INITIAL TOOL FOR MONITORING PERFORMANCE OF WEB SITES

Cristina HavaEl& Stefan Holban
Faculty of Automation and Computer Engineering, “Politehnica’ University Timisoara,
2 Vasile Parvan, Timisoara, Romania, chava@mail.dnttm.ro, havac@eeng.dcu.ie, stefan@uitt.ro
John Murphy & Liam Murphy
School of Electronic Engineering, Dublin City University, Dublin 9, Ireland
murphyj @eeng.dcu.ie, murphyl @eeng.dcu.ie

Abstract

A very important application, which offers access to information on the Internet, is the World
Wide Web (WWW or Web). The WWW is primarily responsible for the growth of e-commerce activity
by the use of the Internet. To improve users' satisfaction with e-commerce WWW services, a lot of work
has been done on characterizing the performance of Internet applications and servers. We discuss in this
article about a monitoring application for performance measurement of the WWW Servers. By observing
the behaviour of WWW servers and measuring their performance, we can estimate severa performance
indices. Our application ssimulates the access of a number of clients to the same Web page and its links
and analyses the results. Three different cases are taken into account: the clients access the same Web
page one after the other (i.e. seridly), a the same time (i.e. in pardlel), checking before a ‘cache
structure.

1. Introduction

Many people who use the WWW want a good quality service, and the level of service expected
does not diminish even when the service is “free”. To improve users’ satisfaction, the administrators of
WWW servers have to manage their servers and to provide a good service. Typicaly this could involve to
monitor the changes in performance indices (such as the minimum/average/maximum number of HTTP
regquests), the volume of total traffic accessing site's services, the average response time as it varies across
hours, days, weeks, etc, the service availability, connection establishment and data transfer times. This
type of performance assessment and evaluation is difficult because there are many factors, which can
influence Web server performance.

There are some related work concerning WWW server and Internet performance tests devel oped.
Some tests were run on the servers and others were done on the client machines.

A group of researchers from Japan have proposed a new method for measuring the performance of
aWWW server. Their method is based on packet monitoring to reveal all the behaviour of the server, and
then deriving several performance indices based on this monitoring [1]. Another project, testing the
servers performance, was PingER. It was run on different clients machines. The project [2] involves
monitoring end-to-end links between nearly 500 computers at over 300 sites throughout the world. This
project uses ping to measure the response time, the packet 10ss percentages, the variability of the response
time (both short-term and longer), and the lack of reachability. A similar project to PingER is Surveyor
[3]. PINgER sends a series of ICMP echo request messages grouped together on a fixed schedule.
Surveyor constantly sends out small UDP packets on a Poisson schedule.

Our work’s goal is to smulate the access of a number of clients to the same web page and its link
and to observe how these influence the performance indices. The current work extends the previously

“Work carried out while under an ITRC scholarship at DCU Electronic Engineering.

done research described in [4], focussing on the data transfer time and the availability of the server at
different moments of day.

In this paper we discuss about three different cases, which are taken into account by our simulator.
Usually the clients can access the same Web page in a serial mode (one after the other) or in a paralel
mode (all the clients access the Web page at the same time), with or without consulting a “cache”
structure.

In the first case the simulator creates a thread for each client. Only one thread is created and run at
a moment. Only when the thread finished his task, the following one is created. The advantage of this
approach is that both the Web server and the network are not overloaded. Is expected that the average
computed time would be smaller for a client. The main disadvantage is that there is only one client
connected at atime.

In the second case of study all the clients' threads are created simultaneously. All the threads run
in parallel. In this situation we can see the variation in responses to similar requests from the same source
at the same instance in time. A possible advantage of this approach is that the client waiting times are
expected to be shorter than for the first case. The disadvantage is possible overloading of both the network
and the server.

The last case of study can be applied to both previous cases. Before accessing the server, the
clients check a so-called ‘cache’ structure. It stores a copy of each web page immediately after a first
access to an Internet address was made. If the access occurs after a previous one, the client is informed by
consulting an indexed structure about the local path where the file is stored and they are much rapidly got.
It is expected that the accessing time to be reduced.

