
Efficiency of digital signature in Database As A Service

Kimbo pranesh songa

Submitted as part of the requirements for the degree

of MSc in Cloud Computing

at the School of Computing,

National College of Ireland

Dublin, Ireland.

August 2014

Supervisor Dr. Horacio gonzalez-velez

Abstract

The aim of the thesis is to implement the digital signature on Database As a Service to

ensure efficient data security. The implementation and validation of digital signature

raises several challenges such as the selection of suitable algorithm for signing, hashing

and storing the digital signature key pair and key exchange mechanism. We generate

a key pair for every individual user and store the pair in centralized repository.

We conduct a complete evaluation on efficiency of digital signature with respect to

many aspects comparing with other encryption techniques. During the evaluation we

propose a banking system as a case study for the empirical validation of our approach.

The main challenging part of the thesis is maintaining data integrity, and confidentiality

even though its a time consuming process. The interesting feature of digital signa- ture

application is, it doesnt allow cloud database administrator to view the sensitive field

data of the database.

Keywords:

Digital signature creation, DBAAS, FHE, Encryption, Decryption, Digital signature

verification, Public key, Private key, RSA, SHA-1, CryptDB, Entity framework, LINQ2

.

ii

Acknowledgements

I would like to take this apportunity to express my gratitude to everyone who have

been helping me and guiding me throught out this research work for my MSc Cloud

computing. I whole heartedly thank my supervisor, Dr. Adriana Chis for the support

she has given for the completion of the thesis. I appreciate her skill in various ascepts

and guidance in documention part of the thesis. I snicerely thank Dr.Alina Madalina

Popescu for her support and assistance.

I take this special privallage and honour to thank Dr. Horacio Gonzlez-Vlez for giving

me this golden oppurtunity to persive my MSc in Cloud computing in Natinal collage

of Ireland.

I would like to thank my family specially my sister Ratna Joseph for there support

through out my life.

iii

Declaration

I confirm that the work contained in this MSc project report has been

composed solely by myself and has not been accepted in any previ-

ous application for a degree. All sources of information have been

specifically acknowledged and all verbatim extracts are distinguished

by quotation marks.

Signed .. Date

Kimbo pranesh songa

iv

Contents

Abstract ii

Acknowledgements iii

Declaration iv

1 Introduction 1

2 Background 4

2.1 Database As a Service . 4

2.2 Emergence of encryption techniques . 5

2.2.1 Different types of encryption techniques 6

2.2.2 Evaluating encryption techniques based on data privacy and per-

formance . 7

2.2.3 Performance evaluation: . 7

2.3 Efficiency of digital signature based on data confidentiality and data

privacy . 8

2.3.1 Data integrity . 8

2.3.2 Anti deniability . 8

2.3.3 Data protection and privacy . 9

2.4 Working of digital Signature compared with different Encryption tech-

niques in database as a service . 9

2.4.1 Types of public key cryptography for digital signatures 11

3 Design 12

3.1 Communication between webapplication and AzureDataBase 15

3.2 AzureDBApplication implementation modules 16

3.2.1 Generation of digital signature 18

3.2.2 Verification of digital signature 19

3.2.3 Sequence diagram for digital signature creation 20

v

3.2.4 Sequence diagram for digital signature verification 21

3.3 Database Design and schema . 21

3.3.1 Database schema . 23

3.4 Decisions and Reasoning . 23

4 Implementation 25

4.1 System specifications: . 25

4.2 Digital signature implementation techniques 26

4.3 Class diagram for digital signature, encryption, decryption, verification 27

4.4 Experimental setup . 27

4.4.1 Microsoft ADO.NET entity framework 5.0 from local machine to

connect to SQL server 2012 database in azure 28

4.4.2 Experimental setup to migrate the web application from local to

Virtual machine on windows azure 28

4.4.3 Deploying on existing ASP.NET AzureDBApplication to run on

windows Azure website . 29

4.5 Pseudo code implementation of digital signature 29

4.6 Software development life cycle: . 32

4.7 Software testing methodology . 33

5 Evaluation 34

5.1 Evaluation in azure instance . 37

5.2 Experimental Analysis after deploying on azure website 39

6 Conclusions 45

6.1 Conclusion . 45

6.2 Future Work . 46

Bibliography 47

A How to create an Entity Data Model 49

B How to Migrate the AzureDBApplication from local to Azure in-

stance 53

C How to Deploy an existing ASP.NET AzureDBApplication to run on

Windows Azure website 55

vi

List of Tables

2.1 Types of Encryption Techniques . 6

5.1 Time taken for only digital signing in local machine 35

5.2 Time taken to only decrypt the fields randomly in local machine 36

5.3 Time taken to only verify in local machine 36

5.4 Time taken to only sign in azure instance 37

5.5 Time taken to only verify in azure instance 38

5.6 Time taken to Decrypt in Azure instance 38

5.7 Time taken to sign in azure site . 39

5.8 Time taken to verify in azure site . 40

5.9 Time taken to encrypt in azure site . 40

5.10 Time taken to decrypt in azure site . 41

vii

List of Figures

2.1 Level of security Vs Database service providers capability graph 10

3.1 Design of digital signature implementation 13

3.2 Communication between application and Azure 15

3.3 workflow of digital signature . 17

3.4 creation of digital signature . 18

3.5 Verification of digital signature . 19

3.6 sequence diagram . 20

3.7 sequence diagram . 21

3.8 Database schema . 23

4.1 class diagram . 27

4.2 Encrypted Data in Azure . 30

4.3 Verification of Digital signed data . 31

4.4 Decryption of Digital signed data . 32

5.1 Exeuction time of sign Vs verification 41

5.2 Execution time of encryption Vs decryption 42

5.3 Execution time of sign Vs verification 43

5.4 Execution time of encrypt Vs decrypt 44

A.1 ADO.NET Entity Model . 49

A.2 Entity Data Model . 50

A.3 Database Connection . 51

A.4 Version selection . 51

A.5 Database Settings . 52

B.1 Connecting to remote desktop of azure 54

C.1 Configuration setting to deploy the web application to azure site 56

viii

Listings

4.1 Psudo code of hashing and siging . 29

ix

Chapter 1

Introduction

Cloud computing is the advanced technology in this present era of networking and

internet technologies. Buyya, Yeo, Venugopal, Broberg & Brandic (2009)) say that

there is certainly seen vision that cloud computing will turn into the fifth utility in the

world. Dubey & Wagle (2007) say that cloud is a platform where providers can deploy

different services that will provide users flexibility to use services without installing

the particular software on the individual systems. One of those services is DSaaS. In

DSaaS clients are permitted to create, store and retrieve any kind of information from

any corner of the world as long as they have internet connection. Since people can

access data from anywhere in the world, there are major issues with data integrity

and data privacy. The increase in access to the database storage has also increased

frequency of the threats considerably increased. In the present situation threats are

more for data assets. Therefore a database must be provided with more security fea-

tures, when compared to business operations (online banking) i.e. to improve data

privacy. There are many techniques to address data security issues, like CryptDB and

Full homomorphic encryption, which are used to secure the data from the untrusted

entities.

Kadhem, Amagasa & Kitagawa (2009, p.165) define data privacy as a ”right to secure

sensitive personal data in digital form to protect it against fraud, identity theft or unau-

thorised use”. In many enterprises basic sensitive business information in databases is

an obvious focus for attack. Subsequently, guaranteing the confidentiality, security and

integrity of information is a real issue for the security of database framework. The data

transferred on a network must have the attributes of anti-deniability and integrity. In

cloud computing there are issues like security of information, files management, issues in

network and host security. The main functionalities of digital signature are introduced

to protect the security of the data, non-repudiation and data integrity.

1

The technique of digital signature provides security to the entire application. Here the

focus is not to lessen the requirement for different innovations, for example, encryp-

tion, verification, access control, firewalls and interruption discovery. Digital signature

fit into the security fundamentals of an application. Encryption based on security com-

ponents does not completely address some aspects like data integrity, anti-deniability

and data privacy. These are purely addressed by using digital signature so occurring

the fraud cannot be stopped but it can stop succeeding fault transaction by giving

applications the capability to identify fault transactions.

The motivation of the thesis is to reduce the attacks that are occurring in enterprises,

industries and organizations on sensitive business data. The aim is to secure sensitive

information by applying digital signature on fields of database tables which are frequent

exposed to threats. Digital signature proves the identity of the user and data can be

secured from tampering. Therefore digital signature is more efficient when compared

with other encryption techniques. In this thesis we propose a solution to increase

the security of databases, namely we intoduce the use of digital signature at the level

of databases to ensure data security, and we implement this solution as a DSaaS.

