~

"'—-
\ National
College

Ireland

Configuration Manual

MSc
Data Analytics

Dawn Walsh
Student ID: x19190352

School of Computing
National College of Ireland

Supervisor: Pramod Pathak & Paul Stynes

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Dawn Walsh
Student ID: x19190352
Programme: MScData Analytics
Year: 2021
Module: Research Project
Supervisor: Pramod Pathak & Paul Stynes

Submission Due Date:

16,/08,/2021

Project Title:

Configuration Manual

Word Count:

Page Count:

11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Dawn Walsh
Date: 14th August 2021

PLEASE READ THE

FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). U

Attach a Moodle submission receipt of the online project submission, to | J
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | (I

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Dawn Walsh
x19190352

1 Introduction

This configuration manual lists all the hardware and software requirements to reproduce
the experiments in this research. The document lays out the steps taken from acquiring
the data to implementing the models.

2 Hardware & Software Requirements

The hardware specifications utilised in this research is shown in Table 1. The program-
ming language and libraries used alongside their respective versions are laid out in Table 2.

RAM 16GB
Processor Dual-Core Intel Core 15 @ 1.6GHz
OS macOS 11.5.1 (20G80)

Table 1: Hardware Specifications

Library Version

Python 3.8.8
Jupyter Lab 3.0.11

pandas 1.2.3
numpy 1.19.2
scipy 1.6.1

scikit learn 0.24.1
matplotlib 3.3.4
seaborn 0.11.1

Table 2: Software Specifications

3 Dataset

Instructions on loading and working with the datasets used in this research are set out
in the sections below.

3.1 Folder Structure

The files need to be inside the Project folder as in Fig. 1 for the paths to work correctly,
you will also have to specify your own path within the code. When running the code in a
Windows or Linux machine you will have to change the paths. The files shown in Fig. 1
will be explained in this manual.

< Project g8 = M =2 ¢ v © v Q

Name Date Modified Size Kind ~

> [Bike Sharing DC Today at 17:20 -- Folder

> [dublinbikes Today at 17:21 -- Folder

> [dublinweather Today at 17:20 -- Folder

>) Weather DC Today at 17:20 -- Folder
DC_Bikes_Weather.ipynb Today at 17:24 700 KB Anacon...cument
DublinBikes_Weather_1.ipynb Today at 16:33 555 KB Anacon...cument
DublinBikes_Weather_2.ipynb 7 August 2021 at 17:59 715 KB Anacon..cument
DublinBikes_Weather_3.ipynb 1 August 2021 at 15:55 839 KB Anacon...cument
DublinBikes_Weather_4.ipynb 1 August 2021 at 15:57 720 KB Anacon..cument
DublinBikes_Weather_5.ipynb 10 August 2021 at 17:38 486 KB Anacon...cument

Figure 1: Structure of the Project Folder

3.2 Dataset Creation

The datasets were downloaded from the links shown in Table 3 below. There are multiple
files for each dataset all in .csv format and each dataset has its own folder.

Dataset URL
DC Bikes https://s3.amazonaws.com/capitalbikesharedata/index.html
DC Weather https://www.visualcrossing.com /weather-data

Dublin Bikes https://data.smartdublin.ie/dataset /dublinbikes-api
Dublin Weather https://www.met.ie/climate/available-data/historical-data

Table 3: Dataset Locations

Figures 2 and 3 shows the code used for loading the datasets. This allows multiple
.csv files to be loaded and appended to one another and then concatenated to create one
pandas dataframe.

4 Experiments

This section contains a brief outline of the various experiments run in the course of the
research. Figure 4 shows the necessary libraries and imports for all of these experiments.

4.1 Reproducing DC Bikes/Weather Clustering

Figures 5, 6, 7 shows how the bikes and weather datasets are amended before being
joined together. The joined data needed days of the week Fig. 8 months and seasons
Fig. 9 extracted.

https://s3.amazonaws.com/capitalbikesharedata/index.html
https://www.visualcrossing.com/weather-data
https://data.smartdublin.ie/dataset/dublinbikes-api
https://www.met.ie/climate/available-data/historical-data

path = 'fUsers/dawn/Desktop/M5c Data Analytics/Term 3/Research Project’
all_files = glob.glob{path + "/Project/Bike Sharing DC/#*.csv")

1i = []

for filename in all_files:
df = pd.read_csv(filename, sep = ',', index_col=None, header=8)
li.append(df)

df_DC_Bikes = pd.concat(li, axis=®, ignore_index=True)
df_DC_Bikes.head()

