MSc Research Project

. N

'\’
National
College

Ireland

Temporal Logic Algorithms for Multiple
Users and Services in Mobile Edge
Computing

Programme Name

Abdul’Raut Ijaoba

Student 1D: x19232292

School of Computing
National College of Ireland

Supervisor: Jitendra Kumar Sharma

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Abdul’Rauf Tjaoba
Student ID: x19232292
Programme: Programme Name
Year: 2021
Module:
Supervisor: Jitendra Kumar Sharma
Submission Due Date: 16,/08/2021
Project Title: Temporal Logic Algorithms for Multiple Users and Services in
Mobile Edge Computing
Word Count: Jitendra Kumar Sharma
Page Count: [26]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Temporal Logic Algorithms for Multiple Users and
Services in Mobile Edge Computing

Abdul’Rauf Tjaoba
x19232292

Abstract

Edge networks in mobile computing have alternated a new dimension that en-
ables end users avoid delay in server response and delivery and delivery by bringing
data and processing closer to user. The possibility of network distribution has
also created leverages for multi-users in cloud environments, thus processing users
request withing their variable geolocation. This multi-usage provision in mobile
computing fits into its recognition as a ‘multi-edge computing’. However, the rapid
increase in user traffic, user conglomeration in a network area and mobility of
devices are beginning to create a gap in mobile computing. The gap is noted in the
time it takes to input data and get responses from the server. Delay, and throughput
in cloud-based services are determined by edge server limitations, plural utilization
in real time and the area deployment of server for end users. This study thus adopts
temporal logic algorithms to enable low latency in multiple user cloud environment
and create a functional service for quality user experience, processing simultaneous
request prior to time, instance selection and considering mobility path for each end
user, considering the computational resources available in the mobile edge server.

1 Introduction

Mobile edge computing otherwise known as Multi-edge computing has become a rising
force in today’s digital world. The rising is occasioned by a rapid adoption of tech-
based communication from transportation to agriculture to education and other phases
of human endeavors. In education, the COVID-19 pandemic disrupted physical learn-
ing activities and educational institutes and participants shifted unprecedentedly to the
online learning mode. The online interactions in classes are growing and this growth is
beyond education to other facets of life. Importantly, the consistent use of online services
and engagement depicts the precision of technology in this modern time. Traffic in cloud
services by end users interrupt information and data flow and the overall user experience
in cloud functions.

Mobile edge computing is a fast-expanding aspect of cloud computing. Cloud com-
puting is expressed as a production of low-cost computing capacities and services through
combined computational and distributed grids Prasad et al.| (2013). The use of the in-
ternet for relational processes and interactivity rests solely on the speed of connection
and the time mark for responses. In online gaming, classes, transaction and purchases,
the real-time presence is remarkable and determines how consistent the user becomes in
using the application or platform. The storage and computing of digital activities now

banks on the cloud and that has made computation and data storing feasible on the
cloud. Cloud computing is essential because it reduces processing burden on end users
of an application or a software Ahmed and Rehmani (2017)). The computing and storage
on the cloud are now higher in wide use because they are easily scalable, available and
reduce cost with flexibility.

The resourcefulness of instant response on online platforms and applications is at-
tached to the condition of latency, connectivity, interactivity, processing and storage.
The latency and response rate from the IT infrastructure (compute, storage and net-
works) influence the end-user experience whether on locally hosted or cloud-based server
system. The effect is that, users become dissatisfied with the system when responses, dis-
plays and information from a time-based application takes longer than usual in delivery
creating delay or discrepancy in received information. Hence questions the authenticity
of the received information. Cloud computing creates a leverage for information and data
processing on applications and platforms through system segmentation into, applications,
platforms and infrastructure Prasad et al.| (2013). The three segments run around data,
runtime, middleware, operating system, virtualization, servers, storage and networking
Prasad et al. (2013). The platform segment involves more of the applications and data
while the infrastructure segment revolves around applications, data, runtime, hypervisor,
and operating system. Cloud computing is essential in online processing and activities
because it creates a variety of workloads control and customization, speedy processing on
virtual machines, measurable and provides instant system evaluating resources |Prasad
et al.| (2013).

The challenges in the online utilization of server-backed platforms and applications
are increasing than ever. The increase is traceable to the catalyzing growth of end-
users who adopt mobile computing resources and cloud activities on a rapid basis. The
depletion of the physical learning mode enables a greater use of online learning. This
results in a rise of the information and data available on schools’ platforms. It thus
leads to a need to host teaching-learning activities on a platform that works well in
connectivity, input and output delivery. As a result, it is one of the elements influencing
the expansion of cloud computing. The availability of multi-player option of cloud games
has increased the potential participants and the interestingness of the games and thus
creates a sporadic increase in gamer and game development. Notably, the increase in the
users of applications and cloud activities results in traffic which generates an overall end-
user dissatisfying effect in multi-access of cloud services occur when data transmission
to end user is slow, and data delivery is taking more time due to a bottle neck in the
underlie deployed infrastructure. In server-based activities, slow data transmission due
to network reduces content quality and transmission speed. Fast and instant responses in
gaming makes quality gaming experience possible. However, cloud computing has made
it possible to monitor traffic while creating functional effects to reduce latency. Despite
this possibility, cloud service usage is overwhelmed with information processing difficulty
from end-user to server, privacy issues and data insecurity.

The research-intensive response and digital development creation for transmission and
delivery in cloud service have been identified as cloud services to mitigate above chal-
lenges. Mobile edge computing is the development that brings the storage and computing,
as well as networks and applications closer to the end user. The adoption of mobile edge
computing is occasioned by the insufficiency of cloud computing for low latency, mobility
support and location awareness Ahmed and Rehmani (2017). The use of mobile edge
computing is described as the deployment of edge networks to bridge the gap between

the end user and the cloud services Ahmed and Rehmani (2017). The working system
of the mobile edge computing is premised on the integration of processes, responses and
storage on cloud activities Ahmed and Rehmani| (2017). The target is to lessen latency
in order to quicken access and delivery whether on live transmission of digital services or
video gaming from the cloud—otherwise regarded as gaming on demand.

Mobile edge computing has created new fora of possibilities for cloud services de-
velopers and end users as users can now have network system for applications and plat-
forms within their boundary or immediate environment. This is targeted at increasing
the speed of cloud processing and graphical and informational responses to keep the in-
formation real time and maintain its authenticity. Mobile edge computing does not delete
the existence and utilization of cloud computing resources but extends it closer to end
users and provided a leverage which is faster, easily accessible and can generate real-time
transmission and delivery. Connected servers can generate instant responses without pro-
cessing delay. This possibility is available through network and server proximity to end
users, mobile support and geography-based use of edge networks for computing Ahmed
and Rehmani (2017). Mobile devices, laptops and personal computers can thus be devised
from any location to access cloud services in an integrated format. Mobile edge computing
depends on the fastness and the accessibility platforms’ servers. The speedy connection
and delivery have been identified with the evolving 5g technology and thus creates a new
spectrum that addresses connectivity, throughput and delay in cloud computing /Ahmed
and Rehmani (2017)).

Mobile edge computing functions for delay sensitivity and context-based applications
Ahmed and Rehmani| (2017)). The sensitivity and context in this usage is that, edge
network utilization reduces delay in cloud services and makes available optimal resources
that are context sensitive depending on the qualities and functions of a server. Mobile
edge computing is identified as capable of addressing the usage and management chal-
lenges in cloud computing because it is an open system that centralizes the end users
while making the network mobile for their use. The usefulness of mobile edge computing
is placed in its use for advanced storage as opposed to primary data storage on cloud,
edge analytics as opposed to using cloud data centers, real time transmission and de-
livery as opposed to using back-based networks and effective cloud service management
as opposed to primary gateways for control |Ahmed and Rehmani (2017). Mobile edge
computing saves cost in infrastructure hosting and this requires less floor availability. Hy-
perconverged infrastructure are also adopted in data-rooms instead of full-fledged data
center.

