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Abstract—Existing risk-to-reward measures, such as the
Sharpe ratio [1] or M2 [2], are based on the idea of quantifying
the excess return per unit of deviation in an investment. In this
preliminary article we introduce a new probabilistic measure
for evaluating investment performance. Randomness Deficiency
Coefficient (RDC) expresses the likelihood that the observed
excess return of an investment has been generated by chance.
Some of the advantages of RDC over existing measures are
that it can be used with small historical datasets, is time-frame
independent, and can be easily adjusted to take into account
the familywise error rate which results from selection bias. We
argue that RDC captures the fundamental relationship between
risk and reward and prove that it converges with Sharpe’s ratio.

I. INTRODUCTION

It is important for investors and financial analysts to be
able to measure and compare the performance of different
investments. One simple approach is to compare the level
of return earned over a given period. The financial industry
continues to rely heavily on simple return for evaluating fund
performance, with investment managers often benchmarked
against the returns generated by an unmanaged market, or a
capitalization-weighted portfolio [2]. The problem with this
approach is that it ignores the risk involved in generating the
return, and hence fails to communicate the significance of
that return.

Consider Figure I below in which the returns of two port-
folios are presented. Both yield an identical return of 12%,
yet portfolio B seems intuitively less appealing. Because it
has a higher level of volatility, the returns earned in this case
are more likely to represent random variance, as opposed to
underlying performance: they do not strongly challenge the
hypothesis that the investment is simply following a random
walk. In the case of portfolio A, the lower volatility suggests
that the return is less likely to have been produced by chance,
and thus more likely to persist into the future. The lower the
variance in the returns of an investment, the more unlikely
it is that the performance emerged by chance alone.
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Fig. 1. Two portfolios yielding a return of 12%.

In sum, reliance on simple return can be misleading. What
is needed for comparing risky investments is a means of
adjusting returns for the level of risk involved.

A. Measures of Risk-to-Reward

The most commonly used measure of risk-adjusted return
is the Sharpe ratio, which takes into account the ratio between
the reward and the variability in value to which the investor
was exposed. Here, the risk-free rate (the amount that could
have been earned without holding any risk) is subtracted
from the total returns, and the remainder is divided by the
portfolio’s standard deviation, thus effectively providing a
measure of reward per unit of risk [1].

The Sharpe ratio can be used to evaluate both historical
and predicted performance, with Sharpe [3] defining both
ex post and ex ante versions of his ratio for these different
applications. Given an investment yielding an expected return
R with standard deviation σ and expected risk-free return Rf ,
then Sharpe’s ex ante ratio is given by

S =
R−Rf

σ
.

Even though the ex ante version might be justified on the
basis of predicted relationships, Sharpe states that, because
R and σ are unobservable, they are inevitably estimated
using historic data [3]. Given a sample of historical returns
R1, . . . , Rn and a constant risk free rate Rf the sampled
components of the Sharpe ratio are given by

R̂ =
1

n

n∑
i=1

(Ri−Rf ) and ŝ2 =
1

n− 1

n∑
i=1

(Ri−Rf−R̂)2.



The Sharpe ratio always refers to the differential between
two portfolios, in this case that between the risky investment
and the risk-free investment. The subtracted return reflects
the short position which must be taken to finance the acqui-
sition. To yield a positive Sharpe ratio, an investment must
provide a greater return than the cash or loan which is used
to fund it [4].

One problem with Sharpe’s ratio is that the value it
yields is dimensionless, making its significance difficult to
interpret, particularly for negative values. Modigliani risk-
adjusted performance or M2 is a refinement of the Sharpe
ratio which resolves this issue by expressing the excess return
earned over a standardized risky benchmark such as the
market. Writing σB for the standard deviation of the excess
returns of some benchmark portfolio (e.g. the market), and
RM for the average Market Return for the given period then
M2 is given by

M2 = SR · σB −RM .

Essentially, M2 adjusts the level of risk of the investment
to match that of the benchmark and then computes the
excess or shortfall return delivered by the investment over the
benchmark at that standardized level of risk. This measure
has the advantage of outputting a percentage, which is more
intuitive to interpret for investors. However, it is worth
noting that any rankings of investments using M2 will be
identical to the rankings computed using Sharpe’s ratio, as
M2 is simply the Sharpe ratio adjusted by a constant for
the purpose of enhancing interpretability. As a result, M2
inherits the limitations of the Sharpe ratio, which we detail
in the following section.