2. Four- Step HTTP Transaction

For al three different cases study, a thread implements each client. A thread consists of a number
of modules, each of them in charge of a certain task. The tasks can be summarized in a four-step
description [5]:

Sepl: Establish a connection

Before a client and a server can exchange information, they must first establish a TCP/IP connection. The
Internet uses the TCP/IP suite of protocols to let computers communicate. To distinguish protocols,
applications use a unique number, called “port number” for each protocol. For example, for HTTP
protocol the standard port number is 80. Also the user has to set some parameters for the Internet
connection such as protocol, server name, the path for the web page, and optionally the port number of
server.

Sep2: Client issues a request

Each HTTP request a client issues to a Web server begins with a method (a command the client uses to
specify the purpose of its server regquest), followed by an object’s URL. The client also specifies the
version of the HTTP protocol it is using and optionally information encoded in a particular header style.
Sep3: Server issues a response

After aWeb server receives and interprets arequest message, the server responds with an HTTP “response
message”. The response message always begins with the HTTP protocol version, followed by a three-digit
status code and reason phrase, and optiona information encoded in a particular header style. Finally the
server sends the data required by the client.

Sepd: Server terminates the connection

It's the server’s responsibility to terminate a TCP/IP connection with a client after it performs the client’s
request. However, both the client and the server must manage an unexpected closing of the connection.

3. “Ping” Mechanism

“Ping” is one of the most useful IP network debugging tools available. The idea comes from an
equipment (SONAR), which was used on submarines. It sent a short sound burst and listened for an echo.
Analyzing the echo the sender gets some information about the obstacle, which reflected the sound (e.g.
distance, consistency, etc.). To get information about the destination, in IP networks ping sends a short
data burst — a single packet- and listens for a single packet in replay. Ping is implemented using the
required ICMP Echo function, documented in RFC792. [6]

Internet control Message Praotocol (ICMP)

ICMP protocol is a required protocol tightly integrated with IP. ICMP functions include:
announcing network errors (such as a host being unreachable), announcing network congestion, assisting
troubleshooting (ICMP supports an Echo functions, which sends a packet on a round — trip between two
hosts), announcing timeouts (when IP packet's TTL field drops to zero). Each ICMP message is
encapsulated in an IP packet. Unfortunately the ICMP packet delivery is unreliable so the host cannot
count on receiving ICMP packets for any network problem. The ECHO REQUEST and ECHO REPLAY

0 78 1516 31
Type [Code CheckSum
I dentifier Sequence Number

Figure 1: ECHO REQUEST packet’s structure

messages are used to inform the sender if a given destination is reachable and alive. Their packet
structures are documented in RFC792 and RFC791 [6].

Ping places a unique sequence number on each ECHO REQUEST packet it transmits and reports
the sequence number it receives back. Unfortunately when multiple threads are used, and each thread
issues a ping using his own raw socket, they don't receive only their own response from the server. The
responses will be posted to all the threads. Each thread has to implement a mechanism to detect its own
message among these replies. The ECHO REQUEST packet has a field Identifier (Figure 1) and each
thread sets this field with its own ID. When a reply comes each thread compares the Identifier field with
his ID and if it matches, that thread should process the response; otherwise it should ignore the response
and wait for another one.

4, Tests Result

We studied the servers performance for all three-study cases. We choose six different servers to
test them. These included two servers in Ireland, two in Europe and two in the US. Two of the servers
were Universities and four were Portal sites and Figure 2 below summaries their main characteristics.

Server L ocation Type I mages SizeKB
1 Europe Portal 78 73
2 USA Portal 89 169
3 Ireland University 25 85
4 Europe University 12 20
5 Ireland Portal 149 126
6 USA Portal 28 33

Figure 2: Server Types and Locations

Serial accessvs. paralld access

In the first case of study (serial access mode) only one client is connected at a moment. Our
simulator creates a thread, which fetches the main page, and then computes the time elapsed. After parsing
the HTML file, it sends a ping for al links found and computes the total time. Only after that, another test
for a single connection can be run. For a set of serial connections the average time for five sequential
accesses to the same Web is measured every hour.

