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Abstract. This paper explores the early implementation of high-performance routines for the so-
lution of multiple large Hermitian eigenvector and eigenvalue systems on a Graphics Processing
Unit (GPU). We report a performance increase of up to two orders of magnitude over the original
eispack routines with a NVIDIA Tesla C2050 GPU, potentially allowing an order of magnitude in-
crease in the complexity or resolution of a Inelastic Neutron Scattering (INS) modelling application.
. . .
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1 Introduction

Eigenvector and eigenvalue determination are a recurrent problem in computational modelling applica-
tions for which a number of broadly accepted libraries exist. However, as increasingly elaborate models
become of practical value to scientific and engineering applications, the demands of solving larger systems
typically require high performance computing with large high-performance clusters or supercomputers.

As an emerging parallel architecture for high-performance computing, the Graphics Processing Unit
(GPU) has the potential to enable a new generation of applications for desktop machines and small
clusters. Originally intended for intensive high-end 3D graphics and gaming, GPUs have demonstrated
cluster-level performance at a fraction of the cost and energy consumption of traditional CPUs for
certain general purpose applications. GPU advances are expected to sustain the trend of Moore’s law
that conventional CPUs are straining to maintain.

Conversely, the shift towards GPU computing is a drastic architectural change that has left a void in
the space of application software and support libraries that are able to leverage the full capabilities of
the platform. While the solution to computational modelling problems—which were impractical on the
desktop and uneconomical on the supercomputer—may very well become the dominant GPU applications
of the future, effective GPU programming remains an open problem in computational science.

With NVIDIA’s CUDA, AMD’s Firestream, Microsoft’s DirectCompute and the vendor-neutral OpenCL
platform, significant resources are being directed towards developing a supporting ecosystem for GPU
computing in the form of libraries, specifications, and tools that are at various levels of maturity.

Driven by our own immediate need for high performance solvers for modelling Inelastic Neutron
Scattering (INS), this paper describes the early stages of our application of GPUs to the solution of
Hermitian eigensystems, based on the eispack library and using the CUDA platform. Our work may
arguably shed some light on a computational problem of even wider significance than the intended
modelling application.

2 Background

eispack, and its successor lapack, provide extensive linear algebra routines in mathematical and scien-
tific computing. Originally developed in the US in the seventies [17], the accuracy and numerical stability
of eispack has been established through diverse application over the past 30+ years, leading to a number
of developments in the field [3].

We have developed an initial high performance parallel version of scatter [16], a software component
to calculate coherent and incoherent polycrystalline INS (poly-CINS) capabilities for lattice models in



the highly popular Molecular/Lattice Dynamics package, the General Utility Lattice Program [6], that
has demonstrated linear scaling up to 1024 nodes on the Huygens prototype supercomputer in the SARA
facilities in the Netherlands [8]. Central to this parallel version are phonon mode calculations carried
out with the support of eispack. However, not every scatter deployment may have access to major
supercomputing installations and it is clear that more affordable computational power is required on the
lower end of the computing scale [1].

Furthermore, GPU modules are becoming a frequent presence in high performance computing plat-
forms and the application of scatter to progressively more complex models on larger installations will
require reasonable usage of these resources. As a result, an efficient GPU implementation of the most com-
putationally intensive parts of the scatter routine will alleviate this imperative demand. Of particular
interest are solvers for the class of Hermitian eigensystems that occur in INS modelling, arising from the
quantum mechanical determination of phonon modes and their associated scattering contributions [15].

For numerically intensive tasks, GPUs have substantial computing potential [18]. However, com-
plex control flow with conditional branching and thread divergence incur a noticeable performance
penalty [14]. To achieve reasonable performance benefits, it is necessary to augment traditional de-
velopment techniques with low-level knowledge of the underlying GPU architecture [10].

The Compute Unified Device Architecture (CUDA) is NVIDIA’s platform for GPU computing, pro-
viding compilation tools, libraries and a runtime system. CUDA allows the execution of kernels, written
in CUDA C, on the GPU device. A kernel executes as a configurable grid of independent thread blocks
that may contain up to 1024 threads in second generation CUDA devices.

A Single Instruction Multiple Thread (SIMT) abstraction, where threads within a block execute
identical instructions and may operate on different memory locations, allows fine-grained data parallelism
within blocks and task parallelism at kernel level [13]. Thread blocks are divided into warps of 32 threads.
For a given block, only one of these warps is scheduled to execute on the actual hardware at any given
instant.

GPU memory is hierarchically organised and independent from host memory. Global Memory, high-
latency and high-bandwidth DRAM, is the primary memory available on the device and is accessible
by all executing kernels as well as for host to GPU data transfer. Limited high-speed Shared Memory,
essentially a user-managed cache, exists locally on each streaming multiprocessor to allow the explicit
avoidance of expensive off-chip global memory accesses. Also present are register, texture and constant
memories with various performance characteristics.

