
Cloudsearch, Dell Cloud service
application

Ajitpal Singh

Submitted as part of the requirements for the degree

of MSc in Cloud Computing

at the School of Computing,

National College of Ireland

Dublin, Ireland.

September 2013

Supervisor Dr. Horacio Gonzalez-Velez

Abstract

Cloud platform is becoming emerging trend in IT infrastructure, service delivering and

multi-layered resource sharing architecture which includes SaaS (Software as a service),

PaaS (Platform as a service) and Iaas (Infrastructure as a service). With the increasing

popularity of cloud computing, user store large amount of data in form of documents,

text files, database etc. In Cloud, the large number of applications are running and

storing logs on multiple servers and different log files. As today services are getting more

decomposed, each layer in cloud stack generates different logs for network, applications,

database etc. on different machines. The log provides the important piece of analytical

data. At any point in time, cloud provider, owner or application developer need to

understand the status of different components, monitor business process and find user

documents in real time. Cloudsearch implements a Proof-of-Concept (POC) system to

analyse the user documents, logs and folders in real time from different machine using

Elasticsearch server which is open source distributed real time search and analytics

engine. Furthermore, we have developed rivers (i.e. extension) for Elasticsearch server

and extended its data searching capabilities for different operating system and software

platform. Cloudsearch extends it capability by searching different OS in private cloud

environment using SSH and SAMBA. Cloudsearch also allows users to search documents

in their SharePoint server also. It provides simple user interface to add connectors or

machine to index the data and allow user to search the data in real time. In this paper

we describe the design and implementation of the Cloudsearch. Furthermore, we also

describe how to extend Cloudsearch for different software and services.

ii

Contents

Abstract ii

Declaration v

1 Introduction 1

2 Background 3

2.1 Technology overview . 3

2.2 Elasticsearch . 4

2.2.1 Elasticsearch Term . 4

2.2.2 Storing Data in Elastic Search 5

2.2.3 Retrieving data in Elasticsearch 6

2.2.4 Searching data in Elasticsearch 7

2.2.5 Cluster Administration . 8

2.3 SECURE SHELL (SSH) . 9

2.4 Samba . 9

2.5 Microsoft SharePoint . 10

2.6 River in Elasticsearch . 11

2.7 MySQL . 12

2.8 Maven . 13

2.8.1 Sample POM configuration file 13

2.9 GIT . 14

2.10 Jenkins . 14

2.11 Jetty . 15

3 Design 17

3.1 Basic overview . 17

3.2 High Level Design . 19

3.3 Elasticsearch Plugins . 21

3.3.1 Sample index . 22

iii

3.4 Workflow for application development 23

4 Implementation 26

4.1 FS-River plugin Development . 26

4.1.1 FS-River Plugin design . 27

4.1.2 SSH plugin implementation . 28

4.1.3 SMB plugin implementation . 30

4.2 JDBC plugin for MySQL . 32

4.2.1 JDBC Implementation . 32

4.3 Cloudsearch Frontend development . 34

4.3.1 Workflow of Cloudsearch . 34

4.3.2 Code Elements . 35

4.4 Overview of Cloudsearch website . 36

5 Evaluation 42

5.1 Program Description . 42

5.2 Findings . 43

6 Conclusions 47

Bibliography 48

iv

Declaration

I confirm that the work contained in this MSc project report has been

composed solely by myself and has not been accepted in any previ-

ous application for a degree. All sources of information have been

specifically acknowledged and all verbatim extracts are distinguished

by quotation marks.

Signed .. Date

Ajitpal Singh

v

Contents

vi

List of Tables

4.1 JDBC JSON properties . 33

5.1 Test machines configuration . 42

vii

List of Figures

2.1 River plugin in ES . 12

2.2 Jetty frontend . 16

3.1 cloudsearch signup . 18

3.2 cloudsearch notification . 18

3.3 manage services and nodes . 19

3.4 user management . 19

3.5 Cloudsearch overview . 20

3.6 River plugin internal components . 22

3.7 Development workflow . 24

4.1 Fsriver plugin project . 28

4.2 cloudsearch website project . 36

4.3 Manage index tab . 37

4.4 Index popup display . 37

4.5 Save SSH index . 38

4.6 Index saved in Flexi-Grid . 38

4.7 Elasticsearch head . 39

4.8 start indexing . 39

4.9 check indexing . 40

4.10 Delete index . 40

4.11 Search data from index . 40

5.1 CPU usage for 1 GB file. 44

5.2 Network utilization for 1 GB file. 44

5.3 CPU utilization for 2.57 GB file. 45

5.4 Network utilization for 2.57 GB file. 45

viii

Disclaimer

THIS TECHICAL PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND

MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL INACCURA-

CIES. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS OR IMPLIED

WARRANTIES OF ANY KIND.

Copyright 2013 Dell Inc. All rights reserved. Reproduction of this material in any

manner whatsoever without the express written permission of Dell Inc. is strictly

forbidden. For more information, contact Dell.

Dell, the DELL logo, and the DELL badge are trademarks of Dell Inc. Microsoft, and

Windows are either trademarks or registered trademarks of Microsoft Corporation in

the United States or other countries. Other trademarks and trade names may be used

in this document to refer to either the entities claiming the marks and names or their

products. Dell Inc. disclaims any proprietary interest in trademarks and trade names

other than its own.

September 15, 2013

ix

Chapter 1

Introduction

Cloud computing has brought major advancements and innovations in IT services

Industry. [4] In very short period of time, the term cloud computing has defined a

new style of computing in which resources are easily virtualized and provides scalable

services that can be accessed over the network. Cloud computing is reshaping our

information structure and today is delivered as a traditional utility manner and

consumers are paying service provider on the basis of utility usage [1]. Running any

application in cloud requires insight into current on-going process and workflow. As

cloud computing and big data are evolving, a search engine is required that search

documents in cloud. However, today typically most search engine is web based like

Google and Yahoo. It is today necessary to search the documents, log files, SQL and

NoSQL database, such cloud data is very important for both user and service provider

perspective [6]. Logs and document provides important insight into data. Logs are

provided to developer, operation team and security analyst. To find specific content in

documents can be significant problem when trying to very large subset of them.

We have developed Cloudsearch application which is a proof of concept for Dell

cloud customer to search their private data on different platform inside Dell cloud

environment. Cloudsearch application is based on Elasticsearch server, which is

distributed real time search engine, for effectively searching and indexing document

in cloud environment. We have extended the search capabilities of Elasticsearch by

extending its plugin to search data on Linux, Windows, SharePoint and Database

platform. Elasticsearch engine uses Lucene framework to provide full text based

searching using powerful query language, auto search and conflict management for

document processing.

1

In cloud environment, application store logs in multiple folders and machine. Each

layer in cloud application generates the log. As customer point of view, to manage

and check such log on regular interval could be a big problem [8]. Using Dell cloud

search template user can create indexes for all log folders and schedule them to

read it real time. We have also provided search capabilities for MySQL database

and SharePoint document library. Cloudsearch extends Elasticsearch to read user

document in SharePoint library and index it. Cloudsearch provide single place to

manage and control all data indexes and search them. Using Cloudsearch template

in Dell cloud services user easily increase Elasticsearch node instance as data in their

environment grow proportionally. Furthermore, we have developed web based frontend

which is integrated with Elasticsearch node.

