProcessor which is an application class belonging to Google App

Engine BlackList Analyzer Program.

1 // Gets the Java programming language compiler

2 JavaCompiler compiler = ToolProvider.getSystemJavaCompiler();

3 // Get a new instance of the standard file manager implementation

4 StandardJavaFileManager fileManager = compiler.getStandardFileManager(null, null, ←↩
null);

5 List<File> files = new ArrayList<File>();

6 files.addAll(FileSearchMain.getProjectFiles(ConfigurationPropertiesFileReader. ←↩
getProperty("project.rootfolder.location")));

7 if (files.size() > 0) {

8 // Get the list of containing objects of JavaFileObject class

9 Iterable<? extends JavaFileObject> compilationUnits = fileManager. ←↩
getJavaFileObjectsFromFiles(files);

10 // Create the compilation task

11 CompilationTask task = compiler.getTask(null, fileManager, null,null, null, ←↩
compilationUnits);

12 // Get the list of annotation processors

13 LinkedList<AbstractProcessor> processors = new LinkedList<AbstractProcessor>();

14 processors.add(new BlackListCodeAnalyzerProcessor());

15 task.setProcessors(processors);

16 // Perform the compilation task.

17 boolean result = task.call();

Listing 4.1: Accessing a Java compiler object and registering an annotation processor

object.

The program code 4.2 shows the process method of the annotation processor object

that we registered earlier. Inside the process method we create a visitor object to scan

the Element objects inside the Element set. The Element set is obtained from the

29

RoundEnvironment object and each object in the Element set may represent a package

or a Java class. The visitor class contains the overridden methods from the super class

TreeScanner and calls these overridden method during the scanning of an Element.

1 @Override

2 public boolean process(Set<? extends TypeElement> annotations,RoundEnvironment ←↩
roundEnv) {

3 BlackListCodeAnalyzerVisitor visitor = new BlackListCodeAnalyzerVisitor(←↩
processingEnv);

4 Set<? extends Element> elements = roundEnv.getRootElements();

5 for (Element element : elements) {

6 TreePath treePath = tree.getPath(element);

7 if(treePath!=null){

8 visitor.scan(treePath, tree);

9 }

10 }

11 return false;

12 }

Listing 4.2: The process method of the BlackListCodeAnalyzerProcessor Java class.

The program code 4.3 shows an overridden method of the visitor class that contains

the logic to check for GAE unsupported JRE class. If a blacklisted class is found it

will use an object of ProcessingEnvironment provided by the annotation framework

to log the errors to the console.

1 @Override

2 public Object visitClass(ClassTree node, Object arg1) {

3 Trees trees = (Trees) arg1;

4 Element element = trees.getElement(getCurrentPath());

5 URLClassLoader urlClassLoader = AppEngineAnalyzerUtils.getUrlClassLoader(←↩
ConfigurationPropertiesFileReader.getProperty("project.rootfolder.location"));

6 if (AppEngineAnalyzerUtils.isClass(element)) {

7

8 TypeElement clazz = (TypeElement) element;

9 // check for JRE super class which is blacklisted

10 checkIfSuperClassBlackListed(clazz, urlClassLoader);

11 // check if it implements restricted interfaces

12 checkIfInterfaceBlackListed(clazz, urlClassLoader);

13 }

14 return super.visitClass(node, arg1);

15 }

Listing 4.3: The overridden method of BlackListCodeAnalyzerVisitor class containing

the logic for checking if a class contains GAE unsupported JRE class

The above code samples demonstrates the usage of Java Compiler API’s and uses the

30

code excerpts from the Google App Engine BlackList Analyzer Program to explain

the concepts. The SQL Query Analyzer Program also has the same architecture as

that of Google App Engine BlackList Analyzer Program. The main difference will be

implementation of visitor class. The Google App Engine BlackList Analyzer Program

has visitor implementation class that overrides the methods from the built-in Java

TreePathScanner to check if any of the application’s Java classes uses GAE unsup-

ported JRE classes where as the visitor implementation class of SQL Query Analyzer

Program visits the methods of the data access layer Java classes to check for the pres-

ence of SQL Query strings.

The Figure 4.1 shows the UML class diagram representing the dependencies among the

important classes in the Google App Engine BlackList Analyzer Program. The most im-

portant classes of the Google App Engine BlackList Analyzer Program are GAEBlack-

ListAnalyzerMain, BlackListCodeAnalyzerProcessor and BlackListCodeAnalyzerVisi-

tor. The method main(String[] args) of GAEBlackListAnalyzerMain class serves as

an entry point for the Google App Engine BlackList Analyzer Program. The execution

of the method main(String[] args) starts the Google App Engine BlackList Ana-

lyzer Program and obtain a compiler object programmatically as well as register an

annotation processor object with the compiler object. The annotation processor object

registered is an instance of the class BlackListCodeAnalyzerProcessor. The compiler

object calls the process method implementation of the BlackListCodeAnalyzerProces-

sor class. In the process method an object of the class BlackListCodeAnalyzerVisitor

is used to visit the Abstract Syntax Tree notation of the application’s Java classes. The

methods of the BlackListCodeAnalyzerVisitor class contain the logic to check for the

presence of GAE unsupported JRE classes in the application’s Java class files.

Figure 4.1: The UML Class Diagram for GAE BlackList Analyzer Program

The Figure 4.2 shows the UML Class Diagram representing the dependencies among the

important classes in the SQL Query Analyzer Program. The main important classes

31

of the SQL Query Analyzer Program are SQLQueryAnalyzerMain, JdbcDAOCodeAn-

alyzerProcessor and JdbcCodeAnalyzerVisitor. The method main(String[] args) of

SQLQueryAnalyzerMain class serves as an entry point for the SQL Query Analyzer

Program. The execution of the method main(String[] args) starts the SQL Query

Analyzer Program and obtain a compiler object programmatically as well as register an

annotation processor object with the compiler object. The annotation processor object

registered is an instance of the class JdbcDAOCodeAnalyzerProcessor. The compiler

objects calls the process method implementation of the JdbcDAOCodeAnalyzerPro-

cessor class. In the process method an object of the class JdbcCodeAnalyzerVisitor

is used to visit the Abstract Syntax Tree notation of the application’s Java classes.

The methods of the JdbcCodeAnalyzerVisitor class contain the logic to check for the

presence of SQL Query strings in the application’s Java class files.

Figure 4.2: The UML Class Diagram for SQL Query Analyzer Program

The Java Source Code Analyzer Tool is available for download from GitHub1.

Having discussed about the implementation details about the Java Source Code Ana-

lyzer Tool, next we will discuss about the implementation details about the Database

Migration Tool that is developed.

4.2 Database Migration Tool

The Database Migration Tool is developed using Java concurrency API’s to have Mul-

tithreading features and also uses the infrastructural support provided by the Spring

Framework. Before we proceed it is important to have a basic understanding about the

Java Multithreading model. In Java programming language it is possible to create a

1https://github.com/prasanthmp500/JavaSourceCodeAnalyzerTool

32

parallel execution unit by creating a class that implements the Java Runnable interface.

The class that implements the Runnable interface must implement the run() method

which represents a concurrent unit of execution. The object of the class that imple-

ments Runnable interface is then passed to a built-in Java thread object during creation

of the thread object via a constructor method. A thread object is basically an instance

of the Java built-in Thread class. Invoking the start() method on the thread object

creates a new thread of execution and calls run() method on the Runnable instance

that was passed to the thread. Another approach instead of creating a thread objects

is to use a factory class named Executors to create a thread pool object containing

worker threads and submitting the objects of the Java class that implements Runnable

interface to the thread pool.

An important mechanism that is used in the Database Migration Tool is the use of Java

CountDownLatch API’s. The CountDownLatch API’s are the Java built-in synchroniza-

tion mechanism that allows one or more threads to wait until another set of threads com-

pletes their operation. Java provides a built-in class called CountDownLatch. A Count-

DownLatch object can be initialized with a count during the instantiation. Calling the

await() method on the CountDownLatch object causes the current threads to wait un-

til the latch count is zero. Invoking the method countDown() on the CountDownLatch

object cause to decrement the count of the latch object and the waiting threads may

resumes execution when the count of latch object becomes zero. In the next section we

will discuss about the architecture of the Database Migration Tool and the functioning

of the tool.

4.2.1 Database Migration Tool Architecture

In this section we will discuss about the architecture of the Database Migration Tool

and the database migration workflow. The tool has two main modules a Data Exporter

Module and a Data Importer Module. The Data Exporter module has classes that can

handle tasks such as retrieving the records from the database tables, exporting these

table records as CSV files on the file system, logging the export status of each table etc.

The Data Importer module has classes that can handle tasks such as reading the CSV

files from the file system, creating Datastore entities in the GAE Datastore, logging the

import status of the creation of entities for each Entity Kind. The following Figure 4.3

shows an overview of the components of the Database Migration Tool and functioning

of the tool.

Initially the user starts the main thread by invoking the function main(String args[])

of the class SpringDataMigration. The main thread creates an object of class

33

F
ig

u
re

4
.3

:
D

at
ab

as
e

M
ig

ra
ti

on
T

o
ol

m
ai

n
co

m
p

on
en

ts
an

d
w

or
k
fl

ow

34

DataExporter which implements the Java Runnable interface and also creates a Java

thread object which is passed with the object of DataExporter class via the constructor

method. Invoking the start() method on the thread object creates a new thread of ex-

ecution and calls run() method of the DataExporter object thereby starting the data

export process. The main thread then goes to a waiting state until the exportation of

the tables in the Database is completed. It resumes execution once the run() method

of DataExport object is run to completion indicating that all the tables are exported

successfully to the file system. The communication between the main thread and the

thread object that executes the run() method of the DataExporter object is achieved

using a CountDownLatch object.

When the main thread is waiting for the thread object to complete, the thread object

invokes the run() method on the DataExporter object. In the run() method a thread

pool is created using a Java built-in factory class named Executors. The number of

worker threads in the thread pool is configurable and can be defined in a properties file.

The worker threads in the thread pool are assigned the tasks of exporting the tables to

CSV files. Each worker thread in the thread pool is assigned the task of the exporting

the data from a table at a time. When a worker thread completely exports the table

records as CSV files to the file system, the thread is then reused to export other tables.

Once the worker threads in the thread pool exports all the tables to the file system,

the thread that invoked the run() method of the DataExporter object is notified to

inform that all table are executed, which in turn notifies the main thread which is in a

waiting state. The main thread resumes execution.

The main thread then instantiates an object of class DataImporter which implements

the Java Runnable Interface. The main thread then create a Java Thread object and

also passes the DataImporter object to the thread object via a constructor method

during the creation of the thread. Invoking the start() method on the thread object

creates a new thread of execution and it calls run() method of the DataImporter

object. The execution of the run() method starts the data import process. The main

thread then goes to the waiting state once again until it is notified when the creation

of Datastore entities from the CSV files is completed. Inside the run() method of the

DataImporter object a thread pool is created and each worker thread in the thread

pool is assigned the task of creating the GAE Datastore entities of a specific Kind from

a set of CSV files at time. When a worker thread finishes the creation of Datastore

entities of a specific Kind, it is reused to create Datastore entities of another Entity

Kind from a different set of CSV files. When the worker threads in the thread pool

finishes the creation of Datastore entities from the CSV files, they notifies the thread

that invoked the run() method on the DataImporter object, which in turn notifies the

35

main thread. The main thread that is currently in waiting state resumes execution and

terminates.

The program code 4.4 shows the main method of the Java class named

SpringPetClinicDataMigration, starting the data export process, waiting for the

data export process to complete, resuming execution when the data export process is

over, then starting the data import process, again waiting for the data import process

to finish before resuming the execution to completion of the entire migration process.

The main method is basically an entry point of execution of the Database Migration

Tool. The program code 4.5 shows the run() method of the DataExporter class creat-

ing a thread pool and submitting the tasks, of reading the records from database tables

and creating CSV files, to the thread pool for execution. The program code 4.6 shows

the run() method of the DataImporter class creating a thread pool and submitting

the tasks of reading the CSV files and creating GAE enties in the GAE local or remote

Datastore to the thread pool for execution.

1 public static void main(String args[]) {

2 loadApplicationContext();

3 init();

4 System.out.println("***");

5 System.out.println("Starting Data Migration");

6

7 long time1 = Calendar.getInstance(TimeZone.getTimeZone("GMT")).getTimeInMillis();;

8

9 CountDownLatch latch1 = new CountDownLatch(1);

10 DataExporter dataExporterThread = new DataExporter();

11 dataExporterThread.setContext(ctx);

12 dataExporterThread.setCountDownLatch(latch1);

13 Thread t1 = new Thread(dataExporterThread);

14 t1.start();

15 latch1.await();

16 CountDownLatch latch2 = new CountDownLatch(1);

17

18 System.out.println("Exporting Database Tables to CSV files is Completed and now ←↩
Start to Export CSV files to GAE Entities");

19

20 DataImporter dataImporterThread = new DataImporter();

21 dataImporterThread.setContext(ctx);

22 dataImporterThread.setCountDownLatch(latch2);

23 Thread t2 = new Thread(dataImporterThread);

24 t2.start();

25 latch2.await();

26 long time2 = Calendar.getInstance(TimeZone.getTimeZone("GMT")).getTimeInMillis();

27 System.out.println("Time in millisecond "+ (time2-time1));

28 System.out.println("Completed Data Migration");

36

29 }

Listing 4.4: The method main of the SpringPetClinicDataMigration class (main thread)

coordinating the data export and data import process.

1 public void run() {

2 Properties configurationProperties = (Properties) context.getBean(" ←↩
threadPoolPropertiesConfiguration");

3 ExecutorService executorService = Executors.newFixedThreadPool(Integer.valueOf(←↩
configurationProperties.getProperty("exportThreadPoolSize")));

4 List<String> databaseTables = getDatabaseTableNames();

5 CountDownLatch exporterCountLatch = new CountDownLatch(databaseTables.size());

6 for (String tableName : databaseTables) {

7 TableExporter tableExporterBean = (TableExporter) context.getBean("tableExporter ←↩
");

8 tableExporterBean.setTableName(tableName.toUpperCase());

9 tableExporterBean.setCountDownLatch(exporterCountLatch);

10 executorService.submit(tableExporterBean);

11 }

12 executorService.shutdown();

13 try {

14 for (Future<?> future : futures) {

15 future.get(); // cause the current thread to wait for the table import tasks ←↩
to finish.

16 }

17 exporterCountLatch.await();

18 countDownLatch.countDown();

19 } catch (InterruptedException e) {

20 e.printStackTrace();

21 } catch (ExecutionException e) {

22 e.printStackTrace();

23 }

24 }

Listing 4.5: The run() method of DataExporter.java Class.

1 public void run() {

2 Properties configurationProperties = (Properties) context.getBean(" ←↩
threadPoolPropertiesConfiguration");

3 ExecutorService executorService = Executors.newFixedThreadPool(Integer.valueOf(←↩
configurationProperties.getProperty("importThreadPoolSize")));

4 Map<String, String> tableToEntityMap = (Map<String, String>) context.getBean(" ←↩
tableToEntityMapping");

5 Set<String> databaseTableNames = tableToEntityMap.keySet();

6 CountDownLatch importerCountLatch = new CountDownLatch(databaseTableNames.size() - ←↩
1);

7 for (String tableName : databaseTableNames) {

8 TableImporter tableImporter = context.getBean(TableImporter.class);

37

9 tableImporter.setImporterCountLatch(importerCountLatch);

10 tableImporter.setTableToExport(tableName);

11 tableImporter.setEntityName(tableToEntityMap.get(tableName));

12 tableImporter.setFolderName(tableName.toUpperCase());

13 executorService.submit(tableImporter);

14 }

15 executorService.shutdown();

16 try {

17 for (Future<?> future:futures) {

18 future.get();//cause the current thread to wait for the table export tasks to ←↩
finish.

19 }

20 importerCountLatch.await();

21 countDownLatch.countDown();

22 } catch (InterruptedException e) {

23 e.printStackTrace();

24 } catch (ExecutionException e) {

25 e.printStackTrace();

26 }

27 }

Listing 4.6: The run() method of DataImporter.java Class.

In the following sections we will explains more about the most important classes of the

Data Exporter and Data Importer modules.

4.2.2 Data Exporter Components

The most important Java classes in the Data Exporter module are DataExporter.java

and TableExporter.java classes. The Figure 4.4 shows the UML class diagram for the

DataExporter and TableExporter classes. Both of these classes implements the Java

built-in Runnable Interface.

38

Figure 4.4: UML Class Diagram showing the dependency between DataExporter class
and TableExporter class of Data Exporter Module.

The main thread creates an instance of DataExporter class and passes that instance to

a newly created thread object via a constructor method. Invoking the start() method

on the thread object creates a new thread of execution and invoke the run() method

of the DataExporter object that was passed earlier. The main thread waits till the

thread object finishes it execution. The main thread goes to a waiting state by calling

the await() method on an object of CountDownlatch class. The same CountDownlatch

object is also passed to the DataExporter object via a property setter method. Before

the run() method of DataExport object finishes to execution, the countDown() method

is invoked on the CountDownlatch object’s so that the main thread could resume the

exection.