B. Limitations of Sharpe’s ratio

Sharpe’s ratio seeks to provide a measure of reward to
variability by expressing return in terms of deviation, thus
allowing risky securities with different volatility profiles to
be compared against each other. Other related measures,
such as M2, which like the Sharpe ratio takes into account
idiosynractic risk, or the Treynor ratio [5] and Jensen’s alpha
[6], which focus on systematic risk, express the reward to
variability profile of a security relative to that of a risky
benchmark such as the overall market.

In all cases, these measures are limited to comparisons
between risky investments. The Sharpe ratio, for example,
can say nothing about whether exposure to the risk of the
stock market is better than investing in risk-free short-term
Treasury Bills. Any risk free investment will have zero
variability, meaning that its Sharpe ratio is undefined. Thus,
what the Sharpe ratio provides is not a genuine measure
of the relationship between risk and reward but, rather, a
heuristic for ranking risky investments relative to each other,
which does not express the extent to which the risk is justified
in the first instance.

According to Sharpe the ratio is simply “a convenient
summary of two important aspects in any strategy...” In
recognition of the fact that return is good and variability
is bad, the Sharpe ratio divides one by the other. However,

this approach requires “a substantial set of assumptions for
justification...[which in practice]...are, at best, likely to hold
only approximately” [3]. First, the use of Sharpe’s ratio
assumes that the returns of all securities follow the same
distribution, typically assumed to be the normal distribution.
Second, it assumes and that the true mean and standard
deviation can be identified with precision based on sampled
data.

The smaller the volume of historical data available, the less
satisfactorily these requirements can be met. For example,
Bailey and de Pardo [7] have shown that a typical hedge
fund’s track record exhibits negative skewness and positive
excess kurtosis, which has the effect of inflating its Sharpe
ratio for smaller datasets. They conclude that the ratio can
only be used to evaluate the performance of an investment
when the size of the dataset exceeds a certain threshold, and
provide a method for establishing the number of samples
needed for computing Sharpe’s ratio with a given confidence
level.

Another problem is that Sharpe’s ratio is time-frame
dependent. The larger the period intervals over which returns
are reported for a given duration, the lower the standard
deviation, and the higher the resulting Sharpe ratio. Thus,
the same investment will yield different ratios depending
on whether returns are calculated daily, weekly or monthly,
opening up the possibility of manipulation [8]. In the follow-
ing section we present a probabilistic measure which captures
the underlying relationship between risk and reward, and
addresses these limitations of Sharpe’s ratio.

II. RANDOMNESS DEFICIENCY COEFFICIENT

Sharpe’s ratio is based on the idea of adjusting returns
for the level of risk involved. For example, if investment
A has twice the variance of investment B then we should
halve the returns of investment A before comparing them, to
standardize the level of volatility. But how do we compare
investment A to a risk-free investment? How can we tell
if the burden of risk is justified in the first instance? Our
approach is to consider the underlying relationship between
risk and reward. Anybody walking into a casino has the
opportunity to trade risk for potential rewards. For example,
a $1 note can be exchanged for a 10% chance of holding
$10 or a 1% chance of holding $100 (assuming the casino
offers fair odds). Although such gambling strategies might
provide temporary gains, the law of large numbers states that,
over the longer run, the average return will converge on the
expected value of 0.

Accordingly, the question that should be asked when a
security delivers a particular return is whether that return
is over and above that which could have been achieved by
simply gambling: that is, the extent to which the returns
provide evidence of performance over luck. No matter how
consistent and extensive the levels of return, one can never be
absolutely certain that they are not simply the result of luck
alone. However, it is possible to measure the extent to which
the observed pattern of returns deviates from that which
would be expected given a random walk centered about some



benchmark level of return. In the following sections we show
how the randomness deficiency of a series of returns can be
quantified by applying either a known probability distribution
or, when there is insufficient data for identifying distribution
parameters, a bootstrapping technique.

A. RDC: Randomness Deficiency Coefficient of returns

The Randomness Deficiency Coefficient (RDC) of an
investment is the inverse probability that the observed level
of excess returns should emerge by chance given a random
walk centered on some chosen value (e.g. the risk-free rate,
market return or other selected benchmark). To evaluate this
probability we first need to specify the set of potential events
from which the observed events are drawn.

Assuming the samples follow a known distribution1, then
we can use a probability density function (PDF) to quickly
compute the probability that a sample of size n drawn
randomly from this distribution will exceed the sample mean
by the observed margin.