The main challenge of AzureDBApplication is securing the data from azure database

administrator, in general digital signature verification process the original message,

public key, and hash data must be sent to the receiver site to apply hash on the plain

message and then to compare the hashes to prove the identity and to assure data

integrity, and anti-deniability. AzureDBApplication is implemented in such way that

the azure database administrator cannot view the plain message at the time of digital

signature verification because the sensitive field is first encrypted with RSA algorithm

and then sent to the azure database storage along with the digital signature. The

other challenge is current encryption techniques may be efficient pertaining to time but

cannot ensure the confidentiality and integrity. As digital signature is a block of byte

array the main challenge is storing the signature in a separate database table to verify

and decrypt the data as per the user requirement. This storage of digital signature has

impact or affect on database storage space to store in database and time required to

process the signature.

The main contribution of the thesis is applying digital signature on DSaaS on SQL

queries to provide efficient data security. As mentioned earlier digital signature is

applied not on plain field, instead we apply digital signature to encrypted field data (see

Design chapter for details). Consequently the cloud provider cannot view sensitive fields

data, thereby confidentiality of the data is maintained throughout the application. This

approach may be time consuming when compared with encryption, because the digital

signature is applied on an encrypted field, but the availability, non-repudiation, data

2

integrity, confidentiality and authentication are maintained. Furthermore, we conduct

empirical evaluation to evaluate the performance of encryption, decryption, signing,

and verification under three different environments. We implement our approach by

applying digital signature on Microsoft Azure DB, in particular we propose digital

signature on AzureDBApplication. In this thesis we discuss the encryption and digital

signature considering different parameters and security issues involved.

Our thesis is organized as follows.

• Chapter 2 : In particular, we discuss Database as a Service (DBaaS) and review

different encryption techniques.

• Chapter 3: We describe the design and specifications of AzureDBApplication.

• Chapter 4 : Presents the implementation of AzureDBApplication on digital sig-

nature.

• Chapter 5 : Shows the evaluation of digital signature and encryption on different

environments.

• Chapter 6 : We conclude our research and present future work.

3

Chapter 2

Background

2.1 Database As a Service

Hacigumus, Iyer & Mehrotra (2002) say in traditional approach for fulfillment of

different data processing requests business organization focus more on installing and

managing database. To purchase the necessary hardware and deploy database products

over a connected network and to run the system by hosting a professional is really very

expensive to manage. This process led to the emergence of Database As A Service.

DBAAS reduces the financial burden on an organization so that it can focus on the

business logic of the project. Service providers take care of database backup, admin-

istration and also restoration. This approach helps to eradicate the issue of installing,

upgrading the software by actualizing the above methodology will utilize the instant

database framework kept up by the administrator for its database needs. Popa, Red-

field, Zeldovich & Balakrishnan (2012) say that DBAAS shifts the burden of scaling,

provisioning, performance tuning, backup, privacy and access control from the database

user to the service provider at very low cost. The main reason that made Database

As A Service more attractive is due to the economic scaling of hardware and cost of

resources is affordable by users. The main thing that attracted users towards Database

As A Service is pay for the service that is utilized. Lehner & Sattler (2010) say

PNUTS, HBase, SimpleDB, Google BigTable are current cloud DBS allows the user to

submit queries to DBs with generic schemas. Basically, these systems consist of simple

container l with put/get semantics for data blocks of unknown structure. DBAAS will

be successful only if security and confidentiality is ensured by outsourced database. In

next section of the paper we will explain the emergence of encryption techniques in a

database.

4

2.2 Emergence of encryption techniques

Kadhem et al. (2009, p.163) argue that in private and government sectors the need for

information security has increased tremendously because of the sensitive data. They

identified a high rate of threat for the sensitive data in specific as mentioned ” In May

2008, researchers at security vendors uncovered a server containing the sensitive email

and web-based data of thousands of people, including healthcare information, credit

card numbers and business personnel documents and other sensitive data”, This shows

that sensitive data like healthcare information, credit card numbers and personal busi-

ness documents have lost, this proves that traditional techniques need to be improved

still further. Kadhem et al. (2009) state that preexisting traditional security measures

like access control and authentication cannot prevent intrusion and unauthorized ac-

cess to occur for a database. This led to the development of the encryption techniques,

which will secure a database to certain extent even if attacker attacks it. Curino, Jones,

Popa, Malviya, Wu, Madden, Balakrishnan & Zeldovich (2011) say that there are two

types of threats are addressed; one is preventing Database administrator (DBA) from

seeing the private data. The other is cryptDB system that provides security-using

authentication, which improve data privacy from the attackers. Gahi, Guennoun &

El-Khatib (2011) propose that the client could encrypt the data and then deploy on a

cloud providers site, so that it will be secured from the cloud provider. So that only

authorized client can decrypt the data whenever required on processing the query to

the provider site. Kadhem et al. (2009) propose a new system named three-tier envi-

ronment depending upon data of the owner. Responsibilities of encryption are divided

among client data, trusted third party data, and server data. They propose system

that adds a encryption/decryption layers while data is sent and retrieved from to the

database. Mani, Shah & Gunda (2013) did not introduce any layered type architecture

for data encryption. Kadhem et al. (2009) state to implement encrypted storage to

satisfy data privacy and data integrity. While deploying a database on the cloud the

major obstacle is data privacy, to resolve this issue there are many encryption tech-

niques that are briefly explained in the later sections of this paper. Mani et al. (2013)

discuss Data integrity; as assuring authorized person stored data is unchanged or not

modified on the service provider site . This also includes protecting the database from

the other unauthorized users from thefts. Kadhem et al. (2009) say a clients data that

is stored in the database of the service provider site must be encrypted this eliminates

the issue of data privacy to a larger extent. Using CryptDB and other encryption tech-

niques data privacy is increased, the next section discuss different type of encryption

techniques and critically analyze the techniques based on few security components. The

below (Fig. 2.1) explains the two dofferent types of encryption techniques.

5

Table 2.1: Types of Encryption Techniques

Encryption Methodology Algorithm Data Integrity

CryptDB Onion Layered Encryption. AES and Blowfish Medium

Full Homomorphic Circuits for Encryption Evaluative alogorithm Medium

2.2.1 Different types of encryption techniques

Curino et al. (2011) propose a design named cryptDB (which prevents the administra-

tor to see the user data) to ensure the privacy of the stored data by encrypting all the

tuples, example employees salaries, which is sensitive and must be secured. Encrypting

the entire database ensures sensitive data is secured from outside threats. The main

idea of this technique is to encrypt each value of each row into onion. Onion is like

wrapping a value into a number of layers (encryption schema layers). Each value in the

row is independently dressed for strong encryption with every integer value stored three

times. The integer is stored two times as an onion to allow database queries and once

for homomorphic integers. Popa et al. (2012) give their support to the onion encryp-

tion technique, adding additional extra functionality to each onion layer. Curino et al.

(2011) say CryptDB provides different encryption levels for data, depending upon the

sensitivity of the data, and also based upon the database queries that user executes.

Mani et al. (2013) say Full homomorphic encryption algorithm to encrypt and decrypt

the user requested data. The general ground level of encryption techniques is the one,

where queries are evaluated on the encrypted data by the server at provider site and

sent back to the client side for further decryption. But as explained above in Curino

et al. (2011) say onion based encryption level of evaluation is a bit high while evaluating

a particular query.

A fully homomorphic encryption technique (FHE) consists of an evaluating algorithm

that will encrypt and decrypt the data which is part of encryption schema .The eval-

uating algorithm of fully homomorphic encryption technique uses a circuit for input

queries and then produces the output in ciper text, which is the encrypted format of

data that is not understood or cant be decrypted by an unauthorized person. Hence

FHE can process any query and evaluate any function. The major disadvantage of

FHE technique is increase in computing time of user query. Gahi et al. (2011) say that

inspite of the fact that this type of processing may increase the amount of computing

time the benefits associated with it are worth the processing overheads.

When a client processes a query on the encrypted data, the query enters the circuit in

the algorithm then the query is evaluated on encrypted data and the requested data will

be retrived as per the given input query. This might be a difficult process for querying

6

because a query would have to enter the particular circuit of the FHE, which is very

complex and computing time also increases. Basically in database indexing helps to

search the user data fast. But when we use FHE technique in database indexing does

not work as data is encrypted. This will reduce the performance and efficiency of the

system, which can be resolved by digital signature that is being explained in the next

sections of the paper. Similar to Mani et al. (2013) say in relation to FHE outline that

data must enter into the decryption circuit to remove the inner layer of encrypted data

using a private key. Gahi et al. (2011) say that a medical application was built on

non-secure homomorphic schema because its not possible to use test cases for a fully

homomorphic cryptosystem which can be considered as one of the major disadvantages

of encryption. The next sections of the paper explain encryption techniques based on

different parameters like data privacy and data performance.

2.2.2 Evaluating encryption techniques based on data privacy and

performance

Kadhem et al. (2009) say that there are two major privacy issues. First for the

trusted servers, where the service provider must assure the owner that data on the

cloud is protected against data thefts. The second issue is owner must be assured

that data stored in the service provider is safe i.e. even service providers cannot be

trusted. The main issue is that sensitive data must be protected because there are

many disadvantages with the encryption techniques used for particular SQL queries.