1.1 Background

The distributed pattern of information use in cloud computing is identified as disruptive
and time-consuming given the present cloud-based services Sri' and Vemuru| (2019). In a
multi-client cloud environment, it is simple to process and store data. However, it is more
difficult to access the data due to user and engagement traffic. The difficulties with using
the cloud service in a multi-user environment have been identified to include network
problems, control issues, information erasure difficulties and respectability in reviewing
Sri' and Vemuru (2019). These user environment difficulties couple with mobile devices
and geographical difficulties and all these affect the real-time use and transmission on edge
networks. Temporal logic algorithms have been identified as alternative solutions for a
speedy connectivity and transmission on cloud services. Strategies including accessibility,

respectability and confidentiality have been identified for improving edge network services
and functionalities |Sri' and Vemuru| (2019). Confidentiality in edge computing is seen in
data safety for developers and end users of edge computing services. Accessibility in edge
computing means that users are able to explore mobile-based services without restrictions
on content and data. Network latency is reduced when the algorithms are combined to
improve connection for users. Authentication and access control have also been included
as areas for improving cloud services and utilization Sri' and Vemuru/ (2019). Hence, user
experience is improved when users can access a cloud service severally without space,
storage and usage restriction. The simplified connection, access and usability of cloud
services encourage users to continuously use the services. It is vice-versa when the cloud
service functionalities are subpar to the multi-user environment.

Virtual machine introspection has been suggested as capable of limiting user diffi-
culties on the cloud service utilization but has also been found to occupy space as more
hosting area is required of the cloud methodology |Sri' and Vemuru (2019). However,
temporal logic algorithms work to enhance time reduction and improves instant data in-
put and transmission for users in edge networks and computation capacity. User mobility
and service invocation are combined with structured algorithms to enable the unrestric-
ted connection and utilization of cloud services on edge networks. This is done by hosting
the server close to the end user. Proximity of server to end users reduces network latency
in edge computing.

1.2 Problem Description

Cloud computing has reshuffled the processing and storage patterns in online interactiv-
ities and usages. From online teaching to gaming and social instant communication,
processes and storage have been shifted from the manual or primary segment to the fast-
paced server system. Digital users be it gamers or online learners appreciate instant data
input and responses. The user experiences of a cloud service are formed by the functions
of the server especially, the time it takes for their mobile devices to display the informa-
tion received the server. The more time it takes to load information in graphics, avatar
and textual basis, the lesser the user experience becomes. This user experience forma-
tion is attached to network latency which has become a rising point of concern in cloud
technology. The increase in user traffic is another dimension of difficulty that is being ex-
perienced in cloud computing. This difficulty is prevalent in multi-user cloud environment
because user traffic influences the accessibility of resources and services available in the
server. Mobile edge computing is challenged by mobile constraint which is resource-poor
and this affects the information delivery [Satyanarayanan| (1996). Distributed systems are
affected by the independence of mobility in cloud services [Satyanarayanan| (1996]). The
speed of connectivity for multiple users of cloud services has also become a point of con-
cern in the cloud technology field. Asides connectivity, security challenge has increased
with the proliferation of cloud services users. The result of this proliferation is skyrocket
security problems which have been classified into confidentiality, an unauthorized access
to peculiar information; integrity, an unauthorized disruption of information; availability,
threats to information availability to authorized users; legitimate, ensuring information
access only to permitted users and accountability which is linking users and their activit-
ies on the cloud services and utilization Balasubramania| (2015)). Although, mobile edge
computing has made it possible to lessen the difficulties faced by developers and end users
in cloud computing, there exists other difficulties which are threats to impressive user

experiences, functional cloud service utilization, speedy connection, access and utilization
and edge network performances. This study therefore seeks to create improved edge net-
work utilization in mobile computing through the adoption of temporal logic algorithms.
The target of the study is to improve overall user experiences and enable effective cloud
service functions and utilizations.

1.3 Objectives of the Study

This study aims to devise solutions to latency problems in mobile computing given the
proliferated adoption and use of cloud-enabled services. The study is targeted at using
a novel approach to reduce latency in cloud compute and storage and improve real time
transmission and delivery towards a functional and satisfying user experience.

The study specifically seeks to:

e Improve network operations for cost efficiencies using temporal logic algorithms.

e Improve distributed computing capacity using temporal logic algorithms in edge
networks.

e Create mobile computing solutions for functional capacity and effective user exper-
lence.

1.4 Research Questions

User experience in cloud services is formed from the response time, delay and throughput.
The trio of these factors are attached to latency in cloud-oriented activities, low latency
improves user access to information directly from the cloud. Cloud computing enables
seamless input and accessibility to data on server but increased use of cloud services
has occasioned traffic. Traffic in cloud computing is determined by the latency rate
of the platform—a low latency speeds input and data delivery for users. Cloud service
utilization is influenced by a high number of participant usage. This has been identified as
leading to slow server responses, low graphical display and information delivery especially
in a multi-user cloud resourced environment. The development and rapid usage of cloud
services have been covered by growing concerns for how user experience can be improved.
The study aims to answer the question:

e How can temporal logic algorithms be used to improve multiple users and services
in mobile edge computing?

2 Related Work

2.1 Addressing Latency in Mobile Edge Computing

Due to high latency constraints and limited resources, effective service scheduling in the
edge computing scenario has been quite resourceful, the idea of score-based algorithm was
implemented for the evaluation of computational requirement and networking on avail-
able VM'’s then proceed to deploying services to the most suitable one. Researchers have
tested the use of the novel idea for solving latency and the results show that, simulation
of experiments in live video comes with high possibilities and improvements |Aral et al.

(2019). The comparison of cloud computing and content delivery in latency-conscious
and data-conscious environment proves that algorithm edge-based scheduling is an ef-
fective solution for latency in mobile computing |Aral et al.| (2019).

Smart technology devices are revolutionizing the way of doings things universally. Hence
there is a rapid global demand for Internet of Things (IoT). However, latency has be-
come a challenge in IoT and mobile computing and requires immediate and effective
solutions Saranya et al.| (2019). Although, different scholars have experimented and pro-
posed methodologies and techniques to achieve low latency in cloud computing. Further
latency-solving methods are itemized. The methods include cloud-fogging which is the use
of genetic algorithm to achieve load balancing and lessen service latency; review of edge
paradigms which is the presentation of communication latency that depends on 5g net-
work services; latency offloading algorithm is used to reduce traffic and improve delivery
rates on cloud-based activities; and hierarchical naming method, an efficient information-
based method that enables fast content cloud delivery and security and measurability
Saranya et al| (2019). The researcher added that latency can be reduced in mobile edge
computing by proximity-based computing, coded computing, proactive computing, edge
machine learning, and the use of matrix and generic operators [Saranya et al. (2019).
Using multi-layer latency aware workload assignment strategy (MLAWAS) for allocat-
ing mobile users’ workloads can be used for optimal cloudlets. The experiment of the
proposed method shows that using MLAWAS yields a faster response compared to other
strategies. Ensuring a faster network access is premised on bridging the gap between mo-
bile internet users and access to the server. The distance between mobile users and server
creates high end-user latency but the geographical distribution of cloudlet networks can
reduce the latency [Sajnani et al.| (2018).