In next section we will discuss the Cloudsearch application in general and provide details

about framework and technology implemented. After that we will see how Cloudsearch

application work and its internal design specifications. Again in next section, we will

show the implementation of the Cloudsearch application and its working guideline. In

last we do some evaluation and testing on the Cloudsearch and finally we conclude.

2

Chapter 2

Background

Cloudsearch application search data inside DELL cloud platform. Once cloud users are

logged inside the cloud, users can install Cloudsearch as a template. A templates are

services that user can install inside their cloud platform offered by DELL. Once the

service are installed user can control the services as well its configuration. Cloudsearch

templates install the Elasticsearch cluster with single VM node and integrate web fron-

tend in web console. User can create search index for virtual machine and schedule

them. Search can be deployed for both Windows and Linux platform. Cloudsearch

is a POC application which will focus on data search using SSH for Linux, SMB for

Window, http for SharePoint service and database from MySQL.

2.1 Technology overview

• Interfaces

1. Web based frontend in servlets

2. Extended FS-River plugins

3. Jetty Server

• Platforms

1. Linux/Ubuntu

2. Servlets web framework

• Development Platform

3

1. Java (Eclipse Kepler project)

2. Maven

3. MySQL

4. Jenkins / GIT Workflow

5. JSch API implementation for SSH2 (V 0.1.50)

6. JCIFS API implementation for SMB (V 1.3.17)

2.2 Elasticsearch

Elasticsearch is open source server which provides distributed and real time search

capabilities, it also known as document database. It implements Lucene as its backend

for document parsing and structuring [9]. Elasticsearch has following features:

• Distributed: Elasticsearch server can start with small data and can be scaled

horizontally depending upon the application needs and requirements. If more

capacity is needed, we can just add more nodes to store the data.

• High Availability: Elasticsearch cluster is error resilient, if any error is detected,

it will automatically remove the failed nodes and re-organize itself to make sure

data is safe and accessible.

• Full Text Search: It provides full query based search capabilities using Lucene.

• Document Oriented: Elasticsearch store data or document in JSON format.

All documents are indexed by default and provide result at very fast speed.

• Schema-free: Documents can be easily stored in JSON format and Elasticsearch

will automatically detect the data structure, its data types and index the data

accordingly. User can also define its own mapping and can change if required.

Documents are versioned for any changes and provide the conflict management

automatically.

2.2.1 Elasticsearch Term

We define some basic terminology for the Elasticsearch server.

4

• Index: It is like database, where Elasticsearch server stores the data. In Rela-

tional DB terms the index is like a Table. It has mapping which defines multiple

types.

• Document: Every document is a Elasticsearch is a JSON document. It repre-

sents row in table or index. Every document has a type and id field.

• Type: Each document has list of fields that can be specified for that type. It

can viewed as column as in DB.

• Shard: Data in Elasticsearch is divided into shards as smaller parts and each

shard is a separate Lucene index. Shards can reside on same server or can be

distributed among different server. Shards give Elasticsearch horizontal scaling

capabilities.

• Replica: Each shard can have one replica or mirror copy to store the information

and data.

Elasticsearch cluster architecture is distributed in nature, fault tolerant, can have

single node cluster and Elasticsearch can also select automatic leader node from

group of nodes. It provides multicast and unicast discovery methods. The server

configuration can be changed on runtime without shutting down the node. In cluster

node, each Elasticsearch node must restart after river plugins are configured [9].

Elasticsearch use REST based API, user can manage the index, check server health,

updates node, search data and can manage the cluster from its API. REST like

architecture defines that every request is directed to resource or a concrete entity

which is indicated by the path of that object. REST is built upon HTTP protocol,

hence it support all the methods of HTTP like get, put, post, delete etc.

2.2.2 Storing Data in Elastic Search

We can implement simple JSON to store the data in the server using REST API.

Following sample uses CURL tool to add index to the server. We created (Listing 2.1)

a simple JSON example of book information.

1 {

2 "title": "Handbook of Cloud Computing",

3 "pages": "656",

4 "edition": 2010,

5 "isbn" : "1441965238",

5

6 "author" : "Springer",

7 "publish_date" : "September 26, 2010",

8 "tags" : ["Cloud", "PaaS", "IaaS"]

9 }

Listing 2.1: book json

This example will create index with name as library and type as cloudcompuitng with id

1, when we execute following command data is saved in Elasticsearch node(Listing 2.2)

1 curl -XPUT http://localhost:9200/library/cloudcomputing/1 -d {

2 "title": "Handbook of Cloud Computing",

3 "pages": "656",

4 "edition": 2010,

5 "isbn" : "1441965238",

6 "author" : "Springer",

7 "publish_date" : "September 26, 2010",

8 "tags": ["Cloud", "PaaS", "IaaS"]

9 }

Listing 2.2: Create Index

When the index is stored properly in the server, it will create 5 shards by default and

with 1 replica on single server. If the data is stored properly on the server, it returns

following JSON response (Listing 2.3)

1 {

2 "ok":true,

3 "_index":"library",

4 "_type":"cloudcomputing",

5 "_id":"1",

6 "_version":1

7 }

Listing 2.3: JSON reponse for index

2.2.3 Retrieving data in Elasticsearch

We can retrieve the documents stored in the server using following url curl -XGET

http://localhost:9200/library/cloudcomputing/1. The server will return the

JSON in response (Listing 2.4)

1 {

2 "_index" : "library",

3 "_type" : "cloudcomputing",

4 "_id" : "1",

6

5 "_version" : 1,

6 "exists" : true,

7 "_source" : {

8 "title": "Handbook of Cloud Computing",

9 "pages": "656",

10 "edition": 2010,

11 "isbn" : "1441965238",

12 "author" : "Springer",

13 "publish_date" : "September 26, 2010",

14 "tags": ["Cloud", "PaaS", "IaaS"]

15 }

Listing 2.4: JSON retrieved from index

2.2.4 Searching data in Elasticsearch

Elasticsearch provides simple as well as advance search query with REST based

API. It provides JSON data as response from query DSL. For example to search

the title cloud computing in node, we form the following query.curl -XGET

’localhost:9200/library/cloudcomputing/search?q=title:cloudcomputing’.

Whereas in response, we will get the following results.

1 {

2 "took" : 1,

3 "timed_out" : false,

4 "_shards" : {

5 "total" : 5,

6 "successful" : 5,

7 "failed" : 0

8 },

9 "hits" : {

10 "total" : 1,

11 "max_score" : 0.39178301,

12 "hits" : [{

13 "_index" : "library",

14 "_type" : "cloudcomputing",

15 "_id" : "1",

16 "_score" : 0.39178301, "_source" : {

17 "title": "Handbook of Cloud Computing",

18 "pages": "656",

19 "edition": 2010,

20 "isbn" : "1441965238",

21 "author" : "Springer",

22 "publish_date" : "September 26, 2010",

23 "tags": ["Cloud", "PaaS", "IaaS"] }

7

24 }]

25 }

26 }

Listing 2.5: JSON search result

Score represent the relevancy of the search result. If the results are more than one, the

total object in JSON will change. Result also display total time took in milliseconds

and shards used to get the result dataset with their success and failure results.