The program code 4.5 shows creation of fixed thread pool within the run()

method of the DataExporter class. Within the run() method, the method

getDatabaseTableNames() is invoked internally to connect to the RDBMS used by

the application and returns the list of table names from the database schema. For

each corresponding table name in the list, a TableExporter instance is created. A

CountDownLatch object is also created initialized with count equal to the number of

tables to be exported. Each TableExporter object is set with the table name and

also passed a reference of CountDownLatch object. Each TableExporter object is then

submitted to the thread pool by calling the submit method as shown in the program

39

code 4.5. The worker threads in the thread pool invokes the run() method of the

TableExporter objects.

The program code 4.7 shows the run() method of the TableExporter class con-

taining the logic to export the records in the Table to CSV files in the file system.

In the run() method it calls main functions such as populateTableRecordCount(),

populateTableMetaData(), exportToCSV() and updateExecutionStatus(String

tableName, Integer recordCount,Status status,Date date). The method

populateTableRecordCount() retrieves the count of records present in a table. The

method populateTableMetaData() gets the lists of column names and column types

in the table which will be used later to create Entity properties for the GAE en-

tities. The method exportToCSV() fetches the records from table in chunks and

creates a CSV file for each chunk of records. The chunk size can be configured in

the migration tools properties file named SpringDatabaseMigration.properties.

The chunk size and the total record count in the table are used to deter-

mine the number of CSV files to be created for each table. Once export-

ing a table is completed the updateExecutionStatus(String tableName, Integer

recordCount,Status status,Date date) method is called to store the status of the

export task by adding an entry in the log table named data export result such

as the number of records exported, status of export and date of export. Finally in

the run() method of TableExporter Object the countDown() method is called on

the CountDownLatch object so that the thread that invoked the run() method of

DataExporter object is notified once the export is complete. When all the tasks for

exporting tables are completed, the thread that invoked the run() method of the Data-

Exporter object then invoke the countDown() method on the CountDownLatch object

which was passed by main thread to resume the execution of the main thread.

1 public void run() {

2 System.out.println("Starting to export Data from Table [" + getTableName() + "] ←↩
to CSV files");

3 populateTableRecordCount();

4 populateTableMetaData();

5 try {

6 exportToCSV();

7 updateExecutionStatus(tableName,recordCount,Status.SUCCESS,new Date());

8 } catch (Exception e) {

9 updateExecutionStatus(tableName,null,Status.FAILURE,new Date());

10 }

11 countDownLatch.countDown();

12 System.out.println("Finished exporting Data from Table [" + getTableName() + "] ←↩
to CSV files");

13 }

40

Listing 4.7: The run() method of TableExporter class containing the workflow for

exporting a table to CSV files

4.2.3 Data Importer Components

The most important Java classes in the Data Importer module are DataImporter.java

and TableImporter.java classes. The Figure 4.5 shows the class diagram for the DataIm-

porter and TableImporter classes. Both of these classes implements the Java built-in

Runnable interface.

Figure 4.5: UML Class Diagram showing the dependency between DataImporter class
and TableImporter class of Data Importer Module.

The main thread resumes execution after a successful exportation of the records from

the RDBMS to the file system. The main thread creates an instance of DataImporter

class and passes the instance to a newly created thread object via a constructor method.

Invoking the start() method of the thread object starts a new thread of execu-

tion which invoke the run() method of the DataImporter object that was passed

earlier. The main thread waits till the thread object finishes the execution. The

41

main thread goes to a waiting state by invoking await() method on newly created

a CountDownLatch object that was initialized with a count value of one. The same

CountDownLatch object was passed to the DataImporter object via a property setter

method before the await() method is called on the CountDownLatch object by the

main thread. Before the run() method of the DataImporter object finishes to exe-

cution, the count value of theCountDownLatch object’s is decremented by calling the

countDown() method on the CountDownLatch object so that the thread object that

executes the run() method of the DataImporter object is notified, eventually notifies

the waiting main thread to resume the exection.

The program code 4.6 shows creation of fixed thread pool within the run() method

of the DataImporter class. The run() method retrieves a map object containing the

key value pairs representing the mapping between the table name in the database and

the name of entity kind that will be created in the Datastore. The map object is pre-

configured in the migration tools configuration XML to serve as a mapping between

the Table in the RDBMS and Entity Kind in the GAE Datastore. The key set of the

map contains the names of tables.

For each table names in the key set of the map, a TableImporter object is created. A

CountDownLatch object is also created and initialized with count equal to the number

of tables to be imported in to the GAE Datastore. Each TableImporter object is set

with the table name, the Enity Kind name and a reference to the CountDownLatch

object. Each TableImporter object is then submitted to the thread pool for execution

by calling the submit() method as shown in the program code 4.6. The threads in the

thread pool invokes the run() method of the TableImporter objects.

The program code 4.8 shows the run() method of the TableImporter class

containing logic to read the CSV files related to a specific table and create

GAE Datastore entities in the local GAE Datastore or in the remote GAE

Datastore based on the configuration provided. In the run() method it calls

main functions such as getFiles(), exportToAppEngineDataStore(List<File

>files) and updateExecutionStatus(String entityName,Integer

entitiesExportCount,Status status, Date date). The method getFiles()

locates and retrieves the CSV files related to a table from the file system. The CSV files

retrieved are then passed to the method exportToAppEngineDataStore(List<File

>files) which iteratively reads the contents of the CSV files, creates List of objects

of appengine Entity class and then uses a DataStoreService object to insert the

entites into the Datastore by using the GAE provided remote APIs. Once the

creation of entities for a specific table is completed the updateExecutionStatus

method stores the status of the import by adding an entry in the log table named

42

data import result such as the name of the Entity Kind under which entities are

stored, the number of entities imported to GAE Datastore in an Entity Kind, status

of import and date of import. Finally in the run() method of the TableImporter

object, the countDown() method is called on the CountDownLatch() object so that

the thread that invoked the run() method of DataImporter object is notified to

indicate that the import process is complete. Before returning from the run() method

of the DataImporter, the countDown() method is called on the CountDownLatch

object which was passed by main thread in order to resume the execution of the main

thread. The main thread then resumes execution, prints a message indicating the

data migration from RDBMS to GAE is complete and the database migration process

completes. The code developed for the Database Migration Tool can be downloaded

from the GitHub 2.

1 public void run() {

2 System.out.println("Creating App Engine Datastore Entities for table ["+ ←↩
tableToExport + "] from the CSV files");

3 List<File> files = getFiles();

4 try {

5 exportToAppEngineDataStore(files);

6 updateExecutionStatus(entityName,entitiesExportCount,Status.SUCCESS,new Date());

7 System.out.println("Completed Creation of App Engine Datastore Entities for ←↩
table ["+ tableToExport + "] from the CSV files");

8 Thread.sleep(1000);

9 importerCountLatch.countDown();

10

11 } catch(Exception e){

12 e.printStackTrace();

13 updateExecutionStatus(entityName,entitiesExportCount,Status.FAILURE,new Date());

14 }

15 }

Listing 4.8: The run() method of TableImporter class containing the workflow for

importing the data from the CSV files to entities in the Datastore

4.2.4 Data flow diagram

The Figure 4.6 shows the flow of data from the RDBMS to Google App Engine Datas-

tore during the data migration process initiated by the Database Migration Tool. The

Database Migration Tool can be configured to export data from the RDBMS to local

GAE Datastore provided by GAE development environment or to GAE Datastore in

the GAE Cloud.

2https://github.com/prasanthmp500/spring-data-migration

43

Figure 4.6: Data flow diagram

4.3 Software Life cycle

The development of the tools used for the thesis work followed the waterfall project life

cycle model. The waterfall life cycle model has a set of phases that are executed in a

sequential order. The waterfall life cycle process begins with a requirement phase, fol-

lowed by a design phase, implementation phase, testing phase and maintenance phase.

The thesis work used the waterfall model due to its simplicity, ease of use and project

requirements are known up front. In addition the steps in the software methodology

are executed in a sequential manner and cannot be executed in a parallel. The thesis

work decided not to use other software life cycle models such as iterative and incre-

ment development, prototype, spiral model and agile methodologies as some of these

project life cycle models require developing a prototype or iterations of the phases of

the waterfall model or are oriented towards reducing risk in the project which are not

real concerns with respect to this thesis. The code developed for the both the tools are

uploaded to GitHub.

4.4 Main implementation decisions

This section deals with main implementation decisions such as the choice of program-

ming languages, design decisions and frameworks that will be used in the development

of the migration tool.

• Java

The Java Source Code Analyzer Tool and Database Migration Tool will be de-

veloped in Java. The main reasons to use Java is that it has support for object

oriented programming, multi-threading features and also has wide support for

44

Compiler API’s/ Annotation Processor classes etc that helps to parse through

the Java source files.

• Usage of Java Multi Threading and Compiler API’s

The Database Migration Tool is designed to use Multi threading concepts to

improves the efficiency of the Database Migration Tool. Multiple threads are

spawned simultaneously that perform exportation and importation of the data.

The use of threading can speeden the migration process and in addition the

threads consumes less resources as threads are light weight processes.

The Java Source Code Analyzer Tool is developed using both the Java Compiler

API’s and Compiler Tree API’s. The Compiler API’s allows the programmer to

access to the Java compiler programmatically to compile Java source files. The

Compiler Tree API’s can be used to obtain an Abstract Syntax Tree (AST) for a

Java class and the nodes in the Abstract Syntax Tree can be visited to identify the

GAE unsupported features and the usage of strings that represent SQL queries.

• Spring Framework

The Spring Framework can provide infrastructure support for developing robust

Java application easier and faster. The development of the migration tool will

be using the infrastructural support provided by the Spring Framework. The

Spring Framework provides features such as dependency injection, aspect oriented

programming, JDBC support etc. These features can help to reduce programming

complexity and efforts as well has handles many low level tasks such as handling

database connections.

4.5 Summary

To summarize, in this chapter we have discussed about the implementation details of

the tools that are developed to support the software methodology. The main com-

ponents of Java Source Code Analyzer Tool namely Google App Engine BlackList

Analyzer Program and SQL Query Analyzer Program share similar architecture and

are implemented with the help of Java Compiler API’s, Compiler Tree API’s, Java

annotation processor classes, Reflection API’s etc. The Database Migration Tool has

multithreading features and it is architectured using the multithreading API’s offered

by Java language.

Having described about the implementation aspects of the Java Source Code Analyzer

Tool and Database Migration Tool, in the next chapter we will evaluate the software

45

methodology by applying both Java Source Code Analyzer Tool and Database Migra-

tion Tool on the sample set of sample Java projects in order to migrate them to the

GAE Platform.

46

Chapter 5

Evaluation

In this chapter we perform an empirical evaluation to validate our software methodol-

ogy. We design experiments to evaluate each of the two proposed approaches, namely

the Java Source Code Analyzer Tool and Database Migration Tool. we conduct the

evaluation on two applications namely PetClinic1 and AjaxCrudJTable2,3.

The PetClinic is an enterprise level application developed to demonstrate the capability

of Spring Framework for building simple and powerful Database oriented applications.

The PetClinic application uses MySQL5.x as the Database technology for storing the

application data.

The AjaxCrudJTable application is a simple Java web application that is used to

demonstrate Database CRUD Operations using jTable. The jTable is a jQuery Plugin

which is used to create Ajax based CRUD tables without coding HTML or Javascript.

The AjaxCrudJTable application also uses MySQL5.x as the Database technology to

store the application data.

the next section we present the evaluation of Java Source Code Analyzer Tool on these

sample applications.

1https://github.com/spring-projects/spring-petclinic
2https://github.com/prasanthmp500/AjaxjTableServlet
3http://www.simplecodestuffs.com/ajax-based-crud-operations-in-jsp-and-servlet-using-jtable-

jquery-plug-in/

47

5.1 Evaluation of Java Source Code Analyzer Tool

The Java Source Code Analyzer Tool has two parts namely Google App Engine Black-

List Analyzer Program and SQL Query Analyzer Program. First we present the eval-

uation of Google App Engine BlackList Analyzer Program. The Google App Engine

BlackList Analyzer Program is developed to detect the GAE unsupported JRE classes

in the application. We compare our approach with Google Plugin for Eclipse. The

Google Plugin for Eclipse allows the Java develpers to easily create and deploy appli-

cations on App Engine. The Google Plugin for Eclipse also provides real time code

validation for ensuring the compatibility of the aplication code with GAE Platform. So

we evaluated the Google App Engine Blacklist Analyzer Program versus the popular

Google Plugin for Eclipse on the choosen sample applications.

The Table 5.1 shows the total number of GAE unsupported JRE classes identified in

the PetClinic and AjaxCrudJTable applications by the Google App Engine Blacklist

Analyzer program and Google Plugin.

GAE

BlackList

Analyzer

Program

Google

Plugin

PetClinic 3 0

AjaxCrudJTable 9 0

Table 5.1: The total number of occurences of GAE unsupported JRE classes identified
by GAE BlackList Analyzer Program versus Google Plugin in the sample applications

The Google Plugin failed to identify any GAE unsupported JRE classes even though the

PetClinic and AjaxCrudJTable applications contains a few instances GAE unsupported

JRE classes in the Java files. The PetClinic and AjaxCrudJTable applications use Java

Database Connectivity(JDBC) API’s for accessing the Database. However JDBC APIs

are not supported by GAE Platform to access the GAE Datastore. The Google App

Engine BlackList Analyzer Program provided satisfactory results as it identified the

occurences of these JDBC API’s in the applications source files.

Next we present evaluation results obtained for the SQL Query Analyzer Program. The

SQL Query Analyzer Program identified the usage of SQL queries in the Data access

layer of both the PetClinic and AjaxCrudJTable applications. The error logs provided

by SQL Query Analyzer Program were used to locate the usage of SQL queries in the

Java classes and these SQL queries were easily replaced with Datastore API’s. The

48

Table 5.2 shows the number of SQL queries identified by the SQL Query Analyzer

Program in both PetClinic and AjaxCrudJTable applications.

SQL queries identified

by SQL Query Analyzer

Program

PetClinic 13

AjaxCrudJTable 5

Table 5.2: The total number of SQL queries identified by SQL Query Analyzer Program
in the sample applications

These results were verified manually by checking the Data Access Layer Java classes

for SQL Query Strings and found that the SQL Query Analyzer Program produced

exact results. In the next section we will discuss about the evaluation of the Database

Migration Tool.

5.2 Evaluation of Database Migration Tool

We applied the Database Migration Tool on our sample applications to migrate the

application data present in the tables to the GAE Datastore and it successfully migrated

all the tables in the Database schemas of the sample applications to GAE Remote

Datastore. The Database migration Tool was configured to run both Data Exporter

and Data Importer modules with a thread pool size equal to 5 and fetch size equal to

500. This configuration means the Data Exporter module uses a thread pool containing

5 worker threads to export the tables to CSV files and the Data Importer module uses

a thread pool containing 5 worker threads to read the CSV files from file system to

GAE Datastore. The maximum number of threads active in both thread pools in this

case is 5. The threads are reused to execute any pending tasks. The fetch size 500

indicates that each worker thread in the thread pool created in the DataExporter class

iteratively fetches 500 records from the table and creates a CSV file containing these

500 records. For example if a table has 2500 records, maximum 5 CSV files will be

created to export the records and each CSV file can contains 500 table records. Also

each worker thread in the thread pool created in the DataImporter class iteratively

reads the CSV files and creates entities in GAE Datasore in batches of size 500. In

addition, there will be at most 5 worker threads actively processing the CSV files in

the Data Importer module.

The Table 5.3 gives a summary of the database migration performed for moving the

49

data from the RDBMS to the GAE Datastore using the Database Migration Tool. We

repeated the data migration process 3 times for both sample applications in order to

take an average value.

#

Tables

mi-

grated

#

Records

mi-

grated

Migration average time (ms)

PetClinic 7 49 7059+7607+7497
3 = 7387ms

AjaxCrudJTable 1 4497 95367+88809+96745
3 = 93640ms

Table 5.3: The total number of records and tables in the RDBMS of the sample appli-
cations migrated to the GAE Datastore by the Database Migration Tool

Both the sample applications helped us to evaluate different aspects of our Database

Migration Tool. The PetClinic application has a total of 7 tables containing 49 records.

The Database Migration Tool migrated the 7 tables containing 49 records to GAE

Remote Datastore and took an average of 7387 milliseconds to migrate the PetClinic

applicaton data. Since the PetClinic application having 7 tables enable us to test the

multithreading aspects of both Database Exporter module and Data Importer module.

The AjaxCrudJTable application has just one table containing 4497 records and the

Database Migration Tool took an average of 93640 milliseconds to migrate the PetClinic

applicaton data. This indicates that the Database Migration Tool is capable of moving

hugh quantities of data from the Database management systems of the applications to

GAE Datastore.

