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Abstract

Adaptive learning systems attempt to adapt learning content to suit the needs
of the learners using the system. Most adaptive techniques, however, are con-
strained by the pedagogical preference of the author of the system and are always
constrained to the system they were developed for and the domain content. This
thesis presents a novel method for content adaptation. A personal profile is de-
scribed that can be used to automatically generate instructional content to suit
the pedagogical preference and cognitive ability of a learner in real time. This the-
sis discusses the manifestation of measurable cognitive traits in an online learning
environment and identifies cognitive resources, within instructional content, that

can be used to stimulate these manifestations.

There exists two main components for the learning component: Content Anal-
yser and a Selection Model. The Content Analyser is used to automatically gen-
erate metadata to encapsulate cognitive resources within instructional content.
The analyser is designed to bridge the perceived gap found within instructional
repositories between inconsistent metadata created for instructional content and
multiple metadata standards being used. All instructional content that is analysed
is repackaged as Sharable Content Object Reference Model (SCORM) conforming
content. The Selection Model uses an evolutionary algorithm to evolve instruc-
tional content to a Minimum Expected Learning Experience (MELE) to suit the
cognitive ability and pedagogical preference of a learner. The MELE is an approx-
imation to the expected exam result of a learner after a learning experience has

taken place. Additionally the thesis investigates the correlation between the cog-



nitive ability and pedagogic preference of an author of instructional content and
the cognitive resources used to generate instructional content. Furthermore the
effectiveness of the learning component is investigated by analysing the learners
increase in performance using the learning component against a typical classroom

environment.
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Definition of Terms used in thesis

The usage of the following terms differs in the general use, in computer science
research, and in educational research. The following definitions describe the use

of these terms throughout this thesis.

Adaption Adaption refers to the generation of instructional
content based on identified cognitive metrics within
metadata describing instructional content associated
with the cognitive ability of a learner.
Adaptive strategy Adaptive strategy refers too the strategy that is
used in the construction of new course material
for an individual learner.
Blended learning The use of both traditional class room teaching
and on-line learning throughout a course.
Cognitive ability The cognitive ability of a learner is defined as the
metrics associated with how a learner consumes information.
Cognitive overload Cognitive overload occurs when a learner is presented
with too much information that causes interference
to a learning experience.
Cognitive traits The cognitive traits of a learner are individual traits
that combine to form the cognitive ability of a learner.
Instructional object Instructional object refers to a single unit of learning
material. A SCORM compliant instructional object is
described as a unit of learning material that must contain
functionality to be tracked by a SCORM run time

environment.
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Learning experience

Mathemagenic

Pedagogical preferences

Protocol

Specification

A learning experience is the output of a learner
interacting with a learning environment.
Mathemagenic content is defined as content that is
generated for a learner that will enable the learner to
consume the information optimally.

The pedagogical preference of a learner refers

to the learning style that a leaner uses to enhance their
learning experience. In particular the pedagogical
preference of learner in this thesis is involved with the
classification of a learners VARK preference associated
with an online learning environment.

Refers to the steps involved with a learner interacting
with the learning component throughout a learning
experience.

A Specification is a description of an instructional
course. The Specification contains characteristics that
control the adaptive strategy when generating content
for a learner. The Specification does not contain any

instructional material.

xiii



Chapter 1

Introduction and Research

Question

Adaptive learning systems have been in development since the early 1990s but
have seen rapid development in more recent years. Coupled with an extensive
increase of people entering into higher education, adaptive online learning systems
may offer a potential avenue for higher eduction, either as a pure online strategy or
a blended course (online course that typically has some traditional components).
With the introduction of specifications like the Sharable Content Object Refer-
ence Model (SCORM), the Advanced Distributed Learning initiative (ADL) has
attempted to standardize metadata specifications for learning content. However,
it was found by Norm Friesen [2] that only fifty nine percent of people complete
keywords in SCORM compliant learning objects, thus creating an impossible task
for automated adaptive learning systems to use the metadata associated with the
learning objects as an indication of the content. Furthermore the ADL team built
SCORM (like all metadata standards) as a black-box specification where no pro-
cess investigates the validity of the instructional content being referenced by the

SCORM metadata, or the type of content contained within the Sharable Content
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Object (SCO).

This research project is involved with the following research question:

Is it possible to construct an automated learning component that generates instruc-

tional content suited to the cognitive ability and pedagogical preference of a learner?

The goal of this thesis is to describe a suitable personal profile, consisting of the
cognitive ability and pedagogical preference of a learner that has associated cog-
nitive metrics found within instructional content. This thesis discusses the design,
construction and evaluation of an automated learning component that is built to
automatically generate instructional content using an evolutionary strategy, suited

to the defined optimal personal profile.

1.1 Literature Review

In this section, the key literature relevant to this thesis is reviewed, in chronological
order. The research completed within this research project has two distinct paths:
identifying suitable cognitive traits and the investigation of suitable adaptation
systems. In particular, this thesis is involved with the identification of suitable
cognitive traits and pedagogical preferences of an individual that has an associative
cognitive metric that can be automatically identified within instructional material.
The literature review starts with early attempts of classifying the structure and
capacity of Working Memory with Millers work [3] from 1956 and follows this
research to the current thinking of how information is processed; for example,
an investigation on the research conducted by Baddely[4], Cowan[5] and Ericsson

and Kintsch[6] is carried out on the workings of memory capacity and storage
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limitations. Adaptive content strategies and systems are investigated in some
detail, from the early work of Peter Brusilovsky [7] to Patels work [8] on improving

cognitive traits by summative and formative assessment.

1.1.1 Cognitive traits and eduction philosophy

Miller [3] describes one bit of information as the amount of information that is
needed to make a decision between two equally likely different alternatives. It
is further suggested that N bits of information is required to decide between 2V
alternatives. Miller gives an account of a number of experiments determining the
absolute judgment of unidimensional stimuli in contrast to the results found in
determining the absolute judgment of multidimensional stimuli. Miller found that
the span of absolute judgment and the span of immediate memory impose se-
vere limitations on the amount of information that humans are able to perceive,
process, and remember. If the stimuli are organized into several dimensions and
successively into chunks of learning objects, the span of absolute judgment and

the span of immediate memory are increased significantly.

Baddely et~al [4] introduced the multicomponent model of working memory. This
model is composed of two slave systems and a central executive system to control
the flow of communication between the slave systems and to coordinate cogni-
tive processes when more than one task must be completed at one time. The
slave systems consist of a phonological loop and a visuo-spatial sketch pad. The
phonological loop stores phonological information and prevents the decay of such
information by constantly refreshing the information. The visuo-spatial sketch pad
stores visual and spatial information and is used for the construction and manip-
ulation of visual images. The sketch pad can be broken down further into two

subsystems: a visual subsystem, responsible for shape, colour and texture and a
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spatial subsystem dealing with location.

This research thesis is involved with learning within an online learning environ-
ment. Considering working memory as a possible trait and the limited capacity
associated with that trait as described above [3], the constructs of learning must
also be considered. Dijk and Kinstch [9] discuss the tasks that must occur for
basic text comprehension. The tasks that they identified are: perceptual features,
linguistic features, propositional structure, macrostructure, situation model, con-
trol structure, goals, lexical knowledge, frames, general knowledge and episodic
memory for prior text. Consequently, each of these tasks would impede on the

general idea of working memory containing a limited bound.

Cowan [10] investigates the conceptions of memory storage, selective attention
and their constraints within human information processing system. In particular
the intersection of memory and attention was discussed, thus moving away from a

simple static model for working memory capacity.

Ericsson and Kintsch [6] believe that there exists two structures within mem-
ory: working memory and long-term memory. However, they argue that there
must exist some retrieval structures to allow for the expansion of working mem-
ory during certain conditions. They classify this expansion as having the ability
to utilise long-term working memory (LTWM). For example, text comprehension
requires all the following to take place: perceptual features, linguistic features,
propositional structure, macrostructure, situation model, control structure, goals,
lexical knowledge, frames, general knowledge and episodic memory for prior text
[9]. Each of these components by themselves would exceed the capacity of short-

term working memory, but are clearly needed in text understanding. This supports
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the concept of an additional storage device that can be used within certain circum-
stances. Ericsson and Kintsch [6] proposed that in certain situations of expertise
that individuals can overcome the limitations of working memory and utilise the
storage capacity of long-term memory. This storage facility can then be accessed
through cues from the immediate memory. These proposals were supported by

various experiments with text comprehension, mental calculations, and chess.

Kintsch et~al [11] discuss extensions to earlier research relating to the complex
task of text comprehension [9]. Kintsch considers that every reader is able to form
an episodic text structure during text comprehension, if the text is well written
and if the content is familiar. Forming an episodic text structure allows the use of
long-term working memory thus explaining how a complex process like text com-
prehension can be performed on a daily basis. Additionally, forming the episodic
structure reduces the concept of a granular chunk as previously defined by Miller

[3].

Baddeley furthered his model in 2000 [12] by introducing an episodic buffer as an
additional component. This buffer is a temporal storage of phonological, visual,
spatial and semantic information. The buffer is comprised of a limited capacity
system that provides temporary storage of a multimodal code, that is the bind-
ing of information from the initial subsystems and long-term memory. The key
characteristics of the new model focuses attention on the process of integration
of information rather than viewing the sub-systems in isolation. This new model
emphasis the importance of creating the link between the long-term memory and

the sub-systems.

Laurillard [13] discusses the most common pedagogic strategy used in higher educa-
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tion, Knowledge acquisition. Knowledge acquisition, through lectures and reading,
is referred to as a rhetorical activity seeking to persuade learners of an alternative
way of looking at a world they already know through experience. Laurillard ar-
gues that this way of learning presupposes that a learner must be able to interpret
a complex discourse of words, symbols, and diagrams in the required manner if
the learner is to comprehend the correct meaning of the educational content. A
number of studies carried out on the learners interpretation between structure and
meaning have identified two contrasting approaches to studying a text: one known
as a holistic approach where the learner views the educational content as a whole
thereby preserving the structure of the content but learners may have difficulties
with cognitive overload. The other known as an atomistic approach where the
learner breaks the content up into granular pieces of information, hence distorting
the structure of the content and losing the meaning. Laurillard investigates the
potential of higher education and the problems associated with this protocol of

imparting knowledge.

Cowan [5] regards working memory as part of long-term memory and not another
component. Representations in working memory are a subset of the long-term
memory. Working memory consists of two distinct levels. The first level consists
of long-term memory representations that are activated. There is no limit to ac-
tivation of representations in long-term memory. The second level is described as
the focus of attention. The focus is regarded as capacity limited and can hold up
to four of the activated representations at any given instant. This view of working
memory is thus centered on the concept of monitoring the focus of attention and
reducing the possibility of interference with the focus of attention throughout a

learning experience.
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Ericsson and Kintsch [6], as discussed earlier proposed that in situations of ex-
pertise, individuals can overcome working memory limitations. Guida et~al [14]
using the theory of text comprehension have proposed the personalisation method
as a way to operationalise the LTWM. The personalisation method was tested with
two groups in text comprehension. The personalised group recalled more objects
and showed no sensitivity to interference (delay) and memory load than the non-

personalised group.

Owen et~al [15] showed that using an N-Back algorithm method for testing work-
ing memory capacity stimulates the same regions of the human brain when com-
pared with the more established working memory tests, by performing a meta-

analysis of normative functional neuroimaging studies.

1.1.1.1 Conclusion

This section of the thesis investigated the research associated with suitable cog-
nitive traits and pedagogical strategies associated with online learning. In partic-
ular, the section was investigating the evolution of working memory throughout
the last fifty years in order to establish the underlying principles of the opera-
tions of working memory and the associated capacity. Chapter three investigates
these strategies for working memory to construct a suitable personal profile that
contains cognitive traits, with associated cognitive metrics. The following section

investigates the research associated with adaptive content strategies.

1.1.2 Content Adaptation using technology

Alty [16] stresses the importance of a user centered approach to multimedia in-
terface design.The importance of various perspectives on multimedia interfaces is

discussed and Alty posits that a multimedia interface should be viewed as a multi-
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sensory, multichannel, multitasking and multiuser approach to systems design and
the emphasis should be on what such an approach offers to the user rather than
what it technically comprises of. Additionally, the role of media within a learn-
ing environment is discussed. The role of media is seen to be complementary to
education and cognitive development, however this importance is discussed in the
recognition of the type of media to be used in the particular instance of instruction
to properly convey the idea or concepts being put forward and also through the

power of media combination.

Peter Brusilovsky et~al [17] describes an approach for developing an adaptive
electronic textbook and presents their implementation of Interbook. The authors
identified the main problem associated with web-based courseware being that the
content is typically developed to suit the typical pedagogy in most universities.
The authors distinguish three different levels or steps of increasing complexity
when developing their adaptive courseware. The design framework of Interbook is
based on the architecture of ELM-ART and is fully discussed in the paper. The
Interbook adaptive courseware approach was implemented and evaluated in several
systems. It was found that the adaptive guidance provides significant assistance
for novices, while adaptive navigation support provides significant assistance for

the more experienced users.

The authors describe the environmental contexts of a learning environment [18].
These contexts include: the nature of the subject discipline and the level of its
learning, the role of the human teacher and the suitability of an Intelligent Tu-
toring System (ITS) for the construction of a particular type of knowledge. Tt is
suggested that in any joint cognitive learning space points of divergence are likely

to arise due to the different teaching styles of educational designers and imple-
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menters thus inferring that different teachers could constrain the learning process
in different ways, including defining the appropriate grain size for the particular
individual being taught to maintain a cognitive load balance. The authors be-
lieve that the problem of designing learning resources should be addressed in the

context of the nature of subject discipline instead of the overall educational theory.

The Adaptive Hypermedia Architecture (AHA) [19], as discussed by De Bra and
Calvi consists of a user model defined by the learners knowledge about domain
relevant concepts. This user model is created by the learner reading some content
and then taking short quizzes. Every page that is displayed to the leaner contains
two pieces of information: firstly, what user model elements must exist to allow a
link to that page, and secondly, what the desired outcome would be after complet-
ing the page. This task of creating a one-size-fits all approach to learning based
on experience gained through learning achieved after completing a learning unit
is very inefficient and complex. The success of the AHA system is dependent on
the ability of an author of instructional material to categorise and identify suitable

passages through an instructional space.

Peter Brusilovsky and John Anderson [20] present an electronic ACT-R bookshelf,
a system which supports learning ACT-R, a well-known theory in the field of cog-
nitive psychology over the web. This paper uncovers concept-based knowledge
representation behind adaptive electronic textbooks on the bookshelf, describes
the main functionality of the system, provides some evaluation data, and specu-

lates about possible extensions of bookshelf systems.

Ashok PATEL et~al [21] discuss the potential, and pitfalls of various forms of

assessment in a Cognitive Apprenticeship Based Learning Environment (CABLE).
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The authors suggest the use of formative assessment to bridge the gap between
the ‘Gulf of Execution” and the ‘Gulf of Evaluation” with respect to the learning
of a new concept. A correlation is drawn between the outcome of traditional ped-
agogical strategies and summative assessment. It is suggested that badly designed
summative systems can encourage wide spread adoption of shallow learning. Due
to the rapid growth of technology the authors express the need for a ‘just-in-time’
ethos to learning. It is also suggested that a stronger emphasis is placed on for-

mative assessment rather than on summative assessment.

Peter Brusilovsky [22] describes a concept-based course maintenance system that
was developed for Carnegie Technology Education. The system is used to check
the consistency and quality of a course through its life cycle. The problem that is
being addressed in this paper is that all the tools available for content development
are typically oriented implicitly for single author development. The author also
discusses the potential advantages and pitfalls when indexing educational content

with respect to some examples of some real world tools.

Ashok Patel et~al [8] discuss a possible categorization of learning resources to
match the different phases of skill acquisition. This paper also discusses an imple-
mentation of a cognitive apprenticeship-based learning environment by the Byzan-
tium project and an independent feedback on its use in the real world. The tests
that were carried out were in the numeric domain. The authors give a compar-
ison between the learning ethos of a typical student in a classroom environment
against the learning ethos of a life-long-learner. In constructing a sound peda-
gogical framework for their project they adapt Kurt VanLehn framework [23] for
reviewing cognitive skill acquisition. The framework is broken up into three dif-

ferent phases: early, intermediate and late phase. Throughout the early phase the
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emphasis is on the learners becoming familiar with the domain concepts. During
the intermediate phase the learner turns their attention to solving problems in-
tegrated with formative assessment. In the last phase the learner improves with
practice and the assessment changes from formative to summative. In an indepen-
dent study carried out at the University of Glasgow 71% of the students showed a

preference for the Byzantium project.

Kinshuk et~al [24] describe the Multiple Representation Approach (MRA) for
presenting multimedia technology within intelligent educational systems. A strat-
egy for implementing MRA on systems using the Cognitive Apprenticeship (CA)
framework for task oriented disciplines where the main focus is on cognitive skill
acquisition is discussed. The authors give an account of the CA framework and list
examples of multimedia objects suitable for different tasks under the CA frame-
work. It is discussed how MRA can be utilized to enhance a learning experience
for learners with different domain competence levels, with respect to multimedia
object selection and navigational object selection. The authors discuss general
guidelines and recommendations on combining multiple multimedia objects to en-
hance the learning experience. The application of the approach in the design of

the InterSim system is also described.

Ashok Patel et~al [25] discuss the key aspects of Collin, Brown and Newmans
Cognitive Apprenticeship Model and Pasks Conversation Theory [26] with respect
to their implementation of an intelligent learning system. The paper focuses on
the cognitive skills acquired through interactive learning and suggests that the
different phases of skill acquisition are due to semantically semi-synchronous con-
versations. It is suggested that if a course is delivered by fine grained modules, no

complex inferencing regarding the learners knowledge is required as a simple yes
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or no answer is adequate to apply adaptation strategies to the learners needs. The
system that was developed recognizes all valid paths to a solution, thus supporting
learners with different learning styles and adhering to the Pasks Conversation The-
ory. The advantages the World Wide Web offers in terms of Conversation Theory

are also discussed.

Ashok Patel et~al [25] discuss the key aspects of Collin, Brown and Newmans
Cognitive Apprenticeship Model [27] and Pasks Conversation Theory [26] with re-
spect to their implementation of an intelligent learning system. The paper focuses
on the cognitive skills acquired through interactive learning and suggests that the
different phases of skill acquisition are due to semantically semi-synchronous con-
versations. It is suggested that if a course is delivered by fine grained modules, no
complex inferencing regarding the learners knowledge is required as a simple yes
or no answer is adequate to apply adaptation strategies to the learners needs. The
system that was developed recognizes all valid paths to a solution, thus supporting
learners with different learning styles and adhering to the Pasks Conversation The-
ory. The advantages the World Wide Web offers in terms of Conversation Theory

are also discussed.

He, S. et~al [28] discuss the limitations of PBL learning environments. The au-
thors address the problem of the learners becoming overwhelmed by the granularity
of the problem and losing focus on the overall learning task by introducing adap-
tive technology into the PBL learning environments. A prototypical system was
built based on the original architecture of the web-based intelligent educational
systems incorporating a problem-based learning module. The system successfully

introduced the student adaptivity into the PBL environment.
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Peter Brusilovsky [7] provides a clear view on the process of Adaptive Hyper-
media System (AHS) starting from the early design stage. The author illustrates
the possible advantages AHS have over traditional Hypermedia Systems. The ba-
sic architecture of an AHS is composed of: a student model, knowledge space and
hyperspace. The different implementations of the various components are con-
trasted to suit the needs of different systems. The author also reviews a number

of modern AHS that are orientated to educational practitioners.

Lin et~al [29] introduce the Cognitive Trait Model (CTM) that supplements
performance-based student models by allowing relevant information, such as cog-
nitive metrics about a particular student, to be transported to different domains.
To illustrate the procedure of the trait analyser, a definition of working memory
capacity is discussed. The effect the characteristics of working memory has on the
learning process is also discussed. A number of manifestations of working memory

capacity are identified from a broad range of researchers.

Kinshuk et~al [30] discuss the process of modeling Inductive Reasoning Ability
in a Virtual Learning Environment. The characteristics of Inductive Reasoning
Ability are studied in relation to domain knowledge, generalization, working mem-
ory capacity, analogy, and hypothesis generation. The importance of supporting
Inductive Reasoning is discussed with reference to a number of researches that ad-
dress this problem. A limited list of manifestations of Inductive Reasoning Ability
is produced. The list is prohibited despite the vast amount of research carried out
on Inductive Reasoning Ability by the diverse viewpoints of inductive reasoning
as well as the requirement of translatability of each manifestation into machine

observable patterns.
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Hong and Kinshuk [31] presents a mechanism to identify a learners learning style
using the Felder Silver learning style theory. The learning style theory catego-
rizes an individuals preferred learning into five dimensions: sensing / intuitive,
visual / verbal, inductive / deductive, active / reflective and sequential / global.
Due to pedagogical reasons the inductive / deductive dimension has been deleted.
The developed system provides a questionnaire to enable learners to identify their
learning style based on this theory. There are three possible degrees available for
the four dimensions: mild, moderate and strong. The system assigns a default
preference for mild and treats moderate and strong preferences as the same. This

significantly reduces the combination of learning styles available.

Lin et~al [32] categorizes adaptive techniques into two categories: adaptive naviga-
tion and content presentation. This paper investigates how and when the adaptive
techniques can be used to support a learners working memory capacity. Addi-
tionally, an overview of popular techniques employed in modern adaptive learning
systems is provided and the possible future trend of adaptive techniques is dis-

cussed.

Gabriela and Kenji [33] propose that there exists two type of adaptation in web-
based tutorials: static and dynamic. They propose static adaptations to personal-
isation factors such as: learning styles, intelligence types, knowledge background,
special interests, learning goals and beliefs. The authors propose, using the VARK

inventory learning styles [1], to design the presentation of knowledge.
Owen Conlan et~al [34] discussed a method used for the personalisation of news

feeds using traditional adaptive hypermedia strategies and building semantic links

between available news items. They investigated the advantages of using a strict

14



Literature Review Introduction and Research Question

ontology, where semantic matching is very high, against a loosely defined ontology.
Their results showed that there did not exist a significant difference between the
two cases, especially not to warrant the use of a strict ontology which is signifi-

cantly more process intensive.

1.1.2.1 Conslusion

This section investigated adaptive learning systems and strategies. There exists a
trend across most of the reviewed adaptive systems focusing on creating a number
of threads through a learning space and then mapping these threads to a given
student. This process of an author of educational instruction being in control of
identifying and mapping instructional paths through a learning space is not very
efficient as the cognitive ability and pedagogical preference of that author will
influence the process. Chapters two and three investigate these adaptive strategies
in more detail in order to design a suitable protocol for adapting content to suit the
cognitive ability and pedagogical preference of a learner within an online learning

environment.

1.1.3 Summary

This section summarised some of the important research papers, both in the area
of adaptive hypermedia systems and techniques and within the classification of
working memory capacity. These two research areas are critical to the foundation
of the research carried out throughout this thesis. The following section details
the contribution made by this research project in the area of adaptive learning

technologies.
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1.2 Thesis Contributions

The contributions of this thesis are split into two distinctive sections: A) Inves-
tigating a number of cognitive traits and environmental contexts of a learning
environment that can be adapted to in an online learning environment, and B) the
design and implementation of an evolutionary algorithm to automatically gener-
ate instructional content suited to the cognitive ability and pedagogical preference
of a learner. Section A, is comprised of Chapters one through four, is concerned
with the classification of suitable cognitive traits and pedagogical strategies in-
dependent of domain that can be mapped to cognitive metrics that encapsulate
instructional content.. Section A also describes the design and implementation of
a Content Analyser (CA) that automatically generates metadata. The CA takes
as input an archive package and decouples the package to produce multiple SCOs.
Additionally, for each SCO produced a metadata file is generated detailing infor-

mation relating to the cognitive metrics found within the instructional content.

