ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc. Data Analytics

Sal SriMaha Vishnu Valluri
Student ID: X19208758

School of Computing
National College of Ireland

Supervisor: Dr. Catherine Mulwa

Student Name:
Student ID:
Programme:
Module:
Lecturer:

Submission Due
Date:

Project Title:

Word Count:

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet
School of Computing
Sai SriMaha Vishnu Valluri
X19208758
MSc. Data Analytics Year:2020/21
Research Project

Dr. Catherine Mulwa

16% August 2021

Deep Learning and Natural Language Processing Approach for Real
Estate Property Description Generation

1578 Page Count: 15

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Sai SriMaha Vishnu Valluri

23 August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Sai SriMaha Vishnu Valluri
Student ID: X19208758

1 Introduction

This manual provides information regarding the process involved in carrying out the
implementation of the research. The manual provides information regarding system
configuration, environment setup, important code snippets and necessary information
required to replicate this research.

2 Hardware and IDE Specification

2.1 Hardware Specification

The hardware configuration involved in this project as mentioned below. A screenshot of the
system hardware specification is also provided.

Host device : Dell Inspiron 5490
Processor: 2.30 GHz Intel Core i7-10510U
Memory: 12gb

Storage: 512 GB SSD

Graphics: Nvidia MX230

Inspiron 5490
Device name DESKTOP-PN40CS)

Processor Intel(R) Core(TM) i7-10510U CPU @
GHz

Installed RAM 12.0 GB (11.8 GB usable)
Device ID
Product ID 0 : 31731-AAOEM

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

2.2 Software Specification

Majority of the work done in this research has been done on Google Colab*. Google Colab is
an implementation of Jupyter Notebooks?. It provides GPU access which is necessary for
deep learning tasks. The entirety of this research is executed in Python language. Google
Drive has also been used for storing processed data. The GPU provided alternates between an
Nvidia P100, k80 or T4.

The following sections would provide information regarding the models that have been
executed as a part of the research.

3 Image Classification
The first part of the research involved creating an image classification model. The process of
achieving this has been explained in the following sections.

3.1 Import Packages
The following packages have to be imported before running the image classification model.

t tensorflow as tf
atplotlib.image as img
lib inline
import numpy as np
m collections import defaultdict
t collections

opytree, rmtree
t tensorflow.keras.backen s K

m tensorflow.keras.models load_model

m tensorflow.keras.preprocessing import image
atplotlib.pyplot as plt

port tensorflow as tf
ensorflow.keras.backend as K
tensorflow.keras import regularizers
tensorflow. keras.applications.inception_v3 import InceptionV3
m tensorflow.keras.models i Sequential, Model
tensorflow.keras.layers Dense, Dropeout, Activation, Flatten
tensorflow.keras.layers “onvolution2D, MaxPocling2D, ZeroPadding2D, GlobalAveragePooling2D, AveragePooling2D
tensorflow.keras.prepro impe ImageDataGenerator

tensorflow.ke
tensorflow
tensorflow im

3.2 Data Pre-processing

The data used for image classification is a Housing Image Dataset® produced by Poursaeed et.
al., and is made available publicly. The dataset is to be downloaded first and uploaded to
google drive. This is followed by unzipping the file. After the file is unzipped, the data has
been split into training and testing sets in the proportions of 80% for training and 20% for
testing. The data is stored in folders according to class names. The following code snippet
shows how this splitting this dataset into training and testing datasets was done.

1 Colab.research.google.com

2 https://jupyter.org/
3 https://omidpoursaeed.github.io/publication/vision-based-real-estate-price-estimation/

import splitfolders

kplitfolders.ratio(nt/Train/kitchen"”, outp tput”, seed=1337, ratio=(@.8, 0.2))

The dataset contains around 118,000 images split into 7 classes. This dataset was randomly
sampled to reduce the quantity of data to help with computational restrictions. The following
code snippet shows how this has been done.

import random
import glob, shutil

for room in room list:

mod_dir = os.path.join('/content/d e/output_ic2/output_icl/train/’, room)
os.chdir(mod_dir)
sample path = os.path.join(" ve/output put_ic1/train main/', room)

for ¢ in random.sample(glob.glob('*.jpg’), 1000):
shutil.copy(c, sample path)

Similarly, the testing dataset has also been randomly sampled to contain 300 images per
class. This completes the data pre-processing task.

3.3 Feature Extraction

The next step of the process would be to execute feature extraction. Along with this the
images will first need to be augmented. This has been done using the Keras
ImageDataGenerator* function which can augment data in real time as processing is carried
out. ImageDataGenerator has to be used with both training and testing data. The data is
processed in batches of 140 and 75 for training and testing respectively. These values have
been chosen to as they are factors of the number of images in those datasets.

4 https://keras.io/api/preprocessing/image/

train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear range=0.2,
zoom _range=e.2,
horizontal flip=

test datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory(
train_data_dir,
target _size=(image height, image width),
batch_size=batch_size tr,
class mode=" l‘ﬂ

test generator = test datagen.flow from_directory(
testing data dir,
target size=(image height, image width),
batch_size=batc i
class_mode="

Found 7000 images belonging to 7 classes.
Found 2100 images belonging to 7 classes.