We have also evaluated the Database Migration Tool for performance. First we eval-

uated the performance on the PetClinic application by migrating the Petclinic appli-

cation’s data multiple times to the GAE Datastore by varying the thread pool size

as well as the fetch size configuration properties of the Database Migration Tool. We

have observed that when the thread pool size of both Data Exporter module and Data

Importer module and the fetch size are increased faster the rate of data migration from

the RDBMS to GAE Datastore. The Figure 5.1 clearly illustrates this. This is be-

cause when increasing the thread pool size basically makes more threads available for

exporting the tables in the applicaton to GAE Datastore. Also increasing the fetch size

configuration property value indicates Database Migration Tool sending a larger chunk

of data to the GAE Datastore each time the Datastore is accessed via Remote APIs.

50

8000

10000

12000

14000

16000

18000

20000

22000

24000

1 3 5 7

m
s

threads

PetClinic

4
6
8

10

fetch size

Figure 5.1: Performance evaluation of the Database Migration Tool on PetClinic

Next we evaluated the performance of the Database Migration Tool on the AjaxCrud-

JTable application. The AjaxCrudJTable application has just one table and the table

contains around 4497 records. Since there is only one table to be migrated thread pool

size of 1 is sufficient. We have evaluated the performance of the Database Migration

Tool by varying the fetch size. The following Figure 5.2 shows describes the result of

the evaluation of the Database Migration Tool on varying fetch size. It can be observed

that more the fetch size the faster the data migration from the RDBMS to the GAE

Datastore.

51

105000

106000

107000

108000

109000

110000

111000

112000

113000

1

m
s

threads

AjaxCRUD

300
400
500
600

fetch size

Figure 5.2: Performance evaluation of the Database Migration Tool on AjaxCrudJTable

To summarize, the Database Migration Tool achieves performance scalablity as de-

signed.

5.3 Summary

We applied the proposed software methodology on the sample applications and we show

that our approach is correct as we are able to migrate the applications to the GAE

Cloud. Both the Java Source Code Analyzer Tool and Database Migration Tool played

a key role in migrating the applications to the GAE Platform. The developers now can

rely on the software methodology to migrate application to GAE platform easily and

with less efforts. The Developers do not have to concern about installing Google Plugin

in their IDEs, creating a GAE project in the workspace and copying the application

files to the created GAE project, searching for GAE unsupported JRE classes and

SQL queries in the application code for refactoring and using trivial bulkloader tool

for database migration from the RDBMS of the application to GAE Datastore. The

sample applications were easily refactored using the inputs from Java Source Code

Analyzer Tool and the tables in the RDBMS used by these application were migrated

using Database Migration Tool. we also found the Database Migration Tool’s efficiency

can be optimised by increasing the thread pool size and fetch size. Both the migrated

52

versions of PetClinic4 and AjaxCrudJTable5 applications can be accessed from the

Google App Engine Cloud.

4http://spring-petclinic.appspot.com/
5http://ajaxcrudjtable.appspot.com/

53

Chapter 6

Conclusions

Cloud Computing is the latest paradigm delivering the IT services as computing util-

ity over internet. In this dissertation, we have proposed a software methodology that

helps to efficiently migrate existing Java/JEE applications to Google App Engine Plat-

form. The main aim of this Software methodology is to promote the adoption of GAE

PaaS Cloud for the existing Java/JEE applications running on traditional corporate IT

infrastructures. The applications deployed on GAE can benefits from GAE platform

features. The GAE Platform provides features such as automatic scaling, load balanc-

ing and scalable data storage that supports transactions to name a few. However it can

be quite challenging to migrate an existing application to the Google App Engine as

it involves modifying the application source code as well as migrating the application’s

data to the Google App Engine Platform.

The thesis identified the need to develop a Java Source Code Analyzer Tool and a

Database Migration Tool which are used as part of the Software methodology. The

thesis also provided the designs for both Java Source Code Analyzer Tool and Database

Migration Tool. The tools were implemented as per the design and worked as expected.

The Software methodology was evaluated with the aid of these tools developed by mi-

grating sample applications to the GAE platform. The research has been very positive

as the tools developed provided accurate results. The Java Source Code Analyzer

helped to identify all the GAE unsupported JRE classes and the usage of SQL queries

in the applications there by aiding to refactor the applications effortlessly. It is also

noticed that the standard available tools such as Google Plugin for eclipse has limited

runtime code validation support. The Database Migration Tool was able to migrate

entire the application data from the RDBMS to the GAE Datastore. The Database Mi-

gration Tool proved to be efficient with the use of multithreading technology as well as

54

can handle the migration of hugh quantities of data without any failures. Another im-

portant observation is the maturity of the Google App Engine Platform. The Google

App Engine Platform provides a lot of noteworthy features and one of them is the

Remote feature which enables external applications to access the GAE services. The

Remote API’s is used by the Database Migration Tool to access the production Data-

store thereby enabling Data migration. Hence to conclude, It is possible to efficiently

migrate a Java/JEE prototype application to the Google App Engine PaaS Cloud.

6.1 Further work

Currently the Google App Engine BlackList Analyzer program of Java Source Code

Analyzer Tool can find the presence of GAE unsupported JRE classes only in the

application’s Java source files. The Google App Engine BlackList Analyzer Program

should be modified in the future so that it can scan for the presence of GAE unsupported

JRE classes in the library files(JAR files) used by the application. Further, the Google

App Engine BlackList Analyzer Program could be extended for validating various Java

Frameworks and third party Java libraries for their compatibility with GAE Platform.

In the future the Google App Engine BlackList Analyzer Program should be modified

so that it should be able to scan for Java class files containing Java byte code.

Currently the Java Source Code Analyzer Tool is used by copying the Java Source Code

Analyzer Tool files into a Java project’s root folder, manually editing the configuration

properties files and invoking the interfaces provided by the GAE BlackList Analyzer

Program and SQL Query Analyzer Program. However, this is slightly an inconvinient

approach. The best approach will be bundling the Java files of the Java Source Code

Analyzer Tool as a Plugin, so that this Plugin can be installed on variety of Integrated

Development Environments(IDE) such as Eclipse, NetBeans etc. The users can simply

install the Java Source Code Analyzer Tool as Plugin on an IDE and can scan for the

presence of GAE unsupported JRE classess or SQL queries present in the application’s

Java files using graphical user interfaces provided by the IDE.

Equally important, the Database Migration Tool should be tested with various

Database systems from different vendors and also should be made sure that it can

migrate millions of records from Database to GAE Datastore. The tool could also

be improved to have a fault tolerant design so that the migration process could still

continue in case if a failure occurs during the execution.

55

Bibliography

Angabini, A., Yazdani, N., Mundt, T. & Hassani, F. (2011), Suitability of cloud computing for scientific

data analyzing applications; an empirical study, in F. Xhafa, L. Barolli, J. Kolodziej & S. U. Khan,

eds, ‘2011 International Conference on P2P, Parallel,Grid, Cloud and Internet Computing ’, IEEE,

Barcelona, Catalonia, Spain, pp. 193–199.

Bhat, U. & Jadhav, S. (2010), ‘Moving towards non-relational databases’, International Journal of

Computer Applications 1(13), 40–46. Published By Foundation of Computer Science.

Bonnet, L., Laurent, A., Sala, M., Laurent, B. & Sicard, N. (2011), Reduce, you say: What nosql can

do for data aggregation and bi in large repositories, in ‘Proceedings of the 2011 22Nd International

Workshop on Database and Expert Systems Applications’, IEEE, Toulouse, France, pp. 483–488.

Bunch, C., Chohan, N., Krintz, C., Chohan, J., Kupferman, J., Lakhina, P., Li, Y. & Nomura, Y.

(2010), An evaluation of distributed datastores using the appscale cloud platform, in ‘Proceedings

of the 2010 IEEE 3rd International Conference on Cloud Computing ’, IEEE, Miami, Florida, USA,

pp. 305–312.

Buyya, R., Vechhiola, C. & Selvi, S.T (2013), Mastering Cloud Computing Technologies and Applica-

tions Programming, Morgan Kaufmann.

Chauhan, M. & Babar, M. (2012), Towards process support for migrating applications to cloud comput-

ing, in ‘2012 International Conference on Cloud and Service Computing (CSC)’, IEEE, Shanghai,

China, pp. 80–87.

Da-sheng, W. & Sheng-yu, W. (2010), Dynamically maintain the teaching examples of triggers and

stored procedures about the course of database application, in ‘2010 2nd International Conference

on Education Technology and Computer (ICETC)’, Vol. 1, IEEE, Shanghai, China, pp. 25–27.

Dewan, H. & Hansdah, R. C. (2011), A survey of cloud storage facilities, in ‘2011 IEEE World Congress

on Services’, IEEE, Washington, DC, USA, pp. 224–231.

Google Developers (2013a), ‘Blobstore java api overview’, [Online] Google Developers. Available from:

https://developers.google.com/appengine/docs/java/blobstore/. [Accessed 6 December 2013].

Google Developers (2013b), ‘Java datastore api’, [Online] Google Developers. Available from: https:

//developers.google.com/appengine/docs/java/datastore/. [Accessed 6 December 2013].

Google Developers (2013d), ‘The jre class white list’, [Online] Google Developers. Available from:

https://developers.google.com/appengine/docs/java/jrewhitelist. [Accessed 6 December

2013].

56

https://developers.google.com/appengine/docs/java/blobstore/
https://developers.google.com/appengine/docs/java/datastore/
https://developers.google.com/appengine/docs/java/datastore/
https://developers.google.com/appengine/docs/java/jrewhitelist

Google Developers (2013e), ‘Transactions’, [Online] Google Developers. Available from: https://

developers.google.com/appengine/docs/python/datastore/transactions. [Accessed 6 Decem-

ber 2013].

Google Developers (2013f), ‘Uploading and downloading data’, [Online] Google Developers. Avail-

able from: https://developers.google.com/appengine/docs/python/tools/uploadingdata. [Ac-

cessed 6 December 2013].

Google Developers (2013g), ‘Java runtime environment - java google developers’, [Online] Google

Developers. Available from: https://developers.google.com/appengine/docs/java/. [Accessed

23 July 2014].

Google Developers (2013h), ‘Java google developers’, [Online] Google Developers. Available from:

https://developers.google.com/appengine/docs/java/datastore/transactions. [Accessed 23

July 2014].

Google Developers (2013j), ‘Google cloud datastore google developers’, [Online] Google Developers.

Available from: https://developers.google.com/datastore/docs/concepts/gql. [Accessed 09

August 2014].

Google Developers (2014k), ‘Java google developers’, [Online] Google Developers. Available from:

https://developers.google.com/appengine/docs/java/datastore/queries. [Accessed 19 Au-

gust 2014].

Gregorio, J. (2008), ‘Sharding counters’, [Online] Google Developers. Available from: https://

developers.google.com/appengine/articles/sharding_counters?hl=en. [Accessed 14th Decem-

ber 2013].

Gu, H., Diao, Y., Liu, W. & Zhang, X. (2011), The design of smart home platform based on cloud com-

puting, in ‘2011 International Conference on Electronic and Mechanical Engineering and Information

Technology (EMEIT)’, Vol. 8, IEEE, Harbin, China, pp. 3919–3922.

Hexiao, H., Shiming, Z. & Haijian, C. (2012), ‘Reengineering from tradition to cloud: A case study’,

Procedia Engineering 29(0), 2638 – 2643. 2012 International Workshop on Information and Elec-

tronics Engineering.

Kotecha, S., Bhise, M. & Chaudhary, S. (2011), Query translation for cloud databases, in ‘2011 Nirma

University International Conference on Engineering Current Trends in Technology ’, IEEE, Ahmed-

abad, Gujarat, India, pp. 1–4.

Lei Hu, Peng Yue, H. Z. (2012), Geoprocessing in google cloud computing: Case studies, in ‘The First

International Conference on Agro-Geoinformatics’, IEEE, Shanghai, pp. 1–6.

Li, J., Li, X., Liu, G. & He, Z. (2010), Log management approach in three-dimensional spatial data

management system, in ‘Geoinformatics, 2010 18th International Conference on’, IEEE, Beijing,

China, pp. 1–5.

Malawski, M., Kuzniar, M., Wojcik, P. & Bubak, M. (2013), ‘How to use google app engine for free

computing’, Internet Computing, IEEE 17(1), 50–59.

Martins, J. (2012), ‘Dealing with deadlineexceedederrors’, [Online] Google Developers. Available from:

57

https://developers.google.com/appengine/docs/python/datastore/transactions
https://developers.google.com/appengine/docs/python/datastore/transactions
https://developers.google.com/appengine/docs/python/tools/uploadingdata
https://developers.google.com/appengine/docs/java/
https://developers.google.com/appengine/docs/java/datastore/transactions
https://developers.google.com/datastore/docs/concepts/gql
https://developers.google.com/appengine/docs/java/datastore/queries
https://developers.google.com/appengine/articles/sharding_counters?hl=en
https://developers.google.com/appengine/articles/sharding_counters?hl=en

https://developers.google.com/appengine/articles/deadlineexceedederrors. [Accessed 6th

December 2013].

Mell, P. & Grance, T. (2011), ‘The NIST Definition of Cloud Computing’, [Online].National Institute

of Standards and Technology .Available from: http://csrc.nist.gov/publications/nistpubs/

800-145/SP800-145.pdf [Accessed 12th December 2013].

Oracle (2011), ‘Java se 6 features and enhancements’, [Online] Google Developers. Available from: http:

//docs.oracle.com/javase/6/docs/api/javax/tools/JavaCompiler.html. [Accessed 01 August

2014].

Prodan, R. & Sperk, M. (2013), ‘Scientific computing with google app engine’, Future Generation

Computer Systems 29(7), 1851 – 1859.

Ramanathan, S., Goel, S. & Alagumalai, S. (2011), Comparison of cloud database: Amazon’s simpledb

and google’s bigtable, in ‘2011 International Conference on Recent Trends in Information Systems

(ReTIS)’, IEEE, Jadavpur University,Kolkata, India, pp. 165–168.

Sanderson, D. (2009), Programming Google App Engine, OŔeilly Media.

Shu-Qing, Z. & Jie-Bin, X. (2010), The improvement of paas platform, in ‘Proceedings of

the 2010 First International Conference on Networking and Distributed Computing ’, IEEE,

Hangzhou,Zhejian,China, pp. 156–159.

Srirama, S. N., Jakovits, P. & Vainikko, E. (2012), ‘Adapting scientific computing problems to clouds

using mapreduce’, Future Generation Computer Systems 28(1), 184 – 192.

Tran, V., Keung, J., Liu, A. & Fekete, A. (2011), Application migration to cloud: A taxonomy of

critical factors, in ‘Proceedings of the 2Nd International Workshop on Software Engineering for

Cloud Computing’, SECLOUD ’11, ACM, New York, NY, USA, pp. 22–28.

Vu, Q. H. & Asal, R. (2012), Legacy application migration to the cloud: Practicability and methodology,

in ‘2012 IEEE Eighth World Congress on Services’, IEEE, Honolulu, Hawaii, USA, pp. 270–277.

Yin, H., Han, J., Liu, J. & Dong, J. (2011), The application research of gae on e-learning - taking google

cloudcourse for example, in ‘2011 IEEE 3rd International Conference on Communication Software

and Networks (ICCSN)’, IEEE, Xi’an, China, pp. 156–159.

Zahariev, A. (2009), ‘Google app engine’, Helsinki University of Technology .

58

https://developers.google.com/appengine/articles/deadlineexceedederrors
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://docs.oracle.com/javase/6/docs/api/javax/tools/JavaCompiler.html
http://docs.oracle.com/javase/6/docs/api/javax/tools/JavaCompiler.html

Appendix A

Appendix

A.1 Java Source Code Analyzer Tool important Java

classes and configuration files

A.1.1 GAE BlackList Analyzer Program important Java classes

1 import java.io.File;

2 import java.io.IOException;

3 import java.util.ArrayList;

4 import java.util.Arrays;

5 import java.util.LinkedList;

6 import java.util.List;

7

8 import javax.annotation.processing.AbstractProcessor;

9 import javax.tools.JavaCompiler;

10 import javax.tools.JavaCompiler.CompilationTask;

11 import javax.tools.JavaFileObject;

12 import javax.tools.StandardJavaFileManager;

13 import javax.tools.ToolProvider;

14

15 /**

16 * The main class for starting the GAE BlackList Analyzer Program.

17 *

18 * @author Prasanth M P

19 *

20 */

21 public class GAEBlackListAnalyzerMain {

22

23 public static void main(String[] args) throws IOException {

24 // Gets the Java programming language compiler

25 JavaCompiler compiler = ToolProvider.getSystemJavaCompiler();

59

26 // Get a new instance of the standard file manager implementation

27 StandardJavaFileManager fileManager = compiler.getStandardFileManager(null, null ←↩
, null);

28 // Get the valid source files as a list

29 List<File> files = new ArrayList<File>();

30 List<String> optionList = new ArrayList<String>();

31 optionList.addAll(Arrays.asList(System.getProperty("java.class.path")));

32 files.addAll(FileSearchMain.getProjectFiles(ConfigurationPropertiesFileReader. ←↩
getProperty("project.rootfolder.location")));

33 if (files.size() > 0) {

34 // Get the list of java file objects

35 Iterable<? extends JavaFileObject> compilationUnits = fileManager. ←↩
getJavaFileObjectsFromFiles(files);

36 // Create the compilation task

37 CompilationTask task = compiler.getTask(null, fileManager, null,null, null, ←↩
compilationUnits);

38 // Get the list of annotation processors

39 LinkedList<AbstractProcessor> processors = new LinkedList<AbstractProcessor>() ←↩
;

40 processors.add(new BlackListCodeAnalyzerProcessor());

41 task.setProcessors(processors);

42 // Perform the compilation task.