In the second of these sections, Section B, the design and implementation of an
evolutionary algorithm to automatically generate instructional content suited to
the cognitive traits and pedagogic preference of a learner to a minimum expected
learning experience is discussed. Section B is comprised of Chapters five through
seven. An investigation is carried out on the GA to determine the suitability of
the algorithm as the solution space (no. of possible suitable learning objects) in-
creases. Additionally, an analysis is performed firstly on the correlation between
the personal profile (cognitive ability and pedagogic preference) of an instructional
author and the metadata produced by the CA describing the cognitive metrics
found within content generated by the instructional author. Secondly, a compa-
rable analysis is performed on two cohorts of learners participating in a study to

determine the appropriateness of using online learning content against the tradi-
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tional rhetorical method of lecturing in a classroom environment.

1.3 Publications

Part of the work in this thesis has been published and presented in the publications

listed in this section.

Journal publications

K. Maycock, and J. G. Keating. “A Framework for Higher Education”, WSEAS
Transactions on Advances in Engineering Education, Issue 8, Volume 5,pp. 539-
548, August, 2008.

K. Maycock, and J. G. Keating. “Selection model to approximate a learner’s
performance prior to conducting learning experiences”, International Journal of
Learning, Issue 5, Volume 13,pp. 75-84, Jan, 2007.

K. Maycock, and J. G. Keating. “The Importance of Structure within an Adaptive

Profile”, WSEAS Transactions on Advances in Engineering Education, Issue 1,

Volume 3,pp. 815, Jan, 2006.

Conference papers

K. Maycock, and J. G. Keating. “On-Demand Mathemagenic content for learn-
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ers”,Proc. 5th WSEAS / IASME International Conference on Engineering Edu-
cation, Crete, July, 2008.

K. Maycock, and J. G. Keating. “Prototype of a learning component to maximise
learning experiences”, Proc. CALO7: Development, Distribute € Debate, Dublin,
March., 2007.

K. Maycock, and J. G. Keating. “On-demand mathemagenic content”, Poster
submission for CASCON, Dublin, December, 2006.

K. Maycock, Sujana Jyothi, and J. G. Keating. “Dynamic profiling to enhance
learning and reduce the cognitive load on each learner”, Proc. WEBIST, Interna-

tional conference on Web information Systems and Technologies, Portugal, April,

2006.

K. Maycock, and J. G. Keating. “Bridging the gap between Adaptive Hypermedia
Systems and the Sharable Content Object Reference Model”, Proc. 4th WSEAS
Int. Conf. on E-ACTIVITIES (E-Learning, E-Communities, E-Commerce, E-
Management, E-Marketing, E-Governance, Tele-Working) (E-ACTIVITIES "05),
Miami, November, 2005.

K. Maycock, and J. G. Keating. “Building Intelligent Learning Management Sys-
tems to mimic the Teacher Student relationship 7, IEEFE Learning Technology, Vol
7, Issue 1, Washington D.C., January, 2005.
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1.4 Outline of the thesis

In Chapter two traditional adaptive educational systems and strategies are in-
vestigated. In particular, these strategies are examined in terms of the process
involved within the adaptive framework. The chapter investigates the lack of
adoption of such systems into real world implementations. The Sharable Con-
tent Object Reference Model (SCORM) is discussed in detail. In particular the
concept of granularity and learning object is investigated. Then follows a number

of chapters that describe a new domain independent method of content adaptation.

Chapter three discusses the environmental contexts of an online learning envi-
ronment and investigates different modes of learning that are stimulated in an
online learning environment. In the same chapter, an investigation is carried out
to identify suitable manifestations of cognitive traits that can be stimulated in an
online learning environment to identify suitable cognitive metrics found within in-
structional content. This chapter also proposes a suitable personal profile that can
be used to automatically evolve instructional content to suit the cognitive ability

and pedagogical preference of a learner in an online learning environment.

Chapter four discusses the perceived inconsistencies found within learning object
repositories and referencing standards. The chapter introduces a Content Analyser
(CA) that is designed to automatically analyse instructional content and gener-
ate metadata to describe cognitive metrics within the content associated with the
personal profile described in chapter three. In particular, Chapter four details a
protocol for generating instructional content to enable the automatic generation of
metadata. The CA automatically migrates the content being analysed to SCORM

compliant learning objects packaged as independent Sharable Content Objects.
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Chapter five describes in detail a Selection Model that is used to automatically gen-
erate content to suit the cognitive ability and pedagogical preference of a learner.
In the same chapter, a comprehensive analysis of multiple evolutionary algorithms
is explored to determine the most appropriate strategy for evolving instructional
content. The complexity of the problem is investigated including a strategy for
finding metrics for an evolutionary algorithm when dealing with an incomplete
solution space. The Chapter also investigates the success of the evolutionary al-
gorithm being able to evolve instructional content to a pre-determined minimum
expected learning experience. Additionally, the Chapter is involved with describ-
ing a protocol for an author using the learning component and their ability to
control the evolution process by establishing the minimum expected learning ex-
perience and the priority associated with the identified traits from the learners

personal profile as discussed in Chapter three.

In Chapter six, an investigation is carried out to determine a suitable Learning
Management System (LMS) / Content Management System (CMS) to incorporate
the learning component into. This chapter also discusses the tests used to calculate
a learners / authors personal profile (cognitive ability and pedagogic preference as

discussed in chapter three) in detail.

Chapter seven is involved with the evaluation of the necessity and performance
of the learning component. In particular, an analysis is carried out to determine
the consistency of an author when generating instructional content. Additionally
an investigation is carried out to determine the performance of the learning com-
ponent against a traditional lecturing environment. The environmental contexts
of the learning environment are discussed to ensure that no external influences

disrupt the learning experience.
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Finally, in Chapter eight the contributions this thesis have made to the field of
adaptive learning systems are summarised. In addition, this chapter uses the
learning component as a framework and suggests future possible projects that

take advantage of this framework.

1.5 Concusion

This Chapter introduced the thesis research question;

Is it possible to construct an automated learning component that generates in-
structional content suited to the cognitive ability and pedagogical preference of a

learner?.

The chapter discussed the main research papers in the fields of adaptive learn-
ing systems / adaptive techniques and working memory capacity. Further to the
initial research question, the output of the desired component should not be de-
signed by a single author; thus removing the typical problems associated with
traditional adaptive hypermedia systems. The chapter also discussed at a high
level the contributions of this research project to the area of adaptive learning
systems. The following Chapter investigates adaptive educational systems and

strategies in more detail.
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Chapter 2

Theory and Background

Currently there are roughly seventy million people in higher education worldwide.
This number is expected to more than double before the year 2025 to over 160
million people [35]. One possible solution to cater for the expected influx of people
entering into higher education is to automate the process of learning. In an ideal
situation as discussed Gilbert and Han [36] there would exist an infinite number
of teachers each having their own unique pedagogical strategies so that a learner
could choose a teacher that suited their own learning style. This is unrealistic
practically, and will certainly increase the demand for automated personal learn-
ing efficiency. However, this is not an elementary task. If we look at the results of a
number of studies carried out on the performance of individually tutored students
against the performance of an average student in a typical classroom environment,
we find that, the speed with which different students progress through instruc-
tional material varies by a factor of 3 to 7 [37]. An average student in a typical
classroom environment asks on average 0.1 questions every hour in contrast to
an individually tutored student asking on average 120 questions every hour [38].
Furthermore the achievement of individually tutored students will exceed that of

classroom students by as much as two standard deviations [39] - an equivalent
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which is equal to raising the performance of 50 percentile students to that of 98
percentile students. These results show the vast range of differences between the
learning capabilities of each learner and demonstrate that the delivery mode of the
educational experience is a critical factor in producing a positive learning experi-

ence.

Learning Management Systems (LMS) like Moodle [40], Sakai [41], Blackboard
[42], and Desire2Learn [43] act as a framework for educational providers to or-
ganize and deliver their instructional content in a standard way. They also offer
some blended learning facilities to promote a constructivist approach to learn-
ing, for example using discussion forums. No content adaptation is taken into
consideration, consequently these platforms only act to transfer the educational
sector into an online environment including an easy to use interface to enable the
management of educational material. Without an element of suitable adaptation
embedded into these systems, these technologies could disadvantage learners as
their learning would be constrained by the cognitive ability and pedagogical pref-
erence of the author of the instructional content and embedded into an organised
structure environment, that also requires learners to comprehend. Other learn-
ing technologies such as Adaptive Hypermedia Systems (AHS)[7] and Intelligent
Tutoring Tools (ITT) [44] [45] [46] [47] are focused on developing the learning po-
tential of a learner. In particular, AHS are designed to adapt to the needs of the
learner with respect to their domain experience, while recent I'TT helps to develop
cognitive skills of a learner [44]. Traditional work carried out on intelligent tu-
toring in the 70s and 80s was restricted by the computational power of the time.
Buggy [45] and West [46] were involved with the identification of shortcomings in
the learning experience to infer strategies for increasing the learning experience,

including the introduction of stimulus to ignite the experience. Scholar [47] was
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involved with a highly connected network of facts, concepts and procedures to aid
in computer assisted instruction. Currently processing power is not an issue and
it is possible to implement strategies as seen in Buggy [45] West [46] and Scholar
[47] as an on-demand strategy. Although these learning technologies have their
strengths and weaknesses, they are constrained by the pedagogical preference of
the author of the learning technology and are all subject to the specific system for

which they are developed.

This thesis focuses on the foundation of the Advanced Distributed Learning (ADL)
initiative and their production of a standardized reference model to reference in-
structional material as learning objects. The ADLs goal to produce the highest
quality of instructional material tailored to the individual needs of each user any-
time anywhere [48] is evaluated. To bridge our perceived gap between traditional
adaptive learning technologies and SCORM, an explicit consideration is taken to
explore the different environmental contexts of a learning experience[49]. These
include the type of learning objects, the level the knowledge is being taught at and
the various methods of delivering the content to the users. In addition to evaluat-
ing adaptation techniques and the environmental contexts of a learning experience,
this thesis investigates the reusability of instructional content within educational
repositories, such as Multimedia Educational Resource for Learning and Online
Teaching (MERLOT) [50], Jorum [51] and the National Digital Learning Repos-
itory (NDLR) [52]. The thesis is mainly concerned with the introduction of a
Content Analyser (CA) that enables an easy transformation to a single referenc-
ing standard that automatically generates metadata concerned with stimulating
suitable cognitive resources within an online learning environment and a Selection
model that gives SCORM conforming Learning Management Systems / Content

Management Systems the capability of automatically generating instructional con-
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tent to a minimum expected learning experience.

The following sections investigate the strategies and adaptation techniques used in
Adaptive Hypermedia Systems (AHS) and the impact these systems have on the
real world. The function of AHS is questioned in terms of wide spread use and the
ability of the system to be used outside the scope of a simple project. An analysis
is carried out the on the Sharable Content Object Reference Model (SCORM) to

determine if that model would be suitable for referencing instructional content.

2.1 Adaptive Hypermedia Systems

Adaptive Hypermedia systems have been in development since the early 1990s
[7]. Despite the vast amount of research conducted in this area, there has been
a lack of adoption into real world systems. Reasons for this include: high cost
of production, lack of credible evidence to support the cost or benefit, and lim-
ited subject matter as discussed by Murray [53]. They extend the one-size fits all
[54] approach of hypermedia systems by using personalisation strategies to adapt
content to suit a given learner. Typically AHS [17][20](7][24][19][34][55] [56] oper-
ate on a closed world model, whereby, all the hypermedia is annotated prior to a
learning experience and the adapted strategy is already defined by the author of
the adaptive system. Eklund [57] distinguished two categories of features within
a hypermedia system suitable for adaptation: content adaptation and navigation
adaptation. Adaptive navigation techniques such as direct guidance, adaptive hid-
ing or re-ordering of links, link annotation, map adaptation [58], link disabling and
link removal [59] can be used to control both the size and level of the instructional
space available to each learner. Adaptive content presentation operates at the

domain level. The information can be adapted to various types of media and
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difficulty to meet the needs of each user. Adaptive systems typically alter the
navigation model or the presentation model for the content. They build a model
of the users preferences, goals and knowledge and use this model throughout the

interaction with the user.

In constructing any AHS there are three main components: the knowledge space,
the hyperspace and the student model. The knowledge space represents a collec-
tion of knowledge elements which represent individual concepts. Typically the first
step in building an adaptive hypermedia systems model is to annotate the instruc-
tional space according to some adaptation strategy. The simplest construction of
the knowledge space is an unconnected scatter of knowledge elements. The most
common type of link is a pre-requisite link giving the author of an AHS the ability
to make sure that a concept is known before the student moves onto the next
concept. Semantic links have also been applied to different AHS. The hyperspace
represents the actual content, which is available to be presented to the user. Using
some form of mapping, a mapping is created between the knowledge space and the
hyperspace. The student model represents the preferences, goals and knowledge of
each user. A mapping is also created between the student model and the domain

knowledge elements in the knowledge space.

AHS are very useful in any application area where users of the hypermedia sys-
tem have essentially different goals and knowledge and where the hyperspace is
reasonably large. AHS overcome this problem by using information stored in the
user model to adapt the information and links being presented to the given user.
Although AHS and similar learning technologies have their strengths and weak-
nesses, they are constrained by the pedagogical preference and cognitive ability

of the author of the adaptive learning technology. Additionally, traditional AHS
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citePBAdaptiveCourseware[20][7][24] are constrained within the application that
they were developed for, while more recent AHS [19] are build upon Java taking
advantage of platform independence and can be reused on any machine with the
same environment. The main problem associated with AHS and the lack of wide
spread adoption into the real world is that the systems are usually designed and
created by an author of instructional material and thus the AHS is constrained to
the cognitive ability and the pedagogical preference of that author. Chapter seven
shows the inconsistencies found with instructional authors in terms of the cogni-
tive metrics that are typically found within instructional content, when a number

of authors were required to generate a number of learning objects.

2.1.1 Summary

In summary, AHS despite their great interest and research in the area, have not
seen wide spread adoption into the real world. This lack of adoption is due to the
unproven benefits of AHS, poor or inconsistent implementations and the systems
being constrained to the cognitive ability and pedagogical preference of the au-
thor of the adaptive system. However, with the introduction of specifications like
SCORM, enhanced adaptive content presentation is possible given the fine gran-
ularity of learning objects. The following section discusses the Sharable Content
Object Reference Model (SCORM) in detail and particularly how this reference

model can be utilised to create content suited to content adaptation.

2.2 Sharable Content Object Reference Model

The Advanced Distributed Learning (ADL) initiative was established in November
1997. The ADL team were established to bring an element of consistency to the

online learning arena, their mission statement is as follows:
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“our mission is to bring the highest quality of instructional material, tailored to

the needs of each individual anytime anywhere”[48]

The ADL produced the Sharable Content Object Reference Model (SCORM) as
the backbone for producing reusable-learning objects. Each learning object is fully
described and delivered within a content package as seen in Fig 2.1. The content
package consists of a manifest. The Manifest, consists of: Metadata, Organiza-
tions, Resources and Sub Manifests. The metadata section is used to describe in
full the version of SCORM and type of content being delivered. The Organisations
section details the sequencing information of the various learning objects that are
encapsulated within the content package. The Resources section is fully described
using XML metadata elements to describe the content that is being delivered.
Sub manifests can also be used to create structured courses with different layers

of depth. Physical Files can also be stored locally within the manifest.

SCORM is built on the proven work of prominent organisations such as: Avi-
ation Industry CBT (Computer-Based Training) Committee (AICC)[60], Innova-
tion Adoption Learning (IMS)[61], IEEE Learning Technology Standards Commit-
tee (IEEE LTSC)[62] and ARIADNE|[63]. The ADL captured the best components
of all the previous standards and used this as a framework for producing SCORM,

as seen in Figure 2.2. The goals of the ADL team were to:

e [dentify and recommend standards for training software and associated ser-

vices purchased by Federal agencies and contractors.

e Fucilitate and accelerate the development of key technical training standards

in industry and in standards-development organizations.
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Figure 2.1: Components of a SCORM content package
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Figure 2.2: Organisations and Standards that SCORM built their model on.



Sharable Content Object Reference Model Theory and Background

e Fstablish guidelines on the use of standards and provide a mechanism to
assist DoD and other Federal agencies in the large-scale development, imple-

mentation, and assessment of interoperable and reusable learning systems.

The SCORM reference model bridges the gap of technological obsolescence with
various LMSs / CMSs / VLEs. SCORM provides an API (Application Program-
ming Interface) to allow content authors to create instructional content to monitor
the flow of a learning experience. Most widely used learning environments (Moo-
dle, Blackboard ...etc) conform to the SCORM reference model as a SCORM
component with additional support for other referencing standards. A learning
environment interacts with the SCORM throughout a learning experience. The
learning environment contains software that automates training event adminis-
tration through a set of services that; launches learning content, keeps track of

learners progress and sequences learning content.

Assets and Sharable Content Objects (SCOs) exist within the SCORM. An as-
set can represent anything from a text file to an image or a sound file. A SCO can
be represented as one or more assets that must contain at least one particular asset
that utilizes the SCORM RTE (Runt Time Environment), hence a SCO represents
the lowest level of granularity that can be tracked by a Learning Management Sys-
tem (LMS). By aggregating assets and SCOs together, courses and lessons can be

generated as seen in Figure 2.3.

Figure 2.4 illustrates a graphical representation of the reusability of assets and
SCOs aggregated from raw data elements into complete courses. It can be seen
that the reusability of the learning content decreases with an increase of context in
the learning content. Recommendations from the ADL team on levels of granular-

ity of instructional object are suited to producing content without any context as
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Figure 2.3: Aggregation of SCOs and Assets forming courses

Raw Data Infarmation Learning Lesson Course
(Media Elemsnts) Objects Objective (Aggreqation) {Collection]

Figure 2.4: Reusability of Assets and SCOs
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this would inherently increase the usability of the instructional content. However,
the granularity of the instructional content should demonstrate a single concept
and contain some context describing the concept. Various strategies associated
with the granularity of learning content and the possibility of adaption exists. In
particular, Laurillard [13] argues that the structure of the learning content embod-
ies the meaning of the content, in contrast to the ADLs best practice of designing
content with no context to increase the reusability of the content. However, in an
online learning environment to produce an adaptive system avoiding the traditional
frameworks of AHS (whereby an author of instructional content would generate a
number of paths through some instructional space), the structure of the content
needs to be modified. This process can be achieved by appropriately generating
instructional content at a granular level to embody some context with associated
metadata. If all the content was structured in such a way, simple adaptation could
be performed by strategically swapping SCOs or elements within SCOs depend-
ing on a learner interacting with the learning environment and the availability of

suitable instructional content.

The SCORM is defined within three books: The Content Aggregation Model
(CAM), SCORM Run Time Environment (SCORM RTE) and the Sequencing
and Navigation (SCORM SN).

e The CAM defines the learning content using specified metadata elements to

ensure:

— that the components are packaged in a suitable organisation for trans-

port from system to system.

— that adequate metadata is used to enhance the possibility of search and

discovery in order to maximize the reuse of granular learning objects.
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— to ensure that suitable sequencing and navigation strategies are de-

scribed to enhance the learning experience.

e The SCORM RTE ensures maximum portability of SCORM compliant learn-
ing content. The RTE contains support to allow an author to create func-
tionality to monitor the progress of the learner throughout an instructional

experience on multiple platforms.

e The Sequencing and Navigation (SN) defines the various methods of deliv-
ering courses to clients. Within the SN, SCORM defines four control modes

for delivering of instructional content:

— User choice
x The learner is able to choose any learning object within the infor-
mation space.
x This type of learning would suit a holistic learner enabling the
learner to freely navigate through the learning space.
— Flow navigation
* The Learning Management System (LMS) determines the next ac-
tivity to deliver with respect to the learners navigation request.
x This type of learning environment would suit an atomistic learner
constrained by their interactions with the learning environment.
— Choice exit
* When disabled, the learner cannot choose another activity while
the current activity is still in progress.

x This type of learning environment could be implemented in con-
junction with user choice or flow navigation to make sure that all

activities are completed.
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x It could also be useful when a content developer is delivering for-

mative assessment for a particular activity.
— Flow navigation

x Restricts a learner from revisiting a previously visited learning ob-

ject (user choice must be disabled).

2.2.1 Summary

The SCORM standard has been developed using the best practices of previous or-
ganisations such as Aviation Industry CBT (Computer-Based Training) Commit-
tee (AICC)[60], Innovation Adoption Learning (IMS)[61], IEEE Learning Technol-
ogy Standards Committee (IEEE LTSC)[62] and ARIADNE[63] and is controlled
and defined by data model elements which are monitored by the SCORM RTE.
The granularity of the learning objects is critical to the reuse of the instructional
content. The characteristics of the SCORM model as defined above make it an
ideal candidate for wide spread adoption of an automated learning component
that utilises the model as its referencing standard. Many current LMSs contain a
SCORM RTE , for example [40], [41], [42], for running SCORM content. Devel-
oping the automated learning component around the SCORM would enable easy
migration of adapted content into any LMS that contains a SCORM RTE, thus

adhering to the second goal of this research project.

2.3 Conclusion

This chapter investigated the potential of AHS and explored the lack of wide
spread adoption in real world systems. Furthermore the chapter discussed in detail
the SCORM referencing model used for referencing instructional material. In

conclusion, AHS have been researched for many years but are still evolved around
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a static model based loosely on the interpretation of an author of instructional
material and are typically constrained to the cognitive ability and pedagogical
preference of the author of the system. AHS require huge resources in their creation
from identifying suitable adaptation strategies and annotation styles to mapping
these to suitably defined student models associated with the domain in which the
AHS is involved with. AHS in their current format will remain a research topic
with little chance of wide spread adoption due to the constraints already discussed.
The chapter also discussed the Sharable Object Content Reference model that is
used to reference instructional material and the possibility of using this model to
build an automated learning component that is capable of generating adaptive
content across multiple platforms. The following chapter investigates the creation
of a personal profile that could be used to automatically generate instructional
content. In particular the chapter is concerned with the identification of suitable
cognitive traits and pedagogic preferences that have an associated cognitive metric
within instructional content that can be automatically identified. This strategy
will remove the reliance on metadata inconsistencies found within learning object
repositories such as: MERLOT, Jorum and NDLR, and overcome the black-box

problem associated with metadata creation.
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Chapter 3

Optimal Personal Profile

One of the problems with most adaptive educational systems is that authors of ed-
ucational material are likely to have different ideas on the best teaching practices,
which can hinder the development of a learners learning experience. Additionally
instructional authors have their own cognitive ability and pedagogical preference
which would impede the learning experience of some learners. This thesis is in-
volved with the construction of a learning component that is capable of generating
instructional content suited to the cognitive ability and pedagogical preference
of a learner, to be able to produce mathemagenic content for any learner using
the learning component independent of domain. This chapter is focused on the
creation of a personal profile that could be used to automatically generate instruc-
tional content. In particular the chapter is concerned with the identification of
suitable cognitive traits and pedagogic preferences that have an associated cogni-
tive metric within instructional content that can be automatically identified. Once
suitable traits are identified these can be used as a framework for automatically
generating metadata associated with the personal profile of a learner, thus avoid-

ing the black-box method for metadata creation as discussed in Chapter 2.
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Initially the chapter is concerned with understanding the environmental contexts
of a learning environment and creating a mapping of these contexts to a suit-
able adaptive strategy. Additionally, this chapter investigates current adaptive
strategies used for increasing the potential learning experience and reducing the
possibility of interference occurring within the learning environment. Finally the
chapter introduces a Personal Profile that is used as the underlying framework for

the learning component.

3.1 Environmental contexts of a learning envi-
ronment

Most student models are focused on the specific domains with which they interact
with, for example, the domain concepts competence and domain skills required.
Such student models are referred to as performance based student models and
include the student competence state models [64] and process state models [65].
To create a truly adaptive learning environment across multiple domains suitable
cognitive traits and pedagogic preferences of a learner should be catered for and
mapped to the environmental contexts of a learning environment. These contexts
include the nature of the subject discipline and the level of its learning; the char-
acteristics of the learning material and the role of the human teacher [18]. Support
should also be available for dealing with a learners learning profile. The profile
should consist of the entire learners educational history, cognitive ability and ped-

agogical preference.