Figure 2: Bikes Dataset

pathl = '/Users/dawn/Desktop/MS5c Data Analytics/Term 3/Research Project’
all_filesl = glob.glob{pathl + "/Project/Weather DC/=.csv")

1il = []

for filename im all_files1:
df = pd.read_csv(filename, sep = ',', index_col=None, header=0)
1il.append(df)

df_DC_Weather = pd.concat{1il, axis=08, ignore_index=True)
df_DC_Weather.head()

Figure 3: Weather Dataset

The data was standardised and the principle components extracted shown in Fig-
ures 10 and 11. The KMeans models in all the experiments were all optimised using
Elbow and Silhouette methods. Figures 12,13 show them.

4.2 Clusters: Dublin Bikes & Weather - Daily Trips

Before fitting the models the two Dublin datasets need some features to be engineered
such as the number of daily trips Figure 14.

Most of the rest of the code is the same as in Section 4.1, however since the trips data
has to be extrapolated the two datasets remain as Pandas data-frames and are joined
rather than mapped together as in the previous experiment shown in Figure 15.

4.3 Clusters: Dublin Bikes & Weather - Hourly Trips

As in Section 4.2 the trips have to be extrapolated but it is on a per hour basis. So the
date and hour are extracted and the data is grouped by day and hour to give the hourly
number of trips and shown in Figure 16. Figure 17 shows the hourly weather data joined
to the hourly trips data.

4.4 Clusters: Dublin Bikes & Weather - Station Daily Trips

As in Section 4.2 the trips per day have to be extrapolated, however it is done per station
as an additional detail. So the date is extracted and the data is grouped by day and

import pandas as pd

import glob

smatplotlib inline

import matplotlib as mpl
import matplotlib.pyplot as plt
import scipy.stats as stats
import math

import numpy as np

import random

from matplotlib import style
import matplotlib.cm as cm
import seabern as sns

import sklearn

import datetime as dt

Classification

from sklearn.datasets import make_blobs

from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_score
from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics

Figure 4: Necessary Imports for Clustering

Dropping 'Conditions' column as it is not numeric and therefore will not work with clustering techniques.

df_DC_Weather = df_DC_Weather.drop(['Name', ‘Wind Chill"', ‘'Heat Index', 'Wind Gust', 'Conditions'], axis = 1}
df_DC_Weather

Figure 5: Weather Data preparation

Ride Counts by day 1|

ride_count = df_DC_Bikes['Start date'l]l.value_counts()
ride_count

Figure 6: Bikes Data preparation

Appending the ride count to the data frame
df_DC_Weather(['ride count'] = df_DC_Weather['Date time'].map(ride_count)

df_DC_Weather.set_index = np.arange(l, len{df_DC_Weather) + 1)
df_DC_Weather

Figure 7: Joining the Datasets

df_Cluster_Weather['Day'] = df_Cluster_Weather['Date time'l].dt.day_name()
df_Cluster_Weather['Day'] = ['Weekend' if d == 'Sunday' or d == 'Saturday' else 'Weekday' for d in df_('l.uster_hl'eather['Day']]|

Figure 8: Extracting Day of Week, Weekday /Weekend

df_Cluster Weather['Month'] = df_Cluster_Weather['Date time'].dt.month_name()

seasons = {"January": "Winter",
“February": “Spring",
“March": "“Spring",
"April": "“Spring",
“"May": “Summer",
"June": "Summer",
“July": “Summer",
“"August": "Autumn',
"“"September": “Autumn",
"October": "Autumn',
"November": “"Winter",
"December": "Winter"}

df_Cluster_Weather['Season'] = df_Cluster_Weather['Month'].map(seasons])

Figure 9: Extracting Month and Season

scaler = StandardScaler()
Standard_Bikes_scaled = scaler.fit_transform(Standard_Bikes)
Standard_Bikes_scaled.shape

Standard_Bikes_scaled = pd.DataFrame(Standard_Bikes_scaled)
Standard_Bikes_scaled.columns = ['maxtp', 'mintp', 'gmin', ‘'rain', 'cbl', 'soil', 'trips'l
Standard_Bikes_scaled.head()

Figure 10: Standardising the data

pca = PCA(2)

Standard_Bikesl = Standard_Bikes.drop(['Cluster ID'], axis = 1)
Standard_Bikesl_scaled = Standard_Bikes_scaled.drop(['Cluster ID'], axis = 1}
Standard_Bikesl = pca.fit_transform(Standard_Bikes1)