43 task.call();

44 try {

45 fileManager.close();

46 } catch (IOException e) {

47 System.out.println(e.getLocalizedMessage());

48 }

49 } else {

50 System.out.println("No valid source files to process. Extiting from the ←↩
program");

51 System.exit(0);

52 }

53 }

54

55 }

Listing A.1: The GAEBlackListAnalyzerMain.java class

1 import java.util.Set;

2

3 import javax.annotation.processing.AbstractProcessor;

4 import javax.annotation.processing.ProcessingEnvironment;

5 import javax.annotation.processing.RoundEnvironment;

6 import javax.annotation.processing.SupportedAnnotationTypes;

7 import javax.lang.model.element.Element;

8 import javax.lang.model.element.TypeElement;

9

60

10 import com.sun.source.util.TreePath;

11 import com.sun.source.util.Trees;

12

13 /**

14 * The annotation processor class for the GAE BlackList Analyzer Program.

15 *

16 * @author Prasanth M P.

17 */

18 @SupportedAnnotationTypes("*")

19 public class BlackListCodeAnalyzerProcessor extends AbstractProcessor {

20

21 private Trees tree;

22

23 @Override

24 public synchronized void init(ProcessingEnvironment processingEnv) {

25 super.init(processingEnv);

26 tree = Trees.instance(processingEnv);

27 }

28

29 /**

30 * The compiler invokes the process method for processing annotations in a

31 * series of rounds. The annotation processing tool framework will provide

32 * an annotation processor with an object implementing ProcessingEnvironment

33 * interface so the processor can use facilities provided by the framework

34 * to write new files, report error messages, and find other utilities. The

35 * object implementing ProcessingEnvironment interface is then passed to the

36 * Visitor object of class BlackListCodeAnalyzerVisitor via constructor. The

37 * BlackListCodeAnalyzerVisitor can use the object implementing

38 * ProcessingEnvironment to report error messages.

39 */

40 @Override

41 public boolean process(Set<? extends TypeElement> annotations,

42 RoundEnvironment roundEnv) {

43 BlackListCodeAnalyzerVisitor visitor = new BlackListCodeAnalyzerVisitor(

44 processingEnv);

45 // returns the Java classes, interfaces and packages in the compilation unit as ←↩
a Set containing Element objects.

46 Set<? extends Element> elements = roundEnv.getRootElements();

47 for (Element element : elements) {

48 //Gets the TreePath node for a given Element. The TreePath consist of a tree ←↩
of nodes(Class nodes, method nodes, variable nodes etc)

49 TreePath treePath = tree.getPath(element);

50 if (treePath != null) {

51 visitor.scan(treePath, tree);

52 }

53 }

54 return false;

61

55 }

56 }

Listing A.2: The BlackListCodeAnalyzerProcessor.java class

1 import java.net.URLClassLoader;

2 import java.util.List;

3

4 import javax.annotation.processing.ProcessingEnvironment;

5 import javax.lang.model.element.Element;

6 import javax.lang.model.element.TypeElement;

7 import javax.lang.model.type.TypeMirror;

8

9 import com.sun.source.tree.ClassTree;

10 import com.sun.source.tree.VariableTree;

11 import com.sun.source.util.SourcePositions;

12 import com.sun.source.util.TreePathScanner;

13 import com.sun.source.util.Trees;

14 import com.sun.tools.javac.api.JavacTrees;

15 import com.sun.tools.javac.code.Symbol.VarSymbol;

16

17 /**

18 * The visitor object implementation that visits the class and method nodes in

19 * the Abstract Syntax Tree(AST) representation of a Java source file. A java

20 * source file can be represented as a tree of nodes and each node represent a

21 * meaninful construct.

22 *

23 * @author Prasanth M P

24 */

25 public class BlackListCodeAnalyzerVisitor extends

26 TreePathScanner<Object, Object> {

27

28 private ProcessingEnvironment processingEnv;

29

30 private URLClassLoader urlClassLoader;

31

32 public BlackListCodeAnalyzerVisitor(ProcessingEnvironment processingEnv) {

33 this.processingEnv = processingEnv;

34 this.urlClassLoader = AppEngineAnalyzerUtils.getUrlClassLoader(←↩
ConfigurationPropertiesFileReader.getProperty("project.rootfolder.location") ←↩
);

35 }

36

37 /**

38 * The visitor method is invoke when a class declaration is found in the

39 * Java file. Within the method it invoke methods that check if the class

40 * extends or implements an GAE unsupported JRE Class.

41 */

62

42 @Override

43 public Object visitClass(ClassTree node, Object arg1) {

44 Trees trees = (Trees) arg1;

45 Element element = trees.getElement(getCurrentPath());

46 if (AppEngineAnalyzerUtils.isClass(element)) {

47 TypeElement clazz = (TypeElement) element;

48 // check for JRE super class which is blacklisted

49 checkIfSuperClassBlackListed(clazz, urlClassLoader);

50 // check if it implements restricted interfaces

51 checkIfInterfaceBlackListed(clazz, urlClassLoader);

52 // check if it has restricted field variables

53 }

54 return super.visitClass(node, arg1);

55 }

56

57 /**

58 * The visitor method is invoked when a variable declaration is found in the

59 * Java class declared as a field variable or method variable. The method checks

60 * if the variable type is GAE unsupported JRE class.

61 */

62 @Override

63 public Object visitVariable(VariableTree node, Object p) {

64 try {

65 JavacTrees javacTrees = (JavacTrees) p;

66 Element element = javacTrees.getElement(getCurrentPath());

67 VarSymbol s = (VarSymbol) element;

68 TreeUtils.className(javacTrees.getElement(getCurrentPath()));

69 SourcePositions sourcePositions = javacTrees.getSourcePositions();

70 long startPosition = sourcePositions.getStartPosition(

71 getCurrentPath().getCompilationUnit(), node);

72 javacTrees.getTree(element);

73 Class declaredType = urlClassLoader

74 .loadClass(s.asType().toString());

75 for (Class blackListedClazz : GoogleAppEngineBlackList

76 .getBlackList()) {

77 if (blackListedClazz.isAssignableFrom(declaredType)) {

78 processingEnv

79 .getMessager()

80 .printMessage(

81 javax.tools.Diagnostic.Kind.ERROR,

82 "The Class "

83 + TreeUtils.className(javacTrees

84 .getElement(getCurrentPath()))

85 + " has a declared type which is an app engine restricted JRE ←↩
Interface/class "

86 + declaredType

87 + " at line number "

63

88 + getCurrentPath()

89 .getCompilationUnit()

90 .getLineMap()

91 .getLineNumber(

92 startPosition)

93 + "\n Rule: "

94 + GoogleAppEngineBlackList

95 .getRule(declaredType));

96 }

97 }

98 // }

99 } catch (Exception e) {

100 }

101 return super.visitVariable(node, p);

102 }

103

104 /**

105 * The method has the logic to check if a Java class implements an interface class ←↩
which is a GAE unsupported JRE class.

106 */

107 private void checkIfInterfaceBlackListed(TypeElement clazz,

108 URLClassLoader urlClassLoader) {

109 List<? extends TypeMirror> interfaces = clazz.getInterfaces();

110 for (TypeMirror typeMirror : interfaces) {

111 try {

112 Class interfaceClazz = urlClassLoader.loadClass(typeMirror

113 .toString());

114 for (Class blackListedClazz : GoogleAppEngineBlackList

115 .getBlackList()) {

116 if (blackListedClazz.isAssignableFrom(interfaceClazz)) {

117 processingEnv

118 .getMessager()

119 .printMessage(

120 javax.tools.Diagnostic.Kind.ERROR,

121 "The Class "

122 + clazz

123 + " implements an app engine restricted JRE Interface "

124 + interfaceClazz

125 + "\n Rule: "

126 + GoogleAppEngineBlackList

127 .getRule(interfaceClazz));

128 }

129 }

130 } catch (ClassNotFoundException e) {

131 }

132 }

133 }

64

134

135 /**

136 * The method has the logic to check if a Java class implements an JRE class which ←↩
is a GAE unsupported JRE class.

137 */

138 private void checkIfSuperClassBlackListed(TypeElement clazz,

139 URLClassLoader urlClassLoader) {

140 try {

141 Class elementSuperClass = urlClassLoader.loadClass(clazz

142 .getSuperclass().toString());

143 for (Class blackListedClass : GoogleAppEngineBlackList

144 .getBlackList()) {

145 if (blackListedClass.isAssignableFrom(elementSuperClass)) {

146 processingEnv

147 .getMessager()

148 .printMessage(

149 javax.tools.Diagnostic.Kind.ERROR,

150 "The Class "

151 + clazz

152 + " extends an app engine restricted JRE Class "

153 + blackListedClass

154 + "\n Rule: "

155 + GoogleAppEngineBlackList

156 .getRule(elementSuperClass));

157 return;

158 }

159 }

160

161 } catch (ClassNotFoundException e) {}

162 }

163 }

Listing A.3: The BlackListCodeAnalyzerVisitor.java class

1 error: The Class com.programmingfree.dao.CrudDao has a declared type which is an app ←↩
engine restricted JRE Interface/class interface java.sql.Connection at line ←↩
number 16 Rule: Google App Engine will not support JDBC Connection class.

2 Please use Datastore API’s to get a connection to Datastore [DatastoreService ←↩
datastore = DatastoreServiceFactory.getDatastoreService()]

3

4 error: The Class com.programmingfree.dao.CrudDao has a declared type which is an app ←↩
engine restricted JRE Interface/class interface java.sql.PreparedStatement at ←↩
line number 25 Rule: Google App Engine will not support JDBC PreparedStatement. ←↩
class API’s.

5 Please use Datastore API’s to perform CRUD Operation

6

65

7 error: The Class com.programmingfree.dao.CrudDao has a declared type which is an app ←↩
engine restricted JRE Interface/class interface java.sql.PreparedStatement at ←↩
line number 41 Rule: Google App Engine will not support JDBC PreparedStatement. ←↩
class API’s.

8 Please use Datastore API’s to perform CRUD Operation

9

10 error: The Class com.programmingfree.dao.CrudDao has a declared type which is an app ←↩
engine restricted JRE Interface/class interface java.sql.PreparedStatement at ←↩
line number 53

11 Rule: Google App Engine will not support JDBC PreparedStatement.class API’s.

12 Please use Datastore API’s to perform CRUD Operation

13

14 error: The Class com.programmingfree.dao.CrudDao has a declared type which is an app ←↩
engine restricted JRE Interface/class interface java.sql.Statement at line ←↩
number 70 Rule: Google App Engine will not support JDBC Statement.class API’s.

15 Please use Datastore API’s to perform CRUD Operation

16

17 error: The Class com.programmingfree.dao.CrudDao has a declared type which is an app ←↩
engine restricted JRE Interface/class interface java.sql.ResultSet at line ←↩
number 71 Rule: Google App Engine will not support JDBC ResultSet.class API’s.

18 Please use Datastore API’s

19

20 error: The Class com.programmingfree.dao.CrudDao has a declared type which is an app ←↩
engine restricted JRE Interface/class interface java.sql.PreparedStatement at ←↩
line number 90 Rule: Google App Engine will not support JDBC PreparedStatement. ←↩
class API’s.

21 Please use Datastore API’s to perform CRUD Operation

22

23 error: The Class com.programmingfree.dao.CrudDao has a declared type which is an app ←↩
engine restricted JRE Interface/class interface java.sql.ResultSet at line ←↩
number 93 Rule: Google App Engine will not support JDBC ResultSet.class API’s.

24 Please use Datastore API’s

25

26 error: The Class com.programmingfree.utility.DBUtility has a declared type which is ←↩
an app engine restricted JRE Interface/class interface java.sql.Connection at ←↩
line number 13 Rule: Google App Engine will not support JDBC Connection class.

27 Please use Datastore API’s to get a connection to Datastore [DatastoreService ←↩
datastore = DatastoreServiceFactory.getDatastoreService()]

Listing A.4: The error logs generated by the GAE BlackList Analyzer Program for the

AjaxCrudJTable application.

A.1.2 SQL Query Analyzer Program important Java classes

1 import java.io.File;

2 import java.io.IOException;

66

3 import java.util.ArrayList;

4 import java.util.Arrays;

5 import java.util.LinkedList;

6 import java.util.List;

7

8 import javax.annotation.processing.AbstractProcessor;

9 import javax.tools.JavaCompiler;

10 import javax.tools.JavaCompiler.CompilationTask;

11 import javax.tools.JavaFileObject;

12 import javax.tools.StandardJavaFileManager;

13 import javax.tools.ToolProvider;

14

15 /**

16 * The main class for starting the SQL Query Analyzer Program.

17 *

18 * @author Prasanth M P

19 *

20 */

21 public class SQLQueryAnalyzerMain {

22

23 public static void main(String[] args) {

24

25 // Gets the Java programming language compiler

26 JavaCompiler compiler = ToolProvider.getSystemJavaCompiler();

27 // Get a new instance of the standard file manager implementation

28 StandardJavaFileManager fileManager = compiler.getStandardFileManager(null, null ←↩
, null);

29 List<File> files = new ArrayList<File>();

30 List<String> optionList = new ArrayList<String>();

31 optionList.addAll(Arrays.asList(System.getProperty("java.class.path")));

32 files.addAll(FileSearchMain.getProjectFiles(ConfigurationPropertiesFileReader. ←↩
getProperty("project.jdbc.files.location")));

33 SQLRuleRepository.showRules();

34 if (files.size() > 0) {

35 // Get the list of java file objects

36 Iterable<? extends JavaFileObject> compilationUnits = fileManager. ←↩
getJavaFileObjectsFromFiles(files);

37 // Create the compilation task

38 CompilationTask task = compiler.getTask(null, fileManager, null, null, null, ←↩
compilationUnits);

39 // Get the list of annotation processors

40 LinkedList<AbstractProcessor> processors = new LinkedList<AbstractProcessor>() ←↩
;

41 processors.add(new JdbcDAOCodeAnalyzerProcessor());

42 task.setProcessors(processors);

43 // Perform the compilation task.

44 task.call();

67

45 try {

46 fileManager.close();

47 } catch (IOException e) {

48 System.out.println(e.getLocalizedMessage());

49 }

50 } else {

51 System.out.println("No valid source files to process. "

52 + "Extiting from the program");

53 System.exit(0);

54 }

55 }

56

57 }

Listing A.5: The SQLQueryAnalyzerMain.java class

1 import java.util.Set;

2

3 import javax.annotation.processing.AbstractProcessor;

4 import javax.annotation.processing.ProcessingEnvironment;

5 import javax.annotation.processing.RoundEnvironment;

6 import javax.annotation.processing.SupportedAnnotationTypes;

7 import javax.lang.model.element.Element;

8 import javax.lang.model.element.TypeElement;

9

10 import com.sun.source.util.TreePath;

11 import com.sun.source.util.Trees;

12

13 /**

14 * The annotation processor class for the SQL Query Analyzer Program.

15 *

16 * @author Prasanth M P

17 *

18 */

19 @SupportedAnnotationTypes("*")

20 public class JdbcDAOCodeAnalyzerProcessor extends AbstractProcessor {

21

22 private Trees tree;

23

24 @Override

25 public synchronized void init(ProcessingEnvironment processingEnv) {

26 super.init(processingEnv);

27 tree = Trees.instance(processingEnv);

28 }

29

30 /**

31 * The compiler invokes the process method for processing annotations in a

32 * series of rounds. The annotation processing tool framework will provide

68

33 * an annotation processor with an object implementing ProcessingEnvironment

34 * interface so the processor can use facilities provided by the framework

35 * to write new files, report error messages, and find other utilities. The

36 * object implementing ProcessingEnvironment interface is then passed to the

37 * Visitor object of class JdbcCodeAnalyzerVisitor via constructor. The

38 * JdbcCodeAnalyzerVisitor can use the object implementing

39 * ProcessingEnvironment to report error messages.

40 */

41 @Override

42 public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment ←↩
roundEnv) {

43 JdbcCodeAnalyzerVisitor visitor = new JdbcCodeAnalyzerVisitor(processingEnv);

44 // returns the Java classes, interfaces and packages in the compilation unit as ←↩
a Set containing Element objects.

45 Set<? extends Element> elements = roundEnv.getRootElements();

46 for (Element element : elements) {

47 //Gets the TreePath node for a given Element. The TreePath consist of a tree ←↩
of nodes(Class nodes, method nodes, variable nodes etc).