More precisely, given n + 1 consecutive values
a1, a2, . . . , an+1 of security t, we consider the log of the
returns r1 = log a2/a1, r2 = log a3/a2, . . . , rn = an+1/an
of t. Our skeptical hypothesis Ht

0 says in essence that t’s
returns cannot exceed some a priori bound µB , where µB
can be chosen to be e.g. the risk-free rate Rf , the market
return, etc, and that t’s returns are normally distributed, i.e.
Ht

0 : R1, R2 . . . , Rn are i.i.d. normally distributed random
variables with mean µt and standard deviation σt, where
µt ≤ µB . Thus the sample mean R̄ is Norm(µt, σt/

√
n).

Denote by mt and st the sample mean and sample standard
deviation of t, computed from n observed returns of t.

Definition 1: The RDC of security t is the inverse of the
probability that the security’s return is at least mt under Ht

0.
To make the value more inteligible, we rescale RDC to take
values in (−∞,−1]∪ [1,∞) (by considering cases mt < µt
and mt ≥ µt separately, i.e. given

Ht
0 : Ri ∼ N(µt, σt), i = 1, 2, . . . , n

If mt ≥ µt then

RDC(t) = [Pr(R̄ ≥ mt| Ht
0 and mt ≥ µt)]−1

If mt < µt then we fix RDC to be negative i.e.

RDC(t) = −[Pr(R̄ ≤ mt| Ht
0 and mt < µt)]

−1

Under Ht
0, R̄ is Norm(µt, σt/

√
n). If we substitute the

sample standard deviation st for σt then
√
n(R̄ − µt)/σt

is t-distributed with n− 1 degrees of freedom.
When µt is unknown, we assume that µt = µB , i.e. the

security does its best.
We write pdfRDC to specify the PDF-definition is used

to compute the RDC.

1See our recent work [?] for a more general framework

B. Bootstrapping method

For small sample sizes, where the volume of historical
data is too limited to reliably infer a specific probability
distribution in the returns, it may be desirable to use a
bootstrapping method to compute RDC. We here describe
such a method.

Adhering to the null hypothesis that returns are produced
by chance, we assume that for each sampled change in the
value of an investment, an equal change in the opposite
direction was equally likely. For each sample there are
thus two possibilities to choose from, yielding 2n possible
sequences of events, where n is the number of samples. The
RDC is then simply the inverse of the proportion of cases
where the cumulative return of a randomized sequence of
such events matches (or exceeds) the observed return. This
value reflects the level of confidence with which the skeptical
random hypothesis can be rejected.

For example, suppose that a mutual fund posts quarterly
returns of +2.3%, +1.2%, -0.4% and +1.6% over the risk free
rate. The total return, using arithmetic means, is 4.7%. Then
the full set of possible scenarios involving these changes is
given as shown in Table 1. Effectively, the small sample is
bootstrapped by including the balancing values which would
be expected under the null hypothesis. Although we have not
done so in the example below, returns should be logged to
faciliate the calculation of geometric as opposed to arithmetic
means.

Q1 Q2 Q3 Q4 SUM >= 4.7%?
+2.3% +1.2% +0.4% +1.60% +5.50% YES
+2.3% +1.2% +0.4% -1.60% +2.30% NO
+2.3% +1.2% -0.4% -1.60% +1.50% NO
+2.3% +1.2% -0.4% +1.60% +4.70% YES
+2.3% -1.2% +0.4% +1.60% +3.10% NO
+2.3% -1.2% +0.4% -1.60% -0.10% NO
+2.3% -1.2% -0.4% +1.60% +2.30% NO
+2.3% -1.2% -0.4% -1.60% -0.90% NO
-2.3% +1.2% +0.4% +1.60% +0.90% NO
-2.3% +1.2% +0.4% -1.60% -2.30% NO
-2.3% +1.2% -0.4% -1.60% -3.10% NO
-2.3% +1.2% -0.4% +1.60% +0.10% NO
-2.3% -1.2% +0.4% +1.60% -1.50% NO
-2.3% -1.2% +0.4% -1.60% -4.70% NO
-2.3% -1.2% -0.4% +1.60% -2.30% NO
-2.3% -1.2% -0.4% -1.60% -5.50% NO

TABLE I
FULL SET OF SCENARIOS BASED ON A SERIES OF FOUR RETURNS

The RDC is the total number of positive scenarios divided
by the number of randomized scenarios which match the
observed return, which in this case is 8/2 or 4. Because we
are evaluating a one-tailed hypothesis we restrict the analysis
to the set of positive scenarios: given that a positive return is
observed, how strongly can we reject the hypothesis that it
derives from the set of randomly sampled positive returns?
An RDC of 4 means that, on average, one would need to
select the best from a group of four randomly generated
time series with positive returns to match the performance
of this security (i.e. one quarter of randomly generated time



series with overall positive return are at least as good as the
one under consideration). In cases where n is too large to
evaluate the full set of possible scenarios as above then we
can use a Monte Carlo algorithm to sample a random subset
of scenarios on which RDC can be computed.