Gahi et al. (2011) outline that if an unauthorized user try to decrypt the encrypted

data, the original data is not reveled because encryption is a key based access control

system. Basically encryption technique is applied to only to the columns of database.

Further section explains about the process of encryption in detail.

2.2.3 Performance evaluation:

Gahi et al. (2011) implement a system known as secure database system, the main

functionality of system is a client sends an encrypted query to the database cloud

provider and the provider evaluates the request and sends the encrypted data from the

database. This will affect the scalability, performance and also increase complexity of

system. Popa et al. (2012) implement different types of measures to improve security

and performance of the database. Gahi et al. (2011) has not implemented any measures

to optimize the performance of database. Popa et al. (2012) discuss to optimize the

performance of the database by encrypting sensitive data fields and remaining other

7

fields will be in plain text. This will to some extent optimize the database performance

and reduce the complexity.

2.3 Efficiency of digital signature based on data confiden-

tiality and data privacy

2.3.1 Data integrity

Ngai & Wat (2002) say if there is any slight modification in the message or text the

abstract will change a lot for hash functions peculiarity, so this avoid the message being

distorted and assures data integrity because of its cryptographic nature. Aki (1983)

say when sender can send the message using private key. Furthermore validation is

additionally feasible fact that the receiver can confirm that the message has not been

altered while it was on the network. Rewagad & Pawar (2013) propose architecture

to encrypt and decrypt the user data file using AES encryption algorithm which also

includes level of authentication. This is implemented to provide trusted computing

environment in order to avoid data modification at the server end. So to avoid the data

modification digital signature is best solution. Because digital signature will not stop

the modification of data but it proves that the data has been altered. This mechanism

includes Die Hellman algorithm to generate keys for key exchange step. Meijer & Aki

(1982) say the complication in key exchange is ”man in middle attack”. In private key

crytography both encryption and decryption is done using same key, so when the session

keys is sent over the network attacker can intercept the keys and alter the message.

Which cannot be predicted by the receiver or authorized user.

2.3.2 Anti deniability

Ngai & Wat (2002) say that Anti-deniability can be solved by using public key cryp-

tography algorithm; the sender cannot deny that he has sent the message for he has

the private key. This avoid receivers forging message that is claiming to be from the

sender. Anti-deniability can be achieved perfectly only by using digital signature. Dig-

ital signature makes encryption and decryption are irretrievable decrypting the data is

done using the pubic key of the sender as it is shared between all the authorized users.

Zhang (2010) say in order to show the identity of the sender digital certificates are

generated by the receiver using his private key this methodology of certificates proves

anti deniability and proves repudiation.

8

2.3.3 Data protection and privacy

Somani, Lakhani & Mundra (2010) mention the concept of encrypting the data before it

reaches to the receiver’s end this is implemented using RSA algorithm. This technique

solves the dual problem of authentication and security this implies data privacy is

assured. The strength of their work is the framework proposed to address security and

privacy issue. Aki (1983) explain it is clear and necessary that sensitive information

must to verified and authenticated between sender and receiver in a secure manner.

Certifying the content of the message is validated using the concept named verification

and authorization by using methods like verifyHash() in the concept of digital signature.

So every message is appended with a digital signature this assures data privacy and

data validation for a larger extent.

2.4 Working of digital Signature compared with different

Encryption techniques in database as a service

Sklavos, Kitsos, Papadomanolakis & Koufopavlou (2002) say digital signature is a

string of binary data or a byte of characters. Identity of the signatory and integrity of

the data is computed using a set of parameters in the process of implementing digital

signature, signature generation and verification is done using private and public key

pair. A signatory sign the data using private key and verification is done using public

key which is shared by all the authorized users of the application but always the private

key is kept in secret. Each user of the application has a unique private and public key

pair. Aki (1983) say a database signature function integrates a digital signature on

the data and then stores it in the database. A database uses a command to execute

a stored procedure on which digitally signs and then stores back in the database. To

verify a digital signature query, commands are used. These measures will make data

more confident when compared with different encryption techniques. Mani et al. (2013)

explains a graph comparing different encryption techniques pros and cons of each other

taking security in the y-axis and different database providers capability in x -axis .

9

Figure 2.1: Level of security Vs Database service providers capability graph

The (Fig. 2.1) is explained below comparing the efficiency of encryption techniques

with security on y-axis and database providers on y-axis.

1. Simple DB provides security very efficiently, but serivice provicer does not provide

any type of query processing.

2. Navie which is one of the encryption technique and does not provide security

stores the record in the plain text, but service provider provides all the query

processing.

3. The main idea behind cryptDB is adjustable security, but this doesn’t provide

effiective query processing.

4. Efficient security with no query processing.

By this graph we can prove that encryption techniques lack in few aspects that may

be secuirty or query processing. Digital signature has solved these issues effectively.

Narasimha & Tsudik (2005) say an alternative method or traditional approach is to use

digital signature at granularity to the individual tuples or fields in the database table.

The database owner should sign each tuple before storing it in the outsourced database

in the server site. So server will store each tuple along with the signed tuple. When a

query is processed the server will send the maching tuples along with the signature to

prove the authenticity and integrity of the system.

10

2.4.1 Types of public key cryptography for digital signatures

huang Wu (2010) propose traditional approach firstly authenticating a user with his

public key along with a certification is known public key cryptography were user iden-

tity is known by the public key which is signed by the certification authority. Storage,

certificate verification, and distribution are the problems that must be taken into con-

sideration. Identity-Based Public key Cryptography (IB-PKC) is other type of cryp-

tography were the public key authentication of the uses are entirely different from the

traditional approach. There is no need for the authentication of users public key with

a certificate which is a third style of cryptography known as certificate less public key

cryptography (CL-PKC. The main disadvantage of this style is that in case of denial

of service attack the attacker as well as authorized user cannot decrypt the message

this in known as Denial of Decryption Finally Self-Generated-Certificate Public Key

Cryptography (SGC-PKC) .

11

Chapter 3

Design

The design shows the architecture of AzureDBApplication, a Asp.Net web application

that maintains any type of data pertaining to any type organization or Industry like

Hospital database, Banking system database. In the thesis the AzureDBApplication is

banking database-backed application consisting of azure SQL server and separate client

application. Banking system must be secured from threats as it has sensitive data

of accounts, customers which must be authenticated, authorized. While transactions

are made on network data integrity, anti-deniability must be maintained throughout

the transactions. In order to secure the data from these threats digital signature is

applied to sensitive fields of database tables. AzureDBApplication provides high level

of confidentiality and intigrity throughout the transactions.

12

Figure 3.1: Design of digital signature implementation

In above (Fig. 3.1) architecture implementon is designed as layered architecture, which

comprise of three layers.

• Presentation layer: AzureDBApplication may reside anywhere at three different

enviroments local machine, azure vm instance and azure website. In both the

scenarios user will have user name and password to access the database and ap-

plication. The web application provides all database operations (create, retrieve,

update, delete) to users and all the operations are database transactions which

access database tables.

• Bussiness layer: The business logic layer provides interaction or communication

between presentation layer and data layer. Creation of digital signature objects

for the signed data are handled by the business layer and persisted into database

for every individual user for security reasons. The digital signature object com-

prises signature, encrypted data and primary key of table being signed. The web

application queries to store signed data and encrypted data of message into the

database. In response to the query commands, SQL server retrieves result sets

from the database tables. This system includes business logic, as part of the

digital signature module; the business logic is executed based on digital signature

of the user and identifies records in the database tables. For example, a query

command may request all data signed by particular user business logic identifies

all data from database signed by that particular user. Signature verification is

13

also part of business logic, authenticates the data, the users key pair used to

verify the sign. For the above example, after the database system identifies all

records signed by that particular user, signature verification verifies the authen-

ticity of the data as well as the authenticity of particular user. Only the data

is returned as a response to the query. The signature verification functions are

transparent to the application users. However, if the verification procedure fails,

then the user is informed that either the data is corrupted or the users key pair

is corrupted. Business logic interprets the command regarding requests based on

digital signatures. Based on records identified, the key pair for the corresponding

signatories of the data is extracted as signature object for the records identified

is also extracted. The signature verification utilizes the key pair and signature

object to generate a response to the query.

• Data Access Layer: The database will reside in cloud as a service (DBAAS),

which provides authentication and authorization to database application users.

The individual user will have digital signatures based on their queries and will be

identified, verified using the key pair stored in the centralized repository. Actually

the digital signature and encrypted data stored into database table to provide

digital signature functionality during verification of digital signature.

The database engine executes the query command received from the business

logic and returns the results set to users. As discussed above, business logic

includes any logic in a query that includes digital signature related information

as a parameter (e.g., retrieve all data signed by signatories). If no records in

the database are identified in response to the query, then a query response, with

no records are provided. Alternatively if, at least one record satisfies the query

criteria, then the matched record(s) are extracted, including the signature object,

from the database table. All the query requests that update or insert data into

significant or sensitive data columns have to be decided. All queries affect the

values of sensitive data fields need to be used in the digital signature.