2.2.5 Cluster Administration

Monitoring is important aspect of Elasticsearch cluster because it generates data that

can be used to judge the success and to detect possible problem and prevent them

before they occur. The REST based API of Elasticsearch provides very detail infor-

mation that allow to monitor the entire cluster or single node. It includes statistics,

information about the server and node parameters. The cluster health API returns the

current cluster or node information about its status, number of nodes, primary shards,

replica etc. Following command is curl -XGET localhost:9200/_cluster/health.

It returns as following information.

1 {

2 "cluster_name" : "FirstNode",

3 "status" : "green",

4 "timed_out" : false,

5 "number_of_nodes" : 1,

6 "number_of_data_nodes" : 1,

7 "active_primary_shards" : 5,

8 "active_shards" : 5,

9 "relocating_shards" : 0,

10 "initializing_shards" : 0,

11 "unassigned_shards" : 0

12 }

Listing 2.6: Cluster JSON response

Elasticsearch provides query to execute on specific index. The state can also be deter-

mined on several levels such as shards, index and cluster. Elasticsearch also provides

very complex monitoring API for example

curl localhost:9200/_cluster/health?level=indices

curl localhost:9200/_cluster/health?level=shards

8

2.3 SECURE SHELL (SSH)

SSH is a cryptographic protocol for network which employs public and private keys for

secure data communication between different user accounts or between two network

computer that connect to each other using secure channel via running client and

server. The protocol has two versions SSH-1 and SSH-2. In SSH client means the

workstation or PC we are logged in and server means the workstation or PC where we

visit to login and do some task [2].

Installing open SSH server and Client, type the following command in the terminal

sudo apt-get install openssh-server openssh-client

Once the SSH server and client are installed, to test it simply run following command

ssh localhost

To connect to the machine using SSH, we need server user name and IP and password.

ssh server_username@server_ip_address

For reading the file or documents from different Linux machine, we will use SFTP

(SSH file transfer protocol) which basically provide secure data stream using SSH for

file access and management. The SFTP work with SSH version 2. SFTP provide

security benefit as entire data is encrypted over the network, so other VM (virtual

machine) cant parse the data over the network.

2.4 Samba

Samba is suite or free software implementation for CIFS or SMB server and client on

Unix like platform. SMB (server message block) is network protocol for file sharing as

implemented in the Microsoft windows. A dialect of SMB means that set of message

packets define the particular version of the protocol implemented. CIFS (common

internet file system) protocol is SMB dialect which is available for the different version

of Unix or other OS [5].The packets can be classified as:

• General status packets

• Session control packets

• File access packets

9

The running mode of SMB is request-response mode. In this mode, Client sends the

SMB request packet to the server. Server process and analysed the SMB message

packet and send the response back to the client. When we need to share resources

form windows platform, we need to install Samba software and its packages. After

the packages are installed we need to configure the Smb.conf file. All SMB (citation 3

SMB) clients operate more like as FTP, for transferring file between UNIX and windows

machine. We can mount the SMB share on local file system using mount˙smbfs.

Installing Samba in Linux machines run the following command in the terminal sudo

apt-get install samba smbfs

Once the samba gets installed, we need to configure it, to make it accessible. We need

to edit following file.

sudo gedit /etc/samba/smb.conf

2.5 Microsoft SharePoint

SharePoint is a Microsoft platform to create websites. It generally brings together all

the technology required by business to interact, share and collaborate with content

and data using internet or intranet. SharePoint provide enterprise wide information

portal that provide centralized space for document sharing. It streamlines the

organization data and access management. SharePoint provides the complete stack

for application based API and web technology. Cloud-search will only focus on the

document part of the SharePoint from where user save and share the document.

Cloud-search uses SharePoint Rest based API for the content search and document

parsing. Every user in SharePoint has its own document library to store its content [11].

Collection of files that users can share on web pages based on Microsoft SharePoint

services is known as document library. Document library is controlled by users and

files sharing can be private or public. Document can edit or checked or uploaded in the

library by other user with permission. Document libraries can be extended to provide

combination of features such as version history, metadata, custom columns, keywords

etc. The standard document library is known as Shared document which provided

by default. Document library can also create the folder simple as well as nested.

SharePoint has another important feature known as Lists which provide collection of

information that can be shared. Example of sample list are contact list, calendar list

or list meeting or announcements. SharePoint administrator controls the access to the

sites, list content to shared, user access rights etc. Cloudsearch application will only

10

parse the document library of user with shared access right only.

2.6 River in Elasticsearch

River is a service that be plugged in and out of Elasticsearch cluster for pushing or

pulling the data that can searched as well as indexed into single or different cluster.

Every river is has unique name and type. The name identifies the river in the

Elasticsearch cluster and type defines the type of river, which can be anything, that

can push meaning full data to the cluster.

Every river is defined by ˙river index. Each river index accepts a new document called

as ˙meta and the name of the river. Within its curly braces it will have the river

definition and data to be index from a location or service. Example of dummy river

syntax:

1 curl -XPUT http://localhost:9200/_river/my_sshriver/_meta -d ’{

2 "type" : "ssh"

3 "ssh":{

4 "url": "/temp/sample",

5 "username": "demouser",

6 "password": "password",

7 "includes": [".docx" , ".pdf"]

8 }

9 }’

Listing 2.7: JSON for ssh index

To delete the river from the server, use following command

curl -XDELETE ’localhost:9200/_river/my_sshriver/’

To get the status of the river and its working, use following command

curl -XGET ’localhost:9200/_river/my_sshriver/status’

A diagram overview of river in Elasticsearch

11

Figure 2.1: River plugin in ES

2.7 MySQL

MySQL is relational database management system and it is open source. It supports

SQL as query language for DDL and DML operation on the database. It is built to

handle large data volume with very reliable security and provide fast access to data

based on relational model. MySQL is open source as any user can modify the source

code as per their requirement. MySQL support windows, Linux, Mac OS and etc.

It based on client server model and its basic installation includes the MySQL client

and server [3]. MySQL support all the functionality of traditional DBMS with ACID

properties support. MySQL features are:

• Reliable and very fast access to database

• Light weight database model

• Support general SQL queries

• Indexing and binary objects are supported

• Table structure can be altered while server is running

• Compatible to all the operating system

• Built in replication and partitioning

• Session control packets

• Event scheduler

• Plugin based architecture

• MySQL Cluster

12

Installing MySQL: sudo apt-get install mysql-server

2.8 Maven

Maven is an Apache project for comprehension and project management tool for soft-

ware projects. Maven concept is much like ANT, but it is quite different in many

aspects. Maven concept is based around POM (Project object model) which is an xml

file representing the entire configuration for the project. With central piece of informa-

tion from the maven can manage the documentation, reporting and project build with

different phase [12]. Maven requires Java installed on the system with both JDK and

JRE. Main advantage of maven is:

• Easy project management which is usable and maintainable.

• Plugins and tools are available to integrate with declarative language.

• Automatic download transitive dependency.