48 TreePath treePath = tree.getPath(element);

49 visitor.scan(treePath, tree);

50 }

51 return false;

52 }

53 }

Listing A.6: The JdbcDAOCodeAnalyzerProcessor.java class

1 import java.util.List;

2

3 import javax.annotation.processing.ProcessingEnvironment;

4

5 import com.sun.source.tree.BlockTree;

6 import com.sun.source.tree.CompilationUnitTree;

7 import com.sun.source.tree.EnhancedForLoopTree;

8 import com.sun.source.tree.ExpressionTree;

9 import com.sun.source.tree.IfTree;

10 import com.sun.source.tree.MethodInvocationTree;

11 import com.sun.source.tree.MethodTree;

12 import com.sun.source.tree.ReturnTree;

13 import com.sun.source.tree.StatementTree;

14 import com.sun.source.tree.Tree.Kind;

15 import com.sun.source.tree.TryTree;

16 import com.sun.source.tree.VariableTree;

17 import com.sun.source.util.SourcePositions;

18 import com.sun.source.util.TreePathScanner;

19 import com.sun.source.util.Trees;

20

21 /**

69

22 * The visitor object implementation that visits the method nodes in the Abstract ←↩
Syntax Tree(AST) representation of a Java source file.

23 * A java source file can be represented as a tree of nodes and each node represent ←↩
a meaninful construct.

24 *

25 * @author Prasanth M P

26 *

27 */

28 public class JdbcCodeAnalyzerVisitor extends TreePathScanner<Object, Object> {

29

30 private ProcessingEnvironment processingEnv;

31

32 public JdbcCodeAnalyzerVisitor(ProcessingEnvironment processingEnv) {

33 this.processingEnv = processingEnv;

34 }

35

36 /**

37 * The visitor method invoked when a method declaration is found in the Abstract ←↩
syntax tree notation of the java source file.

38 */

39 @Override

40 public Object visitMethod(MethodTree methodTree, Object arg1) {

41 Trees trees = (Trees) arg1;

42 CompilationUnitTree compilationUnitTree = getCurrentPath().getCompilationUnit();

43 // compileTree.getSourceFile().getName(); // filename including path

44 List<? extends StatementTree> statements = methodTree.getBody()

45 .getStatements();

46 processStatements(statements,trees,compilationUnitTree,methodTree);

47 return super.visitMethod(methodTree, arg1);

48 }

49

50 /**

51 * This method is recursively called to process the occurence of an SQL query ←↩
string within a method.

52 *

53 * @param statements - The List of StatementTree nodes. The StatementTree node ←↩
represent

54 * a statement in the method such as if, else, else if, try, catch, for, finally ←↩
etc.

55 * @param trees - Provides utilities for operations on Abstract Syntax Trees.

56 * @param compileTree - Represents the abstract syntax tree for compilation units ←↩
(source files).

57 * @param methodTree - Represents a method node within the AST representation of ←↩
the Java source file.

58 */

59 private void processStatements(List<? extends StatementTree> statements, Trees ←↩
trees,CompilationUnitTree compileTree,

70

60 MethodTree methodTree) {

61

62 for (StatementTree statement : statements) {

63 if (statement.getKind().equals(Kind.EXPRESSION_STATEMENT)) {

64 handleMessageForExpressionStatment(trees,statement,compileTree,methodTree);

65 } else if (statement.getKind().equals(Kind.VARIABLE)) {

66 handleMessageForVariable(trees,statement,compileTree,methodTree);

67 } else if(statement.getKind().equals(Kind.TRY)){

68 handleMessageForTryStatement(trees,statement,compileTree,methodTree);

69 } else if (statement.getKind().equals(Kind.IF)){

70 handleMessageForIFStatement(trees,statement,compileTree,methodTree);

71 } else if(statement.getKind().equals(Kind.RETURN)){

72 handleMessageForReturnStatement(trees,statement,compileTree,methodTree);

73 } else if(statement.getKind().equals(Kind.ENHANCED_FOR_LOOP)){

74 handleMessageForEnhancedForLoop(trees,statement,compileTree,methodTree);

75 }

76 }

77 }

78

79 /**

80 * The method is called when a for loop in encountered in the source file. The ←↩
method then obtains the statements within the for loop

81 * and recursively calls the processStatements method.

82 */

83 private void handleMessageForEnhancedForLoop(Trees trees,

84 StatementTree statement, CompilationUnitTree compileTree,

85 MethodTree methodTree) {

86 EnhancedForLoopTree enhanceForLoop = (EnhancedForLoopTree)statement;

87 enhanceForLoop.getExpression();

88 List<? extends StatementTree> statements = ((BlockTree)enhanceForLoop. ←↩
getStatement()).getStatements();

89 processStatements(statements, trees, compileTree, methodTree);

90 }

91

92 /**

93 * The method is called when a return statement is encountered in the source file. ←↩
The method then obtains the statements within the return statement

94 * and calls the handleMessageForExpressionStatment to display an error log to ←↩
indicate if String variable returned is an SQL query.

95 */

96 private void handleMessageForReturnStatement(Trees trees,

97 StatementTree statement, CompilationUnitTree compileTree,

98 MethodTree methodTree) {

99 ReturnTree rt = (ReturnTree)statement;

100 if(rt.getExpression().getKind().equals(Kind.METHOD_INVOCATION)) {

101 MethodInvocationTree methodInvocationTree = (MethodInvocationTree)rt. ←↩
getExpression();

71

102 List<? extends ExpressionTree> args = methodInvocationTree.getArguments();

103 for(ExpressionTree ex: args){

104 if(ex.getKind().equals(Kind.STRING_LITERAL)){

105 handleMessageForExpressionStatment(trees,statement, compileTree, methodTree ←↩
);

106 }

107 }

108 }

109 }

110

111 /**

112 * The method is called when a if else is encountered in the source file. The ←↩
method then obtains the statements within the if else

113 * and calls the processStatements recursively.

114 */

115 private void handleMessageForIFStatement(Trees trees,

116 StatementTree statement, CompilationUnitTree compileTree,

117 MethodTree methodTree) {

118 IfTree iftree = (IfTree)statement;

119 BlockTree ifThenBlock= (BlockTree)iftree.getThenStatement();

120 ifThenBlock.getStatements();

121 processStatements(ifThenBlock.getStatements(), trees, compileTree, methodTree);

122 BlockTree ifElseBlock = (BlockTree)iftree.getElseStatement();

123 processStatements(ifElseBlock.getStatements(), trees, compileTree, methodTree);

124 }

125

126 /**

127 * The method is called when a Try block is encountered in the source file. The ←↩
method then obtains the statements to check if the statements within

128 * the Try block is of expression statements or variables and then calls ←↩
appropriate methods for processing further.

129 */

130 private void handleMessageForTryStatement(Trees trees,

131 StatementTree statement, CompilationUnitTree compileTree,

132 MethodTree methodTree) {

133 TryTree tree = (TryTree)statement;

134 List<? extends StatementTree> blockStatements = tree.getBlock().getStatements();

135 for(StatementTree stmt : blockStatements){

136 if (stmt.getKind().equals(Kind.EXPRESSION_STATEMENT)) {

137 handleMessageForExpressionStatment(trees,stmt,compileTree,methodTree);

138 } else if (stmt.getKind().equals(Kind.VARIABLE)) {

139 handleMessageForVariable(trees,stmt,compileTree,methodTree);

140 }

141 }

142 }

143

144 /**

72

145 * checks if the string values "select ", "update ", "insert ", or "delete " ←↩
present in the declared variable.

146 */

147 private void handleMessageForVariable(Trees trees, StatementTree statement,

148 CompilationUnitTree compileTree, MethodTree methodTree) {

149 VariableTree queryVariable = (VariableTree) statement;

150 SourcePositions sourcePosition = trees.getSourcePositions();

151 long startPosition = sourcePosition.getStartPosition(

152 getCurrentPath().getCompilationUnit(), statement);

153 if (statement.toString() != null && !statement.toString().isEmpty()) {

154 if (statement.toString().toLowerCase().contains("select ")) {

155 processingEnv

156 .getMessager()

157 .printMessage(

158 javax.tools.Diagnostic.Kind.ERROR,

159 "Use Data Store retrieve entity operations on line "

160 + compileTree.getLineMap()

161 .getLineNumber(

162 startPosition)

163 + " for the jdbc query string variable "

164 + queryVariable.getName()

165 + " in the method "

166 + methodTree.getName()

167 + " in the class "

168 + TreeUtils.className(trees

169 .getElement(getCurrentPath()))

170 + " ["

171 + compileTree.getSourceFile()

172 .getName() + "] "+" Refer Rules "+ SQLRuleRepository.getRule(←↩
Operation.READ) + " in the Rule Table");

173 } else if (statement.toString().toLowerCase()

174 .contains("update ")) {

175 processingEnv

176 .getMessager()

177 .printMessage(

178 javax.tools.Diagnostic.Kind.ERROR,

179 "Use Data Store update entity operations on line "

180 + compileTree.getLineMap()

181 .getLineNumber(

182 startPosition)

183 + " for the jdbc query string variable "

184 + queryVariable.getName()

185 + " in the method "

186 + methodTree.getName()

187 + " in the class "

188 + TreeUtils.className(trees

189 .getElement(getCurrentPath()))

73

190 + " ["

191 + compileTree.getSourceFile()

192 .getName() + "] "+" Refer Rules "+ SQLRuleRepository.getRule(←↩
Operation.UPDATE) + " in the Rule Table");

193 } else if (statement.toString().toLowerCase()

194 .contains("insert ")) {

195 processingEnv

196 .getMessager()

197 .printMessage(

198 javax.tools.Diagnostic.Kind.ERROR,

199 "Use Data Store create entity operations on line "

200 + compileTree.getLineMap()

201 .getLineNumber(

202 startPosition)

203 + " for the jdbc query string variable "

204 + queryVariable.getName()

205 + " in the method "

206 + methodTree.getName()

207 + " in the class "

208 + TreeUtils.className(trees

209 .getElement(getCurrentPath()))

210 + " ["

211 + compileTree.getSourceFile()

212 .getName() + "] "+" Refer Rules "+ SQLRuleRepository.getRule(←↩
Operation.CREATE) + " in the Rule Table");

213 } else if (statement.toString().toLowerCase()

214 .contains("delete ")) {

215 processingEnv

216 .getMessager()

217 .printMessage(

218 javax.tools.Diagnostic.Kind.ERROR,

219 "Use Data Store delete entity operations on line "

220 + compileTree.getLineMap()

221 .getLineNumber(

222 startPosition)

223 + " for the jdbc query string variable "

224 + queryVariable.getName()

225 + " in the method "

226 + methodTree.getName()

227 + " in the class "

228 + TreeUtils.className(trees

229 .getElement(getCurrentPath()))

230 + " ["

231 + compileTree.getSourceFile()

232 .getName() + "] "+" Refer Rules "+ SQLRuleRepository.getRule(←↩
Operation.DELETE) + " in the Rule Table");

233 }

74

234 }

235 }

236

237 /**

238 * checks if there is a string "select ", "update ", "insert ", or "delete " in ←↩
the statement.

239 */

240 private void handleMessageForExpressionStatment(Trees trees,StatementTree stmt, ←↩
CompilationUnitTree compilationUnitTree, MethodTree methodTree) {

241 SourcePositions sourcePosition = trees.getSourcePositions();

242 long startPosition = sourcePosition.getStartPosition(

243 getCurrentPath().getCompilationUnit(), stmt);

244 if (stmt.toString() != null && !stmt.toString().isEmpty()) {

245 if (stmt.toString().toLowerCase().contains("select ")) {

246 processingEnv.getMessager().printMessage(

247 javax.tools.Diagnostic.Kind.ERROR,

248 "Use Data Store retrieve entity operations on line "

249 + compilationUnitTree.getLineMap()

250 .getLineNumber(startPosition)

251 + " in the method "

252 + methodTree.getName().toString()

253 + " in the class "

254 + TreeUtils.className(trees

255 .getElement(getCurrentPath()))

256 + " ["

257 + compilationUnitTree.getSourceFile().getName()

258 + "] "+" Refer Rules "+ SQLRuleRepository.getRule(Operation.READ) + " ←↩
in the Rule Table");

259 } else if (stmt.toString().toLowerCase()

260 .contains("update ")) {

261 processingEnv.getMessager().printMessage(

262 javax.tools.Diagnostic.Kind.ERROR,

263 "Use Data Store update entity operations on line "

264 + compilationUnitTree.getLineMap()

265 .getLineNumber(startPosition)

266 + " in the method "

267 + methodTree.getName().toString()

268 + " in the class "

269 + TreeUtils.className(trees

270 .getElement(getCurrentPath()))

271 + " ["

272 + compilationUnitTree.getSourceFile().getName()

273 + "] "+" Refer Rules "+ SQLRuleRepository.getRule(Operation.UPDATE) + ←↩
" in the Rule Table");

274 } else if (stmt.toString().toLowerCase()

275 .contains("insert ")) {

276 processingEnv.getMessager().printMessage(

75

277 javax.tools.Diagnostic.Kind.ERROR,

278 "Use Data Store create entity operations on line "

279 + compilationUnitTree.getLineMap()

280 .getLineNumber(startPosition)

281 + " in the method "

282 + methodTree.getName().toString()

283 + " in the class "

284 + TreeUtils.className(trees

285 .getElement(getCurrentPath()))

286 + " ["

287 + compilationUnitTree.getSourceFile().getName()

288 + "] "+" Refer Rules "+ SQLRuleRepository.getRule(Operation.CREATE) + ←↩
" in the Rule Table");

289 } else if (stmt.toString().toLowerCase()

290 .contains("delete ")) {

291 processingEnv.getMessager().printMessage(

292 javax.tools.Diagnostic.Kind.ERROR,

293 "Use Data Store delete entity operations on line "

294 + compilationUnitTree.getLineMap()

295 .getLineNumber(startPosition)

296 + " in the method "

297 + methodTree.getName().toString()

298 + " in the class "

299 + TreeUtils.className(trees

300 .getElement(getCurrentPath()))

301 + " ["

302 + compilationUnitTree.getSourceFile().getName()

303 + "] "+" Refer Rules "+ SQLRuleRepository.getRule(Operation.DELETE) + ←↩
" in the Rule Table");

304 }

305 }

306 }

307

308 }

Listing A.7: The JdbcCodeAnalyzerVisitor.java class.

1 error: Use Data Store create entity operations on line 25 for the jdbc query string ←↩
variable preparedStatement in the method addUser in the class com. ←↩
programmingfree.dao.CrudDao [E:\NCIRL\dissertation\workspace\ ←↩
AjaxCrudjTableSample\src\com\programmingfree\dao\CrudDao.java]

2

3 error: Use Data Store delete entity operations on line 41 for the jdbc query string ←↩
variable preparedStatement in the method deleteUser in the class com. ←↩
programmingfree.dao.CrudDao [E:\NCIRL\dissertation\workspace\ ←↩
AjaxCrudjTableSample\src\com\programmingfree\dao\CrudDao.java]

4

76

5 error: Use Data Store update entity operations on line 53 for the jdbc query string ←↩
variable preparedStatement in the method updateUser in the class com. ←↩
programmingfree.dao.CrudDao [E:\NCIRL\dissertation\workspace\ ←↩
AjaxCrudjTableSample\src\com\programmingfree\dao\CrudDao.java]

6 error: Use Data Store retrieve entity operations on line 71 for the jdbc query ←↩
string variable rs in the method getAllUsers in the class com.programmingfree. ←↩
dao.CrudDao [

7 E:\NCIRL\dissertation\workspace\AjaxCrudjTableSample\src\com\programmingfree\dao\ ←↩
CrudDao.java]

8

9 error: Use Data Store retrieve entity operations on line 90 for the jdbc query ←↩
string variable preparedStatement in the method getUserById in the class com. ←↩
programmingfree.dao.CrudDao [E:\NCIRL\dissertation\workspace\ ←↩
AjaxCrudjTableSample\src\com\programmingfree\dao\CrudDao.java]

Listing A.8: The error logs generated by the SQL Query Analyzer Program for the

AjaxCrudJTable application.

A.1.3 Configuration properties file

1 # The configuration properties file for the petclinic application

2

3 # The configuration property pointing to the petclinic project’s root folder

4 # used by the GAE BlackList Analyzer Program.

5 project.rootfolder.location=E:/NCIRL/dissertation/workspace/springpetclinic-maven- ←↩
appengine

6

7 # The configuration property pointing to the petclinic project’s Data Access Layer

8 # used by the SQL Query Analyzer Program.

9 project.jdbc.files.location=E:/NCIRL/dissertation/workspace/springpetclinic-maven- ←↩
appengine/src/main/java/org/springframework/samples/petclinic/repository/jdbc

Listing A.9: The configuration properties file

A.1.4 Rule table generated by the SQL Query Analyzer Program

The developers can use the rule table displayed by the SQL Query Analyzer Program

to map the JDBC APIs to Datastore APIs during the refactoring of SQL Queries.

77

N
o.