14

3.1 Communication between webapplication and Azure-

DataBase

Figure 3.2: Communication between application and Azure

The AzureDBApplication is designed to digital sign the banking database system. Ac-

tually the system is designed to digital sign any database, but now the application is

using the banking system. The main reason behind choosing the banking system is

banking database have lots of confidential sensitive bussiness data that cant be shared

or understandable to any user even the azure database provider. The second reason

is , if the banking data need to migrate to database in azure cloud in this case the

security , integrity and anti-denialability has to be maintained. The banking database

has AccountTable, Loan, Branch, Customer tables as user data and DigitalField table

to store the signature and encrypted data. The user data tables are separated from

digital signed table. The AzureDBApplication has separate screens or web pages for

each table, so that the user can perform SQL operations on data. Every table mapped

with Data model class to update the user interface changes with database and to get

the data from database.

First the user has to register into AzureDBApplication to access the application and

login into system using crdentials like Username and password. Login into the applica-

tion enables the user to access database tables, insert into tables, digital sign the fields

of database tables, decrypt data, verify the digital signature. The AzureDBApplica-

tion allows user to take the required tablename , columnname, and no of records to

sign sensitive fields as per the requirement. To communicate with the database entity

framework and LINQ queries are used because with entity framework the operations

are automated and mapped with database model classes, LINQ queries are efficient

and fast in retrieving the database.

In digital signature design SHA1 algorithm is used to hash message and RSA (Rivest,

Shamir and Adlemen) algorithm is used for digital signing. RSA algorithm is chosen

as it is the most commonly used algorithm for encryption and digital signing. The

15

key length used for AzureDBApplication is 1024 bit long so it has got high level of

security and faster verification of signature. To achieve all the specified functional-

ity the RSA and SHA1 algorithms are provided by .Net framework namespace (Sys-

tem.Security.Cryptography.RSACryptoServiceProvider) has the helper classes for the

specified algorithm functionality. The public and private keys are created using the

helper class RSACryptoServiceProvider from .Net framework and after creating, the

key pair is serialized in X.509 fromat using AsnKeyBuilder and AsnKeyParser classes.

This X.509 format based key pair (public, private) files are stored in specified cen-

tralized repository. From Digital Evaluation web page when user clicks on DigitalSign

button the specified number of records in particular table for the given field will be

hashed, signed and inserted into DigitalField table present in the azure storage.

3.2 AzureDBApplication implementation modules

• Digital Signature module

Digital signature module comprises generation of RSA based public and private

key pair, loading the key pair in X.509 format based files, encrypt and decrypt

the data, hash and sign data and finally verifying hash of the data. The class Dig-

italKeys of AzureDBApplication implements the specified digital signature func-

tionality using System.Security.Cryptography C#.Net namespace helper classes.

The C# System.Security.Cryptography namespace implements digital signing,

encryption, decryption, verification and key exchange functionality for RSA algo-

rithms. The complete functionality of DigitalKeys class can be categorized into

three functions namely encryption with RSA, Hashing with SHA-1, and finally

signed with RSA shown in (Fig. 3.3)

16

Figure 3.3: workflow of digital signature

1. Generate public and private keys of type RSAParameters as per the RSA

algorithm. It generates 1024 bit size key pair by default CspParame-

ter.KeyNumber = AT KEYEXCHANGE.

2. Load the private and public key pair individually into X.509 format based

files. The file name is named as user name logged into the application at

that instance.

3. The class has methods implemented to encrypt, decrypt, hash and sign,

and verify hash functionality. These methods can be invoked as per the

requirement.

• User modules

AzureDBApplication is web based application, the user interactions are provided

by web pages for individual functionality. The web application has Login page,

registration page, Account page, Loan page, Branch page, Customer page. These

web pages are provided to the user to insert, update and delete data records from

the database tables.

• Database Module

The AzureDBApplication communicates with database using entity framework as

steps involved are already specified in 4.6(Experimental Setup). Each database

table has to be mapped with separate domain specific data model objects.

These mapped objects are generated automatically by entity framework and

used to interact with Database as CRUD operations. EFModel.edmx and EF-

Model.Designer.cs are automatically generated by performing the steps specified

17

in the session in 4.6 (Experimental Setup). The developer can simply update the

model from database and vice versa using entity framework in VS 2013.

3.2.1 Generation of digital signature

Figure 3.4: creation of digital signature

The (Fig. 3.4) explains in detail creation of digital signature. Firstly the particular

sensitive field of a table is encrypted using RSA algorithm and sent as input. Next

hash value for encrypted field is computed using SHA-1 algorithm. Then the hashed

data is encrypted with the private key of the user to generate signature. Finally this

digital signature, encrypted field values are sent to azure database table named Digi-

talFieldTable. The process of sending will be explained in the next section in detail.

18

3.2.2 Verification of digital signature

Figure 3.5: Verification of digital signature

The (Fig. 3.5) explains the verification of digital signature. First as encrypted field and

digital signature values are retrieved from azure database Digitalfield table. Digital

signature is decrypted with the public key using RSA algorithm to get a hashed field

data. Next SHA-1 function is applied to encrypted field data to compute hash for

that data. If both the hashed field data and decrypted signature are matching then

verification of digital signature is successful. Data integrity is not compromised and

identity of the user is authenticated.

19

3.2.3 Sequence diagram for digital signature creation

Figure 3.6: sequence diagram

In the digital signature creation sequence diagram (Fig. 3.6), first the user has to login

into the AzureDBApplication, Click DBsignEvalutation button on main page of the

application. Once the DB sign evaluation screen is popped up, user has to enter table

name, field name and no of records to be digital signed and click on SingleDS button.

After this invoke LoadRsaPublickey and LoadRsaPrivatekey, the methods load public

and private keys into RSACryptoServiceProvider class. Next invoke EncryptData()

method to encrypt the field value and returns encrypted data so that data will not

be available in plain text in azure database. So the digital signature is created for

encrypted field value by invoking the HashAndSign() method , which applies SHA1

Hash function to encrypted field and encrypt the hashed value with RSA private key,

so that the filed value is digital signed. Once the digital signing processing completes

the encrypted data and signature values are stored in Azure database DataField table.

20

3.2.4 Sequence diagram for digital signature verification

Figure 3.7: sequence diagram

In Digital signature verification sequence diagram (Fig. 3.7) , user provides table name,

field name and no of records and clicks on button VerifyDS to initiate the signature

verification. To the VerifyHash method, the input parameters are public key, signature

and encrypted field value. Again SHA1 hash value is computed on encrypted field value

and signature value is decrypted using public key. The hash computed on encrypted

field value is compared with decrypted signature, if both the values match then the

digital signature verification is successful by returning true, otherwise failed.

3.3 Database Design and schema

The azure SQL server 2012 database is used for the implementation of the banking man-

agement system. The banking management system database has seven tables namely

User table, AccountTable table, Branch table, Customer table, Loan table, Digital-

FieldTable table and DigitalDatatable table.

21

1. User (Username, Password)

2. AccountTable (Account No, Account name, Branch name, CustomerID,

First name, Second name, City, Street)

3. Branch (Branch ID, Branch name, Branch city)

4. CustomerTable (CustomerID, CustomerName, CustomerAge, CustomerAddress,

Gender, DOB, BranchID, AccountType, AccountNO)

5. Loan (Loan id, Branch name, Loan Amount)

6. DigitalFieldTable (SNO, UserName, TableDetails, TablePK, Signature, En-

cryptedData)

7. DigitalDataTable (SNO, Username, EncryptedData, Signature, TableDetails)

• Primary key in the User is Username

• Primary key in the AccountTable is AccountNo .

• Primary key in the Branch is Branch ID.

• Primary key in the Customer is Customer ID.

• Primary key in the Loan is Loan ID.

• Primary key in the DigitalFieldData is SNO.

• Primary key in the DigitalDataTable is SNO.

22

3.3.1 Database schema

Figure 3.8: Database schema

3.4 Decisions and Reasoning

• The application is based on database and it resides on remote server as a service

like DBAAS. Here the constraints and parameters that applies to DBAAS is not

considered. The assumption is DBAAS in cloud is just like database in remote

server.

• The digital signature is processed and is persisted as object and stored in

database, because the users will not be able to see the digital signature has a

common public, private key pair.

• Performance evaluation of database connections, network latencies, network traf-

fic are not considered.

• The focus is inserting digital signature into database as persistent signature object

and retrieving the signature object while returning the results to get verified by

verification logic has to be considered.

23

• The reason for choosing digital signature is its impossible to imitate or regenerate

digital signature and its implementation is not dependent any proprietary OS or

platform or language. In this application the assumption is key generation and

verification process must happen on local client machine, so that implementation

and verification will not fail due to restricted accessing of the remote server or

network failure and latency.

• There is possibility to provide role based check on database through the registra-

tion process, that means only particular role only can sign particular data.

• In this architecture the digital signature is serialized as object model not like a

file and only while processing the object model is used so there is no much disk

memory wasted.