Mobile edge computing is described as a promising and fast-rising in the technology
space. It is contended that latency has become the main challenge reducing user quality
experience and the effectiveness of mobile computing and cloud-based activities. It is
proposed that the use of mobility-aware hierarchy as a framework for mobile computing.
The researchers applied the game-based theory to reduce energy consumption for users,
and improve mobile computing processes for users. The experiment shows that mobil-
ity aware hierarchy in mobile edge computing brings effective results through functional
activities. The experiment applicability covers Internet of Things and is targeted at re-
ducing content delivery time |Zhang et al.| (2018]).

The challenges of mobile computing include mobile devices restriction Qi and Gani (2012).
This restriction connotes that mobile devices are short of processing capacity required
for certain levels of mobile computing |Q1 and Gani (2012). It also includes that network
access to the server from phones, laptops and personal computers is restricted because of
capacity. It is recommended that upgrading bandwidth for wireless connection, deploying
application processes on edge, duplicating mobile devices to cloud using virtualization,
and using mobile terminal optimization for application push will improve mobile access to
cloud services and overall user quality experience. Also, it is suggested that the distribu-
tion of applications for optimality in data intensive and compute-intensive cloud services
Qi and Gani| (2012).

Mobile edge computing although emerging has gained a wide acceptability. The acceptab-
ility results in high use of servers and cloud activities. However, the challenge to effective
use of cloud services has been traffic. Traffic affects the time it takes for information to
be relayed to the end users in cloud activities. Mobile edge computing is the solution to
traffic challenges in edge computing and mobile delivery of cloud contents to end users.

Mobile edge computing addresses storage and computation difficulties in cloud activities
and application developers leverage on edge opportunities to improve real-time informa-
tion relay from server to end user and vice versa Khan et al.| (2019)).

Researchers have developed a novel architecture to ensuring time responsive cloud pro-
cesses involving mobile devices. The developed architecture is designed to enable the
distribution of loads in computing and delivery to mobile devices users Lee et al.| (2020).
The distribution of computing loads in edge computing using the architecture reduces
delay in data conceptualization, processing and information delivery from cloud system
Lee et al. (2020). The main idea of the proposed mobile edge computing architecture
is to enable rapid response which gives impressive user experience in cloud services |Lee
et al.| (2020)). The architectural design includes a service requestor that performs request
functions by request, access in mobile computing which aids the fragmentation of data
for simplified processing and delivery to end users, and mobile devices which are used as
tools for the information fragmentation processes Lee et al. (2020). To improve system
response in edge computing, it is proposed that, the service requester sends a metadata
and analyses the request and generates fragments of information Lee et al. (2020). The
segmented information is processed and task offloading is performed and notably with a
reduced time for processing and delivery.

[

2.2 Toward Improved User Mobility in Mobile Edge Comput-
ing

Mobile edge computing bridges the gap between end users and servers |Lee et al.| (2019).
The possibilities of faster cloud service access and functionality are a boost to address-
ing rising challenges in cloud computing. However, the present system designed to relay
information from the server to the end users is affected by distance difficulties [Lee et al.
(2019). The availability of distance between cloud users and server results in delay in
response delivery to end users Lee et al.| (2019). Mobile edge computing has provided
increased leverages to reduce network latency in cloud computing. However, the delay
difficulty remains and lessens the quality of experience for end users. The novelty of mo-
bile edge computing is bringing the cloud infrastructure close to the users and reduce the
distance in processed data delivery Lee et al. (2019). To improve access to a faster cloud
service, zone-based multi-access has been introduced to cloud computing for a mobile
management. Zone-based multi-access has been introduced to arrange mobile edge com-
puting server to allow users access effective server and content delivery |Lee et al. (2019)).
Zone-based mobile edged cloud services are addressing network latency in cloud comput-
ing while also creating functional access to users even when they are mobile; an additional
feature which mobile edge computing does not offer |Lee et al.| (2019). Zone-based multi-
access is improving service and cloud optimality for result-giving user experience.

Wireless collisions among mobile users can be optimized to reduce delay in mobile com-
puting Wang et al.|(2018)). In a multi-user access zone, assigning different function to the
nodes has been found helpful in improving response speed. This possibility is enabled
by the identification of the function assignment as a constraint that is accounted for
by lightweight algorithms [Wang et al. (2018)). Task information is introduced with the

!Like this one: http://www.ncirl.ie

http://www.ncirl.ie

addition of information station to enable mobile users access cloud services. The use of
task information is practiced by a simulation experiment and the result shows that, using
small base information station is efficient in reducing delay in mobile edge computing
Wang et al. (2018).

In Mehrabi et al. (2019) caching strategies can be used to reduce delay in cloud trans-
mission in end-to-end. Cache architecture is put into three layers to tackle network
difficulties. Tasks are shared into paths and directed to specific functions with real-time
transmission focusing on industrial domains Mehrabi et al.| (2019). To solve data fetching
problem, Hungarian algorithm is introduced in Mehrabi et al.| (2019) and this strategy is
used to achieve improved transmission process, and advance the processing strength of
nodes and edge cloud servers Mehrabi et al.| (2019). Smart vehicles have been introduced
to engage the sharing of caching agents in a 5g network-based method. This method
is put into sharing information using base stations and the compression of mobile edge
computing servers Mehrabi et al. (2019)). Efficiency in mobile edge computing can be
ensured by optimizing, computing and caching smart vehicles and base stations Mehrabi
et al.| (2019).

Algorithm application to solving latency problems in cloud computing has been func-
tional. In Wei et al. (2020) a 13.21 percent of service response was realized through
the selection of algorithm back-propagation based—a result entirely different from other
algorithm-centric interventions. The strategy which yielded an improved service response
and delivery is backed by processes including the idealization of a geometric model to
focus on user mobility, and making of predictions from trajectory mining data on the
users. Cache services and result prediction for users are patterned using base station
with algorithm-based allocation to the patterns Wei et al. (2020). A cache selection
based on neural network is the support basis for the novel strategy and the result shows
that response service is improved with users on movement |Wei et al.| (2020). In a case
of no mobility prediction for users, a 15.19 percent of result is identified; this shows the
importance of caching and prediction in improving accesses, usages and functions in mo-
bile edge computing. In Xia et al. (2020) the importance of caching to solving latency
problems in cloud computing is validated. Cache-free approach to reducing latency has
been tested effective compared to cache-focused approach to lessening network latency
Xia et al.| (2020). While caching is significantly helpful in reducing latency problems in
mobile computing, cache-free approach reduces computational risks because only a half
of the transmission time is used for the network. This results into speedy processing and
response delivery for users. Cache-based strategies are delayed in execution because full
signals are not explored for direct signals and relay links Xia et al. (2020). In signal-to-
noise ratio, cache free network is relatable and resulting Xia et al. (2020). Destinations
are provided for cache-aided and cache-free approaches; cache-aided approach is based
on the chain gain of relay link and the channel gain of relay link and the gain of direct
link Xia et al.| (2020).

Ugwuanyi et al.| (2019) agree that mobile edge computing is highly important and having
increased use and participation. Direct delivery of content is enabled through the edge
without having to get data from the remote server |Ugwuanyi et al. (2019). The benefit
of multi-access edge computing is that end—users are close to functional services. Poly-
nomial fit is used in Lagrange interpolation to increase caching efficiency and data access
for mobile edge computing [18]. It is shown that, central processing utilization are speedy
when involved in algorithm-based replacement Ugwuanyi et al.| (2019)).