POM is the fundamental unit of work in maven and contains all configuration details

required to build the project. POM can contain following configuration:

• Project version

• Goals

• Dependency

• SCM

• Integration Server

• Project developer and mailing list etc

2.8.1 Sample POM configuration file

Maven follows three standard lifecycle phases clean, default and site. A Goal represents

a task which helps in managing and building the project and it can have zero or several

phases. The XML represent simple maven pom config xml file:

1 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org ←↩
/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 ←↩
http://maven.apache.org/maven-v4_0_0.xsd">

2 <modelVersion>4.0.0</modelVersion>

3 <groupId>com.dell.app</groupId>

13

4 <artifactId>Cloudsearch</artifactId>

5 <packaging>war</packaging>

6 <version>0.0.1-SNAPSHOT</version>

7 <name>Cloudsearch Maven Webapp</name>

8 <url>http://maven.apache.org</url>

9 </project>

Listing 2.8: pom.xml file

Maven uses archetype to create the project, which a plugin to create the project

structure as per its described template. For quickstart archetypes, create a sample

application in java using following command in terminal

mvn archetype:generate -DgroupId=com.dell.search.cloud

-DartifactId=Cloudsearch -DarchetypeArtifactId=maven-archetype-quickstart

-DinteractiveMode=false

2.9 GIT

GIT is a distributed VCS (version control system). Git is like a mini file system, which

has all the file of different and current version. Git works mostly on local file system

and dont require network for every operation [7]. Everything in GIT is checked sum;

it uses check summing called SHA-1 hash. GIT works on three main stage working

directory, staging area and git depository (repository). Basic GIT workflow:

• Create or modify the files in the working directory.

• Stage the changes in the file with snapshots in staging area.

• In commit stage, we take all the files from staging area and store those snapshots

in git repository which can be local or remote.

Installing the GIT

sudo apt-get install git works for Debian distribution and Ubuntu

systems.

2.10 Jenkins

Jenkins is java based continuous build system which is branched from Hudson. It runs

in servlets containers such as Tomcat and glassfish. Jenkins is very highly configuration

system which provides support for many plugins required by developer community [10].

14

It combines very easily with Maven, Ant, Gradle and other build as well as SCM tools.

Jenkins features and advantage are:

• It generates the test reports and metrics required by QA and developer teams.

• Very large community support and good documentation.

• Plugins can be created very easily and most of them are available for download.

• Once the project is build, rest all future test and build are done automatically.

• Jenkins master-slave concept, slave nodes can be added to Jenkins.

• Provide continuous deployment, monitor problem and can be roll-back to previous

state.

• Most important Jenkins support agile development for robust continuous integra-

tion system.

Installing Jenkins: sudo apt-get install jenkins

2.11 Jetty

Jetty is free open source project from the Eclipse foundation which is pure java servlets

container and simple java based http engine. Jetty also supports SPDY, WebSockets,

LMS, JNDI, JAAS and other integration framework. Jetty can easily embedded with

in applications, clusters, devices, tools as well as framework. Advantages of Jetty are:

• It licensed under both Eclipse and Apache foundation.

• High level of scalability.

• Can be embedded with application and standalone deployment.

• Very small footprint.

• Easily integrate with Maven and development platform.

• Provides advance features as asynchronous access.

Jetty can be downloaded from http://jetty.codehaus.org/jetty/. Current sta-

ble version is 9. Extract the content of the Jetty.tar file. Once the content is ex-

tracted to the directory, open the terminal and enter the following command. Java

jar start.jar. Open the browser and go to localhost to check if Jetty is running

properly.

15

Figure 2.2: Jetty frontend

16

Chapter 3

Design

Cloudsearch POC is created to provide central search management across all virtual

machine and set of services defined by the user to search the data related information

for all Dell cloud services. It will provide a simple user interface to create/delete/update

the search index for different services and platforms.

3.1 Basic overview

Dell cloud users can install and use Cloudsearch template by first login into Dell cloud

services such as vCloud. User will first get authenticated from DCIAM (Dell cloud

identity and access management interface) which holds the accounts, users and policies

for all cloud system and components within Dell Cloud Services, such as vCloud,

CAAS, STAAS and the Dell Cloud Console itself. Dell Cloud Services will interact

with DCIAM to authorize and authenticate users and API calls, e.g. allows a Dell

cloud user to login, get access and use Dell cloud services, such as vCloud.

The Cloud Console will use the DCIAM to authenticate and authorize users with regard

to web activity. On login, user can sign up for Cloudsearch application which will install

on the user cloud platform.

17

Figure 3.1: cloudsearch signup

Cloudsearch will create and install 2 virtual machines on user cloud platform. First

virtual machine will have Elasticsearch package installed on it and running as service.

VM will have 5 shards with replication factor of 1. User can increase the Elasticsearch

node as required since its horizontally scalable. Second VM install the web frontend

package which integrates with user interface at Dell web console. Both VMs are installed

as required for Cloudsearch template. Configuration and VM settings are manageable

from web interface. On successful installation of template, user will receive notification

on the email.

Figure 3.2: cloudsearch notification

User can manage different instances depending upon the cloud setup. In Web console,

user can add Cloudsearch template or can edit exiting one. User can add only 4

Elasticsearch node for testing purpose.

18

Figure 3.3: manage services and nodes

Elasticsearch dont provide any authentication or authorization method to its REST

based interface API. To limit the access to the search interface, user creation/dele-

tion and password changes is implemented using Dell console which is reflected on

Cloudsearch template. Only authorized users are able to view the search template and

manage the index.

Figure 3.4: user management

3.2 High Level Design

This design represents the overview of installed Cloudsearch application on Dell

vCloud as template. The Elasticsearch node is responsible for synchronizing data

between the entire nodes using river plugins and sending JSON data back to front end

on request. User can manage index of required virtual machine or platforms. Cloud

administrators can login from vCloud director to manage the cloud environment and

check the metrics of data usage for billing and analytics purpose. Administrator can

only collect the data logs for templates installed, audit messages, traces of the cloud

health. Administrators have no access to the user cloud environment and its VM

19

data. Once the free quote for searched has finished, user will charged on the base

of search transactions requests. All the data for administrator are stored in vCloud DB.

There is no SLA on this, but in case of failure new Elasticsearch node will be started

again. Dell cloud service will handle this where feasible. Elasticsearch node can

connect to different VM using SSH, SMB protocols. Each node can have 10 indexes

only and each index get a new connection from Elasticsearch node. Index limitation

is simply kept for POC purpose only. Each Linux VM must install SSH and SMB

utilites to access data.

Figure 3.5: Cloudsearch overview

The diagram 3.5 shows the users handling indexes and performing the following

• User login to Dell web console and send authorization token to application for

specific user request.

• User token is checked with authorized user and after verification get access to the

search web console.

• Adding the index on the virtual machine and template are logged at regular

interval to cloud logs.

• On Index start, Elasticsearch node will parse the data on given VM and store its

JSON.

• Elasticsearch node will send the request matrix to vCloud and its health is mon-

itored by internal services.

• During issue escalation, vCloud API gather the error message, warning, informa-

tion and send to vCloud director for verification and DB sync purpose.

The diagram 3.5 does not show an additional interface to the Console, where the Server

20

forwards audit messages for inspection to the Console and Dell cloud internal running

services to manage the cloud environment.

3.3 Elasticsearch Plugins

Elasticsearch provides a way to enhance its core capabilities by adding custom function

in form of plugins. The plugins can vary from river to analyser, mapping types, native

scripts etc. Plugins can be installed both manually and automatically under Plugins di-

rectory. In manual mode plugins must be copied to /Elasticsearch/plugins/plugin

name/plugins folder. In automatic mode, user can install the plugins using

plugin --install <org>/<username/componentname>/<version>.