• When a signature fails to create or verify, the processing of database transaction

must be stopped until the discrepancy is resolved. Using error handling mecha-

nism will ensure that all errors are handled and users are presented with the some

error message.

24

Chapter 4

Implementation

Today as cloud has being advanced to great extent in all aspects like Information

technology and government organization. There is a need to migrate database into

cloud which is known as Database as a Service (DSaaS). Therefore there will be a

tremendous increase of threats this can be solved by implementing digital signature

while inserting and retrieving data from the database. Many research papers gave

solution to reduce the threats by implementing different encryption techniques using

symmetric algorithms. The aim is not to decline encryption techniques but to increase

the efficiency of security using digital signature in the DSaaS, which maintains data

integrity, and confidentiality. The aim is to insert digital signature in the query and how

it is stored and verified in the database and the algorithm used for the implementation

of the digital signature this will be explained in this chapter. The main issue is how well

the random number of request queries can access the database server without breaking

and handling the exceptions incase digital signature is not generated. In this chapter

will address these issues to some extent.

This chapter discusses about the implementation details of the AzureDBApplication.

The functionality implementation can be divided into three vital parts. One is digital

signature module and second module implements user modules includes user interac-

tions, user interfaces, mainly digital signature evaluation methodology and third is the

database operations (CRUD) and LINQ queries using entity framework.

4.1 System specifications:

The thesis is implemented based on client server model, where the database application

is on the client machine and database is deployed on the cloud.

25

The application comprises DB application interface, data model (like digital signature

object) and database transactions in entire application all modules are implemented

using object oriented technologies.

4.2 Digital signature implementation techniques

Digital signatures is based on assymmetric cryptography, by having two key pairs

(public, private), private key to encrypt messages (fields) and a public key to de-

crypt the message. The RSA algorithm is chosen because it provides digital signature

and also encryption and decryption with high level of data security than DSA. The

application digital signature module is developed using SHA1CryptoServiceProvider

(Secure hash algorithm with key size 160-bits) for hashing and RSACryptoServi-

ceProvider (Rivest, Shamir and Adlemen) for digital signing provide by the .Net

framework (System.Security.Cryptography.RSACryptoServiceProvider namespace has

helper classes for digital signature . (http://www.codeproject.com/Articles/

25590/Cryptographic-Interoperability-Digital-Signatures). Actually the digi-

tal signing process is the original database column value hashed using SHA1 algorithm.

The hashed column value is encrypted using private key and digitally signs the mes-

sage and store it in database. To validate the signature compute the hash and compare

with decrypted value , on successful matching the signature is valid. The basic level of

authentication is provided by user credentials; onlt the registered users can access the

application. All the users sensitive data can be secured by digital signing, so sentive

data is not avalable in plain text in azure database storage.

26

http://www.codeproject.com/Articles/25590/Cryptographic-Interoperability-Digital-Signatures
http://www.codeproject.com/Articles/25590/Cryptographic-Interoperability-Digital-Signatures

4.3 Class diagram for digital signature, encryption, de-

cryption, verification

Figure 4.1: class diagram

The class diagram (Fig. 4.1) describes digital signature generation , signature verifica-

tion, message encryption and decryption functionality. The diagram consists of Digital

Keys, DBDigitalSign, PlainMessage, classes. Digital Keys class creates the RSA based

key pair (private / public key), load the key pair, hash and sign message and verify the

signed message. DBDigitalSign class uses the DigitalKeys class to sign and verify the

data columns selected by the user. The PlainMessage class is used to store the plain

message once the encrypted data is decrypted after the verification process. The plain

message is provided to users to verify the correctness of the data as and when required.

4.4 Experimental setup

Digital signature is implemented using RSA algorithm (1024 bit) and SHA-1 as the hash

algorithm to compute hash value on table fields of the database.The RSA algorithm and

hash algorithms used in research for taken from third party library (Walton 2009). The

application is developed in visual studio 2013 IDE, ASP.Net using C# as programming

language. The application uses System.Security.Cryptography APIs for digital sign-

ing, verifying, encryption, decryption of the data and SQL server 2012 as database

server on Microsoft Azure. The client machine communicates with the database server

27

using LINQ queries and Entity Framework as database model using .Net framework

environment.

4.4.1 Microsoft ADO.NET entity framework 5.0 from local machine

to connect to SQL server 2012 database in azure

This is an automated framework to achieve Object/Relational Mapping (ORM) which

facilitates to work with relational data (CRUD operations) and removes the lots of

coding overhead on users to access the database. LINQ queries are used to retrieve,

insert and delete the data model objects in entity framework. All database modifica-

tions can be performed easily and without coding, so that user can concentrate more

on application and domain specific development.

Entity Data Model (EDM) includes conceptual model objects, storage model objects

and mapping information to map conceptual and relational database objects. This

framework provides separation between the database design and application domain

class model design. (Framework.net 2014) (http://www.entityframeworktutorial.

net/EntityFramework5/create-dbcontext-in-entity-framework5.aspx).

Please refer to the appendix A for detailed information of how to create an Entity Data

Model.

4.4.2 Experimental setup to migrate the web application from local

to Virtual machine on windows azure

We evaluate the efficiency of digital signature using AzureDBApplication as test appli-

cation on test database banking database system. The AzureDBApplication deployed

in azure cloud to evaluate efficiency, so to achieve AzureDBApplication is deploying as

VM. Create VM (kimbopranesh22) remote desktop connection, create windows server

2012 operating system in azure, visual studio 2013 and web browser (google crome).

Finally migrate AzureDBApplication in the created VM namely kimbopranesh22.

Please refer to the appendix B for details on how to migrate the AzureDBApplication

from local to Microsoft Azure instance.

28

http://www.entityframeworktutorial.net/EntityFramework5/ create-dbcontext-in-entity-framework5.aspx
http://www.entityframeworktutorial.net/EntityFramework5/ create-dbcontext-in-entity-framework5.aspx

4.4.3 Deploying on existing ASP.NET AzureDBApplication to run

on windows Azure website

The AzureDBApplication is deployed in azure cloud as web site to evaluate efficiency,

so as to achieve this AzureDBApplication is deployed as cloud service. So that complete

solution can be deployed in cloud as web site which more optimized solution. Create a

web site mydb and deploy the AzureDBApplication as .Net cloud service. This scenario

definitely has effect on efficiency in good way.

Please refer to the appendix C for details on how to deploy the AzureDBApplication

on Microsoft Azure WebSite.

4.5 Pseudo code implementation of digital signature

We enter the (Fig. 4.5) uenters the table name, field name, number of queries

and click on DigitalSign button. The specified username based public and

private files are loaded into RSACryptoServiceProvider class by using a third

party library (Walton 2009)(http://www.codeproject.com/Articles/25590/

Cryptographic-Interoperability-Digital-Signatures) which has different helper

classes to implemtent digital signatures. The specified number of AccoutTable objects

are added to AccountTable , sensitive field of a particular table get encrypted by

invoking the DigitalKeys object EncryptData() method, hashed and signed by invoking

HashAndSign() method. The signature and encrypted data are stored in Azure in a

new table called DigitalFiledTable.

1 dk.LoadRsaPrivateKey(file);

2 dk.LoadPublicKey(file);

3 if (Columnname_ID == "CustomerID")

4 {

5 var watch = new Stopwatch();

6 toEncrypt = enc.GetBytes(objAcct.CustomerID);

7 watch.start();

8 encrypted = dk.EncryptedData(dk.rsaPublicParams, toEncrypt);

9 signature = dk.hashAndSign(encrypted);

10 watch.Stop();

11 }

12

13 DigitalFieldTable dft = new DigitalFieldTable();

14 dft.SNO = obj.SNO+1+i;

15 dft.TableDeatils = TableDetails_ID.Text + "." + Columnname_ID.text;

16 dft.UserName+file;

29

http://www.codeproject.com/Articles/25590/Cryptographic-Interoperability-Digital-Signatures
http://www.codeproject.com/Articles/25590/Cryptographic-Interoperability-Digital-Signatures

17 dft.EncryptedData = covert.ToBase64String(encrypted);

18 dft.Signature = convert.ToBase64String(signature);

19 dft.TablePK = convert.ToString(objAcct.AccountNO);

20 objContextAddToDigitalFieldTables(dft);

Listing 4.1: Psudo code of hashing and siging

Figure 4.2: Encrypted Data in Azure

KIMBO22Entities is database object for the database in azure. Once the selected data

table field get encrypted and signed, the encrypted data and signature data are stored

in azure database table called DigitalField table as separate fields. (Fig. 4.2). Each

subscription of microsoft windows azure has access to create a storage or database which

has a secret key inorder to control the entire data which is connected to a particular

application. This shows that the data in the azure is secure and authinticated.

30

Figure 4.3: Verification of Digital signed data

when the(Fig. 4.3) user enters the Table name, field name , no. of records and click on

the verify button. All the fields of the given records are retrived from the azure database

and the private, public keys of the admin are also loaded. Then the verifyhash() method

is invoked on each record as per the count. Actually here when the record is retrived

the encryted field and digital signature of the records are retrived to azure VM and

digital signature is decrytped, Hash algorithm SHA-1 is applied on the encrypted field

if (verify hash) of these hashes is same then the verification is sucessfull. This shows

that data intigrity is maintained.