Peng et al.| (2018)The essence of mobile computing is identified as related to end-to-end

users. Although, mobile edge computing saves the life battery of mobile users through
cloud integration for mobile networks, execution delay problems exist for users |[Peng
et al.| (2018). To solve delay difficulties in mobile computing, computation offloading and
data offloading have been presented as functional taxonomies which are also effective for
mobile users Peng et al.| (2018). A solution that addresses execution delay has been for-
mulated as integer programming and developed into a two-phase optimization Peng et al.
(2018). The optimization is targeted at satisfying all the computing requirements that
are needed to reduce delay in computing resources across the edge nodes. The edge nodes
are based on local cloudlets and global cloudlets that have proven effective to achieving
the targeted results |Peng et al. (2018). The integration of wireless power transfer into
access points has been found functional in improving sustainable energy consumption
for power-restricted end users. This functionality comes with the direct application of
the unmanned aerial vehicle which are compatible for flexible computing resources for
end-to-end usages Hul (2020). The inclusion of the unmanned aerial vehicle is notable
because it improves system performance while also enabling multiple input and output
capacity in cloud services Hu| (2020). Small base stations and macro base stations are also
used to manage data offloading toward reducing cloud computation difficulties |Hu/ (2020).
Algorithm-backed strategies are becoming progressively significant in solving high energy
consumption complexities in mobile edge computing Hu, (2020)).

2.3 Service in Instance in Mobile Edge Computing

Experiments in Zou et al| (2021) show that service instance in mobile edge computing
can be improved. In|Zou et al. (2021)) service invocation was adopted in improving user
experience with the experimental conception of limitation on edge server based on com-
putation capacity, geographical variations in user mobility paths and user cluster leading
to service delay. The three factors were input into a model for addressing delay in data
transmission in mobile edge computing Zou et al. (2021). Although, mobile edge com-
puting has been significant for end users’ time of service invocation, multiple access to
the server has become a challenge; mostly resulting to transmission delay and low qual-
ity of experience for end users Zou et al. (2021). Improvement by service invocation is
premised on algorithm-centric approach that is time aware and regarded as significant
over the existing baseline in mobile edge computing Zou et al. (2021)).

Sharing mobile service through edge nodes is identified as a smart approach to improving
data transmission in mobile computing Roy et al.| (2020). However, continuous deploy-
ment of service on edge nodes increases the overall cost of network in the mobile service
Roy et al.| (2020). Cloud infrastructure has been proposed as an alternative solution
to reducing network delay without adding extra infrastructure cost on the services ?.
The cloud infrastructure is patterned on Multi-objective Integer Linear Programming
(MILP) by integrating prediction model for users’ paths Roy et al|(2020). An artificial
intelligence-based solution is designed to cater for service instance without additional
firewall cost. The Al design is termed Binary Particle Swarm Optimization (BPSO) al-
gorithm and it achieves optimized performances “within a polynomial time” |Roy et al.
(2020). The design improves quality of experience for end users and most effective when
backed with a 5g network Roy et al.| (2020).

In /mobile | (n.d.) service improvement is positioned on using capacity-limited based sta-
tions to improve data movement in mobile edge computing. Multiple deployment of

service instance on base stations may result in lags for end users. To avoid lagging, a
service request forwarding is used to address problems including correlations in base sta-
tions, joint placement and allocation of resources designated for mobile computing |mobile
(n.d.). A decentralized algorithm complemented with matching is functional in meeting
the service needs in cloud computing especially for high-size networks mobile | (n.d.).

Table 1. Summary of review literature

3 Methodology

3.1 MobFogSim

This study adopts MobFogSim for migration and mobility in fog computation. MobFog-
Sim advances iFogSim as a model for mobility in devices for fog computing. MobFogSim
works by:

e Adhering to processing instructions.

e Providing user mobility input directory from dataset.
e Initializing CloudSim before entity creation.

e Creation of broker.

e Use of one virtual machine.

e Application creation.

e Network configuration.

e Starting simulation.

e Realizing results after simulation MobFogSim. Simulation of mobility and Migra-
tion for fog computing MobFogSim. Simulation of mobility and Migration for fog
computing (n.d.).

In Puliafito et al| (2020) MobFogSim is identified as a network edge cloud extension
that solves mobility difficulties in cloud computing. Although, mobile computing is ad-
vantageous and has multiple access for users, network mobility and latency have become
challenges to functional and effective real-time cloud computing. Fog service migration is
thus the means of addressing delay in network transmission and reception as users move
from one end to another Puliafito et al,| (2020). MobFogSim tops iFogSim because it
enables the evaluation of service migration in computing environment—the reason for its
involvement in this study [Puliafito et al. (2020). Network slicing is workable in reducing
latency and ensuring optimality use of cloud service. |Gongalves et al. (2020)combine
network deployment with MobFogSim to enhance network performance in term of speed

10

and service quality. MobFogSim is functional in planning and managing cloud computing
processes and services for an overall user quality experience Gongalves et al.| (2020)).

3.2 Java Programming Languages

Java is a programming language that works for multiple user access for software. The
language is designed by James Gosling in 1991 with the aim of coding once and run-
ning everywhere [MobFogSim. Simulation of mobility and Migration for fog computing
\MobFogSim. Simulation of mobility and Migration for fog computing (n.d.). Using Java
enables functional running of application on mobile devices, medical devices, and per-
sonal computerdMobFogSim. Simulation of mobility and Migration for fog computing
\MobFogSim. Simulation of mobility and Migration for fog computing (n.d.). Java runs
on the rules and syntax and C and C++ languages [MobFogSim. Simulation of mobility
land Migration for fog computing MobFogSim. Simulation of mobility and Muigration forl
[fog computing (n.d.). Java is portable and thus a suitable programming language for
the diagnostic application which is the focus of this study. Java’s portability means that
codes are easily moved to mobile devices and easy to run for end users MobFogSim. Sim-|
lulation of mobility and Migration for fog computing MobFogSim. Simulation of mobility
land Migration for fog computing (n.d.). Java is preferred for this design because it can be
run anywhere without restrictions and can also be compelled; whereas, JavaScript does
not need to be compiled and only runs web browsers |MobFogSim. Simulation of mobility
land Migration for fog computing MobFogSim. Simulation of mobility and Migration for
[fog computing (n.d.). Java has had a reputable use for over 20 years and is competitively
functional to designing a widely accepted diagnostic public-centered application. Java
codes are Windows, Linux and macOS and mobile phones compatible when used for web
application designs [MobFogSim. Simulation of mobility and Migration for fog comput-
ling MobFogSim. Simulation of mobility and Migration for fog computing (n.d.). Codes
on Java are turned into bytecodes that are deployed in Java environment through Java
Virtual Machine |MobFogSim. Simulation of mobility and Migration for fog computing
\MobFogSim. Simulation of mobility and Migration for fog computing (n.d.). The use of
Java Virtual Machines enables an anywhere run of Java-based mobile application—a suit-
able design for multi-access public diagnostic mobile application. For Java software, the
development environment works with Java API and Java Virtual Machine for functional
running (MobFogSim. Simulation of mobility and Migration for fog computing MobFog-
\Sim. Simulation of mobility and Migration for fog computing (n.d.). Java bytecodes are
interpreted by the virtual machine for making a user-enabled mobile application. The
decision for Java in this application design is because Java performs optimally for an-
droid devices which host the largest group of persons using smartphones. The software
design combines inter-platform connectivity, simplicity and functional security for end
users’ devices especially |MobFogSim. Simulation of mobility and Muigration for fog com-|
puting MobFogSim. Simulation of mobility and Migration for fog computing (n.d.). Java
is optimized on visibility and easy to manage; making it a choice for a public-enabled
diagnostic application. Java is scalable, adaptable and operable especially in multiple
user environment [MobFogSim. Simulation of mobility and Migration for fog computing
\MobFogSim. Simulation of mobility and Migration for fog computing (n.d.).

11

3.3 Temporal Logic Algorithm in Mobile Edge Computing

The temporal logic algorithm is deployed for multi-access edge computing to reduce the
possible time it takes to get responses on requests made on the server from end users.
The algorithm in use was first introduced by Pneuli. The algorithm was later developed
into temporal logic action which is a combination of logic and action Pnueli (1977)). The
algorithm for the implementation of this model is synthesized from the Temporal logic
formula.