FS-river plugin helps users to send the file system docs and logs in JSON format to

Elasticsearch cluster. It indexes the local file system, Linux file system by SSH and

Windows file system using SMB protocol libraries. It read your given files at specified

directory at particular time intervals, means user can schedule the indexes to read data

in real time at specified time intervals. Simple workflow to start the file system river:

• Create the plugin and copy the dependencies to plugin folder in Elasticsearch.

• Start the Elasticsearch cluster again.

• Create your index and mapping file if required.

• Send the mapping to the Elasticsearch cluster.

• Machines should be accessible using to each other via network using SSH or SMB.

21

Figure 3.6: River plugin internal components

The diagram 3.6 represents the file system plugin installed in a single Elasticsearch

node. Once the index is started, it will check which protocol to use for reading file

SSH or SMB. Each river plugin establish one to one relationship with file directory.

River read the data in byte stream and then byte stream is passed to Elasticsearch

node in JSON format. Every index has its own Lucene data store also knows as shards

or replica in Elasticsearch terms. It allows multiple documents in single index and

different type of documents can query and indexed. JSON from river plugins are index

inside Lucene or shards. Shards can contain all documents or can distribute data in-

between to give better performance and routing capabilities. Index is built on Lucene

index which can be divided into variable segment at any given point. Each segment can

be separate index or index in itself. So each shard can contain single document or can

share multiple document to index. Multiple shards provide very high fault tolerance

and distributed search capabilities.

3.3.1 Sample index

we define a SSH index for Elasticsearch node required to parse Linux based machine

directory file system.

• Create sample index with name sshdemo. Use curl command line tool to pass

JSON data to Elasticsearch node.

22

curl -XPUT localhost:9200/sshdemo/

• Add properties required for index. Index properties contain:

– url: path of the directory to parse

– server: Server name or IP address of the machine

– username: username for the system.

– password: machine password.

– update-rate: time interval in milliseconds.

– includes: specify the type of document to read eg. Txt, pdf, doc, xml etc.

– Domainname: domain name required for the windows only.

– protocol: it defines which protocol to use

∗ SSH: use secure shell for Unix/Linux like platform.

∗ SMB: Server message block for Windows file system.

∗ SP: SharePoint directory for the user.

3.4 Workflow for application development

Workflow of application is based on continues integration with Jenkins which provides

the testing, deploying and integration with other software which automatically

build and test the application on regular intervals. It notifies developers, testing

team, quality assurance team with report and result of different integration testing.

The application deployment is done in testing environment which includes different

integration cycles.

23

Figure 3.7: Development workflow

The complete workflow shown in figure 3.7 follows as:

• Development team write the software code, testing and software configuration.

Developers manage the code using Git and maven workflow among different

teams. Once the code lifecycle is completed, updated code is pushed at the

Gerrit code repository.

• Team leader review the code using Gerrit, which built on the top of version control

system and provide web based code review tool. Any changes required are added

to pending list and developer team updates the code.

• After the code is reviewed and pending changes are completed, the project is

checked with code repository and Jenkins fetch the project code from code repos-

itory. Jenkins automatically starts building and executing the code and test

lifecycle process.

• Jenkins download all the required dependency and transitive dependency of code

from central repository i.e. nexus. Once the all the dependences are downloaded

and updated with repository, Jenkins start the code testing and its integration

process.

24

• Jenkins sends the test result daily about the code and bug to developer mailing

team. Jenkins also distributes the code and build test load to multiple computer.

• Deployment is done every time, when new changes are done in code.

25

Chapter 4

Implementation

In this section, we discuss the implementation of plugin and web based frontend on the

Dell cloud services. Cloudsearch extends the Elasticsearch river plugins capabilities to

read and parse data over the network using SSH and SMB protocol libraries. Cloud-

search application contain simple web based front to create and manage the search

indexes with search page to search the indexed data from Elasticsearch node. Cloud-

search application is divided in two parts:

• FS-River plugin for Elasticsearch node. (backend interface)

• Cloudsearch website (frontend interface)

4.1 FS-River plugin Development

FS-River plugin reads the data over the network using SSH library for Linux machine,

SMB library for windows machine and httpasynclient for SharePoint REST interface

parsing. The plugin integration with Elasticsearch presents a number of challenges, as

Elasticsearch does not support automatic data parsing over the network. We defined

the plugin to read the files over the network then convert them to JSON format

and send the data to Elasticsearch node using its API. The Elasticsearch node will

automatically index the data. We defined a fixed mapping style in which data is

formatted and send to Elasticsearch node.

FS-river plugin implements following dependencies in its project

1. Elasticsearch.jar (0.90.3)

26

2. JSch.jar (0.1.50) support SSH protocol.

3. jCIFS.jar (1.3.17) support SMB protocol.

4. httpasynclient (4.0-beta3) support REST/ HTTP protocol.

Plugin provides a schema mapping which define our index structure to Elasticsearch

node. Since each index can have multiple type, but we create single type for each

document we parse. File mapping for plugin defined as following:

1 {

2 "mappings": {

3 "doc": {

4 "properties": {

5 "file": {"type":"attachment", "path":"full" },

6 "name": {"type":"string", "analyzer":"keyword"},

7 "pathEncoded": {"type":" string ", "analyzer":"keyword"},

8 "postDate": {"type":"date", "format":"dateOptionalTime"},

9 "rootPath": {"type":"string", "analyzer":"keyword"},

10 "virtualPath": {"type":"string", "analyzer":"keyword"},

11 "fileSize": {"type":"long"}

12 }

13 }

14 }

15 }

Listing 4.1: Mapping for river

Every document parsed using Elasticsearch will have following (Listing 4.1) JSON

format returned during the search result. Every index created for different files will

follows the same mapping.

4.1.1 FS-River Plugin design

Plugin describes four packages in java project which includes plugin packages which

define main class that interface with Elasticsearch and register the plugin with server,

rest package provides the mechanism to control the start and stop plugin by providing

REST API interface, river package introduce main class required to parse the data

over the network using multi-threading provided by Elasticsearch library and define

other class required to implement those function, util package consists primarily of

classes that provide static utilities function across all packages as shown in figure 4.1.

27

Figure 4.1: Fsriver plugin project

4.1.2 SSH plugin implementation

Plugin implements Jsch library to provide secure remote file reading capabilities, it

automatically encrypt and authenticate data over the network. User will provide the

details of machine to be parsed over SSH. Plugin will authenticate the server by using

credentials and go the directory to parse the data. Plugin will recursively read all the

data from the folders and files present in given directory and sends it data in JSON

format to Elasticsearch node. User can stop the plugin if required. Sample JSON script

to send the SSH request to the plugin:

1 curl -XPUT ’localhost:9200/_river/sshlogs/_meta’ -d ’{

2 "type": "fs",

3 "fs": {

4 "url": "/usr/data/logs/",

5 "server": "193.125.125.125",

6 "username": "node001",

7 "password": "Pa$$word",

8 "protocol": "ssh",

28

9 "update_rate": 3600000,

10 "includes": ["*.doc" , "*.txt", "*.pdf"]

11 }

12 }’

Listing 4.2: SSH mapping

FS-River plugin identify the protocol from JSON request protocol field. Each SSH

request must provide system credentials with it IP address as well as complete directory

path to parse. Every request to plugin will include the update-rate which define the

time in milliseconds to parse the data again and different type of files to be parsed is

defined in includes field for example docx, pdf, txt etc.

