
AISHE-C 2009 http://ocs.aishe.org/index.php/international/2009/paper/view/134 Page 134.1

Proceedings, AISHE-C 2009, NUI Maynooth, Ireland, 27-28 Aug 2009. Editors:
Linda Carey, Helen Guerin, Sylvia Huntley-Moore, Saranne Magennis, Barry

McMullin.
http://ocs.aishe.org/index.php/international/2009/index

Creative Commons : Attribution-NonCommercial-ShareAlike 3.0. Some rights
reserved.

http://creativecommons.org/licenses/by-nc-sa/3.0/

Using Student Understanding to inform the
development of Learning Content

*

Frances Sheridan
†

Orla Lahart

†

†National College of Ireland

Abstract

The challenges associated with teaching computer programming are recognised (Biddle &
Tempero, 1998; Jenkins, 2002). However, categorising the different ways in which students
understand or think about programming is central to improving teaching and learning in the
area. This paper presents an empirical study, which investigates students’ understanding of
the iteration concept in computer programming. The study involved two phases carried out
over two academic years. Phase one involved 22 student interviews using a
phenomenographic research approach (Stamouli, 2007). A phenomenographic research study
identifies a finite set of ways in which students understand particular phenomena. The data
arising from student interviews formed categories of understanding, which indicate that
although students may be proficient in programming iteration, a deep understanding of the
concept may be lacking. While this type of data may also be captured in exams, an empirical
research study such as this is necessary to explain the origins of the understanding or
misunderstanding.

As a result of phase one, a number of modifications were made to the teaching resources
associated with iteration and their delivery. Phase two involved 18 student interviews using a
phenomenographic research approach. Once again, data from these interviews formed
categories of understanding. A comparison of those categories arising from phase one and
phase two of the empirical study indicate a deeper understanding among students from phase
two of the research study. This suggests that analyzing student understanding and using this
to inform the development of learning content may have a positive effect on teaching and
learning.

This paper has the following format, section one provides an overview of the key challenges
with teaching computer programming. Section two provides a detailed explanation of the
phenomenographic research approach. Section three presents phase one of the empirical
study and its results, with section four outlining the modifications made to teaching resources
based on those results. Section five describes phase two of the study with its results and
section six draws conclusions and outlines the next steps in the research journey.

*
URL: http://ocs.aishe.org/index.php/international/2009/paper/view/134

http://ocs.aishe.org/index.php/international/2009/paper/view/134
http://ocs.aishe.org/index.php/international/2009/index
http://ocs.aishe.org/index.php/international/2009/index
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://ocs.aishe.org/index.php/international/2009/paper/view/%5Binsert%20ocs%20id%20number%5D

AISHE-C 2009 Page 134.2

1. Introduction

We have recently experienced a decline in interest among students looking to study Computer
Science. This has led to a shortage of software engineers, computer programmers and computer
systems managers (Expert Group on Future Skills Needs, 2006). In particular, a potential shortfall
of up to 2,300 computing graduates in Ireland is predicted by 2010 (Expert Group on Future Skills
Needs, 2003). A number of factors affecting computer science as a discipline have been identified
(Denning, 2004). And computer programming has been proposed as a primary factor (Cantwell
Wilson & Shrock, 2001; Jenkins 2002). To tackle this, an appreciation of student understanding of
computer programming is desirable. One way to gain this understanding is through
phenomenographic research.

2. Phenomenographic Research

The phenomenographic research approach involves “the empirical study of the differing ways in
which people experience, perceive, apprehend, understand and conceptualise various aspects in
and of the world around us.” (Marton 1994). The approach emerged from the question of why
some people are better learners than others and involves an understanding of the distinction
between “what” people understand and “how” they understand it (Marton & Dalghren, 1976). A
phenomenographic research study identifies a finite set of ways in which people understand
particular phenomena. These terms of understanding are known as categories of description which
then form the outcome space for the study.

This paper presents an empirical study, which investigates students’ understanding of the
computer programming concept of iteration. The study involved two phases and was conducted
over two academic years. As a result of phase one a number of modifications were made to the
teaching resources associated with iteration and its delivery. The research study will now be
described in detail.

3. Study – Phase One

Participants comprised students across three different computer science programmes at the
National College of Ireland. All students were currently studying a computer programming module
where iteration was a core topic. An opportunistic sample of 22 students participated in phase one
of the study. Students first completed a questionnaire to gather information on age, gender, prior
programming experience and educational background. In addition to this basic statistical
information, this questionnaire also contained three questions pertaining to the students’
knowledge on programming. Following this, students were asked to participate in interview
sessions. Twelve students were interviewed individually and 10 students were interviewed in a
group session. Each interview was transcribed verbatim in its entirety. This was an important
phase of the study as with phenomenographic studies interviews play a critical role in forming the
outcome space.