The teacher plays various roles in an educational system including providing learn-
ing objects, selecting and scheduling other learning technologies, managing the

curriculum and overseeing the learners progress through instructional material. A
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serialist teacher may feel more enthusiastic about a tightly constrained educational
system designed on the building blocks metaphor, while a holist teacher may be
motivated by a loosely constrained educational system that allows zooming in and
out of fine grained details. Similarly a pragmatist teacher may prefer a focus
on practical applications while a theorist teacher may prefer logical analysis [18].
Developing an educational system around the SCORM would easily be able to
overcome the problem of the teacher being in full control of the learning experi-
ence in terms of learning object delivery. SCORM SN as detailed in Chapter two,
describes multiple modes of suitable delivery options to suit various categories of
learners (for example, a holistic learner would have a User Choice sequencing en-

abled).

A learning style is defined as the unique collection of individual skills and prefer-
ences that affect how a student perceives and process learning material [66]. The
learning style of a student will affect the potential of the outcome of the learning
experience. Research has been carried out for decades on defining and classifying
learning styles. Many of these theories are in practice today, for example, the
Theory into Practice Database [67] provides 50 major theories of learning and in-
struction, such as Kolbs learning style theory [68], Gardeners Multiple Intelligence
theory [69], Felder-Silverman Learning style theory [70], Litzinger and Osif Theory
of learning styles [71], Myers-Briggs Type indicator [72]. There are many existing
systems that are able to adapt to students learning styles, for example [73][36][74] ,
however these systems are constrained to the domain in which they were developed

for.
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3.1.1 Summary

In summary, creating an automated learning component that automatically gen-
erates instructional content suited to the cognitive ability and pedagogical prefer-
ence of a learner, the environmental contexts of the learning environment should
be taken into consideration. Identifying suitable cognitive traits enables the pro-
duction of a general learning component with the desired adaptive functionality
that is independent of domain knowledge. Unlike traditional adaptive hypermedia
systems [17][20][7][24][19][34][55][56] once the traits of the learner have been iden-

tified the model can be used across multiple domains.

The following section discusses suitable adaptation strategies that are indepen-
dent of domain. In particular, two well known strategies for reducing the cognitive
load on a learner: Multiple Representation Approach (MRA) [24] and Exploration
Space Control (ESC) [75].

3.2 Adaptation independent of domain

To create a truly adaptive learning environment across multiple domains the cog-
nitive ability and the pedagogical preference of a learner should be taken into
consideration (see Maycock et al. [76]). Successful adaptation requires some cor-
relation between the environmental contexts of a learning environment and the
personal profile of a learner. These environmental contexts include the type and
delivery protocol of the learning content. Brusilovsky [17] distinguished two cat-
egories of features within a hypermedia system suitable for adaptation: content
adaptation and navigation adaptation. Adaptive navigation techniques such as di-
rect guidance, adaptive hiding or re-ordering of links, link annotation, map adap-

tation [58], link disabling and link removal [59] can be used to control both the
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size and level of the instructional space available to each learner. Adaptive con-
tent presentation operates at the domain level. The information can be adapted
to various types of media and difficulty to meet the needs of each user. However,
with the introduction of specifications like SCORM, enhanced adaptive content
presentation is possible given the fine granularity of learning objects. In addition
to theses strategies two main techniques are used; Multiple Representation Ap-
proach (MRA) [24] and Exploratory Space Control (ESC) [75] can be used to fine
tune learning experiences. The following section details the advantages of both
techniques and discusses how these techniques are incorporated into our proposed

learning environment architecture.

3.2.1 Multiple Representation Approach

MRA is used to change the presentation of domain knowledge concepts, in terms of
the complexity and granularity, to suit the learners cognitive ability and progress
through a learning experience. It enhances the educational systems design to suit
the learners perspective. There are various types of multimedia objects, each stim-
ulating different cognitive responses. Audio stimulates imagination, video clips
stimulate action information, text conveys details and diagrams convey ideas [16].
Generating MRA compliant learning objects in a learning environment can reduce
the cognitive load by using similar multimedia objects to convey domain concepts.
If any media objects are omitted during the MRA process they must be available
to a user on specific request, reducing the possibility of losing any relevant in-
formation. There are three different types of filtering used in MRA: restriction,
extension and approximation. Restriction is used when a learning object contains
an excessive number of media objects, thereby causing cognitive overload. A sub-
set of these media objects may be selected to produce an MRA compliant learning

object conveying the current domain concept. If several different MRA compliant
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learning objects are available then the combination of media objects offering the
best learning experience suited to that learners cognitive ability may be selected.
When the number of media objects is insufficient to produce an MRA compli-
ant learning object, extension may be used. An LMS will search learning object
repositories to find suitable learning objects that will enhance that learning object
and make it MRA compliant. If a learning object was poorly designed, and the
complete learning object cannot be made MRA compliant, the largest multimedia
rich subset is selected. The process of extension is then carried out on the reduced

learning object.

MRA is a great concept; delivering different learning objects to individuals based
on the learners personal profile. However, it is argued by Laurillard [13] that the
structure of the learning content embodies the meaning of the learning content. It
should not be possible for an adaptive learning environment to change the struc-
ture of learning content thereby potentially changing the meaning of the content
and subsequently changing the potential learning experience. However, if enough
learning objects exist and are created suited to the granularity level described in
Chapter two then multiple modifications can occur without impacting the on the

learning experience.

3.2.2 Exploration Space Control

ESC limits the learning space to reduce the cognitive load of each learner and to
make sure that learners do not get lost in hyperspace [75]. In our proposed sys-
tem, ESC is used in the exploration of further reading once a learning experience
has concluded. The exploration elements catered for are the learning content and
navigational paths. When dealing with the learning content, the ability of the

student to interpret the content exactly as the content developer expected, is a
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very complex task and depends on the learners cognitive ability. There have been
many studies carried out on how learners perceive instructional material, in partic-
ular, Phenomenography (Laurillard, 2002) (Marton and Booth, 1997) (Ramsden,
1988) (Ramsden, 1998). This is successful at illuminating how students deal with
structure and meaning. These studies have led to the identification of two con-
trasting approaches to studying content, i.e. an atomistic approach and a holistic
approach. Learners utilizing a holistic approach interpreting some content retain
the concepts that are trying to be conveyed but may suffer some cognitive over-
load. Learners utilizing an atomistic approach lose the structure of the content

being delivered, hence, may have a different interpretation to the actual meaning.

3.2.3 Critique of adaptive strategies

Kinshuk et al. [75] believe that the reduction of sensory resources describing an
instructional object depends on the ability of a learner. In 1956 however, Miller [3]
reviewed the current research to determine the Working Memory Capacity (WMC)
of an individual and found that an individual could store between 5 and 9 items
in their WMC for one-dimensional content. It was also discovered that when the
number of dimensions describing the content increases, the amount of items that
can be stored in the WMC of an individual increases exponentially. An adaptive
learning environment should not reduce the number of dimensions, potentially the
WMC of a learner, throughout a learning experience. The Virtual Learning Envi-
ronment (VLE) could enhance the learning experience by ensuring that multiple
modes of learning are simultaneously stimulated throughout a learning experience.
Table 3.1, adapted from [75], shows how resources in a learning environment can
be adapted to suit the cognitive ability of a learner and in particular shows the

relationships between WMC and Information Processing Speed (IPS).
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Resources / Cognitive Traits | WMC | IPS

H/L|H/L
Paths + - 4 -
Path Relevance -+ -+
Amount of Info. + - 4+ -

Table 3.1: Relationship between Working Memory Capacity and Information Pro-

cessing Speed

In Table 3.1 the “4” symbol indicates an increase in the number of resources

“_»

to adapt to the cognitive ability, and the symbol indicates a decrease in
the number of resources to adapt to the cognitive ability. If a learner has been
categorised to have high WMC then for the purposes of adapting to the number
of paths, relevance of paths and the amount of information, the learner would be
classified to having high IPS. Similarly, if a learner has been categorised as having
low WMC then for the purposes of adapting to the number of paths, relevance
of paths and the amount of information, the learner would be classified as having
low IPS. Content developers are responsible for producing small granular learning
objects that adequately describe a domain concept. Each learning object that

is created should take into consideration the different types of media and their

optimal effect on a learning experience.

3.2.4 Summary

This section discussed some of the contradictions found within the adaptive strat-
egy research. In particular, Kinshuk [75] proposing to modify the structure of the

content as an attempt to reduce the cognitive load of the learner is in stark contrast
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to Laurillards understanding that the structure of the content also embodies the
meaning [13]. The learning component that was developed within this research
project utilises the SCORM model and the granular structure of that model to
produce content. Unlike a closed model typically found within AHS the learning
component starts with no content and stitches a course together. Extending the

initial research question;

Is it possible to construct an automated learning component that generates in-
structional content suited to the cognitive ability and pedagogical preference of a

learner?
to include,
indepedent of domain and ensuring that no meaning is lost from adaptive strategies.

The following section investigates Working Memory Capacity, as an appropriate
cognitive trait that could be used within our personal profile. Both traditional
and modern research on the limitations and functionality of WMC is discussed. In
addition, trackable manifestation of WMC are discussed in order to identify au-
tomatic strategies that could be used to calculate the WMC of a learner utilising

the learning component without using pre-diagnostic testing methods.

3.3 Working Memory Capacity

Working Memory Capacity also known as Short-Term Store (STS) facilitates tem-
poral storage of recently perceived information, allows active retention of a limited

amount of information, (7 +/- 2 items), for a short period of time [3]. Since
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Millers early investigation of memory having a limited amount of space for imme-
diate storage and the possibility of greatly increasing this capacity by introducing
extra dimensions into the learning material there has been a vast amount of re-
search conducted. Especially through the introduction of neural imagery research,
which has been able to identify specific regions of the frontal cortex associated
with temporary memory. Coming from the vast amount of research, three main
models for working memory capacity have emerged: Baddelys model [4], Cowans

Model [77][5] and the theory of Ericsson and Kintsch [9].

3.3.1 Baddeley Model

Phonological Episodic -Spatial
Loop Buffer Sketchpad

Figure 3.1: Schematic of Baddeley’s Model

Alan Baddeley and Graham Hitch [4] introduced a multicomponent model for
working memory in 1974. This model is composed of two slave systems and a

central executive system to control the flow of communication between the slave
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systems and for coordinating cognitive processes when more than one task must
be completed at one time. The slave systems consist of a phonological loop and
a visuo-spatial sketch pad. The phonological loop stores phonological information
and prevents the decay of such information by constantly refreshing the informa-
tion. The visuo-spatial sketch pad is used to store visual and spatial information
and is used for the construction and manipulation of visual images. The sketch
pad can be broken down further into two subsystems: a visual subsystem, respon-
sible for shape, colour and texture and a spatial subsystem dealing with location.
Baddeley [12] furthered his model in 2000 by introducing an episodic buffer as an
additional component. This buffer represents a temporal storage of phonological,
visual, spatial and semantic information. The buffer is comprised of a limited ca-
pacity system that provides temporary storage of a multimodal code, that is the
binding of information from the initial subsystems and long-term memory. The
key characteristics of the new model focuses attention on the process of integration
of information rather than viewing the sub-systems in isolation. This new model
emphasis the importance of creating the link between the long-term memory and

the sub-systems. Figure 3.1 represents a schematic of Baddeleys model.

3.3.2 Nelson Cowan’s Model

Cowan [5] regards working memory as part of long-term memory and not another
component. Representations in working memory are a subset of the long-term
memory. Working memory consists of two distinct levels. The first level consists
of long-term memory representations that are activated. There is no limit to
activation of representations in long-term memory. The second level is described
as the focus of attention. The focus is regarded as capacity limited and can hold up
to four of the activated representations at any given instant. This view of working

memory is thus centered on the concept of monitoring the focus of attention and
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reducing the possibility of interference with the focus of attention throughout a

learning experience.

3.3.3 Ericsson and Kintsch

Ericsson and Kintsch believe that there exists two structures within memory: work-
ing memory and long-term memory. However, they argue that there must exist
some retrieval structures to allow for the expansion of working memory during
certain conditions. They classify this expansion as having the ability to utilise
Long-Term Working Memory (LTWM). For example, text comprehension requires
all the following to take place: perceptual features, linguistic features, proposi-
tional structure, macrostructure, situation model, control structure, goals, lexical
knowledge, frames, general knowledge and episodic memory for prior text [11].
Each of these components by itself would exceed the capacity of short-term work-
ing memory, but is clearly needed in text understanding. Kintsch et~al [9] consider
that every reader is able to form an episodic text structure during text compre-
hension, if the text is well written and the content is familiar. Forming an episodic
text structure allows the use of long-term working memory thus explaining how
a complex process like text comprehension can be performed on a daily basis.
Guida et~al [14] [9], using the theory of text comprehension have proposed the

personalisation method as a way to operationalise the LTWM.

3.3.4 Trackable Manifestations of WMC

The personal profile that is required for this research project must include the cog-
nitive ability and pedagogic preference of a learner that can be used both as the
driving framework for automatic metadata generation (i.e. profile that includes
cognitive traits that have associated cognitive metrics that can be identified within

instructional content) and appropriate manifestations to enable the automatic gen-
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eration of a learners profile by interacting with a learning environment. Working
Memory Capacity (WMC), as described above, contains the following manifesta-

tions:

e Constantly revisiting learned materials very shortly indicates signs of low

WMC [78].
e People with a greater tolerance to interference have higher WMC [79].

e Frequently missing steps or losing components during a long sequence calcu-

lation or procedure indicate signs of low WMC [80].
e Working Memory is known to vary with age [81].

e For learners with high WMC it is likely that they will follow the curriculum
sequentially, thereby reducing the number of trans-state violations [82] [83],

for example, moving to an unexpected state.

3.3.5 Personal Profile model

All three models of working memory have been subject to great acclaim however,
they are all trying to categorise the same cognitive process and have all completely
different interpretations of the same process. Cowans model is centered on the idea
that working memory is not disjunct from long term memory but is split into two
separate components. Cowans model is limited in capacity just like George Millers
from 1956. Ericsson and Kintsch believe that there exist two separate components
within memory: working memory and long-term memory. Their main distinctive-
ness is in the underlying process at which information is retrieved from long-term
memory, which describes certain conditions that enable an expansion of working

memory. Finally Baddeley describes a multicomponent model for working memory,
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consisting of two slave systems and a central executive for transporting informa-

tion between the slave systems.

The thesis is focused on investigating the possibility of constructing an automated
learning component that generates instructional content to suit the cognitive abil-
ity and pedagogical preference of a learner independent of domain. To evaluate
the learning component suitable metrics must be identified to create a personal
profile, however the learning component should be independent of the metrics se-
lected and extensible to any pedagogic strategy requirement. In order to establish
a suitable personal profile for testing the learning component, the environment in
which the learning takes place must be categorised and understood. The profile
should include the cognitive ability of the learner to ensure that adaptation can
occur across multiple domains. Cattel-Horn-Carroll definitions project is involved
with the classification of a taxonomy of human cognitive abilities, in terms of broad

and narrow categories [84]:

Auditory Processing

e Fluid Intelligence / Reasoning

e General (domain specific) knowledge
e Kinesthetic Abilities

e Long-term Storage and Retrieval

e Olfactory Abilities

e Psychomotor Abilities

e Psychomotor Speed
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Reading / Writing Abilities

Short-term Memory

Tactile Abilities

Visual-spatial Abilities

Taken the environmental contexts of the learning environment into consideration

as defined in this Chapter, these categories are reduced to the following categories:

e Auditory Processing

Fluid Intelligence / Reasoning

General (domain specific) knowledge

Long-term Storage and Retrieval

Reading / Writing Abilities

Short-term Memory
e Visual-spatial Abilities

Additional reductions can be applied to the list of categories: the personal profile
should be independent of domain, the effects of robotic voices on online learning
environments is unknown, however it can be assumed that there would not exists
enough robotic voices to suit each individual learner, consequently placing some
learners at a disadvantage using the learning component and Fluid reasoning was
also eliminated as it is associated with mental operations to solve problems and
would be deemed more suitable to specific domains or gaming applications. The

reduced set of categories is defined as the following:

e Long-term Storage and Retrieval
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e Reading / Writing Abilities
e Short-term Memory
e Visual-spatial Abilities

The personal profile needed to be categorised as metrics that could be identified
automatically in instructional content for the generation of suitable metadata.
The VARK element represents the visual-spatial category, as the learning envi-
ronment conducts learning experiences within an online learning environment the
VARK learning style is restricted to suit the visual constructs of the learning unit.
The Long-term Storage and Retrieval category / Long-term memory is removed
as the learning component will initially generate content that is independent of
educational history. This category would have great benefit when considering the
associative learning skill of the learner, however as there does not exists enough
learning experiences from each student the associative learning skill cannot be
used. The reading / writing ability category is defined by the readability level
and the information processing speed of a learner. These elements along with the
working memory of learner identify the constructs for determining a chunk when
interacting in an online learning environment. In particular the readability level of
instructional content is used as a minor indicator of the suitability of instructional

content for a given learner.

All three above models for working memory have components that can be gen-
eralised and reused in an online learning environment. Our proposed personal
profile consists of: working memory capacity, pedagogic preference of a learner,
information processing speed and the readability level of the learner. The proposed
personal profile is thus mainly categorised into two categories: working memory

and pedagogic preference. Unlike Ericsson and Kintsch theory on WMC, form-
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ing episodic text structures may increase the working memory capacity, however,
could impede on the potential learning experience as the underlying structure of
a module encapsulates the learning outcomes [13] and should not be decoupled
(but could be modified) to potentially increase the working memory. If the lan-
guage used in the learning material is of a comparable standard to the learners,
the instructional space limited to suit the working memory capacity and if the
delivery protocol is directly related to the pedagogic preference of the learner, it
should be possible to determine the expected minimum learning experience prior

to conducting the learning experience.

The metrics that describe the element of the personal profile are:
e Working Memory Capacity
e Readability Level
e Information Processing Speed

e VARK

3.3.6 Summary

In summary, this section investigated WMC, from Millers work in 1956 [3] up
until the work of Baddely[4], Cowan and Ericson and Kintsh [9]. All three recent
above models for working memory have components that can be generalised and
reused in an online learning environment. The proposed personal profile for the
learning component consists of: working memory capacity, pedagogic preference,
information processing speed and the readability level of the learner. The proposed
personal profile is thus mainly categorised into two categories: working memory

and pedagogic preference. If the language used in the learning material is of a
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comparable standard to the learners, the instructional space limited to suit the
WMC and if the delivery protocol is directly related to the pedagogic preference
of the learner, it should be possible to determine the expected minimum learning

experience prior to conducting the learning experience.

3.4 Conclusion

This chapter described a suitable personal profile that could be used by the learn-
ing component to automatically generate mathemagenic content for each learner.
In particular, the chapter was focused on identifying suitable adaptive strategies
independent of domain knowledge. The personal profile for the learning component
was described. The following Chapter details a protocol to bridge the perceived
gap between the inconsistencies found in repositories and instructional content
within the repositories. Chapter four also investigates the use of SCORM as a
referencing standard and discusses statistics that yield a lack of consistency when
referencing instructional material. This leads to the analysis and development of
a Content Analyser that automatically generates SCORM compliant instructional
content with additional metadata describing the cognitive metrics found within

the instructional content to avoid using a closed loop system like traditional AHS.
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Chapter 4

Content Analyser

There exist many instructional content repositories, for example, Multimedia Edu-
cational Resource for Learning and Online Teaching (MERLOT) [50], Jorum [51]
and the National Digital Learning Repository (NDLR) [52]. These repositories con-
tain various types of instructional content including text files, word documents,
PDF documents, presentations, complete SCORM packages, SCOs etc... Metadata
can be defined as data describing other data and is typically produced external
to the creation of instructional content in a black-box fashion. This method of
metadata generation is insufficient as no guarantee exists between the actual con-
tent and the metadata describing the content. Furthermore it was found by Norm
Freisen [2] that only 57% of content authors complete keywords within Learning
Object Metadata (LOM) files associated with SCORM content, consequently this
results in a large amount of learning objects with insufficient metadata, for search

and discovery.

In general, the goal of creating suitable metadata is to allow a process to iden-
tify your instructional content for reuse. Metadata associated with a learning

object should be designed in such a way, firstly, to be easily recognisable as the
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instructional content in terms of domain specific searches (domain relevance), and
secondly the metadata should reflect cognitive stimulus required for interacting
with the learning object in an optimal learning experience. Without metadata
reflecting the internal design of the instructional content it would be impossible
to develop a reliable automated process for content adaptation. Neither of these
conditions are common practice, thus resulting in inconsistencies within learning

object repositories and insufficient consistent metadata for search and discovery.

The Content Analyser (CA) is focused on bridging the perceived gap between
repositories, standards and inconsistency of learning objects. The CA was de-
signed to automatically generate metadata for some instructional content that
stimulates the cognitive traits and pedagogic preference of each learner (as dis-
cussed in Chapter three), thus addressing the second condition stated above. The
following section explores the protocol of the CA in detail. A complete example
illustrating a sample piece of instructional content is described and the metadata
that was produced is examined to reflect the cognitive metrics found within the

instructional content.

4.1 Inside the Content Analyser

The CA was designed to automatically generate metadata for some instructional
content that stimulates the cognitive traits and pedagogic preference of each learner.
The CA takes as input some instructional content (.txt files, .doc files, .html files or
zip files), decouples the content and generates Sharable Content Objects (SCOs)
with added metadata to describe the type of information, the amount of informa-
tion, the size of the instructional space, the readability level of the content and the

VARK representation of the instructional material. These metrics form the foun-
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dation of the evolutionary process described in Chapter five to evolve instructional

content to suit the needs of a learner.

tructional Content
Content

Single
File

o | 1
ﬁ'ﬁ —% g

Figure 4.1: Content Analyser

Figure 4.1 depicts a simple protocol for the Content Analyser (CA). Instructional
content is inputted into the content analyser, either as a single file submission or as
an archived package. If an archived package was inputted into the CA, the package
is decoupled and each file is treated as a single file entry. The CA automatically

generates metadata for each file describing the cognitive resources and type of in-
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formation required to stimulate the personal profile of a learner as described in
chapter three. Each file is repackaged as a Sharable Content Object (SCO). The
CA uses the Java Open Document (JOD)[85] JAR files to interact with OpenOf-
fice running as a background process listening on port 8100, to allow for easy file
transformation between multiple file formats. This is essential for calculating the

metadata associated with the learning objects.

The following subsection details the constraints involved when generating instruc-
tional content. These constraints are designed to reduce the computational com-
plexity time of automatically generating metadata for instructional content and

act as guidelines for content authors.

4.1.1 Developing compatible content for the CA

Instructional content is taken into the content analyser and SCOs are produced
with associated metadata to stimulate the cognitive ability and pedagogic prefer-
ence of a learner. The following list represents the constraints when developing

the instructional content:

e The final course that is outputted to the learner is constructed from a reposi-
tory of instructional content and not from external sources. When developing
a course the typical demographic of the learner should be taken into consid-
eration in terms of their educational competence. The author should not
presuppose any educational background that is not mentioned within the

specification.

e The input for the Content Analyser can be a single File submission or a .zip
submission. When submitting a zipped package the relevant path should not

be stored when creating the archive as seen in Figure 4.2.
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Add edd

Adding file: CA\Documents and Settingsikrm. \** Add

Add to archive:

> |
and Settings\kmaycock\Deskiop\ UL zip ﬁ

INew... Open... ‘ Help ‘
Actian:
|Add {and replace) files ﬂ
Compression:
|Marmal |

Attributes

[ Include only if archive attribute is set
[ Reset archive aftribute

[v Include system and hidden files Password...