Temporal logic relies on recursion such that the loop varies from number of users n up
to the first user. The time taken to complete a request is taken as variable t.

Input: A query q

Statement ... is true just when

UE= alu V(a,u)=true

UFE o[|0t UF o[y

Uk (@A) | U ¢lulandUE ¢lu]

Uk (ov)lu] | U dlujorUl= ¢lu]

Uk (@=9) | Uk ¢ulifUs ¢y

U = Golu] U = ¢ forall v with u < v
U = Holu| U = ¢[v]forall v with viu

=

Table 2. Temporal Logic operators In this research, Linear Temporal Logic will be
used to implement Service Instance Selection Problem (SISP). SISP is properly explained
in details in definition 6 in the definition section.

section [2]

4 Design Specification

In this section, we introduce the concept of mobile edge computing (MEC) system ar-
chitecture and briefly discuss all the components that are integrated to deploy a MEC
system, then briefly discuss and work through some examples to illustrate the problem
of MEC server instance selection when user initiate a request and finally define concepts
and formulae that will be used as a guide in the implementation.

subsectionMobile Edge Computing System Design Mobile Edge Computing (MEC)
is European Telecommunication Standard Institute (ESTI) defined network architecture
that enables cloud computing capabilities and IT service infrastructure at the edge of a
network. The primary goal of the architecture is to run applications and process user
requests close to the user making the request via a base station (BS) to reduce network
congestion, reduce request response time thereby reducing latency and improving the
application performance and the overall user experience with respect to the application.
Mobile Edge Computing system has four major components but it is not limited to these
namely Cloud servers, a designated base station (BS) with running instances of edge
servers, a collection of services running on the cloud servers and on the edge servers and
the mobile user that subscribe to the services deployed on the running server instances.
In a MEC infrastructure, the BS contains edge servers and the servers are running the
MEC applications that handle mobile users’ requests. The BS are generally mapped to
a physical location operating within a defined radius. MEC system is an aggregation
of many BSs which are network access points for the mobile user and these aggregate

12

BSs within marked geographical space will be designated as a region in MEC system.
The BSs in a regional MEC system are logically interconnected to each other and they
communicate with each other. The interconnectivity of BSs will suggest that there will be
transmission of data and services or requests between BSs as a BS has physical limitation
or a boundary or radius where it operates and responds to mobile user request, mobile
user request can be transferred from one BS to another one directly or adjacent to it. The
time taken to process the mobile user request will be increased due to data transmission
between the BSs. The BS time for executing a service is dependent on the number of
requests it is processing at a time. As the workload of a BS increases with many mobile
users simultaneously requesting services, the execution time or response time increases
accordingly, especially when the resources of the server instances are stretched to a certain
threshold.

Figure 1 below shows the architecture of the mobile edge computing (MEC) system.

.

-

-
Lol Mt
'

&
S --Ef--

Figure 1: Architecture of a Mobile Edge Computing System or Infrastructure

13

4.1 Mobile Edge Computing Use-Case and Application

As a study use case for this research, Beaumont Hospital Ambulance (BHA), in a rescue
mission is moving a patient named Jerry Tom to the hospital. Jerry Tom is on a life
support device that monitors his vitals and sends them to a cloud service that helps to
stabilize Jerry Tom. The sensor device on BHA needs to update the vitals of Jerry Tom
to the cloud from the pickup point to the hospital.

We assume that BS1 and BS2 are base stations that the ambulance passes on its way
to the hospital. Assuming that it takes 35s to move from BS1 to BS2, the data to be
transmitted is 10MB and the response data is about 30MB. The data transmission rate
between BSs is 2MB/s. The data transmission rate between BS1 and the ambulance is
10MB/s and data transmission rate between BS2 and the ambulance is 20MB/s.

Using the scenario described above, if BS1 requires 5s to process BHA requests and BS2
10s to process the same request. In any case we will have two different outcomes if the
request was sent to the different BSs. If the BHA request is sent to BS1, the request is
uploaded to a server instance at BS1 and when the processing is completed, the response
is downloaded to the BHA. The execution time (t) for the request is

t =10 + t1 + t2
where

t0 is the time it takes to upload the request,

t1 is the request processing time and

t2 is the time taken to download the response to the request.

Applying execution time theory to BHA request to BS1, we have 10/10 + 5 4+ 30/10 =
9s as one outcome, or the other outcome is that BHA request is allocated to the BS2.
BHA uploads the input data to BS2 by the path R => BS1 => BS2 and then receives
the returned data in BS2, because BHA data has already arrived at BS2 after the request
is executed by the instance on BS2. The response time for BHA’s request is 10/2 + 10
+ 30/20 = 16.5s. From the execution time of both outcomes, BS1 is the best option for
BHA without consideration of the other mobile edge users.

In practice, multiple mobile users send requests to the same BS at the same time that
may interfere with each. This interference can strongly impact the execution time of BS
as a result of the increased workload on the BS. Applying this line of thought to multiple
requests to BS1 or BS2 from multiple mobile users simultaneously, this increase in the
workload of the BS will lower the efficiency of servers in those BS causing an increase in
the execution time.

Using Figure 2 below, suppose the self-driving cars were also sending requests to BS1
at the same time as BHA such that the execution time for BS1 12s, and the execution time
(t) will have 10/10 + 12 4+ 30/10 = 16s which gives us the third outcome. Comparing the
three possible outcomes, the second outcome is still more expensive in terms of resource
consumption; but it can be observed that the time cost for the third outcome is way
higher than the time complexity for the first outcome.

From the above use case of multiple users, there is no way to define a constant state
for the BSs as mobile users are constantly in motion and the number of requests per BS
vary with time. These two factors can impact execution time. In reality, it is difficult to
estimate where the response data will be received after the process has been executed.
From this analysis, it is safe to conclude that there is no universal optimal solution for
the selection of service instances to mobile users’ requests. However, this challenging
issue can be mitigated by modelling the problem’s relevant construct and designing an

14

S S Pa

(GAD) s 2 MB/s s, (((A)))

H
: 20 MB/s :
¥ 10 MB/s
Jerry Tom Jerry Tom I|
b serry Tom
. ! 4 * A ?:
. BHA ®
e e e e e e = e e e = = = = = = e = = = = = o e e e o
35s 17s 0s

“==* Transmission Rate

==+ Time axis of BHA

Figure 2: Adopted user-case for service instance selection in MEC system

efficient, yet simple technique to distribute service requests to the appropriate service
instance deployed at the BSs in the MEC system.

In selecting a service instance in a MEC system according to the mobile users’ require-
ments, the workload status of the BSs and the location information of the mobile users
are variables as seen from the use case work through. In order to better appreciate the
service instance selection in MEC systems, we will abstract some of the components and
operations in application scenarios into services and deploy several instances of them in
a distributed edge computing environment, which will decrease execution time or latency
by selecting appropriate, nearby service instances.

4.2 MEC System Modelling

We will attempt to clearly define the key concepts from a component on a service instance
selection in a MEC system.

Definition 1 (Service Request): A service request initiated by a mobile user can
be represented by a four-tuple (I, O, C, QoS), where:

I - is the input parameter

O - is the output parameter

C' - the resources needed by the service to execute, where Ci represents all the re-
sources. C1, C2, ..., Cn are the type of resources consisting of memory, processing, storage
and network components.

QoS - <Q1, Q2, ..., Qn> is a n-tuple where each Qi is the workload property of a ser-
vice instance which comprises execution expense, response period, network throughput,
reputation, etc.