Average connection time for 5 single sequential connections to
various sites at different moments of a day

09:30
10:30
11:30
12:30
13:30
14:30
15:30
16:30 |
17:30 |
18:30
19:30
2030 |
21:30
22:30
23:30

I
Q
c

r

—Server 1 —Server 2 Server 3 —Server 4 —Server 5

Figure 3: Serial Connections

In the second case of study we simulate multiple clients trying to fetch the same web page from
the server. A number of threads equal with the clients' nhumber are created simultaneoudly. All the threads
perform similar tasks to the thread that was created for a single connection. The parallel threads have to
share the processor, disks, memory and all server resources. The routing of the packets sent by the server

Average time for 20 clients connected simultaneously to various

Average time for 10 clients connected simultaneously to various : !
sites at different moments of a day

sites at different moments of a day

A,

140

1301

120 / \
1101

51001

ER) -
g / /‘)\//\\\\ \
E

/A

2w
cocod

23:00
00:00
09:00

T
o 9 9
2 9 o o &
bH o ~

=

09:00

10:00

11:00
10:00
11:00
12:00 |
13:00 |
14:00 |
18:00
18:00
20:00
21:00
22:00 |
23:00 |
00:00 |

o
e
N
—

13:00
14:00
15:00
T 16:00
17:00
18:00
19:00
20:00
21:00
22:00

—

Hour
ol

<

[—Senver L — Server 2 — Sewver 3 — Server 4 — Sewver 5] [— Server 1 — Server 2 — Server 3 — Server 4 — Server 5|

Figure 4: Ten Parallel Connections Figure 5: Twenty Parallel Connections

to the client may also vary. Furthermore the server could be overloaded or the network congested. All
these facts can influence the computed time.

In Figure 3 are the results for serial connections to five different servers over different times of the
day. The plotted number is the average of the download times. For the same servers at the same times
there are parallel connections for 10 and 20 clients shown in Figures 4 and 5.

All three graphs show similar response time profile throughout the day with a peak in the morning
that continues throughout most of the day and otherwise fairly low response times. From the graphsit can
be seen that starting at 10am until 4pm the average time for getting the Web page is large in comparison
with the afternoon and evening period. During the busy period the HTTP connection is established, but
we have to wait longer time to obtain all the data from the WWW server. Following the previous pictures,

we can observe the connection time increases with the number of parallel clients trying to connect to the
server.

The minimum, average and maximum response time for getting a Web page from asingle siteis
plotted in Figures 6 and 7 at different moments. What can be seen is that the difference between the
minimum and the maximum can be nearly an order of magnitude. For example there are periods during
the day when the minimum response time is about 10 seconds while the maximum response time

Connection time for 20 clients connected simultaneously to
Server 6 at different moments of a day

A\

Connection time for 10 clients connected simultaneously to
Server 6 at different moments of a day

o N ® ©
S ©o o o
S
N 5 @
S S 8

,_.
1)
3

Time (sec)
v
o
Time (sec)
8

@
3

IS
S

1

58
~L]

f/
3

o

S L0 (L A S DS S SEPPSEESESLELELELSL LS
NIESENENVRCEN EN NN S R N IRV AN N G N NN N B S i L N

‘—minim average —maxim‘

Figure 6: Minimum, Average & Maximum
Response Times for 10 Parallel Clients

Hour

‘—minim average —maxim‘

Figure 7: Minimum, Average & Maximum
Response Times for 20 Parallel Clients

is about 90 seconds. All these tests were conducted during a normal working day.

Cachevs. No Cache

As we have seen in previous graphs, the WWW servers and network are overloaded during the
working hours. In this caseis very useful to use a cache to aproxy server from a company or university.

When there are alot of requests for the same web pages from same location, only the first request
downloads al the data from server and put them in the cache. Then, all the other requests read the
information from the cache. In this case the time for fetching the web pages is smaller than the fetched
time of the fist request. The worst situation is when all the requests are simultaneously. In this case only
one request gets the information from the WWW server and put it in the cache, and all the other requests
have to wait till they can read the information from cache. The fetched time for al the other requests is
equal with fetching time of the fist request plus fetched time from the cache. We simulated this situation
using a“ cache structure” created on our computer.