Code overview for SSH implementation

When plugin receive the request for SSH protocol, it call function IndexSSHFileSys-

tem (Listing 4.3). It first creates the connection with machine using the credentials

and given details. Once the connection is established, its open a secure FTP channel

to the folder. Plugin will recursively parse entire folder for given file types and close

the connection once completed. Plugin will again follow the same process when the

updated rate event is fired. User can start/stop the plugin for web interface. Method

addSSHFilesRecursively (Listing 4.4) parse the data inside the folder in recursive

manner.

1 private void IndexSSHFileSystem(){

2 try{

3 //Create a new jsch session

4 JSch jsch = new JSch();

5 //Set the credentials

6 Session session = jsch.getSession(fsdef.getUsername(),fsdef.getServer());

7 // connect to ssh session

8 session.connect();

9 // open a sftp channel to read the file.

10 Channel channel = session.openChannel("sftp");

11 channel.connect(); //connect the channel for sftp.

12

13 // if channel is connected.

14 if(channel.isConnected()){

15 // goto the desired folder.

16 sftpChannel.cd(fsdef.getUrl());

17 //read all the files recursively and push to server.

18 addSSHFilesRecursively(fsdef.getUrl() , sftpChannel, scanDate);

19 }

20 //disconnect the channel.

29

21 //close the session.

22 //Handle the exceptions.

23 }

Listing 4.3: IndexSSHFileSystem function

1 private void addSSHFilesRecursively(String Filepath , ChannelSftp channelSFtp , Date ←↩
lastScanDate) {

2 //Change the directory path.

3 channelSFtp.cd(Filepath);

4 //check for files and directory.

5 if(!lEntry.getAttrs().isDir()){ // only file to be parsed.

6 indexSSHFile(stats, Filename, Filepath , channelSFtp,lEntry.getAttrs().getMTime ←↩
());

7 }else{

8 //Directory again parse it.

9 addSSHFilesRecursively(Filepath + Filename + "/" , channelSFtp, lastScanDate);

10 }

11 //reset the path of sftp.

12 channelSFtp.cd("..");

13 //Handle the exceptions.

14 }

Listing 4.4: addSSHFilesRecursively function

4.1.3 SMB plugin implementation

Plugin can browse or read data from SMB shares; this can be done whether machine

is a samba or Windows server. SMB client installed on Linux machine will provide ftp

like interface to Windows machine to parse its data. User will provide detail of window

machine credentials and directory to parse. Plugin will recursively read all the data

from the folders and files present in given directory and sends it data in JSON format

to Elasticsearch node. User can start/stop the plugin if required. Sample JSON script

to send the SMB request to the plugin:

1 curl -XPUT ’localhost:9200/_river/winlogs/_meta’ -d ’{

2 "type": "fs",

3 "fs": {

4 "url": "smb://192.168.1.100/demosmb/",

5 "username": "node001",

6 "password": "Pa$$word",

7 "domain": "sample.domain.name",

8 "protocol": "smb",

9 "update_rate": 3600000,

10 "includes": ["*.doc" , "*.txt", "*.pdf"]

30

11 }

12 }’

Listing 4.5: SMB Index

FS-River plugin can identify the protocol implementation using protocol field. Request

for windows share must provide SMB URL, windows machine credentials and its domain

name. Plugin read data as SmbFile which can be directory or file, SmbFile provides

same behaviour as File class in java. SMB URL scheme must be correct and should

specify the target directory or file to be parsed.

Code overview for SMB implementation

On SMB protocol usage the plugin calls IndexSMBFileSystem(Listing 4.6) method

authenticates the Windows using NTLM challenge-response authentication. Once the

process of authentication establish between two parties, it creates a SmbFile which

represent directory path given in JSON. It internally calls addSMBFilesRecur-

sively(Listing 4.7) method, which read all the SmbFile recursively and read the given

file extension. Data is converted to JSON and pushed to Elasticsearch search server.

REST API can start or stop the recursive data parsing.

1 private void IndexSMBFileSystem () throws MalformedURLException{

2 try{

3 //# Login to SMB file system

4 NtlmPasswordAuthentication auth = new NtlmPasswordAuthentication(

5 fsdef.getDomainName(), fsdef.getUsername(), fsdef.getPassword());

6 SmbFile smbDirectory = new SmbFile(fsdef.getUrl() , auth);

7 // index the file and directory recursively

8 addSMBFilesRecursively(smbDirectory, scanDate);

9 }

10 }

Listing 4.6: IndexSMBFileSystem function for Windows

1 private void addSMBFilesRecursively(SmbFile smbDirectory, Date lastScanDate) throws ←↩
Exception {

2 //List all the files and directory.

3 final SmbFile[] children = smbDirectory.listFiles();

4 if (children != null) {

5 for (SmbFile child : children) {

6 if (child.isFile()) { //check if it file

7 //index the file and send to es node.

8 indexFile(stats, child);

9 }else{

31

10 //if directory, call method again.

11 indexDirectory(stats, child);

12 addSMBFilesRecursively(child, lastScanDate);

13 }

14 }

15 }

16 }

Listing 4.7: addSMBFilesRecursively function for Windows

Code doesnt represent the complete functionality, but only the important methods

called.

4.2 JDBC plugin for MySQL

Java database connection allows fetching data from JDBC resources and we fetch the

data from MySQL server and indexing data into the Elasticsearch node. The relational

data will be internally converted to JSON and pushed to Elasticsearch node. We need

to implement following steps to parse the MySQL database tables.

1. Install the JDBC river plugin for Elasticsearch using following command line

/bin/plugin -url http://bit.ly/Yp2Drj -install river-jdbc

2. Download latest version if MySQL JDBC driver.

3. Copy the MySQL JDBC driver jar file to JDBC river plugin installation directory.

cp mysql-connector-java-5.1.26-bin.jar /usr/Elasticsearch/plugins/river-jdbc/

4. Start the Elasticsearch node with logging enabled in terminal window.

5. Login display installed plugin [fs-river, jdbc-river] in terminal.

4.2.1 JDBC Implementation

To start indexing SQL table data into Elasticsearch node, we define JSON script (List-

ing 4.8) and send this data to search node.

1 curl -XPUT ’localhost:9200/_river/jdbctest/_meta’ -d ’{

2 "type" : "jdbc",

3 "jdbc" : {

4 "driver" : "com.mysql.jdbc.Driver",

5 "url" : "jdbc:mysql://192.168.145.12:3306/HRM",

6 "user" : "localuser",

32

7 "password" : "Pa$$w0rd",

8 "sql" : "select * from user_info"

9 "poll" : "1h",

10 "max_retries" : "10"

11 },

12 "index" : {

13 "index" : "hrmdb",

14 "type" : "hrmdb"

15 }

16 }’

Listing 4.8: JDBC index

JSON defines river as type JDBC and specify the JDBC properties for fetching the

data from table. Index defines the name of index as hrmdb and its type defined as

hrmdb. The table describes the properties of the JDBC river.