Memory transfer contention and bandwidth represent the predominant bottlenecks to GPU perfor-
mance. Different authors have suggested various approaches to managing memory for scientific applica-
tions in GPU architectures, such as the use of cache analysis techniques to improve tiling algorithms [9],
the deployment of low-level compiler annotations within CUDA source files to steer the memory hierarchy
traversing [20], and the automatic translation of OpenMP structures into CUDA primitives [11].

However, such techniques are both application and architecture dependant, and may rely on manual
intervention for code analysis, annotation, or tool coupling. Ideally, we would like to have a seamless
integration of the application and the architecture without the need of additional code or human inter-
vention.

In fact, a critical performance consideration is that high cost global memory operations can be
performed simultaneously or coalesced for a thread warp if certain access constraints are satisfied. In
practice, significant efforts are usually dedicated to optimising memory access patterns of this kind by
what is frequently a hit-or-miss approach involving conflicting trade-offs to maximise the compute to
global memory access (CGMA) ratio [10]. The GPU architecture and best practices for achieving good
performance are extensively documented in the CUDA platform, and extensive efforts are now geared
towards the use of platform-agnostic GPU frameworks which can deal with standard unified language
deployments such as CUDA and OpenCL [4].

2.1 Contribution

Despite a number of emerging GPU numerical libraries, no open library for eigensystem analysis is avail-
able to completely meet the application requirements. Therefore, a basic port of the required functional
subset of eispack to the GPU has been undertaken.

Admittedly, the more modern lapack—which has largely superseded eispack—may have formed a
functionally superior basis. However, the inherent architectural complexity and reliance on an efficient



blas implementation implies a long-term effort that the immediacy of our requirements does not allow.
The magma library is such an effort that is in the early stages of providing hybrid multicore-CPU/GPU
implementations of lapack routines [19].

The challenges of achieving efficient performance on a GPU architecture may justify the extended
effort of custom algorithms developed specifically for the strengths of the platform [21]. However, we
maintain the original algorithms of the legacy eispack implementation for several reasons:

(a) This work is motivated by a very practical application for which the eispack eigensolver has proven
adequate.

(b) As eispack has been in production use for nearly 40 years, the numerical characteristics and accuracy
have been established by exhaustive application and testing.

(c) The problem of creating a data-parallel GPU version is conceptually similar to that of creating a
vector-processor version of the eispack routines. A vector implementation was created for for the
IBM 3090-VF by [2].

(d) While alternative algorithms used in lapack may possess superior cache usage characteristics and
performance in modern processor configurations, they provide this at the expense of software com-
plexity and reliance on an efficient blas implementation.

The eispack implementation provides the ch driver for double-precision Hermitian matrices and
its three subroutine dependencies shown in Table 1. It extends our initial work [7] by introducing a
coordinated approach to the development of GPU-based eigensystem solvers.

3 Methods

Let A be a square matrix. Thus, v is an eigenvector of A (a non-zero vector) if and only if there exists
a scalar λ which satisfies expression (1).

Av = λv (1)

The generalised nonsymmetric eigenvalue problem is to find eigenvalues λ and eigenvectors v which
satisfy expression (2).

Av = λBv (2)

The solution of the real generalised nonsymmetric eigensystem problem for a matrix pair (A,B)
involves computing the generalised Schur decomposition

A = QSZT (3)

B = QTZT (4)

where Q and Z are orthogonal matrices of left and right Schur vectors respectively, and (S, T ) is the
generalised Schur form whose diagonal elements give the α and β values. The algorithm used is the QZ
method due to Moler and Stewart [12].

4 Implementation

As eispack is implemented in Fortran, these routines require source-level translation with the f2c tool
[5] into equivalent C sources for compatibility with the C-based CUDA SDK (Figure 1). Thence, the
subroutines from Table 1 have served as the basis for the creation of three functionally equivalent GPU
kernels.

Performance gains emerge as data-parallel intensive loops are distributed between cooperating threads
in a block and synchronisation constructs inserted to avoid race conditions between thread warps. These
loops are identified from source-level line-profiling on the original CPU version of eispack, the assumption
being that CPU performance is strongly indicative of potential performance bottlenecks in the GPU
kernels. This is a necessary workaround as CUDA profiling tools provide relatively basic functionality.
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Fig. 1. The Fortran eispack source translated to C with f2c forms the basis of the CUDA Port

A number of thread blocks independently handle the solution of multiple eigensystems in parallel. In
our implementation, a thread block or cooperative thread array (CTA) is mapped to an input problem
set, allowing parallelism at both independent block and cooperative thread levels.

Some performance optimisations applied include:

(a) Asynchronous transfers to and from the Host over multiple streams allow concurrent kernel execution
and overlapped I/O.

(b) Algorithm reorganisation for improved coalesced memory access. Transposed matrix layout in some
subtasks is necessary to achieve higher memory transfer bandwidth.

(c) Improved register memory usage by the elimination (or reuse when appropriate) of extraneous register
variables to improve GPU occupancy and facilitate latency hiding on the streaming multiprocessors.