Standard_Bikes1_scaled = pca.fit_transform{Standard_Bikesl_scaled)

Standard_Bikesl = pd.DataFrame(Standard_Bikes1)
Standard_Bikes1_scaled = pd.DataFrame(Standard Bikesl_scaled)
Standard_Bikesl scaled.columns = ['PC 1', 'PC 2']

Figure 11: Principle Components Analysis

Using the elbow method to find the optimal number of clusters
ssd = []
for i in range (2, 9):
kmeans = KMeans(n_clusters = i, max_iter = 50)
kmeans. Tit{X _scaled)
ssd.append(kmeans.inertia_)

plt.plot(range(2,9), ssd)
plt.title('The Elbow Method')

plt.show()

Figure 12: Elbow Method

for i im range (2, 9):
kmeans = KMeans(n_clusters = i, max_iter = 50)
kmeans.fit(X scaled)

cluster_labels kmeans. labels_

silhouette_avg = silhouette_score(X_scaled, cluster_labels)
print("For n_clusters = {}, the silhouette score is {}".format(i, silhouette_avg))

Figure 13: Silhouette

df_Bikes_Out['BIKES OUT'] = 1608 - df_Bikes_Out['AVAILABLE BIKES']

df_Bikes_Out['DIFF BIKES OUT'] = df_Bikes_Out['BIKES OUT'].diff()

getting rid of NaN and negative values

df_Bikes Out['DIFF BIKES OUT'] = df_Bikes_Out['DIFF BIKES OUT'].fillna(@)

df_Bikes_Out['DIFF BIKES OUT'] = df_Bikes_Out['DIFF BIKES OUT'l.mask(df_Bikes_Out['DIFF BIKES OUT'l.1lt{e),@)

df_Bikes_QOut.head()

df_Bikes_Daily = df_Bikes_Out.drop(['TIME', 'BIKE STANDS', 'AVAILABLE BIKE STANDS', 'AVAILABLE BIKES', 'BIKES OUT'l, axis = 1)
df_Bikes_Daily.head()

df_Bikes_Daily = df_Bikes_Daily.groupby('DATE"').sum()
df_Bikes_Daily.head(1@)

Figure 14: Extracting Trip information from Dublin Bikes

df_Bikes_Weather = pd.merge(df_Dub_Weather_daily, df_Bikes_Daily, on = ‘date’, how='left')
df_Bikes_Weather = df_Bikes_Weather.dropnal)

df_Bikes_Weather.reset_index(inplace = True)

df_Bikes_Weather = df_Bikes_Weather.drop(['index'], axis = 1)

df_Bikes_Weather.head(H

Figure 15: Joining the Data for Dublin

df_Bikes_Out['DATE']
df_Bikes_0Out['HOUR']
df_Bikes_Out.head()

df_Bikes_Out['TIME'].dt.date
df_Bikes_Out['TIME'].dt.hour

There are approximately 1600 bikes in the Dublin Bikes scheme from mid-2018 to current

df_Bikes_Out['BIKES OUT'] = 1600 - df_Bikes_Out['AVAILABLE BIKES']

df_Bikes Out['DIFF BIKES OUT'] df_Bikes_Out['BIKES OUT'].diff()

df_Bikes_Out['DIFF BIKES OUT'] df_Bikes_Out['DIFF BIKES OUT'].fillna(@)

df_Bikes Out['DIFF BIKES OUT'] df_Bikes_Out['DIFF BIKES OUT']l.mask(df Bikes Out['DIFF BIKES OUT'].lt(@),®)
df_Bikes_QOut.head()

df_Bikes_Daily = df_Bikes_Out.drop(['TIME', 'BIKE STANDS', 'AVAILABLE BIKE STANDS', 'AVAILABLE BIKES', 'BIKES OUT'], axis = 1)
df_Bikes Daily = df_Bikes_Daily.groupby(['DATE', 'HOUR']).sum()
df_Bikes_Daily = df_Bikes_Daily.reset_index()

df_Bikes_Daily.head()

Figure 16: Dublin Bikes Hourly Trips

df_Bikes_Weather_hour = pd.merge(df_Dub_Weather_hourly, df_Bikes_Daily, on = ['date', ‘'hour'l, how='left')
df_Bikes_Weather_hour['hour'] = df_Bikes_Weather_hour['hour'].dt.hour

df_Bikes_Weather_hour = df_Bikes_Weather_hour.dropna()

df_Bikes_Weather_hour.reset_index(inplace = True)

df_Bikes_Weather_hour = df_Bikes_Weather_hour.drop(['index'], axis = 1)

df_Bikes_Weather_hour.head()