Figure 4.2: Excluding the relative path information

e A separate file should be generated for each learning object described in the

specification.

e [t is recommended to use external links when constructing the content. Ex-
ternal links should act to either explain a concept in greater detail or to
further strengthen a concept. There can be a maximum of three links per
learning object. Each link must start with “link_” followed by the link name,

example, link_Mylink.

e The main learning objects should be written as html documents. External
link can be either, .txt, .doc or .html documents. It is recommended that
all graphics be PNGs but it is not essential. When including an image in
your learning objects you should use the following syntax; “WIDTH=" and
“HEIGTH=".
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e Images should be supported by textual information relating to the image.
The textual information explicitly relating to an image should be referenced
as follows within the main learning object, <p ID="‘“imageName” >textual

information </p>.

e When creating visual constructs such as <b>boldface </b>you should
leave a gap between the last element of the visual constructs and the ter-
mination symbol, as the regular expression for a word is one or more alpha

characters followed by a white space or a line termination symbol.

e When creating the instructional content time should not be spent creating
complex background designs as the instructional content will be stripped of
formatting constructs and reconstructed to suit the pedagogic preference and

cognitive ability of the learner.

4.1.2 Summary

In summary, this section introduced the Content Analyser (CA) that was used
to bridge the percieved gap between learning object repositories and the inconsis-
tencies found within metadata standards. The CA uses the JOD libraries [85] to
allow for multiple file formats to be included within the instructional content. The
CA uses the SCORM file format as the default output after analyzing files. In
addition, this section discussed the protocol for generating instructional content
compatible with the CA and listed some constraints imposed on authors of instruc-
tional content. The following section details the metrics found within instructional
content suited to the personal profile discussed in Chapter three. Additionally the
following section discusses an automatic process for generating metadata from in-
structional content and details the advantages this process has over a traditional

black-box method for metadata creation.
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4.2 Stimulating Cognitive Resources

Metadata for describing instructional content is typically created external to the
instructional content in a black-box fashion. This method of metadata generation
is insufficient for automated content generation as no guarantee exists between the
actual content and the metadata describing the content. The CA automatically
produces metadata to describe the cognitive metrics found within instructional
content suited to the personal profile described in Chapter three. In addition to
identifying these metrics the CA identifies the author of the instructional content
and keeps track of this information. Metadata 1 gives an example of a metadata
file that was generated by the Content Analyser (CA) and in particular shows the

author contact information.

Metadata 1 Contact information produced by the Content Analyser

—<SCOMetadata>
—<GeneralInfo>
<Author>Keith_Maycock</Author>
<Contact>kmaycock@ncirl.ie</Contact>
</GeneralInfo>
+<CognitiveResources></CognitiveResources>

</SCOMetadata>

The personal profile that was identified to be appropriate for an online learning
environment consists of Working Memory Capacity (WMC), Readability, Informa-
tion Processing Speed (Information Processing Speed) and the Pedagogic prefer-
ence, as discussed in detail in Chapter three. Metadata 2 gives an example of the

measurements describing the cognitive metrics found within instructional content.
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The IPS indicator is used as an estimation of the working memory of an individual.
The cognitive metrics found within instructional content that stimulate a learn-
ers personal profile are: the amount of content, the readability of the instructional
material and the VARK representation of the content. These metrics are described

below:

Metadata 2 Illustrating the cognitive metrics found by the Content Analyser

—<SCOMetadata>
+<GenerallInfo></GeneralInfo>
—-<CognitiveResources>
<AvailableScreen>92.5</AvailableScreen>
<VisualTolkens>13</VisualTolkens>
+<images></images>
—<Readability>
<FleschReadingEase>39.83</FleschReadingEase>
<FleschKincaidGrade>12</FleschKincaidGrade>
</Readability>
<amount>127</amount>
<VARK>16.97</VARK>
+<links></links>
</CognitiveResources>

</SCOMetadata>

e amount: the amount is an indicator of the volume of words found within the

instructional content.

— This metric is used to calculate an approximation towards the WMC
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of a learner. Multiple file formats are catered for using the Java Open
Document (JOD) libraries to interface with Open Office. A regular
expression is defined to describe a suitable word and then a simple

calculation is performed.

— The working memory of an individual has been extensively researched as
described earlier. Three models of working memory that have emerged
from this area are: Baddelys model, Cowans Model and the theory of
Ericsson and Kintsch. Unfortunately all three models have their dif-
ferences and different interpretations of a capacity associated with the
WMC of a learner. The concept of a chunk of information is discussed
without referring to a specific definition of a chunk, especially in a gen-
eral term. Within online learning the problem is further increased as the
exercise is not to remember several digits but is related to text compre-
hension, which requires all of the following to take place: perceptual fea-
tures, linguistic features, propositional structure, macrostructure, situ-
ation model, control structure, goals, lexical knowledge, frames, general
knowledge and episodic memory for prior text [9]. All of these compo-
nents taken separately would exceed any limitation of working memory,
however Kintsch et~al [11] believes that every reader is able to form
episodic text structures during text comprehension. Furthermore, if a
single sentence is considered, constructed using suitable visual stimu-
lus (suited to a learners pedagogic preference) and containing a level of
readability approximating the learners readability level this establishes
the foundation of understanding a chunk within an online learning en-
vironment. Additionally if the granularity of the learning content is
described as previously stated at the concept level, this will further en-

hance the working memory of the learner as a single concept should
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contain information relating to the concept and not contain too many
external interruptions diverging from the overall meaning of the instruc-

tional content.

e FleschReadingFase: is used as an indicator of the readability level of the
learner. All readability formulas are limited, especially when applied to
specific learners and settings. The readability level is used as a metric for
the adaption process to enhance the WMC metric. It should be noted that
the readability just like the other identified metrics could be removed from

the adaptive process and other traits be included.

— The metric is calculated as follows:
206.835 — ((avgSyllables * 84.5) + (avgWords % 1.015))

where,

x avgSyllables: is the average number of syllables contained in each
word. A syllable is defined by the International Phonetic Alphabet
as one of the following: ea, 1, €, a, 0, aw, a, oo, u, ir, a’s, es, ee,
ar, er, ay, o, y, ough, oy, oor, air, our, ear, ere.

x avgWords: is the average number of words contained in each sen-

tence.

e VARK: This method takes as input an absolute file name and returns a
double value indicating the percentage of the screen that is composed of

visual elements.

— These visual elements are identifiers for the visual resources as described

by Neil Flemming describing the VARK learning preference [1].
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x The following elements are used for identifying visual identifiers:
((b 77; “i??; (4tt77} “S/u,b 777 ((sup 777 ((bigU’ ({Small”; 4(],2/7,,777 “St/l"O/}’l,g”} ((em”.
« The image / objects are defined by: “IMG or img”, “AREA or

area”, “map or MAP”, “object or OBJECT?”, “param or PARAM”.

— The value of the VARK representation is calculated as follows:

totalVisual

VARK = (M> * availableScreen
words
where,
xel
avaliableScreen = 100 — ((&) * (100))
screensize
and,

totalVisual = the total number of visual constructs as defined above
words = total number of words found within the instructional content
as defined above

pizel = total screen covered by the image or object constructs as defined

above

The following subsections detail the metadata associated with two components

within instructional material: images and external links. In particular, the follow-

ing subsections are concerned with the potential interruption that can occur due

to changing the structure of the instructional material as discussed by Laurillard

[13].

4.2.1 The importance of structure

Laurillard discussed the problems associated with decoupling instructional mate-

rial and modifying the possible meaning of instructional content [13], as discussed
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in Chapter three. However when the granularity of the learning material is at a
conceptual level and there exists enough learning resources, it should be possible to
insert or remove images (with associated textual information) without destroying
the overall meaning of the instructional content.

Ensuring that no meaning is lost in the addition or removal of an image, all as-
sociated references and text associated with the image must also but added or
removed. The metadata in Metadata 3 allows an automated process to automat-
ically insert or remove images and provides all the metadata required to update
the cognitive metrics found within the instructional content. It can be clearly seen
in Metadata 3 that an image has an associated name, dimensions, word count
and visual tokens. These metrics are used to calculate the impact that the image
will have on the evaluation of instructional content against the personal profile
of a given learner. Chapter five details the process for evaluation of instructional

content in more detail.

4.2.2 Controlling the instructional space

Metadata 4 shows metadata describing instructional content which contains two
links. The first link contains zero images but contains information relating to all
the cognitive metrics as described in Chapter three. In chapter four section 1.1, the
process for using external links to support the explanation of a concept in greater
detail or to further strengthen a concept was discussed. Unlike images external
links can simply be treated as another concept file without any embedding issues.
It can be clearly seen that a link contains all the required information associated
with the cognitive metrics found within the instructional material and can also
contain additional links. Chapter five details strategies for estimating the poten-
tial effect that the size of the instructional space can have on a learner interacting

with the learning component.
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Metadata 3 Metadata produced by the CA associated with an image

—-<SCOMetadata>
+<GenerallInfo></GeneralInfo>
—-<CognitiveResources>

<AvailableScreen>92.5</AvailableScreen>
<VisualTolkens>13</VisualTolkens>
—-<images>
<NoOfImages>1</NoOfImages>
—<image>
<imgtitle>usecase</imgtitle>
<imgDimensions>200:300</imgDimensions>
—<imgText>
<imgWords>76</imgWords>
<imgVT>13</imgVT>
</imgText>
</image>
</images>
+<Readability></Readability>
<amount>127</amount>
<VARK>16.97</VARK>
+<links></links>
</CognitiveResources>

</SCOMetadata>
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External links create a complex and expansive instructional space, however, if all
the instructional content on the internet was filtered through the Content Analyser
(CA) there would exist a huge pool of resources within the learning object

repositories. The problem now changes from generating instructional metadata
suited to the cognitive ability and pedagogic preference to creating efficient algo-
rithms to reconstruct the learning objects in a suitable fashion to ensure no loss

of meaning from the instructional space.

4.2.3 Summary

This section identified suitable metrics associated with the personal profile, de-
scribed in Chapter three, found within instructional content. The section was also
focused on components within instructional content that could be used to modify
instructional content without effecting the meaning of the desired instructional
content. In addition this section discussed the complexity issues introduced if the
CA was used to migrate huge volumes of data consequently changing the problem
of creating suitable metadata that reflects the cognitive ability and pedagogical

preference of a learner to an evolutionary problem.

4.3 Conclusion

In conclusion, the Content Analyser was designed and constructed to bridge the
perceived gap between the inconsistencies found with instructional content within
content repositories and the lack of consistency found with metadata creation.
Consequently, this creates an environment whereby traditional Adaptive Hyperme-
dia Systems (AHS) cannot be used in the real world as their closed loop approach

is too restrictive, however if a closed loop approach was not used AHS would still
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Metadata 4 Metadata produced by the CA associated with a Link

—-<SCOMetadata>
+<GenerallInfo></GeneralInfo>
—-<CognitiveResources>
<AvailableScreen>92.5</AvailableScreen>
<VisualTolkens>13</VisualTolkens>
+<images></images>
+<Readability></Readability>
<amount>127</amount>
<VARK>16.97</VARK>
—-<links>
<NoOfLinks>2</NoOfLinks>
—-<link>
—<LinkCognitiveResources>
<Linkname>1link_name</Linkname>
<LinkAvailableScreen>100.0</LinkAvailableScreen>
<LinkVisualTolkens>0</LinkVisualTolkens>
—-<LinkImages>
<NoOfImages>0</NoOfImages>
</LinkImages>
—<LinkReadability>
<LinkFleschReadingEase>0.0</LinkFleschReadingEase>
<LinkFleschKincaidGrade>12.0</LinkFleschKincaidGrade>

</LinkReadability>

68



Conclusion Content Analyser

Metadata 4 Metadata produced by the CA associated with a Link

<Linkamount>121.0</Linkamount>
<LinkVARK>0.0</LinkVARK>
<LinkNoOfLinks>0</LinkNoOfLinks>
</LinkCognitive Resources>
</link>
+<1link></1link>
</1links>
</CognitiveResources>

</SCOMetadata>

not be ready for wide spread adoption as the information available is inconsistent
(multiple referencing standards) with insufficient metadata. In chapter three, a
unique personal profile was described that included the cognitive traits and ped-
agogical preference of a learner, which had associated cognitive metrics within
instructional content designed for an online learning environment. Chapter four
detailed the process of reading in multiple file formats and reducing the content
to a simple format using the JOD library and creating suitable metadata for the
content. Once the metadata is created the content is repackaged as SCORM com-
pliant content. Additionally the chapter discussed complexity issues associated
with the content analyser harvesting too much information. The problem now
changes from generating instructional metadata suited to the cognitive ability and
pedagogic preference to creating efficient algorithms to reconstruct the learning
objects in real time. The following chapter investigates various evolutionary algo-
rithms, in order to traverse a potentially unsearchable space to construct a course
adapted to the individual needs of each learner. Additionally, an analysis is per-

formed on the metrics of such an algorithm to ensure that the algorithm is an
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optimal solution.
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Chapter 5

Selection Model

The Content Analyser, discussed in detail in Chapter four, enabled the automatic
generation of metadata to suit the cognitive resources found within instructional
content. This analyser bridged the perceived gap between the inconsistency of
content found within instructional repositories and also the inconsistency with
metadata generation for SCORM content. This analyser is a critical component

to the research question of the thesis;

Is it possible to construct an automated learning component that generates instruc-

tional content suited to the cognitive ability and pedagogical preference of a learner?

Using the CA repositories of learning objects can be generated with the appropri-
ate metadata associated with suitable cognitive resources as discussed in Chapter
three. This Chapter is involved with a Selection model that is used to harvest
the instructional material within generated repositories. The Selection model is
the nucleus of the learning component, it identifies and reengineers instructional
content, using a genetic algorithm to produces mathemagenic content suited to the

individual needs of each learner. This chapter firstly investigates the use of evo-
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lutionary algorithms as an appropriate method of evolving instructional content.
Secondly, a high level protocol is discussed for interacting with the learning com-
ponent. Additionally, the various metrics governing the genetic operators of the
GA are investigated to ensure an optimal evolutionary strategy. Identifying suit-
able metrics (rate of Mutation, Selection operator, type of CrossOver method) for
the genetic operators is a complex process especially when there exists an incom-
plete solution space. This strategy is achieved by creating a suitable comparable
problem that has a complete instructional space. The genetic operators are then
examined using this pseudo problem. Finally, the chapter concludes with a discus-
sion investigating the performance of the algorithm to find suitable instructional

content.

5.1 Suitable searching strategies

The core function of the Selection model is to search an instructional repository
and take chunks of instructional material suited to the individual needs of a learner,
until the final course that is delivered scores a fitness value above the Minimum
Expected Learning Experience (MELE), that is set by an author of the specifica-
tion. To achieve this functionality the following conditions have been identified as

necessary components for a searching strategy:

e An author controlled adaptive threshold metric to allow the author set the
exit requirement for suitable courses. This allows multiple authors the free-
dom to choose the appropriate exit requirement, for example, MELE is above

seventy percent.

e An author controlled adaptive metric to favor instructional content based on
the cognitive resources within the content. With the expected growth in e-

learning this metric will allow authors using different pedagogic strategies the
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freedom to control the evolutionary strategy based on strengths of individual

cognitive traits.

e The functionality should allow for fast identification of suitable objects, the
dissemination of the instructional content and recombination of various com-

ponents while keeping track of the authors of the instructional content.

e One of the biggest problems when an automated process is mining through
very large instructional spaces is the possibility of the process arriving at a
local minimum (crowding problem). The functionality should consider this

when constructing the evolutionary algorithm.

e The content that is produced does not need to be a perfect match to an ideal
specification (a specification that has been modified to include the metadata

associated with the learners personal profile).

The classification of suitable algorithms for solving such problems are known as
evolutionary algorithms. Evolutionary algorithms, unlike traditional methods like
linear programming scale extremely well. Additionally the evolution process is not
a linear evolution, during the initial phase (early epochs) the evolutionary strategy
excels exponentially and over time the evolution rate degrades. Generating course
content is suited to this model as the MELE should never be set at 100%, as a
learner interacting with the learning component should be given the opportunity
to exceed the expectations of the learning component. By definition the MELE
estimates the minimum threshold for a learning experience not the maximum.
The following subsections briefly explore some evolutionary algorithms and their

applications to identify a suitable candidate for evolving instructional content.
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5.1.1 Ant colony optimisation

Ant Colony optimisation technique is based on the natural habits of a colony of
ants searching for food. Initially the ants would move randomly searching for food.
Once a successful search was returned to the colony the ant would leave a trace
of pheromones showing the path from the colony to the food. Over time success-
ful paths become probabilistically favored for subsequent travel. These types of
algorithms have been used to solve various combinatorial optimisation problems,
including the Traveling Salesman Problem [86]. Ant colony optimisation algo-
rithms would be suitable for the initial identification of suitable learning objects,
however they would not be suitable for the dissemination and reengineering of the

content while keeping track of the individual authors of the instructional content.

5.1.2 Cultural algorithm

Cultural Algorithms are an extension of genetic algorithms which include extra in-
formation regarding the Belief Space [87]. The knowledge held by the population
about the Belief Space is classified into several categories: Normative knowledge,
domain specific knowledge, situational knowledge, temporal knowledge and spatial
knowledge. After each epoch of the evolution strategy the Belief Space is updated.
Cultural algorithms have been successfully applied to solve the Royal Road prob-
lem [88] as suggested by Holland [89].

The Content Analyser (discussed in Chapter four) details the construction of an
automated component to migrate content into a suitable format for the Selection
model. This allows for an easy translation for instructional content thus result-
ing in an immeasurable amount of learning objects. Using Cultural algorithms

as a suitable approach would be an ideal solution, as additional information re-
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garding the domain knowledge could easily tracked. However, the experiments
implemented are in a controlled environment and do not require any additional
information relating to the domain knowledge thus negating the requirement for
Cultural Algorithms as the extra overhead associated with interfacing between the

population and the belief space would be considered insufficient.

5.1.3 Extremal optimisation

Extremal Optimisation (EO) algorithms were initially designed as local search
algorithms for combinational problem spaces, but include mutation strategies to
shift the search optimising strategy to focus on another segment of the instructional
space [90]. Self Organised Criticality (SOC) is an optimisation heuristic based on
a single attractive critical point throughout the evolutionary process. The strategy
is based on the evolution of a single solution unlike genetic algorithms were there
exists a population of solutions. The main drawback of using EO or SOC as an
effective algorithm for generating instructional content would be the that EO does
not support the dissemination and reengineering of instructional content during

each epoch of the evolutionary process.

5.1.4 Reactive Search Optimisation

Reactive Search Optimisation (RSO) is the common name for a family of local
search algorithms. RSO algorithms, unlike most typical evolutionary algorithms
do not require the initial stage of fine tuning metrics associated with the search
strategy, for example, using a genetic algorithm a researcher would initially need
to run experiments to estimate the appropriate rate of mutation, the appropriate
selection operator and crossover strategy suitable for each problem [91]. RSO
achieves this unique fine tuning throughout the search by constantly reflecting

on past experiences when navigating through the solution space. RSO was not
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deemed suitable for evolving instructional content as the overhead associated with
fine tuning throughout the evolution process would be considered inefficient as the
learning component needs to be an on-demand application that can be executed

any number of times.

5.1.5 Simulated annealing

Simulated Annealing (SA) is a generic probabilistic method used for locating a
good approximation to the global minimum of a solution space. The inspiration
for SA comes from the annealing in metallurgy, whereby a material is initially
heated and then proceeds to a controlled cooling to reduce the inconsistencies
found within the material. SA works by works by evolving towards to global
minimum. The probability of selecting a less fit neighbour is reduced as the initial
time (T) approaches zero. Initially SA allows this migration to a less fit solution
to avoid arriving at a local minimum. SA was deemed not to be suitable for
evolving instructional content as the time bound associated with the SA limits the
evolutionary process especially where the solution space is large. Once the time
degrades the search strategy becomes a greedy search. SA has been successfully

applied to many problems, example solving the Traveling Salesman Problem [92].

5.1.6 Genetic Algorithms

Genetic Algorithms are a search optimisation technique based on natural evolu-
tion. Initially a population of candidate solutions are randomly generated from the
solution space. These candidate solutions are then evaluated using some fitness
criteria and then genetic operators such as, Crossover, Mutation and Selection
occur on the population each epoch until some predefined threshold is met. This
process seems to be appropriate for evolving instructional content as the thresh-

old can be controlled by the authors and there is not any extra influence on the
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evolutionary process like time. However, there exists a few problems:

e The instructional space for learning objects is potentially vary large and
incomplete as there exists an unlimited amount of variables for the constructs

within the learning objects.
e Genetic Algorithms have a tendency to approach a local minimum [93].

Firstly, when estimating the metrics for the genetic operators it is essential to
have a complete instructional space. When there exists a complete instructional
space it is simple a repetitive process of trying different metrics for the genetic
operators and running the evolutionary process. With an incomplete instructional
space, a comparable problem (a similar problem in terms of the structure and
genetic operator constructs) was created that had a complete instructional space.
Once these metrics are found for the comparable problem the same metrics can be
used for evolving instructional content. Secondly to avoid the problem of crowding
(arriving at a local minimum) multiple demes (populations) are created across the

solution space and run in parallel communicating after each epoch.

5.1.7 Summary

This section investigated evolutionary algorithms to solve the problem introduced
by the Content Analyzer (CA) as discussed in Chapter four, if the CA was used
to migrate huge volumes of instructional content. Initially the requirements for
the evolutionary algorithm were identified and discussed as the foundation require-
ments of the evolutionary process. Genetic Algorithms were identified as a suitable
evolutionary strategy to tackle the problem of evolving instructional content to
suit the personal profile of a learner. Additionally, this section also discussed ad-
ditional problems associated with Genetic Algorithms, for example an incomplete

instructional space and avoiding the algorithm arriving at a local minimum. The
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following section discusses a suitable respreentation of the elements required for
representing a specification of a course being used by the Selection Model. Addi-
tionally a high level protocol is discussed that details the flow of communication
for a learner interacting with the learning component using the Selection model to

drive the creation of a suitable instructional course.

5.2 Selection model to automatically generate
content

Given a learner profile consisting of the cognitive ability and pedagogical preference
of the learner, it should be possible to construct a course to suit the cognitive abil-
ity and pedagogical preference of the learner. The selection model of the learning
component uses a genetic algorithm to automatically evolve instructional content
to suit a learners personal profile and is based on specifications. A specification
contains a list of concepts in an unconnected hierarchical structure. Each specifi-
cation contains a number of SCORM Learning Object Metadata (LOM) elements
describing the content (as seen in Table 5.1); however there is no instructional

information stored within the metadata files.

The metadata elements used to describe the specification are typical SCORM
metadata elements as defined by the SCORM Run Time Environment (SCORM
RTE). Additionally there exists metadata requirements associated with a specifica-
tion to control the evolution process for optimal content generation. The Minimum
Expected Learning Experience (MELE) is set by an author when constructing the
specification. The MELE is an approximation of the learners capacity for a suc-
cessful learning experience measured as a percentage. The MELE is used by the

GA as a threshold for the fitness function. On each epoch of the evolution process
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Full name

The full name of the specification is displayed at the top of

the screen and in the specification listings.

Short name

The specification short name is used as a reference to a

specification, specifically when sending emails.

ID number

The ID number of a specification is only used when
matching this specification against other similar specifications,
consequently the ID number forms part of a specifications

signature.

Summary

The summary for the specification is stored in the database

and retrieved only when a learner chooses a specification

MELET

MELET is measured as an approximation towards a learners’
expected minimum learning experience prior to conducting a
learning experience. MELET represents a percentage for the

expected outcome.

Cognitive Traits

Cognitive Traits is used to allow an author to set the
weights for different cognitive traits. This will ensure that each
course generated for each leaner will be more focused on a

particular cognitive trait.

Duration

this represents the duration of the course

Enrollment Key

this setting is set as an extra security feature for access to

a specification

Force Language

this setting is used for creating content in a specified language

Table 5.1: SCORM Metadata elements used to define a Specification.
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the current generation of content is evaluated and measured against the MELE. If
the content is not suitable (i.e. the fitness value of the most optimal course gen-
erated is less than the MELE), the evolutionary process continues. The genetic
algorithm uses the MELE as a threshold for the evolutionary process. The author
also sets the Cognitive Traits field, indicating which cognitive trait is of greater
importance. For example, if the author needs to generate instructional content
that is focused on the working memory of the learner then the author would select

the appropriate CT value.