15

In this paper, we focus primarily on the response time’s QoS property. While users’
mobility affects the variation of bandwidth needed for data transmission between users
and the edge server which affects data transmission time, the response time is a part of
the total period needed to execute a service. Because of the limited coverage provided
by the edge servers, if the mobile user leaves the coverage area of one edge server and
goes into another area serviced by another edge server, in order for the mobile user to
get resources, the mobile user must connect to the edge server. The rate at which data
is transmitted between the ambulance and BS1 may be different from the data rate
transmission between the ambulance and BS2.

Definition 2 (Edge Server). An edge server is depicted by ((z, y azes), radius,
C, r), where

(x and y axes) - are the longitude and latitude of the edge servers,

radius - is the radius covered by the edge server,

C - is a n-tuple <C1, C2, ..., Cn> that denotes the capacity of an edge server where
Ci is the type of resource used by an edge server which includes memory, processing,
storage and network resources,

r - represents the average rate of data transmission between mobile users and edge
servers.

The arrangement of edge servers is done in a distributed manner, typically close to
a base station, and because only a specific geolocation is covered by each edge server.
The proximity limitations should be factored. Whereas, each edge server has limited
computational capability represented by C. As a result, the total workload spawned by
services on a server should not surpass the remainder of that server’s capacity. We also
assume that the remote cloud servers have ample computing resources and the mobile
user can connect to them.

Definition 3 (Requested Service). A requested service is expressed as a 4-tuple
(e, tc, I, ™), where

e - is the server whereby an instance is hosted.

t°“ - denotes the computing capacity of an instance. A higher t° means lower execution
of the instance. It is the period quotient used by an instance coupled with the instance
having the highest execution and the same workload percentage to perform the same
request.

I** - is the present workload deployed by an instance. Considering a service selection
approach to fulfil a user request set R, represented as 0 = {Orl, Or2...0rn} where every
component illustrates a service instance chosen for corresponding user request, 1°“; is the
aggregate of

Iy =0, +> reR:0r=s1",

where

P, - is the implicit workload of an instance s before any user requests
are allocated, as well as the total summation of the workload produced from
the user requests carried out on instance s.

™ - 4s the highest amount of workload an instance can handle where
the value of I** cannot exceed 1 ™.

Definition 4 (Execution Time). We take a service ws = (I, O, C, QoS)
and a chosen server, si. Assume that ws is called at time t1. The time cost
of calling the service is given by:

tc = ty, + Qus + tia + tuli + tub

where:

16

ty. ts the time latency of uploading input data which is denoted by:

tiw = D(I)/Tsz

where

D(1) is the data size of I and r; is the rate at which data is transmitted
between the user u and server si.

Q.s1ts the time taken by service ws to respond

tia ts the time latency of downloading output data which is represented
as:

tdd = D(O)/’I’Sj

where D(0) is the data size of output data and r,; is the data transmis-
ston rate between the user u and the edge server sj.

t..I, represents the round-trip latency and I1 is an indicator function
which is expressed by:

I, = {1 is set if the user connects to the remote cloud, else, 0 is set

ty represents the downtime as the outcome of service migration, and I,
18 an indicator function demonstrated by

I,= {1, is set if the service is migrated, else, 0 is set

The computational method for deducing the time cost for invoking a ser-
vice is stated above in definition 4. Nonetheless, mobile users in the real
world always invoke a stream of services while in motion. Thus, the time
taken by a user to invoke the entire service composition can be calculated
as:

Utc = Y5 €Systeys,

where

Sws - 18 the set of composite services

w—isanoperatorthatintegratesthevalueso ftimeconsumptiono finvokingcompositeservices. T hinte

To simplify the calculation, we assume that the combined services are
in a successive execution path, we only apply the summation (?) integra-
tion rule. Therefore, we can get the multi-user mobility-aware time latency
computation as follows:

SUtc = v 21 Utc

Definition 5 (Mobility Path). Considering a mobile user, mobility path
constitutes a collection of discrete points in a mobile user’s location which
are ordered sequentially. Mobility path comprises of lines between two ad-
jacent points which can be expressed as

{(Tiypli)}qi: 1, where

1 - 18 the order number of the discrete time segment

T, = (ti, ti+1) is the time segment of the ith location point

pli - is the coordinate of the ith location point

Definition 6 (Service Instance Selection Problem). Assuming that a
group of users simultaneously submait their requests, the SISP is required
to choose an ideal instance for each user’s request; taking into account [21].

1. the transition of multiple users
2. the varying workload of each instance

3. transmaission rate between edge servers.

17

This problem is expressed as a 5-tuple SISP = (R, P, C, E, S) where

R - is a set of requested service (ry, T3, ..., T,).
P - is a set of mobility paths of n users, where each path correlates to a
user’s course direction between edge cells (P 1, P,, ...P,).

C - denotes edge cells C = (Cy, C,, ... C,) and the corresponding access
points as well as their transmission speeds relative to the users’ requests.

E - this represents n edge servers E = {ej, ey, ...e,} and the transmis-
ston rate between them.
S - stands for the service request for a set {S 1, S», ...S,} where each

instance 1s deployed on one of the n edge servers.

Algorithm 1: Temporal Logic based algorithm for Service Instance Selection in MEC Systems

Input: SISP (R, P, C, E, S)
Output: Optimal Solution ©
foriin Sen
Si = f(S}
connect to the nearest BS if connection does not exist
ca =f(C)
attempt selecting edge server from the list of servers by temporal logic until operator
ex=-¢e U Qe
attempt selecting service instance from a list of service instances logic until operator
ry=-dr U Pr
assign request s;to service instance ryexecute
exe_t=0 by
return exe_t

Figure 3: Table 3. Algorithm 1

18

Algorithm 2: Edge Server (¢e)

Input : E((x, y axes), radius, C and r)
Output: e, (edge server instance)
Set e; to null variable
fori=01to Ejen
ifi==
continue
else
check if e; has less computation task to perform compared to e;
if getComputeResource(e;) < getComputeResource(ei1)

e:=6
else

€: = €i
return e;

Figure 4: Table 4. Algorithm 2

Algorithm 3: Service Instance (¢g)

Input : S (e, tcc, lcu, Imax)
Output : r, (service instance)
Set . to null variable
initialize R = {} to an empty set
forryine
if isAvailable(r,)
R<=r,
From the list of available r, the select the best r instance
forrjinR
ifj==
Tavail = Tj
else
if getWorkLoad(ravai) > getWorkLoad(r;)
Navail = I
return rayail

Figure 5: Table 5. Algorithm 3

19

4.3 Efficiency of Temporal Logic Algorithm

The efficiency of an algorithm is evaluated by taking inventory of the com-
putational resources required execute the algorithm. These resources will
usually include the memory resources (also known as the space complex-
ity of the algorithm) and the time required to erxecute the algorithm (also
known as the time complexity of the algorithm). The efficient of the is the
measure of the largest possible usage of the computation resources while
the algorithm is executed and this is also known as the worst case scenario
expressed as the Big O Notation denoted as O(n), where

O - is the growth rate of the function used to measures how big the output
grows

n - 18 the size of input data

To evaluate the time complexity of the Temporal Logic algorithm, we
will take into consideration the 3 algorithms, each of the algorithm i.e., Al-
gorithm 1, Algorithm 2 or Algorithm 3 has a for loop. A for loop has a time
complexity of O(n) which is a linear time complexity. From Algorithm 1,
Algorithm 2 and Algorithm 3 are nested in Algorithm 1, and thus Algorithm
1 has a Quadratic time complerity denote as O(n?). The time complexity
of the Temporal logic in the worst case scenario is O(n?).

5 Implementation and Evaluation

5.1 Dataset and experiment setup

The experiments for this study are carried out on our HP workstation which
runs Ubuntu 20./4 operating system, with intel core 17 8th gen @ 2.60 GHz
CPU and 8GB of RAM. The implementation of the algorithm was written
in Java version 1.8 while the graph was generated using python.