Figure 17: Dublin Bikes & Weather Hourly Trips Joined

station to give the daily number of trips per station and shown in Figure 18. Figure 19
shows the daily weather data joined to the daily trips per station data.

df_Bikes_Out['DIFF BIKES OUT'] df_Bikes_Out['AVAILABLE BIKE STANDS'].diff()

df_Bikes_Out['DIFF BIKES OUT'] df_Bikes_Out['DIFF BIKES OUT'].fillna(@)

df_Bikes_Out['DIFF BIKES OUT'] = df_Bikes_Out['DIFF BIKES OUT'].mask(df_Bikes_Out['DIFF BIKES OUT']l.lt(@),@)
df_Bikes_Out = df_Bikes_Out.reset_index()

df_Bikes_Out['DATE'] = df_Bikes_Out['TIME'].dt.date

df_Bikes_Daily = df_Bikes_Out.drop(['TIME', 'BIKE STANDS', 'AVAILABLE BIKE STANDS', 'AVAILABLE BIKES'], axis = 1)
df_Bikes_Daily = df_Bikes_Daily.groupby(['DATE', 'STATION ID']).sum()

df_Bikes_Out.head()

Figure 18: Dublin Bikes Daily Trips per Station

4.5 Clusters: Dublin Bikes & Weather - Quarter Hourly Trips

As in Sections 4.3 the trips per quarter hour have to be extrapolated. So the date, hour
and quarter are extracted and the data is grouped by day and hour and quarter to give
the quarter hourly number of trips shown in Figure 20. Figure 21 shows the quarter
hourly weather data joined to the hourly trips per station data.

4.6 Random Forest Classifier: Dublin Bikes & Weather

For the Random Forest Classifier (RFC) the bikes data is configured differently. Similar
to previous sections the day, hour and month are extracted Figures 22. In order to
allow the station id to be retained we look at the overall usage statistics for the station
Figure 23 by binning the day into time-spans Figure 24. The table is pivoted then to
give overall usage statistics for the station on the given time spans and whether or not it
is a Weekday, Saturday or Sunday Figure 25.

Figure 26 shows creating the dataset for the RFC model firstly using the occupancy
rate to classify the state of the station, with 0 (Needs to be restocked), 1 (Acceptable)

df_Bikes_Weather = pd.merge(df_Dub_Weather_daily, df_Bikes_Daily, on = 'date’, how='left')
df_Bikes Weather = df_Bikes Weather.dropna()

df_Bikes_Weather.reset_index({inplace = True)

df_Bikes_Weather = df_Bikes_Weather.drop(['index'], axis = 1)

df_Bikes_Weather.head(]|

Figure 19: Dublin Bikes & Weather Daily Trips per Station Joined

df_Bikes_Out['DATE'] = df_Bikes_Out['TIME'].dt.date
df_Bikes Out['HOUR'] = df_Bikes_Out['TIME'].dt.hour
df_Bikes_Out['MINUTE'] = df_Bikes_Out['TIME'].dt.minute//15
df_Bikes_Out.head()

df_Bikes_Out['BIKES OUT'] = 1600 - df_Bikes_Out['AVAILABLE BIKES'I

df_Bikes_Out['DIFF BIKES OUT'] = df_Bikes_Out['BIKES OUT'].diff()

df_Bikes_Out['DIFF BIKES OUT'] = df_Bikes_Out['DIFF BIKES OUT'].fillnal(@)

df_Bikes_Out['DIFF BIKES OUT'] = df_Bikes_Out['DIFF BIKES OUT'].mask(df_Bikes_Out['DIFF BIKES OUT'l.lt{(@),@)

df_Bikes_Daily = df_Bikes_Out.drop(['TIME', 'BIKE STANDS', 'AVAILABLE BIKE STANDS', 'AVAILABLE BIKES', 'BIKES OUT'], axis = 1)
df_Bikes_Daily = df_Bikes_Daily.groupby(['DATE', 'HOUR', 'MINUTE']).sum()

df_Bikes_Daily = df_Bikes_Daily.reset_index()

df_Bikes_Out.head()