Table 5.2 describes all the metadata associated with a concept defined within
a specification. All the elements are defined by the SCORM RTE with the ex-
ception of the Typical learning time. The element is estimated for each individual
throughout the evolutionary process to ensure that a suitable course is constructed
for a given time period. The following sub section describes briefly a high level
protocol for the learning component and an individual learner interacting with the

system.
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Title The title element describes the title of a concept.

Description The description element describes the target SCORM
Content Model Component.

Keyword The keyword element is used to add specific words or
phrases to ensure the reusability of the learning content.

Coverage The coverage element is used to describe time, culture,
geography or region to which the SCORM Content
Model Component applies..

Structure The structure element describes the underlying structure

of the SCORM Content Model Component.

Aggregation level

Defines the aggregation constraints on the material.

Size

The size element represents the size of the digital SCORM

Content Model Component in bytes.

Interactivity type

Represents the dominant mode of learning.

Learning resource type

Represents the specific kind of SCORM Content

Model Component.

Interactivity level

The interactivityLevel represents the degree of interactivity

characterizing the SCORM Content Model Component.

Semantic density

Represents the degree of conciseness of the SCORM
Content Model Component.

Context

Represents the principal environment within which

the learning should take place.

Typical learning time

Represents an approximation of the typical time it takes

to work through the SCORM Content Model Component.

Table 5.2: SCORM metadata elements used to describe Sharable Content Objects

(SCO) within a specification.
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5.2.1 High level protocol for learning component

Specification
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Figure 5.1: A Learner interacting with the Learning Component

Figure 5.1 shows a high level description of a learner interacting with the learning
component. A learner logs into the LMS. If the learners personal profile is not
known then the learner must complete four short online tests: VARK test, N-Back
test, readability test and an information processing test. Chapter 6 details the
design of the four tests. However, if the personal profile of the learner is known,
the learner can choose a previously defined course or select a specification. If the
learner selects a specification the LMS retrieves the learners personal profile and
updates the specification to create a unique specification suited to the cognitive
ability and pedagogical preference of the learner. This specification is also called
an ideal specification as discussed earlier. The LMS uses a genetic algorithm to
find optimal learning objects as defined by the LOM files contained within the
specification. Once suitable learning objects are defined the course is delivered to

the learner.
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5.2.2 Summary

This section defined a specification that could be used with the Selection model
and the corresponding SCORM data model elements that are included within the
specification. In addition a high-level description of the protocol for the Selection
model was discussed detailing the interaction of a learner with the learning com-
ponent. The following section discusses Genetic Algorithms and the associated

genetic operators in detail.

5.3 Genetic Algorithms

Genetic Algorithms (GA) [93] are search optimising algorithms based loosely on
natural evolution. Initially a sample population of hypothesis are generated from
the solution space. These hypotheses depend greatly on the problem being solved.
Members of the initial population give rise to the members of subsequent popula-
tions by performing genetic operations such as, Selection, Crossover and Mutation.
GAs have been successfully applied to a variety of learning tasks and optimisation
problems, for example Grefenstette [94] has successfully applied GAs that learn

sets of rules for robot control.

5.3.1 Genetic Algorithms explored

Genetic Algorithms address the problem of searching a solution space of hypothe-
ses candidates to identify a predefined best hypothesis. This best hypothesis is
found by calculating the fitness value for each individual in a population on each
epoch and is returned once a pre-determined fitness value is reached. The solu-
tion space available for the candidate population is a number of metadata files
describing the contents of instructional content. These metadata files consist of

information relating to the cognitive ability and pedagogic preference of the ideal
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specification of a learner. A typical genetic algorithm is described in Table 5.3.
The inputs for the algorithm are the fitness function, a threshold for the evolution-
ary process, the number of the individuals to be included in the population, the
rate of mutation and the proportion of the population to be involved in crossover.
It should be noted that the main loop within the above algorithm produces a new
population after each epoch. Producing the new population requires the use of

three different genetic operators: Selection, CorssOver and Mutation.

Selection occurs on the population with various strategies. Typically the pop-
ulation replicates selecting individuals for the new population according to some
probability function. The selection operator that is described in the Table 5.3 is
called roulette wheel selection, whereby an individual is selected depending on the
ratio of its fitness value towards the other individuals in the population. Vari-
ous methods of using fitness to select hypothesis from the population have been
proposed. For example, Tournament selection randomly selects two individuals
from the population a number of times (typically the number of individuals in the
population) and selects the individual for progression based on a random function
dependant on the fitness values for the two individuals. Tournament often yields
a more diverse population than roulette wheel [95]. In another method called
Rank and Truncation the population is simply ranked according to the fitness val-
ues of the individuals within the population. The next generation of individuals in

the population is simply the best half of the previously ranked population doubled.
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Genetic Algorithm(Fitness Function, Fitness Threshold, p, v, m)
Fitness Function: assigns a fitness value to an individual from the population.
Fitness Threshold: This specifies the termination criteria for the evolutionary process.
p: the number of hypothesis to be included in the population.
r: the fraction of the population to be replaced by CrossOuver after each generation.
m: the rate of mutation.
elnitialise the Population (P), creating p candidate hypothesis.
eUsing a Fitness Function evaluate each hypothesis (h) within P
eWhile MaxFitness(h) <Fitness Threshold
1: Using a Selection strategy select candidate hypothesis to proceed to the next
generation.
2: Select (r*p/2) pairs of hypothesis from the population.
For each pair of hypothesis (h1l, h2), produce two new hypothesis by applying
the CrossOver strategy. Add the new offspring to the new Population.
3: Perform Mutation on the Population. Mutation selects m candidate
hypothesis from the population with a uniform probability and implements
a mutation on each of the selected candidates
4: Perform an evaluation on the new population that has been created,
compute fitness (h).
eReturn the hypothesis from the population that yields the highest fitness.

Table 5.3: Typical Genetic Algorithm.
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Figure 5.2: CrossOver strategies used with genetic algorithms

CrossOver is implemented on a proportion of the population. CrossOver swaps
portions of individuals to form new individuals for the next epoch. Figure 5.2 shows
three different CrossOver strategies: Single-point crossover, T'wo-point crossover
and Uniform crossover. Single-point crossover selects at random a position along
the crossover mask and randomly selects two individuals from the population.
Once the individuals are selected the tails of the individuals are swapped to form
two new individuals. Two-point crossover selects two random positions along the
crossover mask and randomly selects two individuals from the population. Por-
tions of these two individuals are swapped according to the positions from the
crossover mask to form two new individuals. Uniform crossover selects a random
amount of crossover points along the crossover mask and selects at random two
individuals from the population. Two new individuals are formed by swapping

elements between the two individuals according to the crossover points along the
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crossover mask. Mutation occurs on a percentage of the population. The rate
of mutation varies depending on the problem being solved. Mutation randomly
selects a number of individuals from the population on each epoch. Once an in-
dividual is selected a portion of the individual is selected to mutate. The mutate
operator is dependant on the problem being solved. Mutation is very useful in the
evolutionary process to avoid the GA evolving to a local maximum and simply
takes in content from the solution space that was not in the original population.
The fitness function defines the criteria for ranking the potential hypotheses from
the population. If the problem was to control traffic flow then the fitness function
would be an estimation of the throughput of all the junctions for a given setup of

traffic lights.

5.3.2 Summary

This section describes the general functionality of a Genetic Algorithm (GA). In
particular, the genetic operators of a GA were described in detail. The following
section describes the problem for evolving instructional content. The inconsis-
tencies of the instructional space is discussed, and consequently the associated
problems involved with training the GA (identifying suitable metrics for the ge-
netic operators). The following section also describes a suitable comparable prob-
lem that is used as the framework for identifying suitable metrics for the GA,
for evolving instructional content. Additionally, the performance of the GA for

evolving instructional content is analysed and discussed.

5.4 Using a GA for course construction

Building a genetic algorithm that evolves course content suited to the cognitive

ability and pedagogical preference of a learner requires the identification of suitable
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metrics found within instructional content as discussed in Chapter four. Unfortu-
nately, the complete instructional space is infeasible to create as there is no upper
bound on the content that stimulates the learners personal profile. Without having
the complete instructional space finding suitable metrics becomes an issue. The
approach that was followed to identify suitable metrics was to describe a suitable
comparable problem with a complete instructional space and train the GA over
this problem. The following subsections detail the identification of suitable met-
rics associated with the comparable problem and subsequently detail the strategies

associated with the genetic operators for evolving instructional content.

5.4.1 Comparable problem with complete solution space

A genetic algorithm to determine the largest common sub graph between two
isomorphic graphs was developed as the framework for our genetic algorithm to
identify the correct domain knowledge elements suited to the cognitive ability and
pedagogic preference of a learner. Both problems are identical as all SCORM learn-
ing objects contain an activity tree consisting of the structure and navigational flow
of the learning content. The graphical representation of a learning object would
consist of Sharable Content Objects connected in a hierarchical structure, however
the cognitive resources within the SCOs would represent arcs joining the SCOs.
In designing the genetic algorithm to find the isomorphic relevance between two
graphs, experiments were conducted to determine the rate of mutation, the correct
selection operator and the effectiveness of gene repair to maximize the structure
matching technique. The following sub sections detail the experiments conducted

to estimate the relevant metrics associated with the genetic operators.
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5.4.1.1 Mutation rate

Twenty five experiments were conducted to estimate the correct mutation rate. All
experiments were carried out on isomorphic graphs with twenty lines. The graphs
were randomly generated using a domain range of zero to twenty, ensuring that
the graphs were highly connected. The initial population consisted of one hundred
individuals. Single point mutation was carried out on each of the randomly selected
individuals from the population. Rank and Truncation selection was implemented.
To ensure that all the lines are being matched up a genetic operator called gene
repair was implemented. For each set of isomorphic graphs ten different rates of
mutation were tested in steps of two, from zero to twenty. A mutation rate of eight

percent was found to be most optimal for the structure matching technique.

5.4.1.2 Effectiveness of Gene Repair

One hundred experiments were carried out on isomorphic graphs with twenty lines
to determine the effectiveness of gene repair. The graphs were randomly generated
using a domain range of zero to twenty, ensuring that the graphs were highly con-
nected. The initial population consisted of one hundred individuals. Single point
CrossOver was conducted on each of the randomly selected individuals with a Mu-
tation rate of eight percent using Rank and Truncation selection. All experiments
were stopped after one thousand generations when gene repair was incorporated
into the evolution strategy. It was found that, on average with gene repair imple-

mented the GA would arrive at a fitness value of ninety percent.

It can be seen from Figure 5.3 that all three iterations when gene repair was
incorporated reached one hundred percent mapping (scoring a fitness value of 40)
in less than one thousand epochs. In contrast, without gene repair implemented

the maximum fitness reached after ten thousand epochs was a seventy five percent
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Figure 5.3: Investigating the performance of gene repair on isomorphic graphs:
(a) three best implementations with gene repair incorporated, (b) three best im-

plementations without gene repair incorporated.

mapping. This is a significant reduction in the computational time required for

identifying isomorphisms between the graphs.

5.4.1.3 Identifying a Selection Operator

Ten experiments were carried out to determine the most optimal selection operator
for the LCS problem. All experiments were carried out on isomorphic graphs with
twenty lines, and each of the generated graphs were tested using Rank and Trun-
cation selection, Roulette Wheel selection and Tournament selection. The graphs
were randomly generated using a domain range of zero to twenty, ensuring that
the graphs were highly connected. The initial population consisted of one hun-
dred individuals. Single point crossover was carried out on each of the randomly
selected individuals with a mutation rate fixed at eight percent. Gene Repair was
implemented in all experiments. It can be clearly seen in Table 5.4 that all three

selection operators performed well for finding the LCS between the isomorphic
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Exp Max Fitness | Rank and Truncation | Roulette Wheel | Tournament
1 95% 100% 100%
2 100% 90% 82.5%
3 100% 80% 100%
4 100% 82.5% 100%
5 100% 87.5% 82.5%
6 100% 90% 77.5%
7 100% 82.5% 100%
8 100% 90% 82.5%
9 100% 87.5% 100%
10 85% 90% 82.5%

Table 5.4: Selection Operator Performance.

graphs. Rank and Truncation selection was selected as the most suitable selection

operator with an average success rate of ninety eight percent.

5.4.2 Genetic Operators for evolving content

Genetic operators are described as the components of a GA that perform bit op-
erations to aid in the evolution of some problem until a predefined threshold is
arrived at. The bit operations vary depending on the problem. The GA for evolv-
ing instructional content will use a Mutation rate of eight percent, Single point
CrossOver, Rank and Truncation and will incorporate Gene Repair. However in-
stead of allowing duplications to arrive into the population before Gene Repair is

implement all genetic operators will explicitly avoid duplications.

One of the criteria for the search algorithm described at the start of Chapter
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five is that a track record of the author of the instructional content should be
kept throughout the evolutionary process. Metadata 1 in Chapter four gives a
sample metadata file that was generated. It can be clearly seen under the segment
Generallnfo that both the authors contact information and name are represented.
During a genetic operation this information is passed along with the genetic modifi-
cation. Thus ensuring when a course is constructed all authors could be potentially
rewarded as per unit of instruction. The follow sub sections detail the individual
constructs and strategy for Mutation, CrossOver and the Fitness Function used in

the GA for evolving instructional content.

5.4.2.1 Mutation Operator for evolving content

The rate of Mutation that has been selected for the GA to evolve instructional con-
tent is eight percent as previously discussed above. This means that on each epoch
of the evolutionary process eight percent of the population is going to be mutated.
Mutation performs an extremely import function as it acts as the only method
to avoid the evolutionary process arriving at a local minimum. To calculate a
percentage of the population depends on the representation of the problem being
solved. For example, in our GA the population consists of Individuals, each indi-
vidual represents a candidate course consisting of a number of Sharable Content
Objects. Consequently, the granularity of a single object subjected to possibly mu-
tation is defined as an individual SCO, therefore eight percent of the total number

of SCOs within the population are mutated at each epoch of the evolution process.

Three different types of Mutation can occur when a Mutation is implemented:

e Complete Concept Mutation: this is where a concept is randomly selected
from the population and removed from the population. The Mutation func-

tion then selects a suitable random Sharable Content Object from the in-
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structional space. This newly selected learning object replaces the removed

object.

e Links Mutation: this mutation is focused on the extra information support-
ing the learning object. A learning object is randomly selected from the
population. Throughout a links mutation either the complete set of links
associated with a learning object are removed or replaced, or a single link is
randomly deleted or inserted. Metadata 4 in Chapter four shows an example

of the metadata associated with a link as created by the Content Analyser.

e Image Mutation: A learning object is randomly selected from the population.
The Mutation function then randomly removes or inserts an Image. Meta-
data 3 in Chapter four gives an example of the metadata associated with
an image as produced by the Content Analyser. After an image mutation
has occurred all the relevant fields within the SCO metadata are updated to

reflect the newly modified learning object.

5.4.2.2 CrossOver Strategy used for evolving content

The CrossOver strategy that has been selected to be the most appropriate strat-
egy for evolving instructional content is single point crossover. It was decided that
single point crossover would be most suitable as there exists a limited number of
possible CrossOver points within the metadata describing the instructional con-
tent, to ensure that the completed course produced consists of complete learning
objects. The CrossOver strategy performs n / 2 crossovers on each epoch of the
evolutionary process, where n represents the number of individuals within the pop-
ulation. The possible points where crossover can occur are at: concept level, links

level.

e Concept level: When CrossOver occurs at the concept level two individuals
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are randomly chosen from the population (candidate courses) and single point

crossover occurs as described earlier to produce two new candidate courses.

e Links Level: When CrossOver occurs at the links level two individuals are
randomly chosen from the population. A crossover point is then chosen from
within the individuals and then single point crossover occurs as described

earlier to produce two new candidate courses.

— <8COMetadata> — <8COMetadata>
— <Generallnfo> — <Generallnfo>
=Anthor=Eeith14=/Aunthor= =Anthor=Eeith23=/Aunthor=
=Contact=contact=/Contact> =Contact=contact=/Contact>
={Generallnfo= ={Generallnfo=
— <CognitiveResowrces> — <CognitiveResowrces>
<AvailableScreen=10=/AvailableScreen= <AvailableScreen=10=/AvailableScreen=
=VisualTolkens>110=/VisualTolkens> =VisualTolkens>20</VisualT olkens>
+ <images></images> + <images></images>
+ <Readability>=/Readability> + <Readability>=/Readability>
<amount=230<famount> <amount=230<famount>
“VARE=34=/VAREK> “VARE=30=/VARE=>
— <links> — <links>
“NoOflinks>1=/NoOflinks> =NoOflinks>1</NoOflinks>
— <hnlk= — <hnlk=
— <LinkCognitiveResources> — <LinkCognitiveResources>
“Linkname=linl 4 </ Linkname> “Linkname=linl 4 </ Linkname>
<LinkAvailableScreen=30=/LinkAvailableScreen> <LinkAvailableScreen=60</LinkAvailableScreen>
<LinkVisualTolkens=10=/Link VisualTolkens> <LinkVisualTolkens>120</Link VisualTolkens>
+ <LinkImages>=/LinkImages> + <LinkImages>=/LinkImages>
+ <LinkReadability></Link R eadability> + <LinkReadability></Link R eadability>
=Link t>250=/Link t= <Link t=240</Link t=
“Link VARK>71=/Link VARK > “Link VARK > 154=/TLink VARK >
=LinkCognitiveResources> =LinkCognitiveResources>
=flinlc= =flinlc=
<links> <links>
={CognitiveResowrces> ={CognitiveResowrces>
={SCOMetadata> ={SCOMetadata>

Figure 5.4: Candidate metadata files randomly selected for link crossover

Figure 5.4 gives an example of two randomly created metadata files. These files
have been selected for links crossover. Figure 5.5 show the resultant new candidate
courses produced after crossover has occurred on the initial two randomly chosen

individuals.
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— <SCOMetadata>
— <Generallnfo>

<Author>Eeith14</Author>
<Contact>contact=/Contact>

<{Generallnfo>
— <CognitiveResowrces>

<AwvailableScreen>10</AvailableScreen>
<VisualTolkens>110<=/VisualTolkens>

+ <images></images>

+ <Readability></Readability>
<amount>Z250</amount>
<VARK=%4</VARK >

— <links>

<NoOflinks>1</NoOflinks>

— <link >
—<LinkCognitiveResources>

<Linkname>link & </Linkname=>
<LinkAvailableScreen>60</LinkAvailableS creen>
<LinkVisualTollkkens= 120</Link VisualTolkkens>

+<LinkImages></LinkImages>

+ <LinkReadability></LinkReadability>
<Linkamount>240=/Linkamount>
<Link VARK>134</Link VARK>

</Link CognitiveResources>
</hink>

“/mkKs~

<{CognitiveResources>
</SCOMetadata>
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— <SCOMetadata>
— <Generallnfo>

<Author>Eeith25</Author>
=Contact>contact</Contact>

<{Generallnfo>
— <CognitiveResowrces>

<AwvailableScreen>10</AvailableScreen>
<VisualT olkens>20=/VisualTolkens>

+ <images><filnages>
+ <Readability></Readability>

<amount>250</amount>
<VARK=%0</VARK>

— <links>

<NoOflinks>1</NoOflinks>
— <link=
— <LinkCognitiveResowrces>
<Linkname>link & </Linkname>
<LinkAvailableScreen>30</LinkAvailableScreen>
<LinkVisualTolkens=10</Link Visual T olkens>
+ <Linkhinages=</LinkImages>
+ <LinkReadability></LinkR e adability>
<Linkamount>250</Linkamount>
<LinkVARK=>71</Link VAREK=>
<{LinkCognitiveResources>
<{link =
<flinks>

<{CognitiveResources>
</SCOMetadata>

Figure 5.5: New Candidate metadata files produce after crossover has occurred
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5.4.2.3 Evaluating a Candidate course

The success of a genetic algorithm in solving any problem is centered on the effec-
tiveness of the fitness function being able to calculate the fitness of each candidate
solution. The fitness function that was developed for calculating the fitness of a
candidate course generated to suit the cognitive ability and pedagogical preference
of a learner focuses on the cognitive metrics found within the instructional content
and the structure of the content (including all links). The algorithm is described

as follows:

e let P denote the population,

e let w denote the metric representing the learners working memory as de-

scribed within their personal profile,

e let v denote the metric representing the learners VARK score as described

within their personal profile,

e let r denote the metric representing the learners Readability level as de-

scribed within their personal profile.

e let a denote the multiplier associated with the strength of the working mem-

ory for evolving instructional content,

e let b denote the multiplier associated with the strength of the VARK score

of the learner,

e let ¢ denote the multiplier associated with the strength of the Readability of

the learner,

e let wn denote the number of metadata fields associated with the working

memory of a learner,
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let vn denote the number of metadata fields associated with the VARK score

of the learner,

e let rn denote the number of metadata fields associated with the Readability

of the learner.

e let wi denote the value associated with the parameter describing the cognitive

metric associated with the working memory.

e let vi denote the value associated with the parameter describing the cognitive

metric associated with the VARK,

e let i denote the value associated with the parameter describing the cognitive

metric associated with the Readability,

e let num denote the number of elements that are being assessed taken into

account the strength of the multipliers.

Additionally, there exist two functions called getActual and getStructure. These
methods allow the fitness function to calculate an overall score associated with the
complete learning objects as a unified course structure. GetActual takes as input
a double value and returns a representation of the score taken into account the
complete structure of the learning object. GetStructure determines the complete
structure of the learning object element independent of the individual elements de-
scribed within the learning object (see http://www.cs.nuim.ie/kmaycock/fitnessfunction

for more details).

The fitness function is described as follows:

fitness function(P, w, v, r, a, b, ¢, num, boolean [] needed)

For every learning object in each individual the fitness is calculated for all the
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elements associated with working memory, VARK or the Readability level of the

learner,

The working memory elements are calculated as follows:

i (getActual (|[w — wnl| % 0.4) * a)
2

wn=1

denoted by tw; representing the total score achieved by the working memory ele-

ments.

The readability elements are calculated as follows:

f: (getActual (lr = rn||) = c)
2

rn=1

denoted by tr; representing the total score achieved by the readability elements.

The VARK elements are calculated as follows:

i (getActual ([[lv —on]||) * b)
2

vn=1

denoted by tv; representing the total score achieved by the VARK elements.

Each individual within the population consists of a number (n) of learning ob-

jects as described above. The following formula gives the fitness of an individual
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within the population:

S (<w) + getStructure (LOi)>
=0

a+b+c

5.4.2.4 Mapping the Personal Profile

VARK Score | Personal Profile Metric
VRK

VAK 35
VAR

VK

VA 50
VR

VvStrong 100
Vmild 60
VARK 25
Anything else 0

Table 5.5: VARK score mapping to suitable elements for fitness function.

Chapter three discussed a suitable Personal Profile that could be used to gener-
ate instructional content in an online learning environment. The profile consists
of: Working Memory Capacity, Information Processing Speed, VARK and the
Readability. The fitness function as described above performs calculations on the
elements of the personal profile and consequently a mapping is required to a suit-
able format. Table 5.5 represents the mapping from the results of the VARK test
to a suitable format for the fitness function. It can be clearly seen that: for a

single strong visual preference the learners score is 100, for a single visual mild
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preference the learners score is 60, for a bi-modal preference including the visual
elements the learner is given a score of 50, for a tri-modal preference including the
visual element the learners score is 35, for a multi-modal preference including all
elements the learners score is 25, and for all other categories the learners score is

0.

N-Back Score | Category | Personal Profile Metric
2-2.5 vLow 50
2.6-2.9 Low 100
3-3.5 Medium 150
3.6-3.9 High 200
4+ vHigh 250

Table 5.6: N-Back score mappings to suitable elements for fitness function.

Table 5.6 shows the categories of results for the Working Memory Capacity asso-
ciated with the learners profile. The Information Processing Speed is calculated
as a percentage of accuracy for a learner interacting with instructional content
in an online learning environment and is multiplied with the N-Back score. It
can be clearly seen that the categories of learners results from the N-Back score
map into numerical elements that can be manipulated in the fitness function. The
Readability score that the learner gets is used directly in the calculations with the

fitness function.