31

Figure 4.4: Decryption of Digital signed data

when the user provides the table name , field name, no of records to decrypt, and

clicks on Decrypt button. The specified no of records are retrieved using LINQ query

and stored in list. The specified username based public and private files are loaded

into RSACryptoServiceProvider object. After that the specified field get decrypted by

invoking DigitalKeys object DecryptData() method. (Fig. 4.4)

4.6 Software development life cycle:

SDLC methodology chosen for the application is spiral model because of its iterative

nature and waterfall model nature. This approach is suitable for developing research

thesis as proof of concept or prototype. In this methodology all phases of this approach

are covered for every iteration with more focus on risk and at end a prototype is

produced. The software is developed in engineering phase and testing at the end of the

phase. The spiral model suits for the R &D project, so the fast prototype or POC can

be implemented iteratively by evaluating each phase.

32

4.7 Software testing methodology

In the testing phase of the thesis: Unit testing, Integration Testing, System Testing,

Performance Testing and Security Testing are executed.

• Functional testing: : Testing of application modules and classes at the functional

(object) level. In this all modules in the system are tested individually. All the

data model class implementation is tested for its functionality verification. For

example signature generation, verification modules can be tested whether the

signatures are getting generated and verified can test individually. Classes like

signature object, error handling can be tested.

33

Chapter 5

Evaluation

We evaluate the efficency of digital signature on different database table colcums. The

main focus of the empirical validation is to evaluate the performance of securing the

data from database using the digital signature. We evaluate the efficiency of digital

signature by applying it to different tables and columns. we evaluate the following

scenarios:

1. The signing of data.

In this case the execution time taken for insertion and signing the fields are

counted and tabulated.

2. The encryption of data.

In this case execution time is taken only for encrypting the selected fields are

counted and tabulated.

3. The decryption of data.

In this case execution time is taken only for decrypting the selected fields are

counted and tabulated.

4. The Verification of data.

In this case execution time is taken only for verifying the selected fields are counted

and tabulated.

Our approach uses four important tables Loan, AccountTable, Branch, and Digital-

FieldTable for evaluation. In which the fourth table is DigitalFieldTable used to store

user data, encrypted data, signed data.

34

We use a banking database (i.e) AzureDBApplication as a test case for the evaluation.

we conduct evaluation :

1. In local machine. 1

2. In Azure cloud environment:

• Evaluation on azure instance.

• Evaluation after deploying on azure website.

The Table. 5.1 summarizes the total time taken for executing the operation to digital

sign.

We conduct digital signing evaluation on fields like street, Loanamount, Branchname

on tables Accounttable, Loan, Branch. Table 5.1 shows that performance of execution

time for digital signing the fields degrades due to large volumes of data.

Table 5.1: Time taken for only digital signing in local machine

TableName ColumnName No of Records Time taken to sign in local (Sec)

Loan Loanamount 100 0.688

Loan Loanamount 500 3.2

Loan Loanamount 1000 6.53

Loan Loanamount 10000 184.833

Branch Branchname 100 0.722

Branch Branchname 500 3.37

Branch Branchname 1000 6.70

Branch Branchname 10000 180

AccountTable CustomerID 100 0.655

AccountTable CustomerID 500 3.73

AccountTable CustomerID 1000 7.64

AccountTable CustomerID 10000 96.815

The Table. 5.2 summarizes the time taken for executing the operation to decrypt the

corresponding fields of database tables in local machine. The time taken for decrypting

the fields is better in local machine compared with azure site.

1 RAM 4 GB, Processor 2.4GHz Intel Core i5, HDD 500GB

35

Table 5.2: Time taken to only decrypt the fields randomly in local machine

TableName ColumnName No of Records Time taken to decrypt in local (MillSec)

AccountTable Street 100 236

AccountTable Street 500 1090

AccountTable Street 1000 2265

AccountTable Street 10000 22984

Loan Loanamount 100 223

Loan Loanamount 500 1172

Loan Loanamount 1000 2324

Loan Loanamount 10000 22605

Branch Branchname 100 234

Branch Branchname 500 1159

Branch Branchname 1000 2372

Branch Branchname 10000 21997

Jansma & Arrendondo (2004) mention signature verification of RSA is efficient than

signature creation. Table. 5.3 summarizes the time taken for verifying the corresponding

fields of database tables is better than signature generation i.e (signature verification

is efficient than signature creation). So the evalution in this case done is correct.

Table 5.3: Time taken to only verify in local machine

TableName ColumnName No of Records Time taken to verify in local (MillSec)

AccountTable CustomerID 100 672

AccountTable CustomerID 500 3631

AccountTable CustomerID 1000 8021

AccountTable CustomerID 10000 77873

Loan Loanamount 100 630

Loan Loanamount 500 4708

Loan Loanamount 1000 7775

Loan Loanamount 10000 72290

Branch Branchname 100 506

Branch Branchname 500 2784

Branch Branchname 1000 6491

Branch Branchname 10000 85432

36

5.1 Evaluation in azure instance

The Table. 5.4 summarizes the time taken for executing the operation to sign the

corresponding fields of database tables in azure virtual machine .2

We conduct the same evaluation in azure instance, the signing time, decryption time

is more when compared with local machine because of the configuration of virtual

machine.

Table 5.4: Time taken to only sign in azure instance

TableName ColumnName No of Records Time taken to sign in azure (MillSec)

AccountTable CustomerID 100 767

AccountTable CustomerID 500 3791

AccountTable CustomerID 1000 7763

AccountTable CustomerID 10000 76301

Loan Loanamount 100 758

Loan Loanamount 500 3885

Loan Loanamount 1000 7655

Loan Loanamount 10000 76623

Branch Branchname 100 765

Branch Branchname 500 3836

Branch Branchname 1000 7815

Branch Branchname 10000 77023

The Table. 5.5 summarizes the time taken to verify the corresponding fields of database

tables in azure virtual machine. The performance is better because RSA algorithm

supports efficient verification than signature generation.

2 RAM 3.27GB, Cores: 2

37

Table 5.5: Time taken to only verify in azure instance

TableName ColumnName No of Records Time taken to verify in azure (MillSec)

AccountTable CustomerID 100 1

AccountTable CustomerID 500 8

AccountTable CustomerID 1000 39

AccountTable CustomerID 10000 663

Loan Loanamount 100 2

Loan Loanamount 500 11

Loan Loanamount 1000 64

Loan Loanamount 10000 658

Branch Branchname 100 4

Branch Branchname 500 20

Branch Branchname 1000 23

Branch Branchname 10000 535

The Table. 5.6 summarizes the time taken for executing the operation to decrypt the

corresponding fields of database tables in azure virtual machine.

Table 5.6: Time taken to Decrypt in Azure instance

TableName ColumnName No of Records Time taken to decrypt in instance (MillSec)

AccountTable CustomerID 100 768

AccountTable CustomerID 500 3852

AccountTable CustomerID 1000 7605

AccountTable CustomerID 10000 76277

Loan Loanamount 100 745

Loan Loanamount 500 3678

Loan Loanamount 1000 7625

Loan Loanamount 10000 76764

Branch Branchname 100 757

Branch Branchname 500 3877

Branch Branchname 1000 7598

Branch Branchname 10000 76375

38

5.2 Experimental Analysis after deploying on azure web-

site

For above specified scenarios digital signing, verifying, encryption, decryption execution

time is evaluated and analysed.

There is considerable reduction in execution time of digital signing and verification.

When the evaluation is performed on azure web site is very much efficient than on

local and virtual machine because web application deployed on azure is an optimized

solution as set of virtual machines run on azure websites. Digital signature not only

limited to security but also includes authentication and reliability of data transfer.

Certain techniques like maintaining key pair, key exchange mechanism involves lots of

analysis and challenges. Encryption provides security and privacy to data; however

digital signature is quite promising in providing security in all aspects.

The Table. 5.7 summarizes the time taken for executing the operation to sign the

corresponding fields of database tables in azure web site.

Table 5.7: Time taken to sign in azure site

TableName ColumnName No of Records Time taken to sign in azure site (MillSec)

AccountTable CustomerID 100 229

AccountTable CustomerID 500 1171

AccountTable CustomerID 1000 2195

AccountTable CustomerID 10000 22551

Loan Loanamount 100 228

Loan Loanamount 500 1156

Loan Loanamount 1000 2374

Loan Loanamount 10000 22939

Branch Branchname 100 208

Branch Branchname 500 1153

Branch Branchname 1000 2182

Branch Branchname 10000 22741

The Table. 5.8 summarizes the time taken for executing the operation to verify the

corresponding fields of database tables in azure web site.