For negative returns, a negative RDC can be calculated
in the same way as for positive returns. In this case RDC
quantifies the extent to which a negative return is so bad that
it exhibits randomness deficiency in a downward direction.
An investment with a high negative RDC can be shorted
to produce profits, just in the same way that an investment
with a positive RDC is longed. For example, the RDC of
Facebook over the three months following its IPO on 18th
May 2012 was -17, during which time it lost more than half
of its value. The RDC scale therefore goes from −1 to −∞
for investments generating negative returns and from +1 to
+∞ for investments generating positive returns. A risk-free
investment has an RDC of 1.

We write bootRDC to specify when the bootstrapping
definition is used to compute RDC. In the following section
we establish the credibility of the bootstrapping method by
proving that it converges with the PDF-based method for
sufficiently large values of n, given that the returns are
symmetrically distributed.

C. Proof that bootstrapping and PDF-based RDC converge

Consider the returns R1, R2, . . . , Rn of security t and
suppose they are i.i.d. symmetrically distributed (i.e. n inde-
pendant outcomes of random variable R, where R is centered
at 0, note by substracting µt we can assume it is always the
case). The above described bootstrapping method creates new
i.i.d. random variables Yi obtained by multiplying Ri by ±1
depending on the outcome of 0 − 1 valued coin flip ci, i.e.
Yi = (−1)ciRi.

The following result shows that the Ri’s and Yi’s have the
same distribution.

Lemma 1: If the returns R1, R2, . . . , Rn of security t
follow a symmetric distribution with continuous density
function (centered at 0) then the e.c.d. of the “coin flipped
returns” Y1, Y2, . . . , Yn a.s. converges to the e.c.d. of the
returns.

Proof: Let R1, R2, . . . , Rn be the returns of security t
as described above, centered at 0, Given n observed values
for Ri’s r1, r2, . . . , rn, the e.c.d of R is

FRn (x) =
|{i : ri ≤ x}|

n

where x is any real number.
Let ε > 0. Let n be large enough such that FRn is a good

approximation of the c.d.f. FR of R, i.e. by the Glivenko-
Cantelli theorem (a.s. uniform convergence),

|FRn (x)− FR(x)| < ε/2 with probability 1.

We claim that

|FRn (x)− FYn (x)| < ε with probability 1.

Let us prove the claim. Let A be the measure 1 set of
convergence given by the Glivenko-Cantelli theorem. Let x
be in A and let v1, . . . vm be the subset of the r1, . . . , rn
which are either less or equal to −x, or greater than x. Since
FRn is close to FR which is symmetrically centered at 0, the
number of points occurring to the left of −x and right of x
is roughly the same, i.e. we have

|FRn (−x)− (1− FRn (x))|
≤ |FRn (−x)− FR(−x)|+ |FR(−x)− (1− FR(x))|
+ |(1− FR(x))− (1− FRn (x))|
≤ ε/2 + 0 + ε/2 = ε

i.e. there is at most m/2 + εn/2 vi’s to the left of −x.
The only yi that can occur to the left of −x are exactly the

ones corresponding to the vi’s. Let k = 2/
√
ε. By Chebychev

inequality, given m coin flips (i.e. with mean m/2 and sd
σ =

√
m/2), if C̄ denotes the number of heads in m flips

then
Pr(|C̄ −m/2| > k

√
m/2) ≤ 1

k2
.

Thus with probability 1− 1/k2 (over the coin flips) at least
m/2− k

√
m/2 yi’s land to the left of −x. Thus

|FRn (−x)− FYn (−x)|

≤ (1− 1/k2)|m/2 + εn/2

n
− m/2− k

√
m/2

n
|+ 1/k2 · 1

≤ ε/2 + ε/4 + ε/4 = ε

for n large enough, which proves the claim. Thus FYn
converges to FR a.s. which proves the lemma.

By definition of RDC, the previous lemma shows that
bootstrapping and PDF-based RDC agree for large values
of n, i.e.