Figure 20: Dublin Bikes Quarter Hourly Trips

Duplicated to allow join on quarter hour
df_Dub_Weather_hourly = pd.concat([df_Dub_Weather_hourlyl+4, ignore_index=True)

df_Dub_Weather_hourly = df_Dub_Weather_hourly.sort_values(['date', 'hour'l, ascending=[True, Truel)
df_Dub_Weather_hourly.head()

df_Dub_Weather_hourly.reset_index(inplace = True)
df_Dub_Weather_hourly = df_Dub_Weather_hourly.drop(['index'], axis = 1)
df_Dub_Weather_hourly.head()

df_Bikes_Daily.rename(columns={'DATE':'date', 'HOUR': 'hour', 'MINUTE': ‘'quarter', ‘'DIFF BIKES OUT':'trips'}, inplace=True)
df_Bikes_Daily.head()

Figure 21: Dublin Bikes & Weather Quarter Hourly Trips Joined

or 2(Needs to be emptied) and then splitting the data into train and test sets Figure 27.
Then the model is fitted, the confusion matrix generated and the feature importance
found in Figures 28,29 and30

df_DB['DATE TIME'] = df_DB['LAST UPDATED'].dt.round('H')

df_DB['DAY NUMBER'] = df_DB['DATE TIME'].dt.dayofweek

df_DB['DAY TYPE']l = np.where(df_DB['DAY NUMBER'] <= 4, 'Weekday', (np.where{(df_DB['DAY NUMBER'] == 5, 'Saturday', 'Sunday')))
df_DB['HOUR'] = df_DBI['LAST UPDATED'].dt.hour

df_DB['MONTH'] = df_DB['LAST UPDATED'].dt.month

df_DB.sample(5)

Figure 22: Extracting Features for RFC: day, hour, month

df_DB['OCCUPANCY RATE'] = df_DB['AVAILABLE BIKES'] / df_DB['BIKE STANDS']
df_DB['FULL'] = np.where(df_DB['OCCUPANCY RATE'] == 1, 1, @)
df_DB['EMPTY'] = np.where(df_DB['OCCUPANCY RATE'] == @, 1, @)
df_DB.sample(10)

Figure 23: Extracting Features for RFC: occupancy rate of station

def time_group(x}:

if x.time() = dt.time(6):
return "Overnight "

elif x.time() = dt.time(11):
return "6am-18am "

elif x.time() = dt.time(16):
return "1lam-3pm "

elif x.time() = dt.time(28):
return "dpm-7pm "

elif x.time() == dt.time(23):
return "B8pm-11pm "

else:
return "Overnight "

df_DB['TIME GROUP'] = df_DB['DATE TIME'].apply(time_group)

df_DB[°*CLUSTER GROUP'] = df_DB['TIME GROUF'] + df_DB['DAY TYPE']
df_DB.sample(5)

Figure 24: Extracting Features for RFC: binning times

df_Time_Cluster = df_merge[['STATION ID', 'NAME', 'LATITUDE', 'LONGITUDE', 'DAY TYPE', 'TIME GROUP', 'OCCUPANCY RATE', 'CLUSTER GROUP']]
df_Time_Cluster = df_Time_Cluster.groupby(['STATION ID', 'NAME', 'LATITUDE', 'LONGITUDE', 'CLUSTER GROUP'], as_index = False) ['0CCUPANCY RATE']l.mean()
df_Time_Cluster = df_Time_Cluster.set_index('STATION ID')

df_Time_Cluster = df_Time_Cluster.pivot_table(index = ['NAME', 'STATION ID‘, 'LATITUDE', 'LONGITUDE'], columns = ['CLUSTER GROUP'l, values = 'OCCUPANCY RATE')
df_Time_Cluster = df_Time_Cluster. reset_index()
df_Time_Cluster = df_Time_Cluster.set_index('NAME')

df_Time_Cluster = df_Time_Cluster.dropna()
df_Time_Cluster.sample(5)

Tam- 1am- 1am- 6am- 6am- 6am- 8pm- 8pm- 8pm-

4pm-7pm 4pm-7pm 4pm-7pm Overnight Overnight ~ Overnight

STATION
CLUSTER GROUP LATITUDE LONGITUDE 3 3pm 3pm 10am 10am 10am 1pm 11pm 1pm

o saturday Sunday Weekday Ooturday Sunday Weekday g.i,rqay sunday weekday Saturday Sunday Weekday Ooturday Sunday Weekday