We conducted experiments on two datasets that are commonly used in
edge computing to authenticate the efficacy and productivity of our algorithm.
The datasets used in the experiment is the EUA dataset from Awustralia
[34] which contains data collected from real-world data sources. The data-
sets contain data from edge server and user locations which includes user
addresses, location etcetera. We use Gaussian distribution to randomly
generate and replicate different groups of users mustered together. In the
experiment, we generated two datasets for the users where they are closely
converged and another where they are sparsely dispersed.

FEach base station’s coverage radius is randomly selected from a range
of 150m to 200m. The edge users mobility path is created using the pop-
ularly recognised random waypoint mobility model (RWP) [21]. The speed
of mobile users is randomly selected within the range of 1m/s and 10 m/s
while the transmission rate between two edge servers ranges between 1 to
10 MB/s.

The rate at which data is transmitted between the edge servers and the
cloud server is set at 1 MB/s. The closest base station to its centre point
is the access point of each edge cell. A user’s data transmission rate in an
edge cell varies between 1 and 10 MB/s.

20

The user’s request input data is randomly allocated a size between 5 and
20 MB. The time spent in executing a service request and the size of the
user’s request input data can be linearly associated. The minimum user’s
request execution time, relative to the size of the input data is set between
b5s to 10s. The returned output data size of the user’s request is equivalent
to the input data size. 1 and 1.5 are the minimum and maximum values
set for the computing capacity of the service instances respectively while
the inherent workload ranges between 0 and 50 for the service instance.
Given the constrained resources of the edge server and the ample resources
of the cloud server, marimum workload range s set at 400, 500 for the edge
servers and 5000 for the cloud.

6 Evaluation

6.1 Baseline

The model architecture we use for our baseline is GASISMEC-GI. The
model adopts an implementation such that, the area covered is divided into
nine edge cells. There are three users with their requests and three possible
location points. The three users upload their requests from their respective
location points. There are four edge servers and three service instances are
deployed on them respectively.

An allocation strategy is generated randomly at the initial stage and then
the average response time of each strategy is calculated with respect to data
size, number of users, user’s locations, workload, computing capacity, edge
servers and service instances.

Methods FUA dataset | EUA dataset 2 EUA dataset 3
AVG RESP time CPU time AVGRESP time— CPU time AVG RESP i~ CPU time

Random 1943 00132 03 00144 28663 00147
Creedy-Workload 28312 0.0M7 19358 00059 17602 00016
Creedy-Execution 27781 00072 1878 00043 13 00030
Creedy-Response 28447 13253 LRV 0347 1308 03215
GA 1145 03593 28460 03504 16605 0344
GAGI 1384 06773 7161 05599 15,706 06715
GASISMEC 13649 05773 1148 05784 1 05634
GASISMEC-CI 1352 18976 1% 09330 104 0879

Figure 3. Result of experiment. Source adopted from [21]

6.2 Result

In the experiments, we set the linear temporal logic algorithm parameters
to be uniform as described in [21]. The users are selected at random from
the EUA dataset. We compare the results average response time between
the baseline to our proposed algorithm which uses linear temporal logic with
vartous distributions. The results obtained from the experiments are sum-
marized below.

Figure 4. Different distributions of users and small base stations of EUA
dataset.

21

450
o __eee ® g, . o e .y
w ."-"‘!‘-"'.';'::.;v".-.”."e!:; Lanateds, dobezedtes . "-"*"‘,',":,-_‘-.:-".-"."t'.';,
K3 DAL T AP R DA R)
sf gadifiiv.s S0 . WIS O - adiirin e 8% S
®.y * o » . *
300 .4" L .:'::.“.o .5"".' . V.‘O ."'3.;.' ..f ..3: :“. s ::'“-\.3"5:'}
- “.. ‘.o. . :}Q °s° £.¢ %{’3 * ? o° &. .%o‘ a6 “ p"...‘ e
Eaxol ® “ %“.. *é&.‘- Qq_-”' 3 e ‘.ﬂ..o‘é. ‘: » £ l.“ ‘ﬁ..l o ...’&q.fr
T At Ay et o | | 7| atrdriogmen’t We | | T an v a0l o
o1 o9, a0 Eg nPAY n e, Ry) NN KX A - Soe
s ® ., . ' - o® o8%® [L]
REY ARS o T S AREEN Sl JEF N G A B el
“.’ S) o ¢ Yo % s & 3 * ey ® L ‘e :ﬁ? . - °
ABRITIRNa || | $2 T en || | SRS ke
- . . . e % & ')
0 N Llsers’. f. ‘ . ? ."‘ ® o Lsers = b ? . l.iser‘s" . 3-‘ : .: ® ° L
| Base Stations ® Base Stations o BaseStations o * @
00 300 400 500 60D 700 0D %00 W0 W00 400 00 €00 700 800 w0 200 300 400 S0 600 700 800 900
x(m) % () x (mj)
EUA dataset 1 EUA dataset 2 (c) EUA dataset 3
I ssn | No.ofusers | Average Response Time |
| 1 | 82 | 17.124485758069124
| 2 | 164 | 17.877379397892696
| 3 | 246 | 18.24659381684234
| 4 | 328 | 18.481047380134736
| 5 | 410 | 19.440225679773977
| 6 | 492 | 15.480379230879844
| 7 | 574 | 20.205210370594255
| 8 | 656 | 20.67057904677276
| 9 | 738 | 21.57292136140845
| 10 | 816 | 21.662770312601296

Figure 5. Experimental results on EUA datasets without linear temporal
logic with varying number of users

Average Response Time

21

20

17

—a = Paerformance without Temporal Logic - — -
— e = Performance with Temporal Logic f-*"
-
ar#i.
-
.-i‘"‘l-‘.’
-——— =
-
- e
—— P
e -
— e — — - . —
..-".:-‘ _,...-F""r T e
- Pl
- -
- P
-
—

T T T
100 200 200 A00 S00 =00 TO0 o0
Mumber of Users

Figure 6. Experimental results on EFUA dataset with linear temporal logic
with varying number of users

22

—®=- Performance without Temporal Logic {-—""
| === Performance with Temporal Logic //
21 >
LE] -
E -
= 20 1 -
" .
1 ~
w19 4 z,’ -
o < e
& I -
o 18 et ‘,.a-———-'*--..._‘_*_r_,..-r-f
[F -
S -
3
17 ¢ 7
P
=——t

100 200 300 400 500 BO0 Tad 800
Number of Users

Figure 7. Performance comparisons of average response time on EUA
dataset

The results illustrate that the average response time of a non-linear tem-
poral logic is significantly higher than that obtained from the linear temporal
logic approach as shown in figures 5 and 6 in all the iterations. When LTL
algorithm was compared to GASISMEC [21] and non-linear temporal logic
technique, significant improvement was shown. While [21] used 512 users,
the average response time was about 23 seconds while LTL model fulfilled
the same requests for 57, users in about 18 seconds. However, non-LTL
model completed the same requests with 574 users with about 3 seconds less
than GASISMEC. The lowest response time obtained by GASISMEC was
22 seconds with users n set to 512; meanwhile, with 816 users, the non-
LTL model fulfilled the request with the average response time of almost 22
seconds and our model obtained an average response time of 19 seconds.

The outcome derived from the experiment clearly illustrates that our ap-
proach of using linear temporal logic surpasses that of the model proposed
in Zou et al. (2021).

6.3 Limitations

In our experiment, we assumed that the edge user’s mobility path is known
by applying location prediction methods. In real world applications, location
prediction techniques are error-prone and a user may suddenly alter their
course direction from the predetermined mobility path. In addition, during
high-speed mobility of mobile devices, uploading and downloading request
data may be difficult to achieve. These limitations substantially increase
the complexity of our system.