Theorem 1: Under Ht
0 : Ri ∼ N(0, σt), i = 1, 2, . . . , n

for the returns R1, R2, . . . , Rn of security t, we have
bootRDC(t|Ht

0) = pdfRDC(t|Ht
0) for large enough n.

Proof: Given returns R1, R2, . . . , Rn of security t and
Ht

0 as above, let mR
t be the sampled mean of returns

computed from n observed values of Ri’s. By Lemma 1,
Ȳ and R̄ follow the same distribution under Ht

0, thus

pdfRDC(t|Ht
0) = Pr(R̄ ≥ mR

t | Ht
0)

= Pr(Ȳ ≥ mR
t | Ht

0) = bootRDC(t|Ht
0)

D. Empirical Comparison of RDC Methods

We investigated the sample size n required to produce
convergence between the two methods. The following R code
was used for calculating PDF-based and bootstrapping RDC,
where x is a sequence of historical values for a security.

RDC_pdfbased<-function(x){
x<-diff(log10(x))
prob<-pt((abs(mean(x))*sqrt(length(x)))/
sd(x),df=length(x)-1)
return(sign(mean(x))/(2*(1-prob)))

}



RDC_bootstrap<-function(x, precision=1000){
x<-diff(log10(x))
sums<-rowSums(matrix( sample(c(-1,1),
precision*length(x),replace=T),precision,
length(x))*x)
prob<-1-max(length(sums[sums>=abs(sum(x))])
,1)/length(sums)
return(sign(mean(x))/(2*(1-prob)))

}

Figure 2 compares the two methods for increasing sample
sizes n. Each point n on the x-axis shows the mean difference
in ranks assigned by PDF-based and bootstrapping RDC for
the S&P 500 stocks calculated using n daily returns starting
January 1st 2011. The graph reveals that PDF-based RDC
quickly converges on bootstrapping RDC, with no systematic
divergence beyond n ≈ 20. The correlation between the two
sets of rankings is 0.997 when n = 20.
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Fig. 2. Comparison of the two RDC methods for different historical dataset
sizes

E. Applying RDC to historical data

Unlike other risk-to-reward measures, RDC allows the
performance of risky investments to be easily compared
against a risk-free investment. Table 2 shows the RDC for
the U.S. stock market over the last 20 years based on the
S&P total return index and using 13-week U.S Treasury
Bonds as the risk-free rate. According to the capital asset
pricing model (CAPM) model [9] [10] [11], investors can
earn profits above the risk free rate by holding undiversifiable
risk. Although stock market returns from the 1990s exhibited
a level of high growth which, considered in isolation, might
suggest an underlying performance above the risk-free rate,
the returns during the 21st century (to July 2012) closely
follow a random walk.

Period Risk-Free Return S&P 500 Return RDC
1990 2000 59.8% 320% 118
2000 2010 30.1% -8.2% -1.62
1990 2010 108% 277% 3.14

2010 0.1% 13.2% 2.04
2011 0.1% 1.0% 1.03

21st century 30.4% 18.1% -1.12

TABLE II
RDC VALUES FOR S&P 500 TOTAL RETURN INDEX

RDC can be used to analyse the extent to which any
signal deviates from a random walk. For example, global
average temperature from 1896 (the year the global warming
hypothesis was originally proposed by Svante Arrhenius)
to the present day yields an RDC of 131, using a 5-year
rolling average to control for mean reversion. This high value
indicates that the prediction of futher warming would make
an outstanding investment.

F. Adjusted RDC

Assuming µB = Rf , let us consider the case where
an investor actively searches for the best investment by
calculating the RDC of a variety of different securities. The
security with the highest RDC is the one most likely to have
an edge over the risk-free rate. It is therefore natural for
investors to compare the RDCs of different securities and
choose the best one. However, this selection process has the
effect of altering the significance of the RDC by increasing
the probability that a certain performance has been achieved
through luck alone.

Whenever RDC is used to select one investment from
among a group of investments, the RDC value must be
adjusted. Imagine, for example, searching through all of the
companies in the S&P 500 to find the one with the highest
RDC. Based on 2011 returns, the stock with the highest RDC
is Apple Inc. with a value of 242. This level of randomness
deficiency is well beyond the level of significance typically
required for scientific reporting (e.g. p < .05).