The average fetched time for a site, with cache and without cache, when there are 10 and 20
reguests in same time can be seen in Figures 8 and 9.

Average connection time for 10 clients connected
simultaneously to Server 5 at different moments of a day
with / without cache

09:00
10:00
11:00
12:00
13:00
14:00

Q
> 2
0
-

16:00

Q 9
e e e e
~ o

—

19:00
20:00
21:00
22:00
23:00
00:00

—
Hour

Bwithout cache Bwith cache

Average connection time for 20 clients connected simultaneously
to Server 5 at different moments of a day
with / witout cache

80 +
60
40 q
20 4
0+

o 9
2 Q @
&8~

09:00
10:00
11:00
12:00
13:00
14:00
15:00
18:00
19:00
20:00
21:00
22:00
23:00
00:00

| «a
Hour

[Bwithout Cache Bwith Cache |

Figure 8: Multiple connection with and without
“cache structure” (10 clients)

Figure 9: Multiple connection with and without
“cache structure” (20 clients)

Availability of Servers

We send a short packet using “ping” mechanism to check the availability of the server. Because
the ICMP packet ddivery is unreliable, we have to send multiple times a packet for computing the ping
time. A server is unavailable if al the trials were unsuccessful. Our decision was to send up to four such
packets.

We smulate multiple clients who try to send smultaneously a “ping” to a WWW server, at
different moments of the day. Shown below is the result for successful rate of the server during one day.
(Figure 10). We also monitored the variation of average ping time during one day when we have 20 clients
sending simultaneously a ping to the server (Figure 11).

Successful rate for Server 4 at different moments of day The variability of the average ping time
at different moments of day

=t E
\/ ” N\ A

w0 \ / \

. DVARN

100

8

8

~
S

ing time (msec)

Successful rate (%)

P
2
g

3

50 09:30 10:30 11:30 12:30 13:30 14:30 15:30 17:30 18:30 20:30

09:30 10:30 11:30 1230 1330 1430 1530 16:30 17:30 18:30 20:30 Hour
Hour
Figure: 10 Successful rate for 20 clients Figure 11: The variation of the average “ping” time
sending simultaneously a*“ ping” for 20 clients

5. Conclusionsand Future Work

Our work studies the variation of some of the performance indices measured on WWW pages. We
mainly noticed large variations in the response times for download of the same WWW pages at similar
times athough some servers are more affected than others. The second result is that when requests are
made in paralle with no caching, the average response time increases quite a lot. In the future we are
going to investigate what is responsible for this increase. We also want to monitor the server and network
performance for alonger period of time. Some extensions are to try and separate out the network, client
and server delays in the total response time that is currently being measured. This might be achieved by
modeling and simulation studies. We are thinking of implementing a tool to look at the links on a WWW
page and to give an indication as to what the potential delays to them might be.

References

[1] Y. NakamuraK. Chinen, H. Sunahara, S.Y amaguchi and Y. Oie, “ENMA: The WWW Server
Performance Measurement System via Packet Monitoring”, INET’ 99

2] L. Cottrell, W. Matthews and C. Logg “ Tutorial on Internet Monitoring & PingER at SLAC”
http://www.sl ac.stanf ord.edu/comp/net/wan-mon/tutorial . html|

[3] S. Kalidindi and M. J. Zekauskas, “ Surveyor: An Infrastructure for Internet Performance
Measurements’, INET' 99

[4] Cristina Hava, Liam Murphy, “ Performance measurement of the WWW Servers’, 16™ IEE UK
Teletraffic Symposium, Harlow 2000

[5] KrisA. Jamsa, Suleiman Lalani, Steve Weakley “Web Programming”, Jamsa Press, 1996

[6] Internet RFC/STD/FY I/BCP Archives http://www.fags.org/rfcs/|

http://www.slac.stanford.edu/comp/net/wan-mon/tutorial.html
http://www.faqs.org/rfcs/

	INITIAL TOOL FOR MONITORING PERFORMANCE OF WEB SITES
	
	
	
	
	Step1: Establish a connection
	Step2: Client issues a request
	Step3: Server issues a response
	Step4: Server terminates the connection
	Availability of Servers