39

Table 5.8: Time taken to verify in azure site

TableName ColumnName No of Records Time taken to verify in azure site (MillSec)

AccountTable CustomerID 100 12

AccountTable CustomerID 500 57

AccountTable CustomerID 1000 104

AccountTable CustomerID 10000 1079

Loan Loanamount 100 4

Loan Loanamount 500 40

Loan Loanamount 1000 80

Loan Loanamount 10000 1079

Branch Branchname 100 12

Branch Branchname 500 44

Branch Branchname 1000 107

Branch Branchname 10000 1079

The Table. 5.9 summarizes the time taken for executing the operation to encrypt the

corresponding fields of database tables in azure web site.

Table 5.9: Time taken to encrypt in azure site

TableName ColumnName No of Records Time taken to encrypt in azure site (MillSec)

AccountTable CustomerID 100 10

AccountTable CustomerID 500 24

AccountTable CustomerID 1000 51

AccountTable CustomerID 10000 483

Loan Loanamount 100 7

Loan Loanamount 500 30

Loan Loanamount 1000 54

Loan Loanamount 10000 479

Branch Branchname 100 10

Branch Branchname 500 18

Branch Branchname 1000 68

Branch Branchname 10000 545

The Table. 5.10 summarizes the time taken for executing the operation to decrypt the

corresponding fields of database tables in azure web site.

40

Table 5.10: Time taken to decrypt in azure site

TableName ColumnName No of Records Time taken To decrypt in azure site (MillSec)

AccountTable CustomerID 100 883

AccountTable CustomerID 500 4395

AccountTable CustomerID 1000 8774

AccountTable CustomerID 10000 87920

Loan Loanamount 100 878

Loan Loanamount 500 4444

Loan Loanamount 1000 8839

Loan Loanamount 10000 88165

Branch Branchname 100 860

Branch Branchname 500 4348

Branch Branchname 1000 8723

Branch Branchname 10000 88166

The (Fig. 5.1) compares the execution time of signing and verification in azure web site

for CustomerID.

Figure 5.1: Exeuction time of sign Vs verification

41

The reason behind the increase in digital sign time is due to the use of RSA algo-

rithm because it uses key length of 1024 bits for signature generation which provides

strong signing and good level of security. Not only that RSA computational time is

also high. Jansma & Arrendondo (2004) mention that in RSA algorithm the time

taken for signature generation is low compared with other algorithms one of algorithm

is Elliptic Curve Digital Signature algorithm (ECDS) this is proved on the above eval-

uation tables in all three environments because of the greater key length (1024 bit).

Signature verification is faster than generation. Finally, from this analysis it is proven

that signature verification is faster when compared with signature generation because

of RSA key is 1024 bits. If the key length was about only 128 to 256 bits then signa-

ture generation performance would have been better, but the level of security will be

definetly reduced. (As AzureDBApplication is a banking managment system, security

is the primary concern than time. Padmavathi & Kumari (2013) also mention that the

most commonly used algorithm for encryption is RSA algorithm its the most secure

way of authintication on cloud provider site at the same time it is too slow in terms of

encrytion for large data volumes.)

The (Fig. 5.2) compares the execution time of encryption and decryption in azure web

site for CustomerID.

Figure 5.2: Execution time of encryption Vs decryption

The reason behind the increase in decryption time then that of encryption is due to

42

the RSA algorithm design, like for n bit key length the encryption will be twice (2n),

and the decryption will be thrice (3n). So because of this reason time for decryption

of the fields are more when compared with encryption as per the graph.

The (Fig. 5.3) compares the execution time of signing and verification in azure web site

for Branchname.

Figure 5.3: Execution time of sign Vs verification

The (Fig. 5.4) compares the execution time of signing and verification in azure web site

for Branchname.

43

Figure 5.4: Execution time of encrypt Vs decrypt

44

Chapter 6

Conclusions

6.1 Conclusion

In this research certain challenges has considered such as data security, data privacy,

data integrity and anti deniability that is a part of database management. The database

security is very vital factor that has to be considered in any software development cor-

porate or industries. Almost all in every software application, such as distributed appli-

cations, client server applications, Web applications database involvement is mandatory

database security is one of factors that has to be handled seriously. In conclusion al-

though there are many security technologies like Fullhomomorphic encryption, Layered

based encryption, PKI encryption. Every technology involves a layer of computation,

complexity. In any encryption technique if the Key is lost or stolen then security is

broken. Digital signature is technique which can be applied to any kind of data. As

outlined in the introduction and main body, efficiency of encryption based on security

components did not address few aspects like data integrity, ant deniability and data pri-

vacy completely. This is purely addressed by using digital signature. Although digital

signatures cannot prevent fraud from being attempted, they prevent attempted fraud

from succeeding by giving application the ability to detect fraudulent transactions.

By providing digital signature as security to DBAAS the data is completely protected

because both digital signature and DBAAS have very unique attributes. Using dig-

ital signature the complex computations are not required. Digital signature system

will not have any additional servers that could become cause for application to stop.

This implies scalability of database increases. This is resolved using digital signature.

Therefore, digital signature is more efficient when compared with other encryption

techniques.

45

The paper describes an approach and contribution towards to implement digital signed

database as a service. The most significant achievement is including the digital sig-

nature object in DBAAS database table. Unlike other systems this digital signature

solution can be applied to any database not only banking system. Service provider

azure can compute and return the results set for the requested query in very secure

manner since the application operates on encrypted field data. In this research the

digital signature is applied to only selected fields so that results set are compact, com-

putational time is less and memory overhead to reduced, there is no need to sign entire

table.

When the intruders break the security at database level (authentication), we can pre-

vent the table data being modified by adding methodology of digital signature. In this

we dont need to apply the digital signature to all the tables, but only selected sensitive

database tables. In this research digital signature generation, verification and storing

the digital signature as an object into a database will be implemented. There is third

party .Net API’s (System.Security.Cryptography) are available to generate and verify

the digital signature (RSA algorithm with 1024 bits and SHA1). Using the third party

API digital signature can be implemented and stored into database efficient way.

6.2 Future Work

The most exciting part of the paper is implementing TPL in digital signed database in

DBAAS. We believe that adding concurrency and parallelism really brings significant

reduction in processing time. To handle the multiple requests from multiple users/-

clients , TPL library is used because nowadays, all computers (workstations, laptops,

servers) come with multiple cores and most of the applications fail to harness the full

potential of this computational ability of the systems . The task parallel library allows

writing code which is adjustable to itself with the number of Cores available in the

computer. So it is sure that the software would auto-upgrade itself with the upgrading

environment. The concept of ”Task’ is introduced by TPL and Task parallelism is the

process of running these tasks in parallel. A Task is an independent unit of work, which

runs within a program. The TPL is more efficient, scalable and more programmatic

control is possible than a thread or work item. The thesis paper contributes by pro-

viding security to database by using digital signature and efficient handling of multiple

requests from multiple users.

46

Bibliography

Aki, S. G. (1983), ‘Digital signatures: A tutorial survey’, Computer 16(2), 15–24.

URL: http://dx.doi.org/10.1109/MC.1983.1654294

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J. & Brandic, I. (2009), ‘Cloud computing and emerging

it platforms: Vision, hype, and reality for delivering computing as the 5th utility’, Future Gener-

ation Computer Systems 25(6), 599 – 616.

URL: http://www.sciencedirect.com/science/article/pii/S0167739X08001957

Curino, C., Jones, E. P., Popa, R. A., Malviya, N., Wu, E., Madden, S., Balakrishnan, H. & Zeldovich,

N. (2011), ‘Relational cloud: A database-as-a-service for the cloud’.

Dubey, A. & Wagle, D. (2007), ‘Delivering software as a service’, The McKinsey Quarterly

6(2007), 2007.

Framework.net, E. (2014), ‘Create DBContext in Entity Frame-

work 5.0’, http://www.entityframeworktutorial.net/EntityFramework5/

create-dbcontext-in-entity-framework5.aspx. [Accessed 1-August-2014].

Gahi, Y., Guennoun, M. & El-Khatib, K. (2011), A secure database system using homomorphic encryp-

tion schemes, in ‘DBKDA 2011, The Third International Conference on Advances in Databases,

Knowledge, and Data Applications’, Think Mind, St. Maarten, The Netherlands Antilles, pp. 54–

58.

Hacigumus, H., Iyer, B. & Mehrotra, S. (2002), Providing database as a service, in ‘Data Engineering,

2002. Proceedings. 18th International Conference on’, IEEE, San Jose, California, pp. 29–38.

URL: http://dl.acm.org/citation.cfm?id=876875.879015

huang Wu, C. (2010), Self-generated-certificate digital signature, in ‘Genetic and Evolutionary Com-

puting (ICGEC), 2010 Fourth International Conference on’, IEEE, Shenzhen, China, pp. 379–382.

URL: http://dx.doi.org/10.1109/ICGEC.2010.100

Jansma, N. & Arrendondo, B. (2004), ‘Performance comparison of elliptic curve and rsa digital signa-

tures’, nicj. net/files .