If Apple has been identified independently of the data
used to calculate RDC, then this value would be very
convincing. However, if Apple has been selected because
of its performance (as opposed to some other independent
hypothesis for why it should make a good investment), then
we must reconsider the significance of its RDC. Specifically,
we must evaluate the extent to which its RDC exceeds that
which would be expected to arise by chance from within the
group of securities being considered.

Given the hypothesis that all 500 S&P companies follow
a random walk around the risk-free rate then, on average,
half will exceed and half will underperform this benchmark.
Since RDC quantifies the number of random permutations
that would typically be required to match an observed
performance, we would intuitively expect one of the S&P
companies to have an absolute RDC of 250 by chance.
In light of this expectation, Apple’s RDC of 242 does not
strongly refute the skeptical random walk hypothesis.



An advantage of RDC over other risk-to-reward measures
is that it can be easily adjusted to account for this selection
bias using the binomial distribution. Given the selection of
a security t from among a pool of k candidates, then the
adjusted RDC is given by

adjRDC(t) = Pr(X ≥ 1|H0)−1 where

H0 : X ∼ Binom(p, k) where p = RDC(t)−1

This formula encapsulates the idea of choosing groups of
random time series in batches of k and returns the number
of batches that would, on average, have to be sampled
before one is found to contain a random return matching the
observed return. Table 3 shows the stocks with the highest
RDCs based on returns over the last 10 years (2002 - 2012)
alongside their adjusted RCDs. Returns have been adjusted
for dividends, splits, mergers etc.

Company Return RDC Adjusted-RDC
AAPL 3376% 139 1.20
CTSH 1910% 24.2 1.00
PCP 1116% 24.0 1.00
RRC 2071% 18.3 1.00
SWN 2435% 17.3 1.00

TABLE III
S&P 500 COMPANIES WITH HIGHEST RDCS (2002-2012) ADJUSTED

FOR SELECTION BIAS

The data reveal that, when adjusted for selection bias,
none of the stocks in the S&P 500 provide evidence of
outperforming the risk-free rate over the last 10 years. Even
the performance of Apple Inc., with a cumulative return of
3376% and an RDC of 139 is no better than would expect
to find from looking through a set of 500 random walks.
An investor who has identified Apple from among the S&P
500 companies because of its historical performance cannot
expect it to continue to perform above the risk-free rate in
the future, because there is no support for the hypothesis that
its past performance was due to anything but luck.

If one is using historical 20th century returns from the
U.S. stock market to justify the assumption that stock market
returns reliably outperform the risk-free rate over the longer
term (e.g. by pointing out that U.S. equities delivered an
average of 4.3% inflation-adjusted annual return during this
period), then the RDC values computed on these returns
should also be adjusted for the number of national stock
markets from which the U.S. was selected. For example,
Jorion and Goetzmann [12] have argued that reliance on
historical U.S. data for long-term estimates of expected
returns is a serious problem. They argue that such estimates
are subject to survivorship bias, in that the U.S. has been
specifically identified by investors because of a historical
level of economic growth which may not apply in the future.
The high equity premium obtained for U.S. equities during
the 20th century was the exception rather than the rule, with
a much lower 0.8% return registered on average worldwide
[12].

If, say, the RDC of the S&P 500 in the 1990s is adjusted
for its selection from a pool of 56 national regulated ex-
changes affiliated with the World Federation of Exchanges
then it falls from an original remarkable value of 118 to an
adjusted value of only 4.7. It’s possible that, in selecting
the best-performing stock market in the world, investors
who made significant profits from U.S. equities during the
20th century may have been relying more on luck than on
prescience.

III. COMPARING RDC WITH SHARPE’S RATIO

Sharpe’s ratio is currently the most common measure of
risk-adjusted return and is widely used to rank the perfor-
mance of portfolio and mutual fund managers [2]. Assuming
that it works, the question arises as to whether it follows the
same principles as RDC. In the following sections we prove
that Sharpe’s ratio converges with RDC under particular
distribution-specific constraints.

A. Proof of Convergence of RDC and Sharpe’s Ratio

Theorem 2: Let n be a fixed positive integer and consider
m securities, with lognormally distributed returns over n
days, with identical means. Then both RDC and Sharpe
ratio will rank the securities in the same order.