Data for this study was analysed in a phenomenographic manner. As outlined earlier, all interviews
were transcribed verbatim. This allowed the researcher to capture not only what the subject said,
but also the context and atmosphere in which it was delivered. Throughout the first reading of the
transcripts, keeping all research questions in mind, utterances of relevance or interest were
marked. At this early stage the utterances were interpreted within the context of the overall
interview. This collection of marked statements was then compiled and grouped, taking into
account both relationships and differences. These groups formed the data pools which would be
the basis for the next step of analysis. The process was interative, during which some utterances
were removed and some regrouped. This resulted in the emergence of 3 categories under the
theme of repetition.

Theme: Category Name Category Description

AISHE-C 2009 Page 134.3

Repetition Repetition as a pre-determined
counter controlled attribute of
iteration

repetition of a block of code is
controlled and pre-determined by a
counter mechanism

 Repetition as a counter controlled
attribute of iteration

A)repetition of a block of code is
controlled by a counter mechanism
but not necessarily pre-determined

 B)As above but there is an
assumption that the counter must
also have a role in the block of
code being repeated

 Repetition as an event controlled
attribute of iteration

repetition of a block of code can be
controlled by an event such as
user input or a counter

These categories represent the different levels of understanding of iteration among participants. In
the first category, students understand loop repetition to be counter controlled and assume that a
counter is always necessary for a loop to repeat, and that the loop will repeat a predetermined
number of times. Here the repetition is experienced as being controlled by a counter and pre-
determined by the programmer before runtime. This understanding is evident in the following
excerpt taken from an interview with Andrew. For the purpose of anonymity all names are replaced
by pseudo names.

Interviewer: Ok, very good. How do you control how many times a loop runs?

Andrew: Well you need to input that into your loop like if you wanted it to be 9 times
you might put in 9 and if you wanted it to be 4 you might put in 4 or something.

In the second category, students understand loop repetition to be counter controlled but not
necessarily pre-determined. Here students understand that the number of iterations can be
determined by the user at runtime. When asked to explain what a loop is, Glen explains that “A
loop is a part of a program that allows certain parts of it to be repeated over and over again for a
certain amount of times specified by the user.” Glen is immediately identifying that repetition can be
controlled by the user. Within this category, one variation occurred where the understanding is as
outlined above, except that there is also an assumption that the counter must also play some role
within the loop process. For example, the value of the counter must be printed or added to a sum
variable or used to access the contents of an array. During the study students were often observed
printing the value of i through each iteration of the loop simply because they thought that they had
to. This variation was evident more through researcher observation than interview data, therefore it
is not a category in its own right but merits mentioning.

In the third category students understand that the number of times a loop repeats can be
determined not only using a counter, but it can also be event controlled. This is experienced as the
user being asked if they would like to run the loop again and then depending on the user input, the
loop may or may not be repeated. This loop does not use a counter as in the previous two
categories. Fred describes one example of this below.

Interviewer: And have you ever done any loops where the user would control when the
loop would end?

Fred: Yea em, they were one of the first loops we did, they were actually quite simple
eh, even because you just let the user press yes to redo the loop.

AISHE-C 2009 Page 134.4

Through further analysis of the interview data, questionnaire answers and following discussion with
the module lecturer, one key notion was identified as a possible foundation for these categories.
Although there are three types of loop in the java language, students seem to favour the for loop
most of the time. This was initially observed by the researcher during the study when students
were attempting to complete tasks. Most, if not all of the students, first tried the for loop when
writing a program that required a loop. This observation was further confirmed with comments and
answers students gave during interviews. When asked how do you decide which loop to use Brian
replied, “You just generally use a for loop.” Other students explained how they related different
examples with particular loop types. The three categories of description that emerged from this to
form this outcome space represent three varying levels of understanding present among the
participants. While none of these understandings are incorrect, some simply represent deeper and
perhaps more thorough understanding than others.

4. Modifications to Teaching Resources

In an endeavour to progress students’ level of understanding from that outlined in the first category
to a deeper level of understanding as outlined in the second and third categories, two primary
modifications were made to the teaching resources. Firstly, the order in which the loop structures
were taught was adjusted in an endeavour to decrease students pre-occupation with the for loop.
Students were introduced to the while loop first followed by the for loop. Secondly, students were
presented with a number of problems which endeavoured to separate the counter and process
aspects of repetition. In particular these problems involved printing the words of well known songs
where repeating words were handled using repetitions. An example of this type of teaching
resource is the Five Little Ducks nursery rhyme.

Five little ducks

Went out one day

Over the hill and far away

Mother duck said

“Quack, quack, quack, quack”

But only four little ducks came back

Four little ducks

Went out one day

Over the hill and far away

Mother duck said

Quack, quack, quack, quack"

But only three little ducks came back. Etc.

There is clear repetition between the verses and within each verse ("Quack, quack, quack,
quack."). Also, such a problem allows for a deeper understanding of how a repetition might be
controlled by an event such as user input. For example, the code might include questions such as,

AISHE-C 2009 Page 134.5

“Would you like to see the words again?” It was expected that the provision of this type of real
world problem might encourage a deep understanding of the concept of iteration.