O
p

.J
D

B
C

A
P

I
D

at
as

to
re

A
P

I

1

CREATE

C
on

n
ec

ti
on

co
n

n
ec

ti
on

=
//

ob
ta

in
a

co
n

n
ec

ti
on

S
ta

te
m

en
t

st
m

t
=

co
n
n

ec
ti

on
.c

re
at

eS
ta

te
m

en
t(

);

st
m

t.
ex

ec
u

te
U

p
d

at
e(

in
se

rt
in

to
ta

b
le

n
am

e
(c

ol
-

u
m

n
1,

co
lu

m
n

2,
co

lu
m

n
3,

..
.)

va
lu

es
(v

al
u

e1
,

va
lu

e2
,

va
lu

e3
,.

..
)

st
m

t.
cl

os
e(

);

D
at

as
to

re
S

er
v
ic

e
d

at
as

to
re

=
D

a
ta

st
o
re

S
er

v
ic

eF
a
c-

to
ry

.g
et

D
at

as
to

re
S

er
v
ic

e(
);

E
n
ti

ty
en

ti
ty

=
n

ew
E

n
ti

ty
(”

E
n
ti

ty
N

am
e”

);

en
ti

ty
.s

et
P

ro
p

er
ty

(”
p

ro
p

er
ty

N
am

e1
”,

va
lu

e1
);

en
ti

ty
.s

et
P

ro
p

er
ty

(”
p

ro
p

er
ty

N
am

e2
”,

va
lu

e2
);

d
at

as
to

re
.p

u
t(

en
ti

ty
);

78

N
o.

O
p

.J
D

B
C

A
P

I
D

at
as

to
re

A
P

I

2

CREATE

C
on

n
ec

ti
on

co
n

n
ec

ti
on

=
//

ob
ta

in
a

co
n

n
ec

ti
on

P
re

p
ar

ed
S

ta
te

m
en

t
co

n
n

ec
ti

on
=

co
n

n
ec

-

ti
on

.p
re

p
ar

eS
ta

te
m

en
t

(”
in

se
rt

in
to

ta
b

le
n

am
e

(c
ol

u
m

n
1,

co
lu

m
n

2)
va

lu
es

(?
,?

)”
);

p
sm

t.
se

tI
n
t(

1,
va

lu
e1

);

p
sm

t.
se

tS
tr

in
g(

2,
va

lu
e2

);

p
sm

t.
ad

d
B

at
ch

()
;

p
sm

t.
se

tI
n
t

(1
,

va
lu

e1
);

p
sm

t.
se

tS
tr

in
g

(2
,

va
lu

e2
);

p
st

m
t.

ad
d

B
at

ch
()

;

in
t[

]
u

p
d

at
eC

ou
n
ts

=
p

st
m

t.
ex

ec
u

te
B

at
ch

()
;

D
at

as
to

re
S

er
v
ic

e
d

at
as

to
re

=
D

a
ta

st
o
re

S
er

v
ic

eF
a
c-

to
ry

.g
et

D
at

as
to

re
S

er
v
ic

e(
);

E
n
ti

ty
en

ti
ty

1
=

n
ew

E
n
ti

ty
(”

E
m

p
lo

y
ee

”
);

en
ti

ty
1.

se
tP

ro
p

er
ty

(”
p

ro
p

er
ty

N
am

e1
”,

va
lu

e1
);

en
ti

ty
1.

se
tP

ro
p

er
ty

(”
p

ro
p

er
ty

N
am

e2
”,

va
lu

e2
);

E
n
ti

ty
en

ti
ty

2
=

n
ew

E
n
ti

ty
(”

E
m

p
lo

y
ee

”
);

E
n
ti

ty
2.

se
tP

ro
p

er
ty

(”
p

ro
p

er
ty

N
am

e1
”,

va
lu

e1
);

en
ti

ty
2.

se
tP

ro
p

er
ty

(”
p

ro
p

er
ty

N
am

e2
”,

va
lu

e2
);

L
is

t¡
E

n
ti

ty
¿

en
ti

ty
L

is
t

=
A

rr
ay

s.
as

L
is

t(
en

ti
ty

1
,

en
ti

ty
2
);

d
at

as
to

re
.p

u
t(

en
ti

ty
L

is
t)

;

79

N
o.

O
p

.J
D

B
C

A
P

I
D

at
as

to
re

A
P

I

3

READ

C
on

n
ec

ti
on

co
n

n
ec

ti
on

=
//

ob
ta

in
a

co
n

n
ec

ti
on

S
ta

te
m

en
t

st
m

t
=

co
n
n

ec
ti

on
.c

re
at

eS
ta

te
m

en
t(

);

R
es

u
lt

S
et

rs
=

st
m

t.
ex

ec
u

te
Q

u
er

y
(s

el
ec

t
*

fr
om

ta
b

le
-

n
am

e;
);

w
h

il
e

(r
s.

n
ex

t(
))
{

in
t

id
=

rs
.g

et
In

t(
”c

ol
u

m
n

N
am

e1
”)

;

S
tr

in
g

id
=

rs
.g

et
S

tr
in

g(
”c

ol
u

m
n

N
am

e2
”)

;

} rs
.c

lo
se

()
;

D
at

as
to

re
S

er
v
ic

e
d

at
as

to
re

=
D

a
ta

st
o
re

S
er

v
ic

eF
a
c-

to
ry

.g
et

D
at

as
to

re
S

er
v
ic

e(
);

//
U

se
cl

as
s

Q
u

er
y

to
as

se
m

b
le

a
q
u

er
y

Q
u

er
y

q
=

n
ew

Q
u

er
y
(”

E
n
ti

ty
N

am
e”

);

//
U

se
P

re
p

ar
ed

Q
u

er
y

in
te

rf
ac

e
to

re
tr

ie
ve

re
su

lt
s

P
re

p
ar

ed
Q

u
er

y
p

q
=

d
at

as
to

re
.p

re
p

ar
e(

q
);

//
It

er
at

e
th

ro
u

gh
th

e
en

ti
ty

li
st

fo
r

(E
n
ti

ty
re

su
lt

:
p

q
.a

sI
te

ra
b

le
()

)
{

S
tr

in
g

va
lu

e1
=

(S
tr

in
g)

re
su

lt
.g

et
P

ro
p

er
ty

(”
p

ro
p

er
ty

N
a
m

e1
”
);

S
tr

in
g

va
lu

e2
=

(S
tr

in
g)

re
su

lt
.g

et
P

ro
p

er
ty

(”
p

ro
p

er
ty

N
a
m

e2
”
);

L
on

g
va

lu
e3

=
(L

on
g)

re
su

lt
.g

et
P

ro
p

er
ty

(”
p
ro

p
er

ty
N

a
m

e3
”
);
}

80

N
o.

O
p

.J
D

B
C

A
P

I
D

at
as

to
re

A
P

I

4

READ

C
on

n
ec

ti
on

co
n

n
ec

ti
on

=
//

ob
ta

in
a

co
n

n
ec

ti
on

S
ta

te
m

en
t

st
m

t
=

co
n
n

ec
ti

on
.c

re
at

eS
ta

te
m

en
t(

);

R
es

u
lt

S
et

rs
=

st
m

t.
ex

ec
u

te
Q

u
er

y
(s

el
ec

t
*

fr
om

ta
b

le
n

am
e

w
h

er
e

co
lu

m
n

n
am

e
op

er
at

or
va

lu
e;

);

w
h

il
e

(r
s.

n
ex

t(
))

in
t

id
=

rs
.g

et
In

t(
”c

ol
u

m
n

N
am

e1
”)

;

S
tr

in
g

id
=

rs
.g

et
S

tr
in

g(
”c

ol
u

m
n

N
am

e2
”)

;

rs
.c

lo
se

()
;

D
at

as
to

re
S

er
v
ic

e
d

at
as

to
re

=
D

a
ta

st
o
re

S
er

v
ic

eF
a
c-

to
ry

.g
et

D
at

as
to

re
S

er
v
ic

e(
);

//
U

se
cl

as
s

Q
u

er
y

to
as

se
m

b
le

a
q
u

er
y

Q
u

er
y

q
=

n
ew

Q
u

er
y
(”

E
n
ti

ty
N

am
e”

);

Q
u

er
y

q
=

n
ew

Q
u

er
y
(”

E
n
ti

ty
N

am
e”

).
a
d

d
F

il
te

r(

”p
ro

p
er

ty
N

am
e”

,Q
u

er
y.

F
il
te

rO
p

er
at

or
,v

a
lu

e)
;

//
U

se
P

re
p

ar
ed

Q
u

er
y

in
te

rf
ac

e
to

re
tr

ie
ve

re
su

lt
s

P
re

p
ar

ed
Q

u
er

y
p

q
=

d
at

as
to

re
.p

re
p

ar
e(

q
);

81

N
o.

O
p

.J
D

B
C

A
P

I
D

at
as

to
re

A
P

I

5

READ

C
on

n
ec

ti
on

co
n

n
ec

ti
on

=
//

ob
ta

in
a

co
n

n
ec

ti
on

S
ta

te
m

en
t

st
m

t
=

co
n
n

ec
ti

on
.c

re
at

eS
ta

te
m

en
t(

);

R
es

u
lt

S
et

rs
=

st
m

t.
ex

ec
u

te
Q

u
er

y
(s

el
ec

t
*

fr
om

ta
b

le
-

n
am

e
w

h
er

e
co

lu
m

n
n

am
e

b
et

w
ee

n
va

lu
e1

an
d

va
lu

e2
;)

w
h

il
e

(r
s.

n
ex

t(
))
{

in
t

id
=

rs
.g

et
In

t(
”c

ol
u

m
n

N
am

e1
”)

;

S
tr

in
g

id
=

rs
.g

et
S

tr
in

g(
”c

ol
u

m
n

N
am

e2
”)

;
}

rs
.c

lo
se

()
;

D
at

as
to

re
S

er
v
ic

e
d

at
as

to
re

=
D

a
ta

st
o
re

S
er

v
ic

eF
a
c-

to
ry

.g
et

D
at

as
to

re
S

er
v
ic

e(
);

F
il

te
r

ra
n

ge
F

il
te

rC
ri

te
ri

a1
=

n
ew

F
il

te
rP

re
d

i-

ca
te

(”
p

ro
p

er
ty

N
am

e1
”,

F
il

te
rO

p
er

at
or

.G
R

E
A

T
E

R
T

H
A

N
O

R
E

Q
U

A
L

,

va
lu

e1
);

F
il

te
r

ra
n

ge
F

il
te

rC
ri

te
ri

a2
=

n
ew

F
il

te
rP

re
d

i-

ca
te

(”
p

ro
p

er
ty

N
am

e2
”,

F
il

te
rO

p
er

at
or

.L
E

S
S

T
H

A
N

O
R

E
Q

U
A

L
,

va
lu

e2
);

//
U

se
C

om
p

os
it

eF
il

te
r

to
co

m
b

in
e

m
u

lt
ip

le
fi

lt
er

s

F
il

te
r

ra
n

ge
F

il
te

r
=

C
om

p
os

it
eF

il
te

rO
p

er
a
to

r.
a
n

d
(r

a
n

g
eF

il
te

rC
ri

te
ri

a
1
,

ra
n

ge
F

il
te

rC
ri

te
ri

a2
);

//
U

se
cl

as
s

Q
u

er
y

to
as

se
m

b
le

a
q
u

er
y

Q
u

er
y

q
=

n
ew

Q
u

er
y
(”

E
n
ti

ty
N

am
e”

).
se

tF
il

te
r(

ra
n
g
eF

il
te

r)
;

//
U

se
P

re
p

ar
ed

Q
u

er
y

in
te

rf
ac

e
to

re
tr

ie
ve

re
su

lt
s

P
re

p
ar

ed
Q

u
er

y
p

q
=

d
at

as
to

re
.p

re
p

ar
e(

q
);

//
It

er
at

e
th

ro
u

gh
th

e
en

ti
ty

li
st

fo
r

(E
n
ti

ty
re

su
lt

:
p

q
.a

sI
te

ra
b

le
()

)
{

S
tr

in
g

va
lu

e1
=

(S
tr

in
g)

re
su

lt
.g

et
P

ro
p

er
ty

(”
p

ro
p

er
ty

N
a
m

e1
”
);

S
tr

in
g

va
lu

e2
=

(S
tr

in
g)

re
su

lt
.g

et
P

ro
p

er
ty

(”
p

ro
p

er
ty

N
a
m

e2
”
);

L
o
n

g
va

lu
e3

=

(L
on

g)
re

su
lt

.g
et

P
ro

p
er

ty
(”

p
ro

p
er

ty
N

am
e3

”
);
}

82

N
o.

O
p

.J
D

B
C

A
P

I
D

at
as

to
re

A
P

I

6

Update

C
on

n
ec

ti
on

co
n

n
ec

ti
on

=
//

ob
ta

in
a

co
n

n
ec

ti
on

S
ta

te
m

en
t

st
m

t
=

co
n
n

ec
ti

on
.c

re
at

eS
ta

te
m

en
t(

);

st
m

t.
ex

ec
u

te
U

p
d

at
e(

u
p

d
at

e
ta

b
le

n
am

e
se

t
co

l-

u
m

n
1=

va
lu

e1
,c

ol
u

m
n

2=
va

lu
e2

,.
..

.
w

h
er

e
co

l-

u
m

n
=

va
lu

e;
)

st
m

t.
cl

os
e(

);

D
at

as
to

re
S

er
v
ic

e
d

at
as

to
re

=
D

a
ta

st
o
re

S
er

v
ic

eF
a
c-

to
ry

.g
et

D
at

as
to

re
S

er
v
ic

e(
);

//
lo

ad
an

ex
is

ti
n

g
en

ti
ty

fr
om

th
e

d
at

a
st

o
re

E
n
ti

ty
en

ti
ty

=
..

.
(

L
oa

d
ed

fr
om

th
e

D
a
ta

S
to

re
)

en
ti

ty
.s

et
P

ro
p

er
ty

(”
p

ro
p

er
ty

N
am

e1
”,

n
ew

V
a
lu

e1
);

en
ti

ty
.s

et
P

ro
p

er
ty

(”
p

ro
p

er
ty

N
am

e2
”,

n
ew

V
a
lu

e2
);

//
u

p
d

at
e

th
e

en
ti

ty
w

it
h

th
e

n
ew

p
ro

p
er

ty
va

lu
es

.

d
at

as
to

re
.p

u
t(

en
ti

ty
);

7

Delete

C
on

n
ec

ti
on

co
n

n
ec

ti
on

=
//

ob
ta

in
a

co
n

n
ec

ti
on

S
ta

te
m

en
t

st
m

t
=

co
n
n

ec
ti

on
.c

re
at

eS
ta

te
m

en
t(

);

st
m

t.
ex

ec
u

te
U

p
d

at
e(

d
el

et
e

fr
om

ta
b

le
n

am
e

w
h

er
e

co
lu

m
n

n
am

e=
va

lu
e;

);

D
at

as
to

re
S

er
v
ic

e
d

at
as

to
re

=
D

a
ta

st
o
re

S
er

v
ic

eF
a
c-

to
ry

.g
et

D
at

as
to

re
S

er
v
ic

e(
);

//
lo

ad
an

ex
is

ti
n

g
en

ti
ty

fr
om

th
e

D
at

a
st

o
re

E
n
ti

ty
en

ti
ty

..
..

..
..

//
u

p
d

at
e

th
e

en
ti

ty
w

it
h

th
e

n
ew

p
ro

p
er

ty
va

lu
es

.

d
at

as
to

re
.d

el
et

e(
en

ti
ty

.g
et

K
ey

()
);

83

A.2 Database Migration Tool important Java classes and

configuration files

A.2.1 Database Migration Tool main Java class

1 package com.springframework.datamigration;

2

3 import java.util.Calendar;

4 import java.util.Map;

5 import java.util.TimeZone;

6 import java.util.concurrent.CountDownLatch;

7

8 import org.springframework.context.ApplicationContext;

9 import org.springframework.context.support.ClassPathXmlApplicationContext;

10 import org.springframework.jdbc.core.JdbcTemplate;

11

12 import com.springframework.datamigration.exporter.DataExporter;

13 import com.springframework.datamigration.importer.DataImporter;

14

15 /**

16 * @author Prasanth M P.

17 *

18 * The main class for beginning the migration.

19 */

20

21 public class SpringDataMigration {

22

23 public static ApplicationContext ctx;

24

25 public static Map<String, String> map;

26

27 /**

28 * The main method that serves as the entry point for starting the migration

29 * process.