NAME

SOUTH DOCK
oy 91 53341831 -6.231291 0426138 0460434 0458484 0488100 0569974 0501655 0636543 0554668 0391778 0540896 0672532 0648903 0661672 0535848 0.660899

WOLFE TONE
U= 77 53348873 -6.267459 0734400 0825428 0782416 0775924 0803139 0172033 0.338364 0693000 0154887 0695087 051187 0187244 0270262 0690417 0234797

EARLSFORT
ERRAGE 11 53334019 -6.258371 0036352 0126028 0554415 0060549 0132180 0138083 0052886 0088988 0506312 0089826 0130269 0.034841 0030968 0072399 0039208
ROYAL HOSPITAL 95 53343899 -6297060 0245020 0131098 0.046437 0205881 0159310 0352989 0485652 0236317 0279501 0225572 0236232 0701544 0569363 0269166 0715598

NORTH

CIRCULAR ROAD
(O'CONNELL'S)

12 53357841 -6.251557 0143325 0137118 0123390 0285592 0.212045 0454438 0482955 0384285 0.226316 0424983 0431004 0824598 0927685 0.646045 0.848586

Figure 25: Pivoted Table

ml_data = df_merge_clusters[df_merge_clusters['REBALANCING'] < 1]
ml_data = ml_datal['STATION ID', 'OCCUPANCY RATE', 'dry', 'warm', 'DAY NUMBER', 'HOUR', 'MONTH'l]

def bin_occupancy(x):
if x < 0.1:
Needs to be restocked
return @
elif x = 0.8:
Levels are acceptable
return 9.1

else:
Needs to be emptied
return 9.2

ml_data['0OCCUPANCY GROUP'] = ml_datal'OCCUPANCY RATE'l.apply(bin_occupancy)
ml_data['OCCUPANCY GROUP'] = ml_datal'OCCUPANCY GROUP'] = 10
ml_data['OCCUPANCY GROUP'] = ml_datal'OCCUPANCY GROUP'].astype(int)
ml_data.dropna({inplace = True)

mask = np.random.rand(len{ml_data)) < 0.8

train = ml_datal[mask]

test = ml_data[~mask]

print(len(train))

print(len(test))

Figure 26: Classes for RFC

¥X_train = train.drop(['OCCUPANCY RATE', "OCCUPANCY GROUP"], axis = 1)}
X_test = test.drop(['OCCUPANCY RATE', "OCCUPANCY GROUP"], axis = 1)
¥_train = train[["OCCUPANCY GROUP"]]

Y_test = test[["OCCUPANCY GROUP"]]

Figure 27: Train-Test Split for RFC

clf = RandomForestClassifier(n_estimators = 1808)
clf.fit{X_train, Y_train)

Y_pred = clf.predict(X_test)

print("Accuracy: ", metrics.accuracy_score(Y_test, ¥Y_pred))
print(sklearn.metrics.classification_report(Y_test, Y_pred))

Figure 28: Fitting RFC Model

10

labels = [0,1,2]
em = metrics.confusion_matrix(Y_test, Y_pred, labels=labels)
ax= plt.subplot()

sns.heatmap(cm, annot=True, fmt='g', ax=ax, cmap= ''rainbow"); ®#annot=True to annotate cells, ftm='g' to disable scientific notation

labels, title and ticks

ax.set xlabel('Predicted labels'};ax.set_ylabel('True labels'}
ax.set_title('Confusion Matrix')
ax.xaxis.set_ticklabels(labels); ax.yaxis.set_ticklabels(labels)

Figure 29: RFC: Confusion Matrix

best_feature = pd.Series(clf.feature_importances_, index=['STATION ID', 'DRY', 'WARM', 'DAY NUMBER', 'HOUR', 'MONTH'l).sort_values(ascending=False)
sns.barplot({x=best_feature, y=best_feature.index)

plt.xlabel('Feature Importance Score')

plt.ylabel('Features')

plt.title('Most Important Features')

plt. legend()

plt.show()

Figure 30: RFC: Feature Importance

11

	Introduction
	Hardware & Software Requirements
	Dataset
	Folder Structure
	Dataset Creation

	Experiments
	Reproducing DC Bikes/Weather Clustering
	Clusters: Dublin Bikes & Weather - Daily Trips
	Clusters: Dublin Bikes & Weather - Hourly Trips
	Clusters: Dublin Bikes & Weather - Station Daily Trips
	Clusters: Dublin Bikes & Weather - Quarter Hourly Trips
	Random Forest Classifier: Dublin Bikes & Weather