5.4.3 Avoiding a the crowding problem

The Crowding problem exists with genetic algorithms typically when the solution

space is large and the initial population is constrained by the distribution of the
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candidate hypotheses. Mutation is used to reduce the possibility of the evolution-
ary process arriving at a local minimum (state of Crowding). However, if Mutation
is implemented crowding can still occur. To reduce the possibility of crowding a
parallel implementation should be considered. The following sub sections briefly
describe the possibilities for a parallel implementation and then describe the de-
sign of the solution created to reduce the possibility of the learning component

arriving at a local minimum.

5.4.3.1 Parallel possibilities for a GA

Genetic Algorithms are very suited towards a parallel processing implementation.
There exist two main approaches to parallelisation: course grain parallelization
and fine-grained parallelisation. Coarse grain approaches typically create multiple
populations or split the population into subdivisions, called demes and have an
associated processor for each deme. Cross fertilisation occurs between demes at
regular intervals and each member of the population is updated to the successful
sub-divisions within the population. Fine-grained implementations typically have
an associated processor for every individual within the population and cross fer-

tilisation occurs at different intervals.

The parallel implementation that was implemented to reduce the possibility of
the learning component arriving at a local minimum was a coarse grain implemen-
tation. When the initial populations are being generated, each population selects
candidate hypotheses from unique portions of the solution space. The populations
communicate once a suitable learning object is found ensuring that a suitable

asynchronous protocol is implemented.
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5.4.4 GA for Optimal Learning Objects

A sample population of learning objects was generated to test the genetic algo-
rithm. This population consisted of twenty different concepts each containing one
thousand randomly generated LOM files to mimic a real world problem where the
full learning space is not available. A specification was randomly selected from
the population with an expected minimum learning experience of 71.2%. The
specification contained eight learning objects. The genetic algorithm was run one-
hundred times; the best three implementations of the algorithm are seen in Figure

.6.

45
35
30 —#
25 +
20
15
10
5
O_
T 1 21 31 41 51 61 71 81 9
Number of epochs

Maximum fithess value

Figure 5.6: Genetic Algorithm to find optimal learning objects

On average the genetic algorithm took 43502 milliseconds to run for ten thousand
epochs. The maximum obtainable fitness value that an individual in the popula-
tion can attain is fifty six (for one hundred percent expected minimum learning
experience.), however as the limit was set for 71.2 % the expected fitness value
is forty. It can be clearly seen from Figure 5.6 that all three iterations ran to
a maximum fitness value of above forty in less than one hundred epochs, taken

on average 435.02 milliseconds. An analysis was carried out on the courses that
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were developed and it was found that in all iterations the genetic algorithm was
successfully able to identify suitable learning objects within one thousand epochs

for the selected time interval.

5.4.5 Summary

In summary, this section identified suitable metrics for the genetic operators as-
sociated with a GA for evolving instructional content. The section described a
comparable problem that was used as the framework for training the GA, as the
solution space for evolving instructional content was incomplete. The traditional
genetic operators, such as, Selection, CrossOver and Mutation were extended to
represent suitable genetic operators associated with evolving instructional content.
The optimal metrics found within the training GA were applied to the GA for gen-
erating instructional content. This GA was used to evolve instructional content
for a pseudo content repository, consisting of twenty thousand metadata files, de-
scribing learning objects. The GA was able to identify suitable courses within 435
milliseconds. In addition, this section addressed parallel construction possibilities

for the evolutionary algorithm.

5.5 Conclusion

In conclusion, this chapter described the deign and implementation of a suitable
evolutionary strategy capable of generating instructional material suited to the
personal preference of a learner as described in chapter four. A Genetic Algorithm
was deemed to be the most suitable evolutionary strategy for evolving instruc-
tional content, and consequently strategies for each of the genetic operations were
discussed in detail. Due to the incompleteness of the instructional space a suitable

comparable problem domain with a complete solution space was defined and a
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GA was trained to solve the problem. These metrics acted as the foundation for
the GA for evolving instructional content and were able to construct instructional
courses from twenty thousand learning object metadata files within 435 millisec-

onds.

The following chapter is involved with the integration of the learning component
into a suitable learning management system. The chapter describes the tests used
to construct a learner profile. In particular, the chapter is involved with the con-
struction of a repository of learning content and an evaluation of the consistency
of the instructional authors when generating instructional content in terms of the

cognitive metrics found within the generated instructional content.
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Chapter 6

Learning Component

Environment

This chapter investigates the suitability of a Content Management System as a
shell for the learning component. This chapter is also focused on describing the
personal profile tests, as described in chapter three, used to calculate the Working
Memory Capacity (WMC), Information Processing Speed (IPS), the Readability
level and the VARK representation for each learner / author prior to interacting

with the learning component.

6.1 Moodle

The learning component was build as an evolutionary strategy for evolving instruc-
tional content but requires a CMS / LMS to import the learning component for
easy use for a large population of learners. The requirements for a suitable CMS

/ LMS for the learning component are limited:

e the chosen LMS / CMS is required to be able to handle SCORM compliant
content, i.e. the LMS / CMS must contain a SCORM RTE.
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e the architecture of the chosen environment must be Open Source and de-

signed in a modular fashion to enable integration of the learning component.

Total known sites

Total registrations New registrations
45000

T MJJASOND JFMAMJ JASOND JFMAMJ JASOND J FMAM JASOND J FMAMJ JASOND JFMAMJ JASOND J FMAMJI JASOND J FM

2004 2005 2006 2007 2008 2009 2010

Figure 6.1: Total known Moodle cites worldwide

A number of CMS were considered, for example Moodle [40], and Sakai [41]. Moo-
dle was chosen as the preferred CMS to import the learning component function-
ality, due to the rapid acceleration and adoption of Moodle throughout the higher
education community. The system that imports the learning component only acts
as a shell environment and could be easily incorporated into any such environ-
ment, providing the pre-conditions outlined above are taken into consideration.
Moodle is an open source CMS designed around a social constructivist framework.
Figure 6.1 (taken from moodle.org) shows the growth of the total known Moodle
sites around the globe. Currently, Moodle is being used by 32 million users in
over 205 countries and has been translated into 80 different languages [40]. Moo-
dle was selected as a suitable CMS for the learning component due to the simple

modular design and Moodles status as being an open sources CMS that complies
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with SCORM content. The learning component was developed as a number of

applications that are all accessed through a Moodle block.

6.1.1 Summary

In summary, this section identified a suitable environment (Content Management
System / Learning Management System) that would enable the learning compo-
nent to interact with learners. In particular this section identified the requirements
for such an environment. Firstly, the environment should support SCORM com-
pliant content and secondly the environment should be an Open Source project
and be designed in a modular fashion to allow for easy integration. Moodle [40]
was chosen as the preferred CMS. The following section discusses the tests involved

with generating the personal profile of a learner as discussed in chapter three.

6.2 Personal Profile

The learning component that was developed overcomes the current problems with
the inconsistencies between referencing standards for metadata creation (see Chap-
ter four), improper use of metadata creation and also the typical rhetorical method-
ology of lecturing in third level education [13]. In order for learners to take ad-
vantage of the learning component a number of traits must firstly be calculated
to represent the working memory capacity, the information processing speed and
accuracy of knowledge acquisition, the readability level of the learner and the ped-
agogic preference of the learner. These metrics form the basis for our proposed

personal profile as discussed in Chapter three.

The following subsections detail the methods of calculating the metrics for the

cognitive ability and pedagogic preference of a learner as described in the personal
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profile. The relationship between the metrics and the evolutionary process is also

discussed.

6.2.1 Personal Profile Tests

Once the learner logs into the learning environment the learner must complete all
the tests relating to the personal profile before the learner can view any available

specifications.

Learning Component Home

The following links calculate your cognitive traits and pedagogic preference required for your
personal profile. Click on an image to calculate a trait.

Memory

Testing Processing

!ogouf |

Figure 6.2: Tests to calculate the Personal Profile traits

However, if the learner has already completed these tests then the learner can
choose a pre-defined course for that learner or choose a new specification. If a new
specification is chosen the learning component will harvest the repositories created

by the Content Analyser and produce the required course suited to the personal
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profile of the learner. Figure 6.2 represents a snap shot of the view the learner has
once logged into the learning component, prior to conducting the initial tests. The
learner must click on the associated link to take the test relating to the element of
the personal profile being tested. The following subsections details each test that

must be completed before the learner can view the available specifications.

6.2.2 Working Memory Capacity Test

The working memory capacity of the learner is calculated using an N-Back algo-
rithm. Owen et~al [15] showed that using an N-Back algorithm method for testing
working memory capacity stimulates the same regions of the human brain when
compared with the more established working memory tests, by performing a meta-
analysis of normative functional neuroimaging studies. The N-Back strategy was
chosen as the most appropriate method as the delivery of the N-Back test will be
conducted in the same method and environment that the learner will interact with
the instructional content. It was decided that only a visual representation would
be given to learners throughout the N-Back test as typical machine voices are very
robotic and it is beyond the scope of this research to investigate the effectiveness of
a robotic voice engaging with a learner throughout a learning experience. Figure
6.3 depicts the learners view once the Working Memory test has been selected.
The initial screen briefly explains to the leaner the simple protocol of an N-Back
algorithm, whereby learners are shown images one-by-one and must remember
every image location in terms of how many images have appeared since a given
image. As can be seen in Figure 6.3 the leaner is being shown images of fruit and
must remember the order in which the images appeared. The selection of fruit and
vegetables to be displayed as the components for the working memory test was
chosen as the demographic of a typical third level student would be familiar with

all the elements of the test. It was important everyday elements were selected as
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Calculating your Working Memory Capacity

The Wotkitig Memory Capacity is caleulated uging an H-back algorithem. Example, if a 2-back is being implemented you nieed to remember two
items back and match up all pairs. Clicking on an image indicates that you think the image appeared two dtems previous (See figure 1), The images

will appeat one at a time during the test.

2 Back 1 Back

Click to score a point

Figure 1: N-Back example

MN-hack Test ” Learning Component Home

Figure 6.3: NBack algorithm for calculating the working memory of an individual

the WMC would be different depending on the ease at which the elements were
perceived. Using such elements it is believed would be more representative of our
WMC model as throughout our online engagement with learners, learners will be

given instructional content mapped close to their personal profile.

Learners start the working memory test with a two back implementation. The
learners are shown a sequence of twenty images within a two back implementa-
tion. A point is awarded to the learners score if the learner selects an appropriate
image that has appeared N-Back and the learner is also awarded a point if the
learner successfully does not select an image that has occurred N-Back. Learners

are also decremented points if they falsely select or do not select an image. The
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learners proceed onto the next level of the N-Back test if they successfully succeed

to get a score of eighty percent in any nback iteration.

6.2.3 IPS and knowledge acquisition Test

The IPS and knowledge acquisition is centered on creating a metric that represents

the information processing of the learner. Once the learner has selected the

Calculating your Information Processing Speed

Information Processing Speed

The Information Processing Speed indicator allows us to determine how much information can be displayed on the screen. To start the IPS test just
click on the "3Start [P3 Test" button. Three short pieces of text will appear one at a time, you are required to read the terdt and then select the most
appropriate sentence to suit the previous piece of text.

Start IPS Test

Figure 6.4: Tests to calculate the Information Processing Speed

IPS Test the learner is shown Figure 6.4. The IPS Test evaluates the learners
ability to read unfamiliar, diverse pieces of instructional content delivered to the
learner in the same manner as a typical learning experience using the learning

component. The result of the test indicates how long it took the learner to read
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through the instructional content using the system clock and the accuracy of the

knowledge acquisition.

After each piece of instructional content the learner is given four sentences to
choose which sentence most accurately describes the previous piece of instructional
content. The learner is awarded marks depending on the sentence selected. The
pieces of instructional content that are displayed to the learner throughout the IPS
test were chosen as the typical demographic of learners taken part in the testing
of the effectiveness of the selection model will have little experience in the testing
domain, consequently the testing material included instructional content relating
to Genetic Algorithms, Limes Disease and Cryptography as a typical first year
Computing student would have very little understanding of the testing material.

This methodology was also applied to the selection of the domain content.

6.2.4 Readability Test

The readability level of the learner is calculated using the Flesch reading ease
metrics [96]. The Readability level of the learner acts to reinforce the WMC of
the learner in our model, as the learners will be given instructional content were
no prior knowledge exists but the content will be adapted to suit their own style
of writing thus reducing the possibility of interference throughout the learning
experience. Interference can occur within a learning experience when the flow of
instructional content is untimely broken: either as an external migration of domain
knowledge or difficulty in understanding the textual information. The level of the
language used will only act as a minor indicator for the evolving content. The
learner is given an empty text area to compile a piece of text as seen in Figure 6.5.
The exercise is not time bound and once the learner is completed the metrics are

calculated and the personal profile is updated.
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Calculating your Readability Level

To calculate your Readability Level we are using the Flesh Kincaid reading grade and also the Flesh Reading ease metrics. Please, write a short story
ity the textarea provided on a topie of your choice. Click the Feadability Check button when you are finished.

Feadability Check ” Learning Component Hame

Figure 6.5: Calculating the Readability level

6.2.5 VARK Test

The pedagogic preference of the learner is represented as an estimation of the deliv-
ery mode of the learning content and is mapped to reflect the WMC of the learner
and also the VARK process of calculating a preference for a mode of learning. The
VARK component of the pedagogic preference of the learner is calculated using
the VARK questioner as developed by Neil Fleming[1], seen in Figure 6.6. VARK
is an acronym made from the initial four means of communication (Visual, Aural,
Read / Write and Kinesthetic). Learners use these modes when they are taking

in or given out information. They also have preferences for one or more modes
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of learning. Within an online learning environment these modes are restricted to
Visual and Read / Write. Robotic voices have been omitted for possible inclusion
to include the Aural mode of learning as discussed earlier in this Chapter. The
VARK test is composed of a questioner with a number of radio buttons as pos-
sible answers. On each question a learner can choose multiple answers, for more

information see [1].

Calculating your VARK learning style

VARK Questionnaire

1. You are abowt to give directions to a person who is standing with you. 3he is staying at a hotel in town and wants to visit your house later,
She hag arented car. You would:

dydraw, of provide amap. l:‘

titell her the directions. l:‘

diwtite down the ditections (without a magp). |:|
dicollect het from the hotel it a car. l:‘

2. ¥Vou ate not sure whether a word should be spelled 'dependent’ or'dependant’. YVou would:
cilook it up in the dictionary of use a spell check program. l:‘
d1see the word in your mind and choose by the way it looks. l:‘
Wisound it out in wour mind. l:‘

diwrite both wersions down on paper and choose one. l:‘

3. Vou have just received a copy of your itinerary for overseas travel. This is of interest to a friend. You would:
Wiphone her immediately and tell her about it. l:‘
cisenid her a copy of the printed itinerary. l:‘
a1show her on a map of the world. l:‘
dishare what you plan to do at each place you visit. l:‘

Figure 6.6: VARK questioner designed by Neil Flemmon [1]

6.2.6 Summary

In summary, this section discussed the tests to calculate the traits defined in chap-

ter three to generate a suitable personal profile for a learner interacting with the
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learning component. Once the learner has concluded all the tests the learner is
given extra functionality to view all the available specifications. When a learner
selects a specification the Selection model retrieves the learners personal profile
and constructs a unique ideal specification suited to the personal profile of the
learner (as discussed in chapter five). The Selection model uses a genetic algo-
rithm to construct a course suited to the ideal specification that has a predefined
minimum expected learning experience. The following section details additionally
functionality available to authors of instructional content. In particular the next
section discusses functionality to create a specification and analyze instructional

content.

6.3 Author functionality

When a user is classified as an author they are given extra functionality to create
a specification and analyze a file as seen in Figure 6.7. Chapter five details the
metadata requirements for both a specification and a concept. The metadata ele-
ments used to describe the specification are typical SCORM metadata elements as
defined by the SCORM Run Time Environment (SCORM RTE) as seen in Figure
6.8. Additionally there exists metadata requirements associated with a specifica-
tion to control the evolution process for optimal content generation. The summary
field is used by the learning component to show a summary of available specifica-
tions to potential learners. The Minimum Expected Learning Experience (MELE)
is set by an author when constructing the specification (detailed in chapter five).
The default value for this field is seventy percent to allow for flexibility in both
the learner exceeding expectations and the evolutionary strategy finding optimal
courses. The author also sets the Cognitive Traits field, indicating which cogni-

tive trait is of greater importance. For example, if the author needs to generate
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instructional content that is focused on the working memory of the learner then

the author would select the appropriate CT value.

Learning Component Home

The following links calculate your cognitive traits and pedagogic preference required for your
personal profile. Click on an image to calculate a trait.

Testing Processingl ”” ”I ' Memory \
S ‘ File | ! \

pecification

Figure 6.7: Test to calculate the VARK score of a Learner

Figure 6.9 illustrates all the metadata elements associated with a concept defined
within a specification. All the elements are defined by the SCORM RTE with the

exception of the Typical learning time as discussed in chapter five.

6.3.1 Summary

This section described the author functionality associated with the learning com-

ponent. Each author is allowed to construct specifications, which in turn are dis-
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Complete Specification Details

Fullname: [Specifcaton Fullname 101 @
Shodt rame: .Sp’lm @
1D numiber @

Summary. |Write & concise swemary of the material that will be covered by
the specification. Ensure to mention any precequisites that are
needed to undertake a course that will be generated from the
apecification. Liast all possible avenues for certification leading
from this specification.

@
MELET: |70
Cogrilive Truts: | XY
Durstion: | €]
Eclneatkey. | ®
Force linguage: | Do notforce v

Add new Concept Leaming Componant Home

Figure 6.8: Test to calculate the VARK score of a Learner

117




Author functionality

Learning Component Environment

Tithe:

Desenption:
Eeyword:
Coverage:
Structure;
Aggregation Lovel:
Gen:

Inteenctivity Type:
Leaming Resource Type:
[nessctivity Lavel:
Semantic Densaty:
Conte:

Typical Leamung Tims:

Complete concept Specification

:Tme of concepl
'Dasuipunn of concapt
:kwrd

I'm‘.rerage

ML v @
[NULL

jSiza of leaming component in yes

L v @

| NULL v @
il ¥ @

i~ @

Nl )

:Typuc.ul Learning Time

| Add new Cancapt | Seve Changs |

® @ @

Generate Spectication

Figure 6.9: Test to calculate the VARK score of a Learner
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played to potential learners. The learning component that was designed allows an
author to set two unique fields: MELFE and the Cognitive Traits fields. The MELE
field is used by the evolutionary component to evolve instructional content to a
pre-determined minimum expected learning experience. This feature, unlike tradi-
tional Adaptive Hypermedia Systems (AHS) enables the automatic generation of
instructional content independent of the author of the specification. Additionally,
the evolutionary process will not terminate until the MELE is reached. The Cog-
nitive Traits field is used by authors of instructional content to emphasize greater
importance for a cognitive trait. This feature can be very useful as a research tool

in determining the effects of different types of content on populations of learners.

6.4 Conclusion

This chapter discussed the migration of the learning component into a suitable
CMS / LMS and the front end user experience involved with utilizing the leaning
component. Moodle was chosen as an appropriate CMS for the learning com-
ponent. This chapter discussed the requirements for such an environment but
also detailed that the learning component is a self contained unit that was simply
embedded into the CMS. The tests required for generating the personal profile, de-
tailed in Chapter three were discussed. In addition, the chapter also described the
core functionality uniquely associated with the learning component: MELE and
Cognitive Traits. These additional components allow the learning component to
approximate a suitable course to an expected learning outcome matched against a
unique ideal specification generated by the learning component. Unlike traditional
AHS the author of the specification sets the expectation but is not involved with

generating instructional content for any learner.
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The next chapter is involved with testing the learning component. A number
of studies are carried out to determine the effectiveness of the learning component.
Firstly, an investigation of the correlation between the cognitive ability and ped-
agogic preference of instructional authors and the metadata, produced by the CA
detailing the cognitive metrics found within the instructional content generated by
the authors is carried out. This is used to determine if an author is consistent when
generating instructional content. Consequently, if the traits of an instructional au-
thor are measured will those traits reflect the content being produced. If a strong
correlation exists; suitable authors can be easily matched up with suitable learners
and the learning component will need to be upgraded and a traditional AHS would
be more suitable for adapting content to suit the needs of learners. Additionally
the learning components performance is measured against a traditional class room
environment and also the learning components evolutionary process is analysed in

determining the effectiveness of the evaluation criteria.
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Learning Component Evaluation

This chapter is involved with the evaluation of the learning component. Initially
this chapter investigates the use of student developed content to use as a repository
for the learning component. The chapter also focuses on an analysis investigat-
ing the correlation between the cognitive ability and pedagogic preference of an
author of instructional content and the identified cognitive metrics found within
instructional content generated by an author. Eight instructional authors gen-
erated content based on a simple specification for a short course on UML. The
authors were, firstly required to participate in the previous experiments (discussed
in Chapter six) to obtain their personal profile scores. Secondly, the authors gen-
erated content that conformed to the requirements of the Content Analyser (as
described in Chapter four). An analysis was performed investigating the hypoth-
esis that instructional authors are not consistent when generating instructional
content, additionally there is no connection between the cognitive traits of an
author and the cognitive metrics that are produced when creating content, thus
reducing the possibility of AHS being incorporated into real world systems. This
chapter is also involved with the evaluation of the learning component. The chap-

ter discusses experiments conducted to determine the performance of the learning
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component against a traditional lecturing experience. An in-depth analysis is car-
ried out to investigate the correlation between the minimum expected learning
experience (determined by the evolutionary process in constructing instructional
content) and the actual result obtained by each learner after completing a quiz fol-
lowing a learning experience. Additionally the chapter investigates the correlation
between the individual traits and the results obtained by taken a quiz after a learn-
ing experience has concluded. The following subsections firstly describe Pearsons
correlation process and then discuss the correlation between the cognitive traits
of an author and the cognitive metrics found within metadata generated by the

Content Analyser.

7.1 Student Content

It was decided to develop a short course on introduction concepts relating to UML
to evaluate the success of the learning component. The success of the learning com-
ponent is a measure of the ability of the Selection model to produce instructional
courses suited to the cognitive ability and pedagogical preference of a learner as
described in a suitable personal profile in Chapter 3. The first database of content
that was generated was by students. The students that were identified as suitable
candidates to generate instructional content were second year Higher Certificate
students that had completed a module on UML and covered all the learning out-
comes associated with the short course on UML. Students were also seen as ideal
candidates as they would be closely matched to the to the proposed target audi-
ence of first year students in terms of academic level and technical writing abilities.
Twenty students generated instructional content to form the repository. Students
were given access to the internet and their notes and enough time to produce in-

structional content. The content was generated by individual students and not in
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a collaborative environment. This content was analysed to ensure that the leaning
outcomes would be covered by the student generated material. Unfortunately, the
students used TXT language throughout the generated content and also images to
reflect technical terms that were not related (in terms of the context of the instruc-
tional content) as seen in Figure 7.1. It was decided that TXT language would not
be suitable as some students would not be familiar with the language and also the

academic quality of the content did not appropriately cover the learning material.

Actor

An actor interacts with ur system

Figure 7.1: Student generated data, describing a UML Actor.

The following section details the process involved with generating, author in-
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structional content. An analysis is discussed investigating the hypothesis that

instructional authors are not consistent when generating instructional content.

7.2 Instructional Authors

Eight instructional authors were involved in generating instructional content. Ini-
tially the authors completed the tests defined in chapter six to identify their per-
sonal profile and then all authors generated instructional content suited to a spec-
ification for a short course on UML. The following subsections use Pearsons corre-
lation to determine linear dependance between each of the identified traits and the
metadata produced by the Content Analyser. In addition the correlation between
the metadata produced for each of the concepts by the CA and the metrics associ-
ated with the authors personal profile is calculated to determine the consistency of
the author when generating instructional content in terms of the cognitive metrics

that the author uses when generating instructional content.