Kadhem, H., Amagasa, T. & Kitagawa, H. (2009), A novel framework for database security based

on mixed cryptography, in ‘Internet and Web Applications and Services, 2009. ICIW ’09. Fourth

International Conference on’, IEEE Computer Society, Venice Mestre, Italy, pp. 163–170.

URL: http://dx.doi.org/10.1109/ICIW.2009.31

Lehner, W. & Sattler, K.-U. (2010), Database as a service (dbaas), in ‘Data Engineering (ICDE),

2010 IEEE 26th International Conference on’, IEEE Computer Society, Los Alamitos, CA, USA,

pp. 1216–1217.

Mani, M., Shah, K. & Gunda, M. (2013), ‘Enabling secure database as a service using fully homomor-

phic encryption: Challenges and opportunities’, CoRR abs/1302.2654.

47

http://www.entityframeworktutorial.net/EntityFramework5/create-dbcontext-in-entity-framework5.aspx
http://www.entityframeworktutorial.net/EntityFramework5/create-dbcontext-in-entity-framework5.aspx

Meijer, H. & Aki, S. (1982), ‘Digital signature schema’, Cryptologia 6(4), 329–338.

URL: http://www.tandfonline.com/doi/abs/10.1080/0161-118291857154

Narasimha, M. & Tsudik, G. (2005), Dsac: Integrity for outsourced databases with signature aggrega-

tion and chaining, in ‘Proceedings of the 14th ACM International Conference on Information and

Knowledge Management’, CIKM ’05, ACM, New York, NY, USA, pp. 235–236.

URL: http://doi.acm.org/10.1145/1099554.1099604

Ngai, E. & Wat, F. (2002), ‘A literature review and classification of electronic commerce research’,

Information Management 39(5), 415 – 429.

URL: http://www.sciencedirect.com/science/article/pii/S0378720601001070

Padmavathi, B. & Kumari, S. R. (2013), ‘A survey on performance analysis of des; aes and rsa algorithm

along with lsb substitution technique’, International Journal of Science and Research (IJSR)

2(4), 170–174.

Popa, R. A., Redfield, C., Zeldovich, N. & Balakrishnan, H. (2012), ‘Cryptdb: Processing queries on

an encrypted database’, Commun. ACM 55(9), 103–111.

URL: http://doi.acm.org/10.1145/2330667.2330691

Rewagad, P. & Pawar, Y. (2013), Use of digital signature with diffie hellman key exchange and aes

encryption algorithm to enhance data security in cloud computing, in ‘Proceedings of the 2013

International Conference on Communication Systems and Network Technologies’, CSNT ’13, IEEE

Computer Society, Gwalior India, pp. 437–439.

URL: http://dx.doi.org/10.1109/CSNT.2013.97

Sklavos, N., Kitsos, P., Papadomanolakis, K. & Koufopavlou, O. (2002), Random number generator

architecture and vlsi implementation, in ‘Circuits and Systems, 2002. ISCAS 2002. IEEE Interna-

tional Symposium on’, Vol. 4, IEEE, Phoenix-Scottsdale, AZ, USA, pp. IV–854–IV–857 vol.4.

Somani, U., Lakhani, K. & Mundra, M. (2010), Implementing digital signature with rsa encryption

algorithm to enhance the data security of cloud in cloud computing, in ‘Parallel Distributed and

Grid Computing (PDGC), 2010 1st International Conference on’, IEEE, Solan, India, pp. 211–216.

Walton, J. (2009), ‘Cryptographic Interoperability: Digital Signatures - CodeProject’, http://www.

codeproject.com/Articles/25590/Cryptographic-Interoperability-Digital-Signatures.

[Online; accessed 19-July-2014].

Zhang, J. (2010), A study on application of digital signature technology, in ‘Networking and Digital

Society (ICNDS), 2010 2nd International Conference on’, Vol. 1, IEEE, Wenzhou, China, pp. 498–

501.

48

http://www.codeproject.com/Articles/25590/Cryptographic-Interoperability-Digital-Signatures
http://www.codeproject.com/Articles/25590/Cryptographic-Interoperability-Digital-Signatures

Appendix A

How to create an Entity Data

Model

Steps to create Entity Data Model using VS 2013.

• Open Visual Studio 2013 and ASP.Net Web Application project.

• Now, add EDM by right clicking on the project in the solution explorer select

Add click on New Item and select ADO.NET Entity Data Model from popup,

give Name and click Add button.(Fig. A.1)

Figure A.1: ADO.NET Entity Model

• VS 2013 opens with four options in EDM wizard select option EF designer from

database option and click Next.(Fig. A.2)

49

Figure A.2: Entity Data Model

• Select existing SQL Server 2012 DB connections or create new connection by

clicking New Connection button. Use existing db connection to KIMBO22 azure

SQL server database. This will also add connection string to your web.config file

with default suffix with db name. That can be changed as per the requirement

and click Next after setting the db connection.(Fig. A.3)

50

Figure A.3: Database Connection

• Select the version of Entity Framework and click Next.(Fig. A.4)

Figure A.4: Version selection

51

• It will show the tables, views and stored procedures in the database. Select tables,

views and SPs that are required , keep the default checkboxes selected and click

Finish. Change model Namespace as per requirement.

Figure A.5: Database Settings

• After clicking on Finish, EFModel.edmx file into the project. Double click on

EFModel.edmx file , which displays all the entities and its relation with database.

52

Appendix B

How to Migrate the

AzureDBApplication from local

to Azure instance

• First login into azure account with the credentials and create a new virtual ma-

chine with instance name, specified domain name, configuration of VM with 2

cores and 3.75 RAM.

• When VM is created sucessfully it will be in running status with unique DNS

name. In this case the instance name is Kimbopranesh22. Next once the Kimbo-

pranesh22 VM status is in running state then the web application in local can be

migrated to the VM in the azure with few steps. Initially in order to migrate the

code from local machine to remote desktop we need a remote desktop connection.

• The remote desktop connection is established in the local machine by download

a link file (kimbopranesh22.rdc) from azure.

• Then the webapplication can be migrated to Vm in azure for further evaluation

that will be explained on the next chapter (Fig. B.1)

53

Figure B.1: Connecting to remote desktop of azure

We evaluate the efficiency of digital signature using AzureDbApplication as test

application on test database banking database system. The AzureDBApplication

deployed in azure cloud and evaluate efficiency, so to achieve this AzureDBAp-

plication is deployed as VM. So that complete solution can be deployed in cloud.

54

Appendix C

How to Deploy an existing

ASP.NET

AzureDBApplication to run on

Windows Azure website

Deployment of ASP.Net web application comprises of two main components.

1. Deploying an existing AzureDBApplication as web role in azure cloud ser-

vice.

2. Publish the web application using VS 2013.

– First select the AzureDBApplication in the solution explorer of the visual

studio, right click and add New project in the list appeared then a window

will be displayed with Windows Azure Cloud Services option.

– This will add Windows azure cloud service to the project and simultane-

ously a new window will appear on the screen to choose the ASP.Net web

role. Then AzureDBApplication is added as role in the windows azure cloud

service to be deployed on azure website.

– When the application is ready select the AzureDBApplication right click and

select Publish option. Publish wizard will be displayed , in this option user

can modify the settings for the deployment by signing with azure credentials

are create a site to deploy the AzureDBapplication . There will be four

configuration settings displayed in the wizard as shown (Fig. C.1)

55

Figure C.1: Configuration setting to deploy the web application to azure site

– Finally choose next to publish application in the created site

(http://mydb.azurewebsites.net).

56

	Abstract
	Acknowledgements
	Declaration
	Introduction
	Background
	Database As a Service
	Emergence of encryption techniques
	Different types of encryption techniques
	Evaluating encryption techniques based on data privacy and performance
	Performance evaluation:

	Efficiency of digital signature based on data confidentiality and data privacy
	Data integrity
	Anti deniability
	Data protection and privacy

	Working of digital Signature compared with different Encryption techniques in database as a service
	Types of public key cryptography for digital signatures

	Design
	Communication between webapplication and AzureDataBase
	AzureDBApplication implementation modules
	Generation of digital signature
	Verification of digital signature
	Sequence diagram for digital signature creation
	Sequence diagram for digital signature verification

	Database Design and schema
	Database schema

	Decisions and Reasoning

	Implementation
	System specifications:
	Digital signature implementation techniques
	Class diagram for digital signature, encryption, decryption, verification
	Experimental setup
	Microsoft ADO.NET entity framework 5.0 from local machine to connect to SQL server 2012 database in azure
	Experimental setup to migrate the web application from local to Virtual machine on windows azure
	Deploying on existing ASP.NET AzureDBApplication to run on windows Azure website

	Pseudo code implementation of digital signature
	Software development life cycle:
	Software testing methodology

	Evaluation
	Evaluation in azure instance
	Experimental Analysis after deploying on azure website

	 Conclusions
	Conclusion
	Future Work

	Bibliography
	How to create an Entity Data Model
	How to Migrate the AzureDBApplication from local to Azure instance
	How to Deploy an existing ASP.NET AzureDBApplication to run on Windows Azure website