Table 4.1: JDBC JSON properties

JSON Properties Description

type Define type of river jdbc, fs etc

driver Jdbc driver class

url url for jdbc driver

username Database username

password Database password

sql Sql statements or .sql files for batch processing

poll Time interval in hour h (1h) and seconds s (30s)

max˙retries Total retries to connect with DB

To query Elasticsearch node for data indexed using JDBC river with following

command.

curl -XGET ’localhost:9200/hrmdb/hrmdb/_search?pretty&q=*’

We have covered the backend implementation of river plugins and their workflow im-

plementation with Elasticsearch node. To interact with Elasticsearch, we created web

based front end using servlets and integrated the web pages with Dell cloud web con-

sole. User can perform the CURD (create / update / delete / edit) operation on the

indexes. Web front end also provides search tab to query the Elasticsearch node in real

time to get results of indexing done in backend.

33

4.3 Cloudsearch Frontend development

Cloudsearch interface is implemented using java servlets which act as an intermediate

layer between an http client and request coming from browser. Servlets increase the

performance significantly and provide platform independent deployment as well as

integration. In general, servlets are objects which follow request and response lifecycle.

Every request from user is processes using servlets and in response servlets generate

the html pages with user response. For testing purpose, the web application runs with

jetty inside the application. During deployment the application will create .war file

and store in Jetty web server folder in Dell cloud console.

To interact with REST based interface of Elasticsearch, application integrate the jersey

client to send and receive the request from server. Jersey helps in development of the

Restful web services using Java API. It provides its own API that extends the JAX-RS

toolkit.

4.3.1 Workflow of Cloudsearch

• Dell cloud user login to web console using its credentials and in backend DCIAM

(Dell cloud identity and authorization management) manages the entire process.

• After user login to web console, user switches to installed cloud search templates.

• In web console, it provides two tab views containing Search and indexing tab.

• In indexing tab, user can create and manage the indexes for SSH, SMB, local file

system and MySQL database.

• User indexing request for different machine are saved in XML files, which are

later saved in database.

• Every index can be edited or deleted at any time. Deleting index will remove all

the data saved in Elasticsearch node and cant be recovered back.

• To provide better performance over the network, user can stop the index after it

runs successfully on entire directory. Once the index is stopped, any changes to

data are not updated in Elasticsearch cluster until it is started again.

• User can search the data in real time from search tab.

34

Frontend implementation

The frontend uses following technology and framework for application to work properly

• Framework

– Jersey Restful API.

– Jetty Http web server.

– Eclipse web development interface.

– Java servlets.

• Dependency libraries

– Jetty-server (9.0.0) for embedding http web server

– javax-servlets API (3.1) for servlets implementation

– slf4j-api (1.7.2) for logging purpose

– gson (2.2.2) Google client library for JSON parsing

• Supporting language and library

– Java

– Ajax

– JavaScript

– Html & CSS

4.3.2 Code Elements

This section is for describing code elements and class implemented n Cloudsearch and

their functionality overview. The diagram 4.2 represents the Cloudsearch project pack-

ages and their classes. The controller package defines the main servlets classes that

handle users request for indexing, searching and controlling the index. The model

package implements the simple POJO class (plain old java object) to directly map

them with JSON. The utils package provides the utilities class required in different

packages. ElastisSearchParser class implements jersey-client which interacts with Elas-

ticsearch node and send results back to FileConsoleServlets. FlexiGridXML manage

the index xml generated by user.

35

Figure 4.2: cloudsearch website project

4.4 Overview of Cloudsearch website

This section provides step by step guide working of Cloudsearch in Dell web console.

User will first login into Dell vCloud console and authenticate to use the Dell cloud

services. If the Cloudsearch template is installed, then cloud console will provide pages

to manage the index. The frontend show two tabs Search and Indexing.

• Select the indexing tab, to add a new index to Elasticsearch server. Click on Add

New Index button.

36

Figure 4.3: Manage index tab

• It opens a pop up window to add new index type. First we will create a SSH

index. Select the SSH index from index type dropdown.

Figure 4.4: Index popup display

• Set index name as sshindex, enter the username and password for Linux machine.

Enter the IP address of the machine and set the directory to parse in Location

path. Add the filters for file type such as pdf, txt, and doc. Finally set the

interval for scheduling.

37

Figure 4.5: Save SSH index

• Click on save button to add the index to grid and Elasticsearch node. User request

will be process by servlets, it first checks the authentication of the server and if

credentials are correct the index request is sent to Elasticsearch server. Once

index is verified, its entry will be shown in grid.

Figure 4.6: Index saved in Flexi-Grid

• To verify that index is created at Elasticsearch node, browse the URL

http://esnode:9200/_plugin/head/ it will show all the indexes in node and

its respective shards. Indexes always stopped by default. The docs = 0 at spe-

cific index represent that indexing has not started but only defined.

38

Figure 4.7: Elasticsearch head

• To start the indexing of sshdemo, select the index in grid and click on stopped

push button in State column. It will start the index and get the response back

from Elasticsearch node. It show index is running properly on the server.

Figure 4.8: start indexing

• To verify the indexing on the Elasticsearch has started, browse the plugin head

page. When index is getting started it will create the ˙river index by default.

sshdemo index docs count have changed to 7 , it represent that plugin has indexed

7 document which includes files and folder.

39

Figure 4.9: check indexing

• All other index for SMB and MySQL are created in same manner. User can

delete the index by selecting single or multiple indexes in the grid. Once index is

deleted, all the data from Elasticsearch node also get removed.

Figure 4.10: Delete index

• To search the data, select the Search tab and enter the text in search text box

and click on Search button. We are searching NCI keyword in Elasticsearch

node. Search page give details about total results found and time took by server

to find the data. Every result show the relevant scoring based on Lucene search

algorithm.

Figure 4.11: Search data from index

40

We can search the entire document indexed by Elasticsearch cluster which includes doc-

ument from Linux machine, windows platform, SharePoint server and MySQL database.

Cloudsearch POC application extends the plugins to index the data over the network

system in reliable manner. To test the capabilities of the plugin, we did some evalua-

tion test by reading very large text based file over the network and checking the system

processing and network speed. In next section we are going to present the following

results and its evaluations.

41

Chapter 5

Evaluation

In this paper, we evaluate our implementation of Cloudsearch application in Dell cloud

services. All components of the Cloudsearch application i.e Elasticsearch server with

fs-river plugin, Web based front-end integrated with Dell web console and 2 virtual

machine one for Linux platform & another for Windows platform are deployed as well

as configured on VMware workstation for testing. However, Cloudsearch front-end

is installed on another for standalone machine for testing purpose. Furthermore, we

tested the elasticsearch plugin with large log files (1 GB and 2 GB) respectively. We

have presented our test result and evaluation of Elasticsearch server in coming section.

5.1 Program Description

We deployed all the component on VMware workstation 9. The virtual machine con-

figuration is shown in Table 5.1.

Elasticsearch node have 2 processor and 6 GB Ram, rest all virtual machine have

1 processor and 2 GB Ram. All VM are connected to each other by VMware virtual

network. Client machine with sharing capabilities have common folder name demoshare

with files and directory listed in it.