The following subsections investigate the correlation between the metadata pro-
duced by the Content Analyser and the cognitive ability and pedagogical preference

of an instructional author.

7.2.1 WMC and metadata

The Pearson correlation between all metadata describing all concepts associated
with working memory was calculated as -0.1359089. This result means that no
correlation exists on a global scale for WMC. Table 7.1 details the correlation be-
tween WMC and the metadata generated for each individual concept to determine
if there exits a trend across all concepts or if the WMC trait is dependent on the

authors interpretation of the concept. The WMC of an individual is seen as a
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constant trait (cognitive trait) that can be improved upon over time as seen by
Kinshuk [8]. If the trait remained constant it would be conceivable to allow an
author of instructional content generate a complete course for a particular learner
as a simple pairing method could be used to match up suitable authors with suit-
able learners, however if there exists a huge variance with the trait across multiple

concepts this simple pairing process would not be suitable.

Trait | Concept Correlation

WMC | Actor -0.01911375
WMC | Functional Requirements -0.5846814

WMC | Relationship -0.652822
WMC | Use-Case 0.1910910
WMC | Generalisation -0.08211009

Table 7.1: This table shows the correlation between the WMC of an author and
the WMC metadata that was generated for each of the concepts using the Content
Analyser.

It can be clearly seen in Table 7.1 that there exists a significant variance between
the WMC of an author and the WMC metadata that was generated for each of
the concepts using the Content Analyser. The following section investigates the
correlation between the Readability and the metadata produced to classify an

author and the metadata to classify the instructional material.
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7.2.2 Readability and metadata

The Pearson correlation between all metadata describing all concepts associated
with readability was calculated as -0.03904613. Table 7.2 details the correlation
between the Readability level of an author and the metadata generated for each
individual concept to determine if there exits a trend across all concepts or if the

Readability level is dependent on the authors interpretation of the concept.

Trait | Concept Correlation
WMC | Actor 0.6699855
WMC | Functional Requirements -0.2587091
WMC | Relationship -0.4500881
WMC | Use-Case 0.04846115
WMC | Generalisation 0.1025095

Table 7.2: This table shows the correlation between the Readability of an author
and the Readability metadata that was generated for each of the concepts using

the Content Analyser.

It can be clearly seen in Table 7.2 that there exists a significant variance between
the Readability of an author and the Readability metadata that was generated for
each of the concepts using the Content Analyser. The following section investi-
gates the correlation between the VARK and the metadata produced to classify

an author and the metadata to classify the instructional material.
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7.2.3 VARK and metadata

The Pearson correlation between all metadata describing all concepts associated
with VARK was calculated as 0.04493267. Table 7.3 details the correlation be-
tween the VARK representation (described in Chapter four) of an author and the
metadata generated for each individual concept to determine if there exits a trend
across all concepts or if the VARK level is dependent on the authors interpretation

of the concept.

Trait | Concept Correlation
WMC | Actor 0.5007831
WMC | Functional Requirements 0.591608
WMC | Relationship 0.2639435
WMC | Use-Case -0.1490301
WMC | Generalisation -0.1506956

Table 7.3: This table shows the correlation between the VARK representation of
an author and the VARK metadata that was generated for each of the concepts
using the Content Analyser.

It can be clearly seen in Table 7.3 that there exists a significant variance between
the VARK representation of an author and the VARK metadata that was generated

for each of the concepts using the Content Analyser.
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7.2.4 Summary

The previous subsections were involved with an investigation of the consistency of
authors to generate instructional content. In particular eight authors were given
the task of creating instructional content suited to a module descriptor for a short
course on UML. These authors were required to complete personal profile tests,
as described in Chapter six to calculate their own personal profile. This profile
was subsequently used as the evaluation criteria for determining the correlation
between the authors and the metadata produced for the courses that were con-
structed. The investigation determined if a suitable author was found for a suit-
able learner, using the metrics described within the personal profile as discussed
in Chapter four, would mean that an author would be able to create mathema-
genic content for the learner across multiple domains. It was found that an author
could not create consistent (in terms of cognitive metrics found within the in-
structional content) instructional content within the context of a short course on
UML. Furthermore it was found that an author does not create content suited
to their own personal profile, so matching an author to a suitable learner using
the metrics described within the personal profile would not be recommended. In
summary, there exists inconsistencies when generating content, between learning
objects and matching the cognitive metrics to the author of instructional material.
These results demonstrate that an automated component should be used to create
instructional content avoiding traditional approaches of content adaptation, such
as, AHS. The following section is involved with an evaluation of the learning com-
ponent that was created to overcome the inconsistencies within learning object

repositories, referencing standards and traditional adaptive learning systems.
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7.3 Evaluation of learning component

This section is involved with an evaluation of the learning component. Thirty
nine students took part in the evaluation process of the learning component. Ini-
tially all the students completed a survey to determine any previous experiential
learning in relation to UML. The surveys showed that no student had any previ-
ous learning experience with UML content. The students then completed all the
tests as discussed in Chapter six to determine their cognitive ability and pedagogic
preference. The tests were carried out in a studio classroom environment, where
each student had ample room and access to their own computer for the duration
of the experiments. Once students completed the initial tests the student were
randomly divided into two cohorts: one group to be subjected to a traditional
introductory lecture on UML (see Appendix A for Module descriptor and details
of learning outcomes for short course on UML, Appendix B for lecture slides from
typical classroom environment and Appendix C for an example of content gener-
ated for a learner participating using the learning component) and the other group
remained in the studio classroom to participate in an introductory lecture on UML
developed by the learning component for each individual learner. Students using
the learning component were monitored by two laboratory attendants to ensure
that once the student had completed the learning content that the monitor was
switched off. Both groups were not allowed to take notes throughout the learning
experience and completed a short quiz on UML (see Appendix D for quiz and
marking scheme) after their learning experience had concluded. The following sub
sections investigate the validity of the experimentation detailing the validity of
assessment (using multiple examiners to mark examinations) and group selection.

Additionally a comparison of the results obtained is discussed.
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7.3.1 Evaluation process

The validity of the evaluation process can be divided into the following categories:
personal profile creation and environmental contexts of the learning environment,
group selection, and the examination of scripts. Each of these categories is dis-

cussed further in the following subsections.

7.3.1.1 Environmental contexts

Thirty nine students took part in the evaluation process of the learning component.
The environmental contexts of the learning environment include any previous ex-
perience within the desired domain, the physical environment within the learning
environment and any other restrictions that may influence the learning experience.
The following bullet points explore these characteristics of the learning environ-

ment:

e Initially all the students completed a survey to determine any previous ex-
periential learning in relation to UML. The surveys showed that no student

had any previous learning experience with UML content.

e The students then completed all the tests as discussed in chapter six to deter-
mine their cognitive ability and pedagogic preference. The tests were carried
out in a studio classroom environment, where each student had ample room
and access to their own computer for the duration of the experiments. Af-
ter the students were divided into two cohorts, the students that remained
within the studio classroom using the automated component had access to
their own computer for the remainder of the evaluation process. The other
cohort of students that were taking part in a traditional environment were
in a classroom with no access to computers to reduce the possibility of in-

terference.
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e The cohort of students that were taken part with the automated learning
component had an additional two classroom attendants present that were
advised to ensure that the monitor remained off during the examination of

the learning content after the learning experience had concluded.

The following section investigates the group selection protocol that was used to

divide the groups into two categories.

7.3.1.2 Group Selection

Group selection is a critical component of the evaluation process in order to ensure
that both groups consist of an even distribution of the cognitive traits that were
identified in chapter three as an ideal profile for an adaptive learning environment.
The groups were randomly selected to participate in a learning experience once
the cognitive ability and pedagogic preference of the learner had been calculated.
Table 7.4 illustrates the categories of learners within each group. The classification
of learners identifies the range of results obtained by all learners participating in
the evaluation process. The key influencial traits that the learners are described

are: working memory capacity, the readability level and the VARK score.

The following bullet points investigate the groups of learners identifies by their

personal profile characteristics:

e The classification of learners participating in a working memory test is seen
in Table 7.5. It can be clearly seen in Table 7.4 that both groups had a good
spread of learners, however there exists a grouping within the automated
component group with a low WMC category. It is envisaged that this group-
ing could have a negative impact on the learning potential of the cohort if

suitable adapted content was not found by the automated component.
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Traits Category Traditional Lecture | Automated Environment
WMC Very High 4 1
High 5 )
Medium 3 4
Low 5) 10
Very Low 3 1
Readability | Very High 0 0
High 0 0
Medium 7 4
Low 11 12
Very Low 2 3
VARK K Very Strong 7 3
V Very Strong 0 1
A Very Strong 2 2
R Very Strong 0 1
KA 3 2
RK 0 1
VRK 0 1
VAK 0 1
VARK 8 7

Table 7.4: This table illustrates the categories of learners within the groups selected

to evaluate the learning component.
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Category WMC | Readability
Very High 4.1+ 0-—>29
High 3.6 >4 30 —>49
Medium 3.1 ->35 50 —>69
Low 2.6 >3 70 —>89
Very Low 2-—>2.5 90+

Table 7.5: This table illustrates the categories of learners for working memory

capacity and readability.

e Table 7.4 illustrates the categories of learners identified after participating
in a readability test. Throughout the readability test learners were informed
of the freedom of language used throughout the test; no record was kept of
the actual text that was created only the score of the readability test was
stored. It can be clearly seen in Table 7.4 that both groups are comparable

with little differences between the groups.

e [t can be seen in Table 7.4 that there exists a wide spread of categories of
learners within the VARK section from strong single preferences through
to multi-modal preferences including all four VARK traits (Visual, Aural,
Read-Write, and Kinestic). The single most substantial grouping within
both groups is VARK.

The following section investigates the examination process for evaluating the scripts

of the learners taken part in both the automated course and the traditional course.
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7.3.1.3 Examination process

The two cohorts of learners were subjected to personal profile tests, completed

some instructional course and then completed a short examination on the learning

material.
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Figure 7.2: Comparing the results obtained from two independent examiners

The examinations were corrected by two independent examiners with no knowledge
of which type of learner completed the answer sheet to ensure that the examination
process was not reflective of a single examiners interpretation of the examination

scripts. In addition a blind marking process was implemented also to ensure that
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an examiner could not determine the results of the other examiner. A correlation
between the two sets of results was carried out to ensure the consistency and
validity of the results obtained, which yielded a correlation of 0.806, as seen in
Figure 7.2. Since there existed a strong correlation between both sets of results
no further investigation was conducted to determine the validity of the results
obtained. Further investigation of the results obtained by the learners uses the

average of both results determined by the examiners.

7.3.2 Summary

In Summary the environmental contexts for the evaluation of the learning compo-
nent were designed to ensure that no interference occurred disrupting the learning
experience of the individual learners. In particular learners were given enough time
and access to their own machine within a studio classroom environment to com-
plete the personal profile tests. Learners were randomly divided into two groups of
learners. These groups were analysed to ensure that the groups were comparable
in terms of the personal profile traits of each learner. This section also discussed
the examination process involved within the learning component evaluation to en-
sure that an examiner was consistent. This process consisted of a double marking
blind process were each author was not aware of the category of the learner or the
mark obtained by the learner. The following section investigates the potential of
the learning component as a suitable learning instrument to replace / supplement
a traditional learning approach. In particular the following section is involved with
a comparison of the results obtained by the learners using the learning component

against traditional learners within a classroom environment.
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7.4 Learning Component Performance

This section is involved with determining the effectiveness of the learning com-
ponent against a traditional lecturing experience. Firstly, this section compares
the performance of learners using the learning component against learners within
a traditional environment. The section also investigates the effectiveness of the
fitness function in identifying a suitable Minimum Expected Learning Experience
(MELE) threshold discussed in chapter five and analyses the linear correlation

between the MELE and the actual results of a learner.

7.4.1 Learning Component against a Traditional Lecture
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Figure 7.3: Comparison of the results obtained by students interacting with the

learning component against students within a typical lecturing environment
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Thirty nine students participated in the evaluation of the learning component
as discussed earlier. Figure 7.3 illustrates the average results obtained after two
independent examiners corrected the UML quiz after all learning experiences con-
cluded. It can be clearly seen in Figure 7.3 that the learners interacting with the
learning component outperformed the learners that were subjected to a traditional
lecture. The students participating using the adaptive component out performed
the students participating in a traditional lecture on average by 15.71 %. Appendix
C and E give examples of automated course output from learners interacting with
the learning component. Appendix C shows a course that was developed for a
learner that has a medium Working Memory Capacity, and weak visual prefer-
ence. It can be clearly seen that there exists very few external links to the core
learning experience reducing the possibility of interference during the learning ex-
perience. Additionally the visual constructs are present but not dominating the
instructional content. In contrast, Appendix E shows a course that was developed
for a learner with High Working Memory Capacity and strong visual preference. It
can be clearly seen that there are additional external links with additional content

including strong visual constructs.

The following subsections investigate the effectiveness of the fitness function and
also the significance of each of the traits within the personal profile to determine
the most significant trait associated with the improved performance of the learners

interacting with the learning component.

7.4.2 Correlation between the MELE and the actual result

The effectiveness of the fitness function is a measure of the correlation between
the MELE for each learner and the actual result obtained after completing the

learning experience. Throughout the evolutionary process the minimum expected
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learning experience (MELE) was initial set to seventy percent. However, due to the
small database that exists for the testing phase (due to financial constraints), as
described in chapter six a degrading element was incorporated into the evolutionary
component to ensure that each evolutionary process would produce an optimal
course for each individual learner interacting with the learning component. Figure
7.4 shows the results obtained from an examination by the learners using the

learning component against the MELE for each learner.

The correlation between the MELE and the actual results obtained was 0.274 which
implies a weak positive correlation. Further investigation identified two possible
outliers, when removed yielded a correlation of 0.57. The potential outliers were
not removed as both possible outliers where within two standard deviations of the
mean of the results. The following subsection discusses a covariance analysis that
was conducted to determine the significance of the difference between both groups

and in particular to identify the most significant trait from the personal profile.

7.4.3 Covariance analysis

A covariance analysis was conducted to determine the significance of the differences
between both groups and in particular identify the most influential traits used in

the creation of the instructional content.

Table 7.6 details the results obtained by the covariance analysis. It can be clearly
seen that there exists a strong significance of 0.00208 (probability of error) between
the groups, however it can also be seen that the traits that were selected are not
that significant in the difference between the results, i.e. the percentage error that
exists with the independent variables ranges from 40% up to 90 %. This analysis

further supports the weak positive correlation between the minimum expected
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against the minimum expected learning experience, calculated by the evolutionary

process
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Traits Values

Readability 0.915

VARK 0.403
WMC 0.44481
Groups 0.00208

Table 7.6: This table illustrates the percentage probability error associated with

each trait selected.

learning experience and the actual results obtained. In conclusion, the significant
difference cannot be determined by the selected traits, however there exists an extra
factor that has not been identified. The content was modified to suit the traits
of the individuals, however the extra factor could be involved with motivational

issues in using a new learning component or some other factor.

7.4.4 Summary

This section investigated the effectiveness of the learning component against a tra-
ditional lecturing experience. This section showed that there existed a significant
difference between learners using the learning component and learners interacting
with a traditional lecturing experience. It was found that students participating
using the adaptive component out performed the students participating in a tradi-
tional lecture on average by 15.71 %. In addition, this section discussed a compre-
hensive analysis to determine the effectiveness of the fitness function (used within
the evolutionary algorithm when evolving instructional content) in determining
the minimum expected learning experience and the introduction of a degrading
factor to ensure course creation on each evolutionary iteration. Furthermore, an

analysis was conducted to determine the most significant trait in identifying suit-
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able content. In conclusion a significant difference was found between the groups
as seen in Figure 7.3, however this difference could not be explained by the traits

identified within the personal profile.

7.5 Conclusion

This chapter discussed the evaluation of the learning component. This evaluation,
firstly, investigating the consistency of authors to generate instructional content.
The investigation determined if a suitable author was found for a suitable learner,
using the metrics described within the personal profile as discussed in chapter four,
would that author be able to create mathemagenic content for the learner across
multiple domains. It was found that an author could not create consistent (in
terms of cognitive metrics found within the instructional content) instructional
content within the context of a short course on UML. Furthermore it was found
that an author does not create content suited to their own personal profile, so
matching an author to a suitable learner using the metrics described within the
personal profile would not be recommended. Secondly, the chapter evaluated the
environmental contexts of the learning environment to ensure that no external in-
fluences interfered with the learning experiences. In particular learners were given
enough time and access to their own machine within a studio classroom environ-
ment to complete the personal profile tests. Learners were randomly divided into
two groups of learners. These groups were analysed to ensure that the groups were
comparable in terms of the personal profile traits of each learner. This chapter
also discussed the examination process involved within the learning component
evaluation to ensure that an examiner was consistent. This process consisted of a
double marking blind process were each author was not aware of the category of

the learner or the mark obtained by the learner. Finally, the chapter discussed an
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evaluation of the learning component. In particular, the chapter determined the
effectiveness of the learning component against a traditional lecturing experience.
This chapter showed that there existed a significant difference between learners
using the learning component and learners interacting with a traditional lecturing
experience. It was found that students participating using the adaptive compo-
nent outperformed the students participating in a traditional lecture on average
by 15.71 %. In addition, a comprehensive analysis was discussed to determine the
effectiveness of the fitness function in determining the minimum expected learning
experience. Furthermore, an analysis was conducted to determine the most sig-
nificant trait in identifying suitable content. In conclusion a significant difference
was found between the groups as seen in Figure 7.3, however this difference could

not be explained by the traits identified within the personal profile.
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Chapter 8

Conclusion and Future Work

It is well documented that the traditional protocol for higher education does not
suit each learner. The rhetorical method of lecturing, while presupposing cer-
tain domain knowledge and experience, is a very inefficient method of imparting
knowledge. Additionally, delivering instructional content in a typical classroom
environment creates an infeasible task for a lecturer to adapt content to suit the
needs of each learner within the classroom environment. An ideal solution would
be to have a one-to-one system, where an instructor generates mathemagenic con-
tent for each learner, taking into consideration the cognitive ability and pedagogic
preference of the learner. Obviously this is not an ideal situation considering the
high increase of learners into higher education. One solution is for higher educa-
tion to partially traverse into an online learning environment with an element of
suitable adaptive content. This chapter is involved with discussing the conclusions
from the research conducted to design, build and evaluate a learning component
to automatically generate instructional content suited to the cognitive ability and
pedagogical preference of a learner, thus increasing the potential learning experi-
ences gained from online instruction. In addition, the chapter discusses the learning

component as a framework for higher education and identifies possible extensions
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to enable the migration of higher education into an online learning environment.

8.1 Conclusions

This research investigated the following research question;

Is it possible to construct an automated learning component that generates in-
structional content suited to the cognitive ability and pedagogical preference of a
learner, independent of domain and ensuring that no meaning is lost from adaptive

strategies?

This thesis discussed two contributions to the field of technology enhanced learning,
describing a learning component (content analyser and selection model). Firstly
the thesis investigated the environmental contexts of a learning environment and
identified a suitable personal profile that included the cognitive traits and peda-
gogic preference of a learner that could be mapped to measurable cognitive metrics
within instructional content. The personal profile that was identified, in Chapter
Three, was used in the creation of a model-driven approach to metadata creation
using the traits within the profile. The thesis introduced a content analyser that
bridges the perceived gap between the inconsistencies found within instructional
content repositories and metadata standards. The content analyser successfully
migrates instructional content from various formats into SCORM compliant con-
tent with additional metadata files associated with the cognitive metrics found
within the instructional content. Secondly, the thesis introduced a Selection model
(centered on the use of a Genetic Algorithm) for content generation, enabling an
author to set a minimum expected learning experience, and modifying the weight-

ing factors for the identified traits. The thesis discusses a protocol for creating
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suitable instructional content to enhance the evolutionary process. The GA uses
the metadata that the Content Analyser generated when construction new course
material and does not rely on the author of instructional content to generate
metadata consequently avoiding the traditional problems associated with meta-
data creation (as discussed in Chapter 3). A detailed analysis was discussed to
create an optimal evolutionary strategy evolving instructional content to suit an

individual’s cognitive ability and pedagogical preference.

The learning component created instructional content for third level students.
This category of student was seen as an ideal category based on the expected
growth in third level student numbers as discussed in Chapter two. Additionally,
third level students were seen as an ideal category as third level students are es-
tablished learners and should be able to manage their own learning experience.
However, the learning component is not limited to the category of third level stu-
dent and could easily be used in a commercial environment or at earlier stages of
learning. The learning component creates instructional content in a consistent way
evolving with the instructional content metadata designed by the CA, adapting to
the personal profile of a learner. This framework for content generation bridges
the perceived inconsistencies found within a traditional lecturing environment /
traditional adaptive hypermedia system and the cognitive ability and pedagogi-
cal preference of an author of instructional content. Chapter Seven detailed the
inconsistencies found within instructional content between concepts generated by
the same author. This further suggests that a learner participating within a tra-
ditional lecturing experience is at a disadvantage in terms of content adaption to
enhance the learning experience. Additionally this suggests that content within
a traditional AHS may not be consistent in terms of cognitive metrics within the

instructional content. Due to financial constraints a number of content authors
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generated a limited amount of instructional content. This content was analysed in
terms of the structure and suitability for the content analyser and not the academic
quality of the content. Each author generated content according to the module
descriptor for a short course on UML. The GA evolves better when there is a large
repository (i.e. more possibilities for creating content). If a suitable repository is
not available the GA will evolve to the maximum fitness for any given learner as
suitable strategies have been included to avoid the GA arriving at a local mini-
mum, however this does not imply that the GA will evolve to the MELE set by
the author of the specification. The degrading factor (MELE -2 for every 2,000
epochs) was introduced to ensure that a suitable course was constructed for each

learner.

Chapter seven also discussed in detail an evaluation of the learning component.
Thirty nine students participated in the evaluation process of the learning com-
ponent. All students were first year computing students that had no previous
experiential learning involved with UML. The learning component out-performed
a traditional lecturing approach by 16% on average when delivering an introduc-
tory learning unit on UML with the first year students. In addition, a correlation
was calculated between the minimum expected learning experience and the actual
outcome of an examination after a learning experience had concluded. There exists
a weak positive correlation (0.27) between the Minimum Expected Learning Ex-
perience (MELE) and the actual outcome obtained by a learner interacting with
the learning environment. However, further investigation showed that eliminat-
ing two potential outliers resulted in a stronger correlation between the MELE
and actual outcome of 0.54. The potential outliers were not eliminated as they
were within two standard deviations of the mean. A covariance analysis yielded

a strong significance of 0.00208 between the groups, however this difference could
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not be explained by the traits within the personal profile. Consequently there
must exist some external factors that influence this significant difference, for ex-
ample, motivation whereby students interacting with a novel environment could

have been more motivated that students sitting in a typical lecturing environment.

One of the limitations associated with the experiment is the initial time required
for creating the learners profile. This could be avoided if traits were chosen that
had suitable manifestations that would be identified automatically when a learner
is interacting with a learning environment. Working Memory is one such trait as
described in Chapter three that has a number of manifestations associated with
the interactions of learner within a learning environment. If the GA was going
to produce a course to a learner without a profile, the GA could use statistics
associated with the age and sex of the learner and then after multiple learning
experiences fine tune the traits by modifying the weighting factors and produc-
ing specific courses to target individual traits. In conclusion, it is possible to
automatically create suitable content conforming to a single referencing standard
identifying metadata associated with cognitive metrics found within the instruc-
tional content. Additionally, it is feasible to automatically generate instructional
content adapted to the cognitive ability and pedagogical preference of a learner
in real-time and repackage that content to suit the SCORM standard. Using the
learning component yielded an average increase of 16 % per learner throughout
a learning experience against a typical learner within a traditional learning envi-
ronment in the case study described in Chapter 7. However, further investigation
is required to determine additional traits that could be included to increase the
correlation between the MELE and the actual outcome. In addition, these results
cannot be generalised to any group of students participating in any domain area.