(d) Use of explicit caching in shared memory to limit costly global memory accesses.
(e) Empirical determination of launch configuration by trial and error. While, the guidelines recommend

that thread blocks sizes should be multiples of a warp to allow latency hiding for multiple warps,
it is necessary to determine actual optimal block sizes by testing. The different kernels performed
optimally at distinct block dimensions.

Routine Description

htridi Reduction of complex Hermitian matrix to real symmetric tridiagonal matrix via unitary
similarity transformations.

tql2 Eigenvalues and eigenvectors of symmetric tridiagonal matrix by ql method.

htribk Eigenvectors of complex Hermitian matrix by back transformation of corresponding real
symmetric tridiagonal matrix.

Table 1. Relevant Hermitian Eigensystem routines in eispack
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Fig. 2. Execution time for 1000 double precision Hermitian matrices of order N with (i) the current eispack
CPU implementation, (ii) lapack on CPU and (iii) the test eispack implementation on a NVIDIA Tesla C2050
GPU.

Parameter Value

Number of CUDA Cores 448

Frequency of CUDA Cores 1.15GHz

Double Precision floating point performance (peak) 515 Gflops

Single Precision floating point performance (peak) 1.03 Tflops

Total Dedicated Memory 3GB GDDR5
Table 2. NVIDIA Tesla C2050 GPU Specifications

Performance evaluations are carried out on a 64-bit Dell Precision T7500 Server with 4 Intel Xeon
2GHz CPU cores, 4GB RAM and a NVIDIA Tesla C2050 GPU with a PCI express interface running
Version 3.2 of the CUDA SDK on 64-bit Ubuntu 10.04 Linux.

The second generation NVIDIA Tesla C2050 GPU is designed specifically for scientific and numerical
computing applications. 14 streaming multiprocessors (SM), each providing 32 streaming processors (SP),
offer 448 parallel cores in total. While many earlier GPUs completely lacked double precision support,
the Tesla GPU provides improved double-precision floating point performance.



The execution times for 1000 N -order input matrices with eispack and lapack on a single CPU
core and on the GPU are shown in Figure 2. GPU times are collected via the platform timers and are
inclusive of memory transfer overhead.

Within a critical window (N = 512 − 2048), the current GPU routine yields performance increases
of between 50 − 100× over the previous eispack implementation, a result of performance gains at
both thread and block levels. As the matrix order increases, the GPU memory is able to accommodate
fewer matrices to provide any block-level performance advantage and execution resources begin to idle.
Therefore, the scalability of the approach is restricted for higher values of N by the hard limit that
memory places on GPU occupancy despite the still-observable benefits of thread-level parallelism.

The superior lapack cache behaviour delivers consistently higher performance over eispack for
larger values of N. While equivalent routines in both lapack and eispack are of storage order O(n2),
lapack reuses the same input matrix memory for output and is therefore more memory efficient.

6 Discussion

For the intended neutron scattering application, good performance within the critical window will be
sufficient to allow an order of magnitude advance in the size, complexity or grid refinement of the INS
models.

In the long-term, it is expected that subsequent GPU models will offer improved memory character-
istics and deliver higher performance. Furthermore, the need for migration to lapack as larger systems
are modeled is evident.

The intention of this work has been to create an efficient GPU port that meets the need created by
scatter and that is based on the established numerical eispack code. We anticipate the emergence
of standard numerical libraries for the GPU that are based on efficient algorithms oriented towards the
particular strengths of the platform. A very recent release of the magma library introduces a Hermitian
eigensolver for hybrid multicore-CPU-GPU configurations that is based on an alternative divide-and-
conquer algorithm. The suitability of this lapack-based version is being evaluated. However, our initial
observations indicate that magma performance is optimised for very large values of N , outside the critical
window identified previously.

7 Conclusions

The particular applicability of INS to the study of nano-materials has led to increasing popularity for
structural determination in the materials science community. Libraries of mathematical routines remain
the foundation of these applications and it is important to establish and maintain efficient implementa-
tions. We have demonstrated the substantial performance potential of the GPU in INS modelling and
similar applications that rely on significant numerical computation.

The current implementation remains in the tuning and testing stages and performance improve-
ments are probable. Testing and deployment in a multi-GPU cluster configuration is intended during
re-integration of the new eigenanalysis routines with gulp, the scatter host application [6], before
simulations with actual INS models are evaluated.

Further work will investigate other computationally intensive aspects of INS modelling that will
benefit from GPU acceleration. This includes derivation of the dynamical matrix and nearest-neighbour
search.

The challenge of determining optimal parameters for launch configuration and performance tuning
presents an opportunity to apply heuristic techniques. Ultimately, we seek to investigate deployment
of the neutron scattering program for complex models in large dynamic GPU-accelerated heterogeneous
environments and techniques for improving co-operative CPU-GPU throughput. This will combine CPU,
GPU-eispack and, prospectively, MAGMA in an adaptive framework that optimises for performance by
balancing between alternative execution paths. Multiple implementations of GPU kernels, optimised for
various problem scales, become a means of achieving this performance balance.
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