5. Research Study – Phase two

A total of 18 students participated in phase two of the study. Once again, participants comprised
students across three different computer science programmes at the National College of Ireland.
Similarly to phase one of the study, participants were asked to complete a questionnaire to gather
basic statistical information as well as assess students’ knowledge on programming iterations. All
18 students agreed to be interviewed and two group interviews took place where students were
asked questions pertaining to iteration, and then engaged in discussion of the topics amongst
themselves. Once the interviews were complete all data was transcribed verbatim and the data
was analysed in the same manner as in phase one of the study. The final outcome space for phase
two of the study consists of only two categories of description under the theme of repetition as
described in Table 2.

Theme: Category Name Category Description

Repetition Repetition as a counter controlled
attribute of iteration

repetition of a block of code is controlled
by a counter mechanism but not
necessarily pre-determined

 Repetition as an event controlled attribute
of iteration

repetition of a block of code can be
controlled by an event such as user input
or a counter

The first of these categories is similar to the second category identified in phase one. In this
category students understand loop repetition to be counter controlled, but also acknowledge that
the number of repetitions is not necessarily predetermined. This is apparent in the following
interview excerpt.

Interviewer: Can we write a loop without knowing beforehand how many times it is
going to run?

Bart: Could it be like when, it’s eh, say you are using the for loop, you say int i is eh,
equal to zero and then i less than the amount of times the user enters.

Here Bart acknowledges that although the loop is counter controlled, the number of times it repeats
can be determined by the user at runtime. This conception was further supported by answers given
on the questionnaire before the interviews. For example, when asked, “What is a loop?” Ian
answered, “A loop is a specific code to repeat lines of code a set number of times.”

The second category is similar to the final category identified in phase one. Here students
understand that loop repetition can be either counter controlled or event controlled. The following
interview excerpt highlights one example provided by students of how loops can be event
controlled.

Interviewer:Can you give me an example of where you might use a loop?

Tom: Running a program again. Like with iBox, you ask the user do you want to run the
program again and if they say yes then it does, or no, then it doesn’t.

Here Tom demonstrates a clear understanding that the user can control, through his/her actions,
how many times a loop will repeat. This again is further supported by a number of written
responses to the question, “What is a loop?” John answered, “A set of instructions which is run

AISHE-C 2009 Page 134.6

until a certain condition is true or false,” and Peter wrote, “By a statement which will return either
true or false.” The use of the words true and false in these answers and the acknowledgement that
some condition or statement will be tested shows a clear understanding of event controlled
iteration as described with the nursery rhyme example in section 4.

While there are still two different categories of understanding present in phase two of the study,
there is a clear distinction between outcome spaces of the two phases. There was no evidence in
phase two to support the presence of the first category from phase one. This indicates that the
changes made to the course material following phase one had a positive impact on students’
understandings in phase two, and suggests that using students understandings to inform the
development of learning content may have a positive effect on teaching and learning.

6. Conclusion & Further Research

The results of this study provided a reminder of the importance of real-world examples for student
learning. It was evident that the greater the number of examples experienced by students the
deeper the level of understanding. This is significant for educators as it reinforces the benefits of
learning-by-doing. Furthermore, this research provides a reminder for educators that what appears
to be student understanding may actually be a mechanical response to a well practiced problem or
similar set of problems. Therefore, there is a continuous responsibility for the refinement of
teaching resources and indeed assessment to encourage deep learning and understanding among
our students. In order to do this there is a need to continuously explore students understanding
and indeed misunderstanding.

7. References

Biddle, R., & Tempero, E. (1998). Java Pitfalls for Beginners. SIGSCE Bulletin, 30(2), 48-
52.

Cantwell Wilson, B., & Shrock, S. (2001). Contributing to Success in an Introductory
Computer Science course: A Study of Twelve Factors. SIGSCE Bulletin, 33(1), 184-
188.

Denning, P. (2004). Great Principles of Computing. Paper presented at the grand
Challenges in Computing. Teeside University, UK.

Expert Group on Future Skills Needs (2003). The Fourth Report. Ireland: Forfas.

Expert Group on Future Skills Needs (2006). National Skills Bulletin. Ireland: Forfas.

Jenkins, T. (2002). On the Difficulty of Learning to Programme. Paper presented at the 3rd
Annual Conference of the LTSN Centre for Information and Computer Sciences.
Loughborough: England.

Marton, F. (1994). Phenomenography as a Research Approach. International Encyclopedia
of Education, 8(2), 4424 – 4429.

Marton, F & Dahlgren, L.O. (1976). On non-verbatim learning III: The outcome space of
some basic concepts in economics. Scandinavian Journal of Psychology, 17, 49 – 55.

Stamouli, I. (2007). Learning Object Oriented Programming from the students perspective.
Unpublished doctoral thesis. University of Dublin Trinity College, Dublin, Ireland.