30 *

31 * @param args

32 */

33 public static void main(String args[]) {

34

35 try {

36

37 loadApplicationContext();

38 init();

39 System.out.println("***");

40 System.out.println("Starting Data Migration");

41 System.out.println("");

84

42 Calendar cal1 = Calendar.getInstance(TimeZone.getTimeZone("GMT"));

43 long time1 = cal1.getTimeInMillis();

44

45 CountDownLatch latch1 = new CountDownLatch(1);

46 DataExporter dataExporterThread = new DataExporter();

47 dataExporterThread.setContext(ctx);

48 dataExporterThread.setCountDownLatch(latch1);

49 Thread t1 = new Thread(dataExporterThread);

50 t1.start();

51 latch1.await();

52 CountDownLatch latch2 = new CountDownLatch(1);

53

54 System.out.println("");

55 System.out.println("Exporting Database Tables to CSV files is Completed and ←↩
now Start to Export CSV files to GAE Entities");

56 System.out.println("");

57

58 DataImporter dataImporterThread = new DataImporter();

59 dataImporterThread.setContext(ctx);

60 dataImporterThread.setCountDownLatch(latch2);

61 Thread t2 = new Thread(dataImporterThread);

62 t2.start();

63 latch2.await();

64

65 Calendar cal2 = Calendar.getInstance(TimeZone.getTimeZone("GMT"));

66 long time2 = cal2.getTimeInMillis();

67 System.out.println("Time in millisecond " + (time2 - time1));

68 System.out.println("");

69 System.out.println("Completed Data Migration");

70 System.out.println("***");

71

72 } catch (InterruptedException e) {

73 e.printStackTrace();

74 } catch (Exception e) {

75 e.printStackTrace();

76 }

77 }

78

79 /**

80 * The method creates two tables named DATA_EXPORT_RESULT and

81 * DATA_IMPORT_RESULT in the database schema. These DATA_EXPORT_RESULT table

82 * will contains information about the Data Export such as the tables

83 * exported, total number of records exported, the status of the data export

84 * and finally the date of execution.

85 *

86 * These DATA_IMPORT_RESULT table will contains information about the data

87 * import such as the names of the entity kind created in GAE Datastore,

85

88 * total number of entites created for each entity kind, the status of the

89 * data export and finally the date of execution.

90 *

91 */

92 private static void init() {

93 JdbcTemplate jdbcTemplate = ctx.getBean("jdbcTemplate",

94 JdbcTemplate.class);

95

96 try {

97 jdbcTemplate.execute("DROP TABLE DATA_EXPORT_RESULT");

98 } catch (Exception e) {}

99

100 try {

101 jdbcTemplate.execute("DROP TABLE DATA_IMPORT_RESULT");

102 } catch (Exception e) {}

103

104 jdbcTemplate.execute("CREATE TABLE DATA_EXPORT_RESULT ("

105 + "TABLE_NAME VARCHAR(50)," + "ROWS_EXPORTED_COUNT INTEGER,"

106 + "ROWS_EXPORT_STATUS VARCHAR(100),"

107 + "ROWS_EXPORTATION_DATE DATE)");

108

109 jdbcTemplate.execute("CREATE TABLE DATA_IMPORT_RESULT ("

110 + "ENTITY_NAME VARCHAR(50),"

111 + "ENTITIES_CREATED_COUNT INTEGER,"

112 + "ENTITIES_CREATION_STATUS VARCHAR(100),"

113 + "ENTITIES_CREATION_DATE DATE)");

114 }

115

116 /**

117 * The method loads the application configuration files prior to execution.

118 */

119 public static void loadApplicationContext() {

120 ctx = new ClassPathXmlApplicationContext("SpringDatabaseMigration.xml");

121 }

122 }

Listing A.10: SpringDataMigration.java class

A.2.2 Data Exporter Module important Java classes

1 package com.springframework.datamigration.exporter;

2

3 import java.sql.ResultSet;

4 import java.sql.SQLException;

5 import java.util.ArrayList;

6 import java.util.Collection;

86

7 import java.util.LinkedList;

8 import java.util.List;

9 import java.util.Properties;

10 import java.util.concurrent.CountDownLatch;

11 import java.util.concurrent.ExecutionException;

12 import java.util.concurrent.ExecutorService;

13 import java.util.concurrent.Executors;

14 import java.util.concurrent.Future;

15

16 import org.springframework.context.ApplicationContext;

17 import org.springframework.dao.DataAccessException;

18 import org.springframework.jdbc.core.JdbcTemplate;

19 import org.springframework.jdbc.core.ResultSetExtractor;

20

21 /**

22 * @author Prasanth M P

23 */

24 public class DataExporter implements Runnable {

25

26 private ApplicationContext context;

27

28 private CountDownLatch countDownLatch;

29

30

31 /**

32 * The run() method create a fixed size thread pool of worker threads.

33 * The worker threads exports tables to CSV files

34 */

35 public void run() {

36 Properties configurationProperties = (Properties) context.getBean(" ←↩
threadPoolPropertiesConfiguration");

37 ExecutorService executorService = Executors.newFixedThreadPool(Integer.valueOf(←↩
configurationProperties.getProperty("exportThreadPoolSize")));

38 List<String> databaseTables = getDatabaseTableNames();

39 CountDownLatch exporterCountLatch = new CountDownLatch(

40 databaseTables.size());

41 Collection<Future<?>> futures = new LinkedList<Future<?>>();

42 for (String tableName : databaseTables) {

43 TableExporter tableExporterBean = (TableExporter) context.getBean(" ←↩
tableExporter");

44 tableExporterBean.setTableName(tableName.toUpperCase());

45 tableExporterBean.setCountDownLatch(exporterCountLatch);

46 futures.add(executorService.submit(tableExporterBean));

47 }

48 executorService.shutdown();

49 try {

50 for (Future<?> future:futures) {

87

51 future.get(); // cause the current thread to wait for the table export tasks ←↩
to finish.

52 }

53 exporterCountLatch.await();

54 countDownLatch.countDown();

55 } catch (InterruptedException e) {

56 e.printStackTrace();

57 } catch (ExecutionException e) {

58 e.printStackTrace();

59 }

60 }

61

62 /**

63 * The method returns a list containing the names of all tables in the database.

64 * @return List<String>

65 */

66 private List<String> getDatabaseTableNames() {

67 final List<String> tablenames = new ArrayList<String>();

68 JdbcTemplate jdbcTemplate = (JdbcTemplate) context

69 .getBean("jdbcTemplate");

70 String showTables = "SHOW TABLES";

71 jdbcTemplate.query(showTables, new ResultSetExtractor<List<String>>() {

72 public List<String> extractData(ResultSet rs) throws SQLException,

73 DataAccessException {

74 while (rs.next()) {

75 tablenames.add(rs.getString(1));

76 }

77 return tablenames;

78 }

79 });

80

81 tablenames.remove("data_export_result");

82 tablenames.remove("data_import_result");

83 return tablenames;

84 }

85

86 /**

87 * The getter method.

88 */

89 public ApplicationContext getContext() {

90 return context;

91 }

92

93 /**

94 * The setter method.

95 */

96 public void setContext(ApplicationContext context) {

88

97 this.context = context;

98 }

99

100 /**

101 * The getter method.

102 */

103 public CountDownLatch getCountDownLatch() {

104 return countDownLatch;

105 }

106

107 /**

108 * The setter method.

109 */

110 public void setCountDownLatch(CountDownLatch countDownLatch) {

111 this.countDownLatch = countDownLatch;

112 }

113 }

Listing A.11: DataExporter.java class

1 package com.springframework.datamigration.exporter;

2

3 import java.io.File;

4 import java.io.IOException;

5 import java.io.PrintWriter;

6 import java.sql.ResultSet;

7 import java.sql.SQLException;

8 import java.util.ArrayList;

9 import java.util.Date;

10 import java.util.List;

11 import java.util.concurrent.CountDownLatch;

12

13 import org.apache.commons.io.FileUtils;

14 import org.springframework.beans.factory.annotation.Value;

15 import org.springframework.dao.DataAccessException;

16 import org.springframework.jdbc.core.JdbcTemplate;

17 import org.springframework.jdbc.core.ResultSetExtractor;

18 import org.springframework.jdbc.core.RowMapper;

19

20 import com.springframework.datamigration.utils.Status;

21 import com.springframework.datamigration.utils.Utils;

22

23 /**

24 * @author Prasanth M P

25 */

26 public class TableExporter implements Runnable {

27

28 private CountDownLatch countDownLatch;

89

29

30 @Value("${fetchSize}")

31 protected int fetchSize;

32

33 private JdbcTemplate jdbcTemplate;

34

35 @Value("${migrationfolder}")

36 protected String migrationFolder;

37

38 private int recordCount;

39

40 private String tableColumnDatabaseTypes;

41

42 private String tableColumnNames;

43

44 private String tableName;

45

46 /**

47 * The run() method contains the workflow logic for exporting the records in

48 * the table to CSV files and also for logging the result of export to the

49 * database.

50 */

51 public void run() {

52

53 System.out.println("Starting to export Data from Table ["

54 + getTableName() + "] to CSV files");

55 // getRecordCount();

56 populateTableRecordCount();

57 populateTableMetaData();

58 try {

59 exportToCSV();

60 updateExecutionStatus(tableName, recordCount, Status.SUCCESS,

61 new Date());

62 } catch (Exception e) {

63 updateExecutionStatus(tableName, null, Status.FAILURE, new Date());

64 }

65 countDownLatch.countDown();

66 System.out.println("Finished exporting Data from Table ["

67 + getTableName() + "] to CSV files");

68 }

69

70 /**

71 * The method gets the count of total number of records in the table.

72 */

73 private void populateTableRecordCount() {

74 int recordCount = getJdbcTemplate().queryForInt(getRecordCountQuery());

75 setRecordCount(recordCount);

90

76 }

77

78 /**

79 * The method generates the meta data for inserting in each CSV export file.

80 * The meta data involves the colum names and column types.

81 */

82 private void populateTableMetaData() {

83 String jdbcTableMetaDataQuery = getTableMetaDataQuery();

84 final List<String> columnName = new ArrayList<String>();

85 final List<String> columnType = new ArrayList<String>();

86 getJdbcTemplate().query(jdbcTableMetaDataQuery,

87 new RowMapper<String>() {

88 public String mapRow(ResultSet rs, int rowNum)

89 throws SQLException {

90 columnName.add(rs.getString(1));

91 columnType.add(rs.getString(2));

92 return null;

93 }

94 });

95

96 setTableColumnNames(Utils.getCSV(columnName));

97 setTableColumnDatabaseTypes(Utils.getCSV(columnType));

98 }

99

100

101 /**

102 * The method creates CSV files and export the records in the table in

103 * batches.

104 */

105 private void exportToCSV() {

106 int noCSVFiles = csvFilesPerTable();

107 prepareDirectory();

108 int lowerLimit = 0;

109 PrintWriter pw = null;

110 for (int i = 0; i < noCSVFiles; i++) {

111 File file = new File(this.migrationFolder + "\\" + getFolderName(),

112 getFileNamePrefix() + i + ".csv");

113 try {

114 file.createNewFile();

115 pw = new PrintWriter(file);

116 } catch (IOException e2) {

117 e2.printStackTrace();

118 }

119 String fileContentsToWrite = getFileContentToWrite(lowerLimit);

120 pw.write(fileContentsToWrite);

121 pw.flush();

122 pw.close();

91

123 lowerLimit = lowerLimit + fetchSize;

124 }

125 }

126

127 /**

128 * Indicates how many CSV files will be created for storing the records in

129 * the table. The number of CSV files depends on the fetch size configure.

130 * More the fetch size lesser the number of CSV files.

131 *

132 * @return integer

133 */

134 public int csvFilesPerTable() {

135 int noCSVFiles = 0;

136 if (getRecordCount() < getFetchSize()) {

137 noCSVFiles = 1;

138 } else if (getRecordCount() % getFetchSize() == 0) {

139 noCSVFiles = getRecordCount() / getFetchSize();

140 } else {

141 noCSVFiles = getRecordCount() / getFetchSize() + 1;

142 }

143 return noCSVFiles;

144 }

145

146 /**

147 * The method just update the status of the export of the table.

148 *

149 * @param tableName - The name of the table in the database exported as CSV file

150 * @param recordCount - The number of records that are exported.

151 * @param status - The status of the export of the table

152 * @param date - The date on which the table exported.

153 */

154 private void updateExecutionStatus(String tableName, Integer recordCount,

155 Status status, Date date) {

156 final String INSERT_SQL = "INSERT INTO DATA_EXPORT_RESULT (TABLE_NAME,"

157 + "ROWS_EXPORTED_COUNT," + "ROWS_EXPORT_STATUS,"

158 + "ROWS_EXPORTATION_DATE) VALUES (?,?,?,?)";

159 jdbcTemplate.update(INSERT_SQL, tableName, recordCount, status.name(),

160 new java.sql.Date(date.getTime()));

161 }

162

163 /**

164 * The method fetches a batch of records and parse the records in CSV format

165 * to be returned.

166 *

167 * @param lowerLimit - the lower limit used to calculate the range of records to ←↩
be

168 * fetched for exporting. range equal to (lowerLimit -->

92

169 * lowerLimit+fetchSize)

170 * @return String - returns the fetched records in CSV format to be written

171 * to a CSV file.

172 */

173 public String getFileContentToWrite(int lowerLimit) {

174 return getJdbcTemplate().query(getQuery(),

175 new Object[] { lowerLimit, fetchSize },

176 new ResultSetExtractor<String>() {

177 public String extractData(ResultSet rs)

178 throws SQLException, DataAccessException {

179 StringBuffer fileContentsToWrite = null;

180 fileContentsToWrite = new StringBuffer();

181 fileContentsToWrite.append(getTableColumnNames());

182 fileContentsToWrite.append("\n");

183 fileContentsToWrite

184 .append(getTableColumnDatabaseTypes());

185 fileContentsToWrite.append("\n");

186 List<String> row = null;

187 while (rs.next()) {

188 row = new ArrayList<String>();

189 for (int columnNo = 1; columnNo <= rs.getMetaData()

190 .getColumnCount(); columnNo++) {

191 row.add(rs.getString(columnNo));

192 }

193 fileContentsToWrite.append(Utils.getCSV(row)

194 .concat("\n"));

195 }

196 return fileContentsToWrite.toString();

197 }

198 });

199 }

200

201 /**

202 * Creates a directory for each table to be exported where the related CSV

203 * files will be placed.

204 */

205 public void prepareDirectory() {

206 File dir = new File(this.migrationFolder + "\\" + getFolderName());

207 if (dir.exists()) {

208 try {

209 FileUtils.deleteDirectory(dir);

210 } catch (IOException e) {

211 e.printStackTrace();

212 }

213 }

214 dir.mkdir();

215 }

93

216

217 //getter method

218 public CountDownLatch getCountDownLatch() {

219 return countDownLatch;

220 }

221

222 //setter method

223 public void setCountDownLatch(CountDownLatch countDownLatch) {

224 this.countDownLatch = countDownLatch;

225 }

226

227 //getter method

228 public int getFetchSize() {

229 return fetchSize;

230 }

231

232 //setter method

233 public void setFetchSize(int fetchSize) {

234 this.fetchSize = fetchSize;

235 }

236

237 //getter method

238 public String getFileNamePrefix() {

239 return tableName.toUpperCase();

240 }

241

242 //getter method

243 public String getFolderName() {

244 return tableName.toUpperCase();

245 }

246

247 //getter method

248 public JdbcTemplate getJdbcTemplate() {

249 return jdbcTemplate;

250 }

251

252 //setter method

253 public void setJdbcTemplate(JdbcTemplate jdbcTemplate) {

254 this.jdbcTemplate = jdbcTemplate;

255 }

256

257 //getter method

258 public String getMigrationFolder() {

259 return migrationFolder;

260 }

261

262 //setter method

94

263 public void setMigrationFolder(String migrationFolder) {

264 this.migrationFolder = migrationFolder;

265 }

266

267 //getter method

268 public String getQuery() {

269 return Utils.getTableRecordSelectQuery(tableName);

270 }

271

272 //getter method

273 public int getRecordCount() {

274 return recordCount;

275 }

276

277 //setter method

278 public void setRecordCount(int recordCount) {

279 this.recordCount = recordCount;

280 }

281

282 //getter method

283 public String getRecordCountQuery() {

284 return Utils.getTableRecordCountQuery(this.tableName);

285 }

286

287 //getter method

288 public String getTableColumnDatabaseTypes() {

289 return tableColumnDatabaseTypes;

290 }

291

292 //setter method

293 public void setTableColumnDatabaseTypes(String tableColumnDatabaseTypes) {

294 this.tableColumnDatabaseTypes = tableColumnDatabaseTypes;

295 }

296

297 //getter method

298 public String getTableColumnNames() {

299 return tableColumnNames;

300 }

301

302 //setter method

303 public void setTableColumnNames(String tableColumnNames) {

304 this.tableColumnNames = tableColumnNames;

305 }

306

307 //getter method

308 public String getTableMetaDataQuery() {

309 return Utils.getTableMetaDataQuery(this.tableName);

95

310 }

311

312 //getter method

313 public String getTableName() {

314 return tableName;

315 }

316

317 //setter method

318 public void setTableName(String tableName) {

319 this.tableName = tableName;

320 }

321 }

Listing A.12: TableExporter.java class

A.2.3 Data Importer Module important Java classes

1 package com.springframework.datamigration.exporter;

2

3 import java.sql.ResultSet;

4 import java.sql.SQLException;

5 import java.util.ArrayList;

6 import java.util.Collection;

7 import java.util.LinkedList;

8 import java.util.List;

9 import java.util.Properties;

10 import java.util.concurrent.CountDownLatch;

11 import java.util.concurrent.ExecutionException;

12 import java.util.concurrent.ExecutorService;

13 import java.util.concurrent.Executors;

14 import java.util.concurrent.Future;

15

16 import org.springframework.context.ApplicationContext;

17 import org.springframework.dao.DataAccessException;

18 import org.springframework.jdbc.core.JdbcTemplate;

19 import org.springframework.jdbc.core.ResultSetExtractor;

20

21 /**

22 * @author Prasanth M P

23 */

24 public class DataExporter implements Runnable {

25

26 private ApplicationContext context;

27

28 private CountDownLatch countDownLatch;

29

96

30

31 /**

32 * The run() method create a fixed size thread pool of worker threads.