The framework is designed as a modular architecture that can be adapted to gen-
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erate instructional content using any pedagogic strategy and is not bound by the
parameters of the proposed personal profile. The following section identifies some
future work that is now possible due to the modular framework of the learning

component.

8.2 Future Work

This chapter concludes with a number of possible extensions to the research con-
ducted to strengthen the fitness function and utilize the created framework for

content adaptation.

8.2.1 Enhancing the learning component

The results outlined in Chapter seven demonstrate that it is possible to generate
a course adapting content to the individual cognitive traits and pedagogic pref-
erence of a learner. However, the correlation between the MELE and the actual
outcome is 0.27. If more cognitive traits were incorporated into the evolutionary
process it could increase the correlation between the MELE and the actual out-
come. In particular, the associate learning skill of a learner should be included
to allow adaptation to the domain content and previous learning experience. To
enable this level of adaptation each learning experience should be documented and
saved. Over time the system would be able to incorporate the associate learning
skill of a learner as a metric within the evolutionary component and using context
sensitive metadata describing the domain content, identify suitable content adapt-
ing to previously discussed cognitive metrics within the instructional content. The
modular design of the learning component would enable easy integration of mul-
tiple cognitive traits as metrics for the evolutionary component. Additionally, an

investigation of suitable motivation strategies should be carried out to ensure that
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the learner using the learning component are engaged with the instructional con-
tent for the duration of the learning experience without impacting on the potential

learning experience.

8.2.2 Utilizing SCORM to create a rich client experience

The content produced by the learning component is SCORM compliant. Creating
a rich interactive client side experience tracked using the SCORM data model ele-
ments would enable the automatic monitoring and adaptation protocol to change
the current environment and instructional content depending on the learners in-
teractions. This type of protocol would enhance the engagement of a learner

producing suitable interference when appropriate.

8.2.3 Avoiding black box problems

The content produced is based on reconstructing content from suitable reposito-
ries. It is clearly evident that when the instructional space is small the learning
component evolves at a slower evolution rate than when the learning space is
large. This is due to the inconsistencies of the instructional space and the limited
mutations available to the learning component to break out of a local minimum.
Increasing the instructional space would avoid this problem. The instructional
space could be increased by collaborating with multiple institutions or creating a
web crawler to identify suitable content. However, as discussed by Norm Freis-
sen [2] there exists huge inconsistencies in metadata production for instructional
content. An additional component should be included to allow learners to com-
municate with the learning component and identify inconsistencies found within

instructional content.
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8.2.4 A Flexible Framework for fine tuning

The framework that was produced requires a suitable repository to allow the evo-
lutionary strategy generate instructional content. It was recommended that the
MELE be set at seventy percent at an Internal conference on Learning to allow
the learner exceed beyond the MELE. This recommendation suited the evolution
strategy associated with GA (i.e. GAs perform really fast for the initial evolution
but require a significant amount of time in identifying the ideal solution, depend-
ing on the problem). The framework is a modular framework and is designed to
evolve content to suit the metadata produced by the content analyser. The anal-
yser could easily be extended to generate suitable metadata associated any trait
that was identified by an author. The fitness function within the GA would need
to be updated to reflect this modification. The specification allows an author to
define the MELE and also the weights associated with each trait. The weights give
the different traits higher / lower importance throughout the evolutionary process.
An author of a specification could make modifications to these weights and reduce
the importance of a trait that the author wanted the learner to get some experi-
ence with. For example, if a learner was identified as having low working memory
capacity, the model could generate a course to suit a learner with higher working

memory and train the learner to cope with a large instructional space.

8.2.5 Turing test validation

The framework that was created allows for multiple pedagogic metrics to be identi-
fied within instructional content to create suitable granular learning object repos-
itories. These repositories are then harvested to create instructional content. The
repositories from the evaluation process for the framework were created from in-

structional authors participating in the process, however if a suitable search strat-
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egy included crawling the web and other learning object repositories prior to pro-
cessing the data through the Content Analyser there would exist large amounts
of elements with suitable metadata. Increasing the number of objects within the
repository enhances the potential for the evolutionary strategy. A Turing test could
be used to identify whether a course constructed from the framework covered the
learning outcomes, which would be validated by content experts. This process
could move to producing a flexible framework for on-demand content generation

suited to the cognitive ability and pedagogic preference of any learner.
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UML Use-Case Module

Descriptor
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UML Use-Case Module Descriptor

Aims and Objectives

e To introduce the fundamental theory and elements involved in UML Use

Case design.

e To develop functional requirements for a given task and to identify the actors

associated with the functional requirements.

Learning Outcomes

On completion of this module, Students will:

e [LO1: Have gained a specialised knowledge of the elements involved with a

UML 2.0 Use Case diagram.

e [LO2: Understand the principals involved in creating UML Use Case models

and the actors associate with the models.
Content
1. UML Use-Case

e Why use UML Use-Case diagrams
e Use Case

e Use Case diagram
2. Actors

e Primary actors
e Secondary actors
e Time actor

e J<systems>>actor

3. Functional Requirements
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UML Use-Case Module Descriptor

e Requirements definitions
4. Relationships

Between Use Cases

o Extends

Includes

Binary association between an actor and a Use Case
5. Generalisation

e Between actors

e Between Use Cases

Teaching and Learning Methods

Twenty minute lecture or using learning component

Assessments and Marking Schemes

Terminal Examination 100 %
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Traditional Slides for UML

Course
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Traditional Slides for UML Course

Use Case Modeling

Aim and Objectives

Aim
To understand how to write
Requirements using Use cases

ObjECﬁVES
To understand
* Functional Requirements
* Actor
* Use Case
* Relationships
* Generalisation
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Functional Requirements

Requirement Definition

» Use cases
— Documenting the potential requirements of a new system
— Describes how the system should interact with the end user
or another system fo achieve a specific business goal
— Uses language of the end user, avoids technical jargon

Software Requirements Specification (SRS)

* Functional Requirements

— complete description of the behaviour of the system to be
developed

* Non-functional requirements
— Constraints on the design or implementation
— E.g. performance requirementis

= An Actor represents anything outside the
system that interacts with the system.

(@]

Actor

= Primary Actors

= Secondary Actors
= Time Actors

= <<sysiem>>Actors
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Primary Actor

Actors are not part of the system.

It is outside the system.

They represent roles a user of the

system can play.

An actor can actively interchange

information with the system.

An actor can be a passive

recipient of information or it can
System be a giver of information.

An actor can representa human,

a machine or another system.

Secondary Actor

someone or something
outside the system that
is acted on by the system

System
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Time Actor and <<systems>> actor

For the online shopping introduce an Actor Called
“Time* to Initiate Scheduled Events.

Use <<system>> fo indicate System Actors

earch For
tems
—
tem >

<
1 Place Order Payment Processor

Release 1

Customer
Ohbtain Help —f

Release 2 ¢ ystomer Support
Time Release 3 Tax Authority

Use Cases — Why?

Use cases diagrams are used to:

= document the business process

- identify possible collaborative business areas

- separafe busimess processes info funcfional system areas

= serve as requirements documentation for system development,
as they are defined in a non-implementation/easy-to-read
manner.

- calegorize requirements (e.g., state of implementation, shipyard,
functional system, eic.)

= rank requirements (e.g., level of importance, risk, level of
interoperability, etc.)

- identify the effects of funcfional changes on implementation
systems, or implementafion changes on functional capabilifies

159



Traditional Slides for UML Course

What Is a Use Case?

UA Use Caserepresents one way to use the
system by an actor

UA Use Case describes the dialogue between
an Actor and the system.

Uit describes whatthe system doesin
responseto actions the Actor takes.

QIt provides meaningful, measurable value to a
specific Actor.

Use Case

Use Case Diagram

Caller Flace Local Phone
call

An association between an Actor and
a Use Case indicates that they interact.
The direction of the arrow indicates
who initiates the communication
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Indicate?

M Each arrow contains messages
Present dialtone and usually return messages.
Dial first digit
Silence dial-tone

? |:> © ringphone ::
dial subsequent digits |Iﬂh‘3|’1da&t -:,a";;t:e

Cafler ~ stopdialling |

connect call e
The communication arrow tells who
started the communication.

Relationships

Relationships between Use Cases
« Extends
* Includes

Binary association between an actor and
a Use Case
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Why use the “Extends” Relationship ?

To model optional behaviorin a
Separate use case

To simplify a complex flow ——
of events

e S

Temperature Adjustment
i

To model behavior that is fo '
be developed separately, sextendss
possibly

in late iterations

Statistics Collection

To model behavior that require
different post conditions.
{optional)

The Extends Relationship

The extended use case A must be complete:

* Does not know of the extending use case B, that is,
itis A is independentof B

* When instantiated, the instance may perform the
behavior described for B as well as that of A

The relationship:
* Has a probe that tells where in A to extend
* Has a condition that tells when to extend
* The direction goes from the extending use case B, to
the extended use cases A
The extending use case, B, knows which use case to
extend
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Includes

A given use case may include another.

"Include is a Directed Relationship
between two use cases, implying that the
behaviour of the included use case is
inserted into the behaviour of the
including use case”.

Track Order

Make Withdrawl Log Error

g tand»

“includex
Process Transaction

Make Deposit
Validate User

RecordOutcome
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Binary association between an actor and a
Use Case

An actor-use case
association is a
semantic
relationship
between an actor
and a use case.

This association is
typically not named
and consists of
exactly two
association ends.

The association
ends are simply the
end parts of the
association where
they connect to the
actor at one end
and the use case af
the other.

247
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Course for learner with low WMC
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\ National
Collegeef

Ireland A Short Course on UML

1. UML Use Case
2. Actors

3 Functional Requirements

4. Relationships

n

Generalisation

A conrse designed just for your!
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Objective
To understancl:

= Why use TTML TTse-Clase diagrams
= TT=ze Claze
= Lize Caze diagram

Why use UNML Use-C'ase dingrains
Use cases dingrames sre uscd Lo:

= document the buginess procesg

identity posgible collaborative business areas

separate business processes into iimctional system areas

serve as requurements documentation tor system development, as they are defined in a non-implementation/easy-to-reac
manner.

identify possibilities of system or component reuse

categorize requirements (e g state of implementation, shipyard, functional system, etc)

rank recuirements (e.g.. level of importance, riglk, level of interoperability, etc.)

publizh requirements at various levels (e.g.. detailed design requirements, hanger analysis requirements, docnment
mungeneuldosmunenl crealion reguircuients, ¢le.)

wdenaly the ellvelz of lunchonal changes on nuplanculation sy=lonz,. or nuplanculation chisnges ou [unchonal capabiilic:

TUse Case

Use Case diagraim

Use Case

Use Case diagram

A Use Case represents one way to use the system by an actor. The Use Case describes the dialogue between an Actor and the
system. It describes what the system does in response to actions the Actor takes. It provides meaningfill. measurable value to a
specific Actor.

T P

Use Case

Use case diagrams provide an overview of the usage requirements for a system. They are useful for presentations to management
and/or project stakeholders, but for actual development you will find that use cases provide significantly more value because they
describe "the meat" of the actual requirements. The figure below shows a use case diagram for placing a local call. The diagram
contains actors and a use case.

(O

Caller Place Local Phone
calt
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<<includes=>>

e

Make Booking

Check Availabili@

™.
%

“
<<includes>=>

\_
<<ingludes>> zﬁ(/Sa\.'e Booking)
\___4_/

details

Customer
Q /

Receptionist

( Confirm Booking

The above figure gives a diagranunatical representation of a Use Case diagram for an online hotel reservation system. The diagram
shows both the receptionist and the customer following the same process of making a booking, with the system then checking
availability and confirming the booking, In the initial stages of the requirements capture process, this would be sufficient detail. As the
overall development continues, then each of the Use Cases in this diagram ( for example "Send Confinnation Details" ) weuld be
documented in more detail.
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In UML Design Actors are people or processes that interact with your system. Actors are classified as: Primary actor, Secondary
actor, Time actor and a Systems actor.

» Primary actor: represents the principal individual interacting with your system. Primary actors are primarily located at the top
left comer of a UML Use Case diagram (in western cultures people read from left to right, top to bottom).

o Secondary actor: this actor ig uged to represent another person interacting with the system. Secondary actors would typically
be involved with the operations of the system.

s Time actor: the Time actor iz used to reflect a process that occurs periodically.

o Sysfens actor: represents an automated response to a customer driving interaction.

Customer

The figure above gives an example of an actor. The actor is drawn as a stick man with a name associated with the actors roll.

Digital Document
- e =g -\-“.
\ T View list of
AN {row st paues )
/N O
Customer P T —
b for Text b
—
— F \
Select a page | <<gystems>>
O —
il S, o N
\_ privilages 4)
/! \\ o -
SN
v
=Lime

The figure above gives an example of a digitived document system. The main actor interacting with the system is a customer. The
customer can view the list of all the pages, Search pages for specified text and select a page. The Systems actor uses data mining
strategies to locate the desired information. The Time actor periodically updates the access privileges on each account.
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There are a munber of different requirements which a system may have. Three of the most common are fimctional requirements,
non-functional requirements and domain requirements.

Functional requirements
Statements of services the system should provide, how the system should react to particular inputs and how the system should behave
in particular situations.

Non-functional requirements
constraints on the services or functions offered by the system such ag timing constraints, constraints on the development process,
standards, etc.

Domain requirements
Requirements that come from the application domain of the system and that reflect characteristics of that domain
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Relationships

A relationship is a connection between elements. Relationships are nsed to add structure and behaviour to the elements within the
system.
Relationships Between Use Cases

The incizide relationship is used when several use cases need to complete the same sequence of actions. This relationships allows

the incorporation of reusability and conzistent behaviour into the system. When a use case is depicted as using the functionality of
another use case in a diagram, this relationship between the use cases is named as an include relationship. Literally speaking, in an

mclude relationship, a use case mcludes the himctionahty described m the other use case as a part ol its busmess process flow. An
include relationship is depicted with a directed arrow having a dotted shaft. The tip of the arrowhead points to the parent use case
and the child use case is connected at the base of the arrow.

Above is a representation of the include relationship.

The extend relationship is seldom used. In an extend relationship between two use cases, the child use case adds to the existing
functionality and characteristics of the parent use case. An extend relationship is depicted with a directed arrow having a dotted
shaft, similar to the include relationship. The tip of the arrowhead points to the parent use case and the child use case is comected
at the base of the arrow. This relationship is used to indicate a given nuse case may extend to another use case. usually indicates use
cases that are optional to the base use case. This is generally used when a use case becomes complex and it is split out in order to
keep things simple.

Binary asseciation between an Actor and a Use Case

An association exists when an actor is involved in an interaction described by a uge case. Binary associations are represented by a
line with two ends. An example of a binary azsociation is 'A department offers cowrses’

—_—
Maka apposttmen
. <tinclude»s
‘alidate pment records
-

Above is a representation of the inchide relationship.

Parform medical tests

|
Jétextendry

Above is a representation of the extend relationship.
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Objective
To understand:

s Generalization between Actors
» Generalisation between Use Case

Generalisation between Use Case

In the third form of relationship among use cases, a generalizationSpecialization relationship exists. A given use case may have
conunon behaviors, constramts and assumptions to the general use case, describe them once, and deal with 1t m the same way,
except for the details in the specialised cases. The notation is a solid line ending in a hollow triangle drawn from the specialized to
the more general use case.

Generalisation between Actors
One popular relationship between Actors is Generalization/Specialization. This is useful in defining overlapping roles between
actors. The notation is a solid line ending in a hollow triangle drawn from the specialized to the more general actor.

Usear

CUSsTomer Achhministrator

< |
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Thank you for participating, please turn off your screen and start
the quiz.

A conrse designed just for your!
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Quiz and Marking Scheme

Answer all questions. Award 5 marks for each question.

. What are UML Use Cases used for?

Award marks for the learners understanding of a UML USE-Case. In partic-
ular, award marks for the learners ability to give suitable examples of where
to use UML Use Case diagrams.

. Differentiate between a Primary actor and a systems actor.

Award marks for the learners understanding of the differences between a pri-
mary and a systems actor.

. List two functional requirements of a library computer system?

Award marks for each appropriate functional requirement that is listed.

. What are the different relationships that exist between Use Cases?

Award marks for the learners understanding of the different relationships that
can exist between Use Cases.

. Give an example, using UML notation of a generalisation between two actors.

This question 1s involved with understanding of using a generalisation be-
tween two actors. Award marks for a suitable example using UML notation

tllustrating a generalisation between two actors.
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Course for learner with high WMC
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Ireland A Short Course on UMT.
1. UMIL 1Tse Case
2. Aclors
3. TFunclional Requiremenis
4. Relationships
& Generalisation
A conurse designed jrst for you!
ﬂ\ & &
National
College«/
Ireland
UML Use Cases
The Tnified Modelling Language (ITML) is used to model problems throughout the software development life cycle of a software
engineering project. TTMT. TTze Clase diagrams are nsed to show the relationship between the functional recpuirements of a software
system and the people mvolved in mteracting with the system.
it - -\_\\
| Open Aczount )
NG
0 T T
TT ———{ Deposite Funds )
N |
\S —
AR
i 3 Y i A
Qustomer %, Withraw Funds )
\_\ N par”
N ™™ o Ty
Y Close Account |
i
The above figure gives a simple example of a bank account system. It can be seen that within the bank account the customer can
Open an Accownt , Deposit Funds | Withdraw Fundsz and Close an Account . UML docesn't require that you stack the Use-Caszces
in any order, however ag can be zeen if the Use-Cages are stacked in a logical order it will increase the readability, example, you
camot Cloge ar Account if you do not have an account open.
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|niﬁal Desi!ﬂ Reservation System Sub'Djagram.'

Check in
@ Check in
Ticket Clerk ot Passenger )

//

%

O
f’/ \

R
" had
Reservation
L

| o™

<inelude

Luggag

<cinchde

AL e

To add detail
(extension): “eheckin ™, <nclude:> ~Fasigm Seat™
Passenger ’%( )
<ineludes> <band>

oxtond

<" Assign Aisle
Seat

Weigh ~ Assign
Luggage (\ Window Seat
i T

Figure 1. Example of a Use Case Disgram

Figure 1. shows a simple example of a Use Case Diagram. The include arrow ig drawn from a use case X to another use case Y to
incicate that the process of doing X always involves doing ¥ at least once (althongh it may involve doing it many times, "at least
once" is the only relationship guaranteed by this symbol.) The extend arrow is drawn from a use case X to a uge case Y to show
that process X is a special case of the more general process Y. Suppose you wanted to add detail to the diagram shown above,
representing an airline reservation system. Specifically, what you would like to show is that not all of the seats aboard the airplane
are exactly alike (zome window and some aisle seats), . But of course, they cannot just be given their preference right away,

because the seat they want might not be available. Therefore, the process of assigning a window seat involves checking for the
availability of window seats, whereas the process of assigning an aisle seat involves checking for the availability of aisle seats. But
even though these processes are different, they are quite similar in # number of other ways, so it doesn't make sense to ignore their
similarities. Fortunately, UML lets us have both: we write that assigning these two types of seats are different processes, but they
are similar in that both processes extend a conunon, more general process (assigning seats).

0
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Primary Actor

The primary actor may be defined as: The stakeholder that initiates the interaction with the use case in order to achieve the
successful execution of the function.

Secondary Actor

These are actors interacting with the system from which the system needs assistance to satisfy its goals. An actor defines a

coherent set of roles that users of an entity can play when interacting with the entity. An actor may be considered to play a separate
role with regard to each use case with which it commnicates.

Example of a Primary Actor called "Cletk" interacting in with another Actor called "Customer".

Clern

Example of an Actor called "Customer" interacting in a UseCase Diagram.

/

~
L pu Check Balance
Customer \\

e ™

Print statement 3
o

<
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An Aclor represenls anylhing oulside the systen (hal nleracls wilhn the syslem. Aclors are nol parl ol lhe systen. It is pulside (e
gyatem. They represent roles a nser of the system can play. An actor can actively interchange information with the system. An actor
can be a passive recipient of information or it can be a giver of information. An actor can represent a Inunan, a machine or another
gystem. An actor that iz the initiator of the interaction with a nse casc may he referred to as the 'primary actor'.
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Functional Requirements

Functional Requirements capture the intended behaviowr of the system. Defining a function requires a set of inputs (which could be,
tor example. preconditions, calculations, or technical details), a behaviour, and a set of outputs (which could be, for example, data, a
state change for the System, or another accomplished task). Functional requirements define what a System should do, as opposed to
nou-functional requirernents, which way define olher couslraints e Syslemn operales under, for slance, the securily or reliability of
the System.

Finctional recuuirements lead direetly to TTse Clases. Tt is possible to gather all fimetional requuirements and then desceribe the TTze Clases
Lauzed upon then Tu realily, il is likely (hal the process ol Use Case modeling will highlighl luriher lunclional requiremnents, which will
in turn generate new Lise Cases. Requirement gathering and Use (Case modeling are iterative and mterhnked processes. I'urtthermore,
once the software hag been degigned and implementation starts, it is likely that this will highlight finther finctional requirements. For
this reason. one cannet consider the design process to be incremental. but instead must look at the process as iterative. It is inportant
not to over-dezien the System or TTee Cazces ag changes will always have to be made and the time expended in perfecting the
documentation may not prove valuable.
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Relationships

In UML design there exigts different relationships between UML Use Cases: Extends and incindes . Extends iz modeled to illustrate
when the functionality of the base Use Cage iz being extended. It is important to note that this extension iz not required to take place
iuuuedialely butl will oceur. fFrefucdes is modeled (o illusirate when a Use Case instinliales anolher Tse Case lo perfonn some lask.

- <<
\
s —
View list of pages —
K \\f Generale thumbnails
Ior resultant pages
gAr~—"
"\ ;&/
Soarch pages for

r
Customer
\‘-___/ ))

*

-

AN sexendsy
View datasheet Exlt datasheet view

\
S — \"\____,/
The above fioure gives a zimple example of the differences between inciiides and extends. The Use Cages represent limited
functionality associated with a Digitised Document System. The Customer is the primary actor and can: view lisf of pages, search
preagzens foae Lok view er clerfenshieed. TLcam be seen thal bothe vienw s ool pagres and secaeech peages fr fexd Tse Cases are associaled
with the iriciudes keyword. This implies that once either Use Case is invoked the pererate thumbriails for resuifant pages is
automatically invoked by the Use Case. It can also be seen that the Use Case view dafashest is modelled using the exdercly
keyword meaning that at gome point the Customer will have to exit the datashect view.

<

—
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St

Above ig a representation of the inelude relationship.
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We have already seen that there are several types of relationships that may appear on a use case diagram: An association between
an actor and a use case, and An association between two use cases. These associations are depicted with lines connecting two
modeling elements with an optional open-headed arrowhead on one end of the line. However if we use a closed arrow head then the
relationship is called a generalisation. We say that Generalisations are depicted as a close-headed arrow with the arrow pointing
towards the more general modeling element.

Figure 4. Use Case Relationships with Generalization
Enroll Student
Seminar
I
<<extend>>

o
L nroll Family
Internlnal

Figure 4. Use Case Relationships with Generalization

<<include>>

Student

Interhational
Student

Between actors

Apply the “Is Like™ Rule to Use Case Generalization (zee Figure 4). Here we see that the Use Case Enroll Family Member “Is Like™
Enroll Student.

Between Use Cases

Apply the “Is Like” Rule to Actor Generalisation (see Figure 4). In this caze an Intemnational Student “Is Like” a Student.

L | 0 v

——
\ National
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CGeneralisul
One popy H Ackors i CGreneralizalion/Specialization. "This is nsefil in defning overlapping roles belween aclors.
"I'he notation is a solid line ending in a hollow triangle drawn from the specialized to the mare general actor.

belween Aciors

s

P
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e

University Worker

A generalization existing between two actors exists when yvou have a more general type of actor, for examyple (as zeen below) a
generalization of an /fire worker and a lacsrer wonld be a Thiverzizy waorker . The nniversity worker wonld have traits that are
conunon to both of the sub categories (office worker and lecturer).
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Thank you for participating, please turn otf your screen and start
the quiz.

A conrse designed just for you!
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