Proof: Let u, t be two securities as above, with mean
µm and sd σu and σt, such that SR(u) ≤ SR(t). We need
to prove that RDC(u|Hu

0 ) ≤ RDC(t|Ht
0). By hypothesis

we have
log un/u1

σu
≤ log tn/t1

σt

where u1 and un (resp. t1 and tn) is the price of security u
(resp. t) on day 1 and on day n. We have

RDC(u|Hu
0 ) = Pr(R̄u ≥ mu|Hu

0 )−1

= Pr(R̄u ≥
log un/u1

n
|Hu

0 )−1

= Pr(

√
nR̄u
σu

≥ log un/u1

σu
√
n
|Hu

0 )−1

= Pr(R ≥ log un/u1

σu
√
n
|Hu

0 )−1

with R̄u ∼ N(µm, σu/
√
n) i.e., R :=

√
nR̄u/σu ∼

N(µm, 1). Thus

Pr(R ≥ log un/u1

σu
√
n
|Hu

0 )−1 ≤ Pr(R ≥ log tn/t1
σt
√
n
|Ht

0)−1

= Pr(

√
nR̄t
σt

≥ log tn/t1
σt
√
n
|Ht

0)−1

because
√
nR̄t/σt ∼ N(µm, 1) since R̄t ∼ N(µm, σt/

√
n).

Thus

Pr(

√
nR̄t
σt

≥ log tn/t1
σt
√
n
|Ht

0)−1 = Pr(R̄t ≥
log tn/t1

n
|Ht

0)−1

= Pr(R̄t ≥ mt|Ht
0)−1

= RDC(t|Ht
0)

which proves the theorem.



The above proof demonstrates that RDC preserves
Sharpe’s ratio rankings as long as the returns are centered
around the same value (e.g. the risk-free rate) and are
normally distributed.

B. Time-frame Dependence

One limitation of the Sharpe ratio is that it is dependent
on the time period over which it is measured [3]. Because
rescaling modifies the standard deviation, the ratio can be
increased by reporting returns over longer periods. To ensure
a common standard it is common practice to annualize data
that apply to periods other than one year, a process which is
prone to error when returns are not normally-distributed.

A remarkable property of RDC is that, contrary to the
Sharpe ratio, it is time-frame independent. The RDC of
an investment calculated using a particular dataset remains
consistent no matter what time periods are used to sample it
(given the time period does not exceed the sample size).

Let t be a security whose logreturns R1, R2, . . . , Rn are
normally distributed, and let k be an integer (k << n). We
construct a new time series Y1, Y2, . . . , Yn/k by taking the
sum of groups of k values of Ri’s, i.e. Yi =

∑ik
j=(i−1)k+1Rj .

The time series Y is called a k-regrouping of R. The
following result shows that RDC is preserved under k-
regroupings.

Theorem 3: Let t be a security whose logreturns
R1, R2, . . . , Rn are normally distributed, and let k < n be
an integer. Let Y1, Y2, . . . , Yn/k be a k-regrouping of R.
Computing the RDC of t under HR

0 : Ri ∼ N(µt, σt), i =
1, 2, . . . , n or HY

0 : Yi ∼ N(kµt,
√
kσt), i = 1, 2, . . . , n/k

yields the same value.
Proof: Let R1, R2, . . . , Rn, Y1, Y2, . . . , Yn/k, HR

0 and
HY

0 be as above. Given n observed values ri for Ri’s, the
value of the sampled mean mR is mR =

∑
i ri, and the

value of the sampled mean mY satisfies mY = kmR. HR
0

implies R̄ − µt ∼ N(0, σt/
√
n) and HY

0 implies Ȳ−kµt

k ∼
N(0, σt/

√
n). Thus,

RDC(t|HR
0 ) = Pr(R̄ ≥ mR|HR

0 )−1

= Pr(R̄− µt ≥ mR − µt|HR
0 )−1

= Pr(
Ȳ − kµt

k
≥ mR − µt|HY

0 )−1

= Pr(Ȳ − kµt ≥ kmR − kµt|HY
0 )−1

= Pr(Ȳ ≥ kmR|HY
0 )−1

= Pr(Ȳ ≥ mY |HY
0 )−1

= RDC(t|HY
0 )

Since k-regrouping modifies the sd by a factor
√
k,

Sharpe’s ratio is not preserved under k-regrouping.

C. Ease of Interpretation

Cumulative return alone is not a sufficient statistic for
identifying profitable investments, as this value fails to take
into account the cost of the cash or loan which is needed
to fund an investment in the first instance. As Sharpe points

out [3], only a differential return information measure can
be relied on to make the correct decisions.