33 * The worker threads exports tables to CSV files

34 */

35 public void run() {

36 Properties configurationProperties = (Properties) context.getBean(" ←↩
threadPoolPropertiesConfiguration");

37 ExecutorService executorService = Executors.newFixedThreadPool(Integer.valueOf(←↩
configurationProperties.getProperty("exportThreadPoolSize")));

38 List<String> databaseTables = getDatabaseTableNames();

39 CountDownLatch exporterCountLatch = new CountDownLatch(

40 databaseTables.size());

41 Collection<Future<?>> futures = new LinkedList<Future<?>>();

42 for (String tableName : databaseTables) {

43 TableExporter tableExporterBean = (TableExporter) context.getBean(" ←↩
tableExporter");

44 tableExporterBean.setTableName(tableName.toUpperCase());

45 tableExporterBean.setCountDownLatch(exporterCountLatch);

46 futures.add(executorService.submit(tableExporterBean));

47 }

48 executorService.shutdown();

49 try {

50 for (Future<?> future:futures) {

51 future.get(); // cause the current thread to wait for the table export tasks ←↩
to finish.

52 }

53 exporterCountLatch.await();

54 countDownLatch.countDown();

55 } catch (InterruptedException e) {

56 e.printStackTrace();

57 } catch (ExecutionException e) {

58 e.printStackTrace();

59 }

60 }

61

62 /**

63 * The method returns a list containing the names of all tables in the database.

64 * @return List<String>

65 */

66 private List<String> getDatabaseTableNames() {

67 final List<String> tablenames = new ArrayList<String>();

68 JdbcTemplate jdbcTemplate = (JdbcTemplate) context

69 .getBean("jdbcTemplate");

70 String showTables = "SHOW TABLES";

71 jdbcTemplate.query(showTables, new ResultSetExtractor<List<String>>() {

72 public List<String> extractData(ResultSet rs) throws SQLException,

97

73 DataAccessException {

74 while (rs.next()) {

75 tablenames.add(rs.getString(1));

76 }

77 return tablenames;

78 }

79 });

80

81 tablenames.remove("data_export_result");

82 tablenames.remove("data_import_result");

83 return tablenames;

84 }

85

86 /**

87 * The getter method.

88 */

89 public ApplicationContext getContext() {

90 return context;

91 }

92

93 /**

94 * The setter method.

95 */

96 public void setContext(ApplicationContext context) {

97 this.context = context;

98 }

99

100 /**

101 * The getter method.

102 */

103 public CountDownLatch getCountDownLatch() {

104 return countDownLatch;

105 }

106

107 /**

108 * The setter method.

109 */

110 public void setCountDownLatch(CountDownLatch countDownLatch) {

111 this.countDownLatch = countDownLatch;

112 }

113 }

Listing A.13: DataImporter.java class

1 package com.springframework.datamigration.exporter;

2

3 import java.io.File;

4 import java.io.IOException;

98

5 import java.io.PrintWriter;

6 import java.sql.ResultSet;

7 import java.sql.SQLException;

8 import java.util.ArrayList;

9 import java.util.Date;

10 import java.util.List;

11 import java.util.concurrent.CountDownLatch;

12

13 import org.apache.commons.io.FileUtils;

14 import org.springframework.beans.factory.annotation.Value;

15 import org.springframework.dao.DataAccessException;

16 import org.springframework.jdbc.core.JdbcTemplate;

17 import org.springframework.jdbc.core.ResultSetExtractor;

18 import org.springframework.jdbc.core.RowMapper;

19

20 import com.springframework.datamigration.utils.Status;

21 import com.springframework.datamigration.utils.Utils;

22

23 /**

24 * @author Prasanth M P

25 */

26 public class TableExporter implements Runnable {

27

28 private CountDownLatch countDownLatch;

29

30 @Value("${fetchSize}")

31 protected int fetchSize;

32

33 private JdbcTemplate jdbcTemplate;

34

35 @Value("${migrationfolder}")

36 protected String migrationFolder;

37

38 private int recordCount;

39

40 private String tableColumnDatabaseTypes;

41

42 private String tableColumnNames;

43

44 private String tableName;

45

46 /**

47 * The run() method contains the workflow logic for exporting the records in

48 * the table to CSV files and also for logging the result of export to the

49 * database.

50 */

51 public void run() {

99

52

53 System.out.println("Starting to export Data from Table ["

54 + getTableName() + "] to CSV files");

55 // getRecordCount();

56 populateTableRecordCount();

57 populateTableMetaData();

58 try {

59 exportToCSV();

60 updateExecutionStatus(tableName, recordCount, Status.SUCCESS,

61 new Date());

62 } catch (Exception e) {

63 updateExecutionStatus(tableName, null, Status.FAILURE, new Date());

64 }

65 countDownLatch.countDown();

66 System.out.println("Finished exporting Data from Table ["

67 + getTableName() + "] to CSV files");

68 }

69

70 /**

71 * The method gets the count of total number of records in the table.

72 */

73 private void populateTableRecordCount() {

74 int recordCount = getJdbcTemplate().queryForInt(getRecordCountQuery());

75 setRecordCount(recordCount);

76 }

77

78 /**

79 * The method generates the meta data for inserting in each CSV export file.

80 * The meta data involves the colum names and column types.

81 */

82 private void populateTableMetaData() {

83 String jdbcTableMetaDataQuery = getTableMetaDataQuery();

84 final List<String> columnName = new ArrayList<String>();

85 final List<String> columnType = new ArrayList<String>();

86 getJdbcTemplate().query(jdbcTableMetaDataQuery,

87 new RowMapper<String>() {

88 public String mapRow(ResultSet rs, int rowNum)

89 throws SQLException {

90 columnName.add(rs.getString(1));

91 columnType.add(rs.getString(2));

92 return null;

93 }

94 });

95

96 setTableColumnNames(Utils.getCSV(columnName));

97 setTableColumnDatabaseTypes(Utils.getCSV(columnType));

98 }

100

99

100

101 /**

102 * The method creates CSV files and export the records in the table in

103 * batches.

104 */

105 private void exportToCSV() {

106 int noCSVFiles = csvFilesPerTable();

107 prepareDirectory();

108 int lowerLimit = 0;

109 PrintWriter pw = null;

110 for (int i = 0; i < noCSVFiles; i++) {

111 File file = new File(this.migrationFolder + "\\" + getFolderName(),

112 getFileNamePrefix() + i + ".csv");

113 try {

114 file.createNewFile();

115 pw = new PrintWriter(file);

116 } catch (IOException e2) {

117 e2.printStackTrace();

118 }

119 String fileContentsToWrite = getFileContentToWrite(lowerLimit);

120 pw.write(fileContentsToWrite);

121 pw.flush();

122 pw.close();

123 lowerLimit = lowerLimit + fetchSize;

124 }

125 }

126

127 /**

128 * Indicates how many CSV files will be created for storing the records in

129 * the table. The number of CSV files depends on the fetch size configure.

130 * More the fetch size lesser the number of CSV files.

131 *

132 * @return integer

133 */

134 public int csvFilesPerTable() {

135 int noCSVFiles = 0;

136 if (getRecordCount() < getFetchSize()) {

137 noCSVFiles = 1;

138 } else if (getRecordCount() % getFetchSize() == 0) {

139 noCSVFiles = getRecordCount() / getFetchSize();

140 } else {

141 noCSVFiles = getRecordCount() / getFetchSize() + 1;

142 }

143 return noCSVFiles;

144 }

145

101

146 /**

147 * The method just update the status of the export of the table.

148 *

149 * @param tableName - The name of the table in the database exported as CSV file

150 * @param recordCount - The number of records that are exported.

151 * @param status - The status of the export of the table

152 * @param date - The date on which the table exported.

153 */

154 private void updateExecutionStatus(String tableName, Integer recordCount,

155 Status status, Date date) {

156 final String INSERT_SQL = "INSERT INTO DATA_EXPORT_RESULT (TABLE_NAME,"

157 + "ROWS_EXPORTED_COUNT," + "ROWS_EXPORT_STATUS,"

158 + "ROWS_EXPORTATION_DATE) VALUES (?,?,?,?)";

159 jdbcTemplate.update(INSERT_SQL, tableName, recordCount, status.name(),

160 new java.sql.Date(date.getTime()));

161 }

162

163 /**

164 * The method fetches a batch of records and parse the records in CSV format

165 * to be returned.

166 *

167 * @param lowerLimit - the lower limit used to calculate the range of records to ←↩
be

168 * fetched for exporting. range equal to (lowerLimit -->

169 * lowerLimit+fetchSize)

170 * @return String - returns the fetched records in CSV format to be written

171 * to a CSV file.

172 */

173 public String getFileContentToWrite(int lowerLimit) {

174 return getJdbcTemplate().query(getQuery(),

175 new Object[] { lowerLimit, fetchSize },

176 new ResultSetExtractor<String>() {

177 public String extractData(ResultSet rs)

178 throws SQLException, DataAccessException {

179 StringBuffer fileContentsToWrite = null;

180 fileContentsToWrite = new StringBuffer();

181 fileContentsToWrite.append(getTableColumnNames());

182 fileContentsToWrite.append("\n");

183 fileContentsToWrite

184 .append(getTableColumnDatabaseTypes());

185 fileContentsToWrite.append("\n");

186 List<String> row = null;

187 while (rs.next()) {

188 row = new ArrayList<String>();

189 for (int columnNo = 1; columnNo <= rs.getMetaData()

190 .getColumnCount(); columnNo++) {

191 row.add(rs.getString(columnNo));

102

192 }

193 fileContentsToWrite.append(Utils.getCSV(row)

194 .concat("\n"));

195 }

196 return fileContentsToWrite.toString();

197 }

198 });

199 }

200

201 /**

202 * Creates a directory for each table to be exported where the related CSV

203 * files will be placed.

204 */

205 public void prepareDirectory() {

206 File dir = new File(this.migrationFolder + "\\" + getFolderName());

207 if (dir.exists()) {

208 try {

209 FileUtils.deleteDirectory(dir);

210 } catch (IOException e) {

211 e.printStackTrace();

212 }

213 }

214 dir.mkdir();

215 }

216

217 //getter method

218 public CountDownLatch getCountDownLatch() {

219 return countDownLatch;

220 }

221

222 //setter method

223 public void setCountDownLatch(CountDownLatch countDownLatch) {

224 this.countDownLatch = countDownLatch;

225 }

226

227 //getter method

228 public int getFetchSize() {

229 return fetchSize;

230 }

231

232 //setter method

233 public void setFetchSize(int fetchSize) {

234 this.fetchSize = fetchSize;

235 }

236

237 //getter method

238 public String getFileNamePrefix() {

103

239 return tableName.toUpperCase();

240 }

241

242 //getter method

243 public String getFolderName() {

244 return tableName.toUpperCase();

245 }

246

247 //getter method

248 public JdbcTemplate getJdbcTemplate() {

249 return jdbcTemplate;

250 }

251

252 //setter method

253 public void setJdbcTemplate(JdbcTemplate jdbcTemplate) {

254 this.jdbcTemplate = jdbcTemplate;

255 }

256

257 //getter method

258 public String getMigrationFolder() {

259 return migrationFolder;

260 }

261

262 //setter method

263 public void setMigrationFolder(String migrationFolder) {

264 this.migrationFolder = migrationFolder;

265 }

266

267 //getter method

268 public String getQuery() {

269 return Utils.getTableRecordSelectQuery(tableName);

270 }

271

272 //getter method

273 public int getRecordCount() {

274 return recordCount;

275 }

276

277 //setter method

278 public void setRecordCount(int recordCount) {

279 this.recordCount = recordCount;

280 }

281

282 //getter method

283 public String getRecordCountQuery() {

284 return Utils.getTableRecordCountQuery(this.tableName);

285 }

104

286

287 //getter method

288 public String getTableColumnDatabaseTypes() {

289 return tableColumnDatabaseTypes;

290 }

291

292 //setter method

293 public void setTableColumnDatabaseTypes(String tableColumnDatabaseTypes) {

294 this.tableColumnDatabaseTypes = tableColumnDatabaseTypes;

295 }

296

297 //getter method

298 public String getTableColumnNames() {

299 return tableColumnNames;

300 }

301

302 //setter method

303 public void setTableColumnNames(String tableColumnNames) {

304 this.tableColumnNames = tableColumnNames;

305 }

306

307 //getter method

308 public String getTableMetaDataQuery() {

309 return Utils.getTableMetaDataQuery(this.tableName);

310 }

311

312 //getter method

313 public String getTableName() {

314 return tableName;

315 }

316

317 //setter method

318 public void setTableName(String tableName) {

319 this.tableName = tableName;

320 }

321 }

Listing A.14: TableImporter.java class

A.2.4 Configuration properties file

1 # The configuration file used by the Database Migration Tool for migrating the table ←↩
records

2 # from the Database used by the application to GAE Entities in the Datastore.

3

4 # MySQL settings

105

5 jdbc.driverClassName=com.mysql.jdbc.Driver

6 jdbc.url=jdbc:mysql://localhost:3306/petclinic

7 jdbc.username=root

8 jdbc.password=

9

10 # base location at which tables data will be exported as CSV files.

11 migrationfolder=E:\\NCIRL\\dissertation\\workspace\\MigrationFolder

12

13 # properties to configure the thread pool size for exporter and importer.

14 exportThreadPoolSize=5

15 importThreadPoolSize=5

16

17 # Fetchsize indicates the rate at which the table records will be read from the ←↩
database for export.

18 fetchSize=500

19

20 # Configuration Data for accessing the application’s Datastore on the Cloud using ←↩
remote API’s.

21 hostname=spring-petclinic.appspot.com

22 port=443

23 userEmail=prasanthmp500@gmail.com

24 password=**********

Listing A.15: The configuration properties file used by the Database Migration Tool

A.2.5 The table name to entity kind mapping XML file

1 <?xml version="1.0" encoding="UTF-8"?>

2 <beans xmlns="http://www.springframework.org/schema/beans"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xmlns:context="http://www.springframework.org/schema/context"

5 xmlns:p="http://www.springframework.org/schema/p"

6 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www. ←↩
springframework.org/schema/beans/spring-beans.xsd

7 http://www.springframework.org/schema/context http://www.springframework.org/ ←↩
schema/context/spring-context.xsd">

8

9 <!-- The sample mapping file used to map the tables in the RDBMS to Entity Kinds in ←↩
the GAE Datastore -->

10 <bean id="tableToEntityMapping" class="org.springframework.beans.factory.config. ←↩
MapFactoryBean">

11 <property name="sourceMap">

12 <map>

13 <entry key="VISITS" value="Visit"/>

14 <entry key="VETS" value="Vet"/>

15 <entry key="VET_SPECIALTIES" value="VetSpecialties"/>

106

16 <entry key="TYPES" value="Types"/>

17 <entry key="SPECIALTIES" value="Specialties"/>

18 <entry key="PETS" value="Pet"/>

19 <entry key="OWNERS" value="Owner"/>

20 </map>

21 </property>

22 </bean>

23

24 </beans>

Listing A.16: The mapping.xml file used for mapping the table name to an entity kind

in the GAE. Datastore

107

	Abstract
	Acknowledgements
	Declaration
	Introduction
	Contributions

	Background
	Introduction
	Programming language incompatibility issues
	Database Migration Issues
	Google App Engine limitations
	Google App Engine Datastore Limitations
	Summary

	Design
	Summary

	Implementation
	Java Source Code Analyzer Tool
	Database Migration Tool
	Database Migration Tool Architecture
	Data Exporter Components
	Data Importer Components
	Data flow diagram

	Software Life cycle
	Main implementation decisions
	Summary

	Evaluation
	Evaluation of Java Source Code Analyzer Tool
	Evaluation of Database Migration Tool
	Summary

	Conclusions
	Further work

	Appendix
	Java Source Code Analyzer Tool important Java classes and configuration files
	GAE BlackList Analyzer Program important Java classes
	SQL Query Analyzer Program important Java classes
	Configuration properties file
	Rule table generated by the SQL Query Analyzer Program

	Database Migration Tool important Java classes and configuration files
	Database Migration Tool main Java class
	Data Exporter Module important Java classes
	Data Importer Module important Java classes
	Configuration properties file
	The table name to entity kind mapping XML file