Component Virtual machine name

Elasticsearch version 0.90.3 esserver-01

Linux SSH Client ubuntu-machine

Windows SMB Client windows-machine

Webserver Cloudsearch-webserver

Table 5.1: Test machines configuration

42

To create testing file of various size, we have written simple script that copies one file

into another and rename the file. For demonstration, we have copied Linux machine

log file of size 10 MB and created two files of 1 GB and 2GB each. Following script

will create file size of 1.28 GB for testing and running script again with 1 loop only

create another log file of 2.56 GB.

for i in 1..7; do cat testlog.txt testlog.txt > testlog2.txt && mv

testlog2.txt testlog.txt; done

For testing purpose, we will try to read following file using fs-river SSH protocol and

check CPU and network usage over the time. Once the setup is completed , we created

a testing ssh index for fs-river and send the request to Elasticsearch server. Parsing

large file in server required to increase the default heap size for JVM to load data in

memory. We started server with following configuration to proceed with our test.

elasticsearch -f -Xmx1g -Xms3g -Des.index.storage.type=memory

In next section, we present our findings and evaluations.

5.2 Findings

First, we evaluate ssh index creation by parsing 1GB file with fs-river. In this evalu-

ation, fs-river parse the 1 GB text file in 61 seconds using ssh protocol. The Graph

given below 5.1 shows the CPU usage over the time for 1 minute. As we can see from

the graph, the average CPU utilization for reading 1 GB is approximately 58.04%.

However, cpu utilization was keep on fluctuating with its mean value (58.04%) with

the standard deviation of 19.94. In short we can say that cpu utilization varies between

the interval [77.98 - 38.04].

43

Figure 5.1: CPU usage for 1 GB file.

We also evaluated the network usage result for reading 1 GB file over the network.

Figure 5.2 shows average network utilzation for reading 1 GB file is 13.81 MB/s. The

network utilization varies between [8.95 - 19.05]MB/s with standard deviation of 5.22.

Figure 5.2: Network utilization for 1 GB file.

We also evaluated the file parsing of 2.57 GB file using SSH protocol, but fsriver throws

error not enough heap memory, so we increased the memory filter of Elasticsearch

44

cluster as -Xmx1g -Xms5g, as result we were able to read 2.57 GB file with following

results. Fs-River took 3.1 minute to parse the file. Figure 5.3 shows cpu utilization for

2.58 GB file. The cpu utilization was keep on fluctuating with its mean value (58%)

with the standard deviation of 13.51. In short we can say that cpu utilization varies

between the interval [71.52% - 44.5%]. As file size has grown the cpu utilization remain

almost stable over the time.

Figure 5.3: CPU utilization for 2.57 GB file.

Whereas the average network utilization as shown 5.3 in 15.54 MB/s with standard

deviation of 3.63.

Figure 5.4: Network utilization for 2.57 GB file.

We described evaluation result for different file size but reading file size larger than 3gb

will give memory error as Elasticsearch can have memory equal to system RAM. We

founded that Elasticsearch require more RAM to parse larger file, which is not possible

in every case. But still file parsing is very fast in fs-river plugin. Elasticsearch server

45

don’t have multi part indexing for same file, so we have load the file completely in one

time only, which could to lead to memory problems.

46

Chapter 6

Conclusions

Elasticsearch is very powerful distributed real time search engine which provides quick

insight into the data by using different plugins, as shown in previous sections. We pre-

sented a Cloudsearch POC (proof of concept) application for Dell cloud environment,

which is constructed by developing and integrating multiple plugins for different type

of data source. This paper presents how we can extend the core capabilities of search

engine which provide great insight into big data and increase customers efficiency to

evaluate different business process. Using Elasticsearch engine in cloud environment

give Dell customers real time full text based search capabilities over their environment.

To increase reliability, Elasticsearch provides redundant sharding. Therefore, if one

search node terminate, data can still be searched. Furthermore, the performance can

scaled out horizontally.

However, ETL (Extract, Transform and Load) process for Elasticsearch can be

complex to implement for every data source which qualifies as big data in cloud

environment. As presented in evaluation section, indexing very large dataset into

Elasticsearch node requires very carefully designed ETL process else it can lead to

exception. Additionally, based on concern that elasticsearch is still under heavy

development some features may or may not be supported in future.

Cloudsearch application focuses more on making data available for user insights using

different framework and technology. Future work is required to improve the application

searching capabilities using complex analysers, facets and term query. Furthermore, we

intended to develop plugins for different data source including NoSQL and implement-

ing custom dashboard to get better data insights.

47

Bibliography

[1] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic. Cloud

computing and emerging it platforms: Vision, hype, and reality for delivering computing as the

5th utility. Future Generation Computer Systems, 25(6):599 – 616, 2009.

[2] Robert G. Byrnes” ”Daniel J. Barrett, Richard E. Silverman. ”SSH, The Secure Shell: The

Definitive Guide”. ”O’Reilly Media”, ”USA”, 2 edition, 5 2005.

[3] ”Paul DuBois”. ”MySQL Developer’s Library”. ”Addison-Wesley”, ”USA”, 5 edition, 4 2013.

[4] Borko Furht and Armando Escalante. Handbook of Cloud Computing. Springer, Cambridge,

Massachusetts, 2010.

[5] Robert Eckstein” ”Gerald Carter, Jay Ts. ”Using Samba: A File and Print Server for Linux,

Unix and Mac OS X”. ”O’Reilly Media”, ”USA”, 3 edition, 1 2007.

[6] Y. Ichikawa and M. Uehara. Distributed search engine for an iaas based cloud. In Broadband and

Wireless Computing, Communication and Applications (BWCCA), 2011 International Conference

on, pages 34–39, 2011.

[7] Matthew McCullough” ”Jon Loeliger. ”Version Control with Git: Powerful tools and techniques

for collaborative software development”. ”O’Reilly Media”, ”USA”, 2 edition, 8 2012.

[8] T. Miyano and M. Uehara. Proposal for cloud search engine as a service. In Network-Based

Information Systems (NBiS), 2012 15th International Conference on, pages 627–632, 2012.

[9] Marek Rogozinski” ”RafaL Kuc. ”ElasticSearch Server”. ”packtpub”, ”Birmingham B3 2PB,

UK”, 2 2013.

[10] ”John Ferguson Smart”. ”Jenkins the defineitive gudie”. ”O’Reilly Media”, ”Gravenstein Highway

North, Sebastopol, CA”, 7 2011.

[11] ”Ken Withee”. ”SharePoint 2013 For Dummies”. ”Addison Wiley and Sons”, ”Canada”, 1 edition,

1 2013.

[12] ”Jason Van Zyl’s”. ”Maven the Definetive guide”. ”O’Reilly Media”, ”Cambridge, Massachusetts”,

1 edition, 2 2008.

48

	Abstract
	Declaration
	Introduction
	Background
	Technology overview
	Elasticsearch
	Elasticsearch Term
	Storing Data in Elastic Search
	Retrieving data in Elasticsearch
	Searching data in Elasticsearch
	Cluster Administration

	SECURE SHELL (SSH)
	Samba
	Microsoft SharePoint
	River in Elasticsearch
	MySQL
	Maven
	Sample POM configuration file

	GIT
	Jenkins
	Jetty

	Design
	Basic overview
	High Level Design
	Elasticsearch Plugins
	Sample index

	Workflow for application development

	Implementation
	FS-River plugin Development
	FS-River Plugin design
	SSH plugin implementation
	SMB plugin implementation

	JDBC plugin for MySQL
	JDBC Implementation

	Cloudsearch Frontend development
	Workflow of Cloudsearch
	Code Elements

	Overview of Cloudsearch website

	Evaluation
	Program Description
	Findings

	Conclusions
	Bibliography