Central to the usefulness of such measures is the fact
that a differential return can be framed as a zero-investment
strategy, that is, one which involves a zero outlay of money
in the present and some potential profit or loss in the future,
depending on circumstances. For example, an investor can
take a long position in one asset and a short position in
another (i.e. the benchmark), with the funds from the short
position used to open the long position. If the latter provides
a genuine differential return then profit can be derived with
zero investment. RDC and Sharpe’s ratio are both differential
return information measures, although they differ in their
ease of interpretation.

Table 4 gives the RDCs and annualized Sharpe ratios
calculated for a selection of large cap stocks based on returns
over the last 10 years (2002 - 2012).

Company Return Annualized SR RDC
MCD 382% 0.61 13.7
KO 91.2% 0.23 2.1

XOM 167% 0.31 2.9
WMT 20.3% 0.00 1.0
AAPL 3376% 1.01 139

TABLE IV
COMPARISON OF RDC AND ANNUALIZED SR FOR PERIOD 2002 - 2012

As can be seen, both RDC and Sharpe’s ratio identify that
Walmart only manages to match the risk-free rate over the
period, with both measures returning their lowest possible
value for a profitable investment (1 and 0 respectively). As
we proved earlier, the RDC and Sharpe ratio rankings are in
agreement, yet the significance of the latter’s values are less
clear.

Apple Inc.’s RDC of 139 means that, on average, one
would have to look through 139 profitable securities follow-
ing a random walk about the risk-free rate before finding
one with a performance this good. The Sharpe ratio of 1.01
means that the stock’s annualized standard deviation closely
matches its annualized excess return. To properly appreciate
the significance of the latter measure an investor would
need to hold extensive expertise on the relationship between
mean displacement and standard deviation for the normal
distribution, with regard to annualized values. RDC bypasses
the need for such esoteric statistical knowledge by presenting
the same information in terms of probability, which is more
intuitive for investors.

Apple’s Sharpe ratio is only 66% greater than that of
McDonald’s, which might suggest that it is perhaps twice
as good an investment. However, Apple’s RDC is 10 times
greater than that of McDonald’s, which means that it is 10
times more likely to be exhibiting underlying performance
above the risk-free rate. The stock’s overall return is also 9
times greater than that of the McDonald’s Corporation. This
substantial difference is not well communicated by Sharpe’s
ratio.



IV. CONCLUSION

Due to its many limitations, there are numerous strategies
that fund managers can use to artificially enhance their
Sharpe ratio and mislead investors. Since the ex post is often
calculated using relatively few data points, fund managers
can exploit strategies with skewed or kurtotic return distri-
butions to distort the variance in their favour.

When financial variables are significantly non-normal, it
becomes challenging to accurately compute the projected
annualized skewness and kurtosis which Sharpe’s ratio re-
quires. Fama [13] originally analysed the distribution of the
stocks making up the Dow Jones Industrial Average and
concluded that security returns are ‘fat tailed’ (i.e. have
kurtosis). More recent analyses of the S&P 500, FTSE 100,
DAX and NIKKEI 225 for the period 2000 to 2009 have
revealed extensive evidence of kurtosis, rejecting the null
hypothesis of a normal distribution [14]. Analyses of hedge
fund returns have also demonstrated negative skewness and
positive excess kurtosis [7].

The time-frame dependence of Sharpe’s ratio also allows
the measure of risk to return to be misconstrued via the
selective lengthening of the interval used to measure standard
deviation or by smoothing monthly gains and losses by using
derivative structures such as average price options, thereby
reducing reported volatility [8].

RDC holds several advantages over Sharpe’s ratio. First,
and perhaps most importantly, where a sparse dataset ren-
ders it impossible to reliably identify the parameters of an
underlying distribution (e.g. mean, standard deviation) the
bootstrapping method, which does not rely on a probability
distribution function, can be used instead. Because it is
time-frame independent, RDC cannot be manipulated by
computing standard deviation over different periods, and it
also avoids the problem of having to annualize non-normal
returns. Perhaps the most significant advantage of RDC over
Sharpe’s ratio is that the significance of its value is more
intuitive and, as a result, can be more easily adjusted for
selection bias.

In conclusion, we have described a risk-to-reward measure
which is derived from the underlying relationship between
risk and reward. We have proved that this measure converges
with the Sharpe ratio under particular constraints, while hold-
ing the added advantages of being distribution independent,
time-frame independent, and applicable to small datasets. All
investment strategies, no matter how mundane or exotic, are
ultimately accountable to demonstrate that their returns are
not subject to chance. As such, the maximization of RDC is
a robust and universal objective by which the performance
of any financial security can be meaningfully evaluated and
contrasted.
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