Another limitation to our approach stems from server connectivity. We
assume there is interconnectivity between two randomly selected servers by
one or more access points with different transmission rates. Fully inter-
connected edge servers are not completely feasible in real world usage and
once the topology is set up by different telecom vendors; when applied to
our system, the complexity becomes marginally higher.

23

7 Conclusion and Future Work

In this research we conducted, we studied service instance selection and the
problems associated with it in mobile edge computing (MEC) environment.
We factored in our study, the workload, the users’ mobility path, user dis-
tribution and service instances. We focused primarily on the optimizing the
average response time of service instance selection. In order to reduce the
average response time, we proposed a model which capitalizes on linear tem-
poral logic algorithm to optimally select the best possible service instance to
users’ requests. The experiment carried out on the EUA dataset proves how
effective and efficient our proposed model when juxtaposed with the baseline
techniques.

While significant research has been done on SISP in MEC environment
in our study and others, drawbacks such as lack of real-world application has
led to insufficient experimental outcomes. In further research, our aim will
be to select edge servers with respect to both time and energy consumption.
We will also explore more effective and efficient algorithms to determine
which edge server is optimal for mobile users.

References

2Ahmed, E. and Rehmani, M. H. (2017). Mobile edge computing: opportun-
ities, solutions, and challenges.

Aral, A., Brandic, I., Uriarte, R. B., De Nicola, R. and Scoca, V.
(2019). Addressing application latency requirements through edge schedul-
ing, Journal of Grid Computing 17(4): 677-698.

Balasubramania, T. (2015). Mobile computing—an introduction with issues
in mobile security, International Journal of Review and Research in Ap-
plied Sciences and Engineering 7(1): 15-19.

Goncgalves, D., Puliafito, C., Mingozzi, E., Rana, O., Bittencourt, L. and
Madeira, E. (2020). Dynamic network slicing in fog computing for mobile
users in mobfogsim, 2020 IEEE/ACM 13th International Conference on
Utility and Cloud Computing (UCC), IEEE, pp. 237-246.

Hu, X. (2020). Mobile edge computing in wireless communication networks:
design and optimization, PhD thesis, UCL (University College London).

Khan, W. Z., Ahmed, E., Hakak, S., Yaqoob, I. and Ahmed, A. (2019).
Edge computing: A survey, Future Generation Computer Systems 97: 219—
235.

Lee, J., Kim, D. and Lee, J. (2019). Zone-based multi-access edge com-
puting scheme for user device mobility management, Applied Sciences
9(11): 2308.

Lee, J., Kim, J.-W. and Lee, J. (2020). Mobile personal multi-access edge
computing architecture composed of individual user devices, Applied Sci-
ences 10(13): 4643.

24

Mehrabi, M., Salah, H. and Fitzek, F. H. (2019). A survey on mobility
management for mec-enabled systems, 2019 IEEE 2nd 5G World Forum
(GWF), IEEE, pp. 259-263.

MobFogSim. Simulation of mobility and Migration for fog computing Mob-
FogSim. Simulation of mobility and Migration for fog computing (n.d.).
https://// github. com/diogomg/MobFogSim. Accessed: 2021-09-30.

mobile (n.d.). https://wiki. openstack. org/wiki/Edge_ Computing_ Group/
Use_Cases. Accessed: 2021-09-30.

Peng, K., Leung, V., Xu, X., Zheng, L., Wang, J. and Huang, Q. (2018).
A survey on mobile edge computing: Focusing on service adoption and
provision, Wireless Communications and Mobile Computing 2018.

Pnueli, A. (1977). The temporal logic of programs, 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), IEEE, pp. 46-57.

Prasad, M. R., Naik, R. L. and Bapuji, V. (2013). Cloud computing: Re-
search issues and implications, International Journal of Cloud Computing
and Services Science 2(2): 134.

Puliafito, C., Gongalves, D. M., Lopes, M. M., Martins, L. L., Madeira,
E., Mingozzi, E., Rana, O. and Bittencourt, L. F. (2020). Mobfogsim:
Simulation of mobility and migration for fog computing, Simulation Mod-
elling Practice and Theory 101: 102062.

Qi, H. and Gani, A. (2012). Research on mobile cloud computing: Review,
trend and perspectives, 2012 second international conference on digital in-
formation and communication technology and it’s applications (DICTAP),
ieee, pp. 195-202.

Roy, P., Sarker, S., Razzaque, M. A., Hassan, M. M., AlQahtani, S. A.,
Aloi, G. and Fortino, G. (2020). Ai-enabled mobile multimedia service
instance placement scheme in mobile edge computing, Computer Networks
182: 107573.

Sajnani, D. K., Mahesar, A. R., Lakhan, A., Jamali, I. A. et al. (2018).
Latency aware and service delay with task scheduling in mobile edge com-
puting, Communications and Network 10(04): 127.

Saranya, N., Geetha, K., Sarumathy, C. and Rajan, C. (2019). Literature
survey of data latency reduction techniques in mobile edge computing-iot,
Journal of Critical Reviews 7(6): 2020.

Satyanarayanan, M. (1996). Fundamental challenges in mobile comput-
ing, Proceedings of the fifteenth annual ACM symposium on Principles of
distributed computing, pp. 1-7.

Srit, V. D. S. and Vemuru, S. (2019). Survey on data security issues related
to multi-user environment in cloud computing, Journal of Critical Reviews
7(4): 2020.

25

https:////github.com/diogomg/MobFogSim
https://wiki.openstack.org/wiki/Edge_Computing_Group/Use_Cases
https://wiki.openstack.org/wiki/Edge_Computing_Group/Use_Cases

Ugwuany:, E. E., Ghosh, S., Igbal, M., Dagiuklas, T., Mumtaz, S. and
Al-Dulaimi, A. (2019). Co-operative and hybrid replacement caching for
multi-access mobile edge computing, 2019 European Conference on Net-
works and Communications (EuCNC), IEEE, pp. 394—-399.

Wang, Z., Zhao, Z., Min, G., Huang, X., Ni, Q. and Wang, R. (2018).
User mobility aware task assignment for mobile edge computing, Future
Generation Computer Systems 85: 1-8.

Wei, H., Luo, H. and Sun, Y. (2020). Mobility-aware service caching in
mobile edge computing for internet of things, Sensors 20(3): 610.

Xia, J., Li, C., Lai, X., Lai, S., Zhu, F., Deng, D. and Fan, L. (2020).
Cache-aided mobile edge computing for b5g wireless communication net-
works, EURASIP Journal on Wireless Communications and Networking
2020(1): 1-10.

Zhang, K., Leng, S., He, Y., Maharjan, S. and Zhang, Y. (2018). Mo-
bile edge computing and networking for green and low-latency internet of
things, IEEE Communications Magazine 56 (5): 39—45.

Zou, G., Qin, Z., Deng, S., Li, K.-C., Gan, Y. and Zhang, B. (2021).
Towards the optimality of service instance selection in mobile edge com-
puting, Knowledge-Based Systems 217: 106831.

26

	Introduction
	Background
	 Problem Description
	Objectives of the Study
	Research Questions

	Related Work
	Addressing Latency in Mobile Edge Computing
	 Toward Improved User Mobility in Mobile Edge Computing
	Service in Instance in Mobile Edge Computing

	Methodology
	MobFogSim
	Java Programming Languages
	 Temporal Logic Algorithm in Mobile Edge Computing

	Design Specification
	Mobile Edge Computing Use-Case and Application
	MEC System Modelling
	Efficiency of Temporal Logic Algorithm

	Implementation and Evaluation
	Dataset and experiment setup

	Evaluation
	Baseline
	Result
	Limitations

	Conclusion and Future Work