3.4 Modelling

The first step of modelling is to load the InceptionV3 model with ImageNet weights. The
InceptionVV3 model is already imported in the beginning when importing packages.

model_inception = InceptionV3{weights= t', include_top=
model inception.summary()

conv2d 96 (Conv2D) (MNone, None, None, 6 18432 activation 95[@][@]
batch_normalization 96 (BatchNo (None, None, None, 6 19 conv2d 96[@][e@

activation_96 (Activation) (Nome, None, Nome, 6 @ batch_normalization_96[@][@]
max_pooling2d_4 (MaxPooling2D) (None, None, None, 6 activation_96[0][0]

conv2d_97 (Conv2D) (None, None, None, max_pooling2d 4[e][@]
batch_normalization 97 (BatchNo (None, None, None, conv2d 97[e][e]

activation_97 (Activation) (Nonme, None, Nome, 8 @ batch_normalization 97[@][@]
conv2d 98 (Conv2D) (Nome, None, Nome, 1 138248 activation 97[@][®]
batch_normalization 98 (BatchNo (None, None, None, 1 576 conv2d 98[el[e]

activation_98 (Activation) (None, None, None, 1 @ batch normalization 98[@][@]

model inception.output
GlobalAveragePooling2D()(x)
Dense(128,activation="relu")(x)
Dropout (0.2) (x) |

Activation functions are set up. Checkpointers are used to save the model at multiple
checkpoints for future use. Early stopping has been used to stop training the model at the
right time®.

c’ predictions = Dense(class n,kernel regularizer=regularizers.12(08.085), activation="softmax"')(x)
model = Model(inputs=model inception.input, outputs=predic

se py ", metrics=['acc
checkpointer = Modelcheckpoint(filp th="chec nt h_ hd 5 S save_best only=
csv_logger = CSVLogger(' img hi /

Following this, the model is run for 10, 15 and 20 epochs. Each of the three files are saved
and can be loaded to use without having to train the model again.

history = model.fit(train_generator,
steps_per _epoch = nb_train_samples // batch_size tr,
validation data=validation_generator,
validation_steps=nb_validation_samples // batch_size_val,
epochs=10,
verbose=1,
callbacks=[csv_logger, checkpointer])

model . save(' clas

Epoch 1/10
50/50 [- 1679s 33s/step - loss: 2.8529 - accuracy: 0.1629 - val loss: 1.9723 - val accuracy: 0.2014

Epoch ©0001: val_loss improved from inf to 1.97234, saving model to classificatiion_best_1@epoch_3class.hdf5
Epoch 2/10
50/50 [- 177s 4s/step - loss: 1.9325 - accuracy: 0.2519 - val loss: 1.8477 - val_accuracy: 0.3214

3.5 Model Evaluation

Following modelling, the model needs to be evaluated to analyse performance. Evaluation is
done using loss and accuracy metrics. These values have been plotted in a graph for 10, 15
and 20 epochs.

plot accuracy 10(history 20, "Incep
plot _loss_1@(history 2@, 'Inceptio

Inceptionv3

= frain_accuracy
— validation_accuracy

-
[*]
@
B
5
w
@

5 https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time-using-
early-stopping/

The model has been tested qualitatively as well by testing on a few images to see how the
model would perform. The following function has been written to get the classification

results.

predict_imd(model, imagel, show =

for img in imagel:

img = image.load img(img, target size=(299, 299))
img = image.img to_array(img)

img = np.expand dims(img, axis=0)

img /= 255.

pred = model.predict(img)
index = np.argmax(pred)
room_list.sort()

pred value = room_list[index]

it show:
plt.imshow(img[@])
plt.axis('off")
plt.title(pred value)
plt.show()

The results are qualitatively analysed for 10, 15 and 20 epochs to understand the capabilities
of the model. The following image is a sample output of classification results.

kitchen dining_room

bathroom

-
-
=

4 Image Captioning

In this section, parts of the image captioning implementation will be explained. Two
experiments have been performed in this section. The following sections explain the code
with the help of snippets.

4.1 Import Packages

The following packages have to be imported first before running the models.

et50
nception InceptionV3
Adam
Dense, Flatten, Input, Convolution2D, Dropout, LSTM, TimeDistributed, Embedding, Bidirectional, RepeatVector, Concatenate

plot_model
. & heckpoint
s.callbacks 1 EarlyStopping
s.callback: Callback
ras.preprocessing ort image, sequence

matplotlib.pyplot as plt

ython.display import Image, display
rt PIL

4.2 Data Pre-processing

Flickr8k Image captioning dataset® has been used for training and testing the models. The
data is first unzipped. The image files are stored in a common folder. The dataset is split into
training, testing and validation sets. The file names of the files which are meant for training
and testing are stored in text files. The first step is to parse these text files containing
filenames to the images and storing them in variables. The following code snippet shows this.

5 https://www.kaggle.com/shadabhussain/flickr8k

Imageloader(filename):
with open(filename, 'r') as image list f:
return [line.strip() for line in image list f]

text path ickr 10 at iC tData’

image path

train = Imageloader(os.path.join(text path, 'Flickr
test = Imageloader(os.path.join(text path, 'Flick

4.3 Feature Extraction

Feature extraction is done in both experiments. The first experiment requires features only to
be extracted by the InceptionVV3 model. In the second experiment, features are to be extracted
from both InceptionV3 model and VGG16 Places365 CNN model as well. Both the models
need to be loaded first before extracting features. Model loading is shown below.

inceptionModel = InceptionV3(weights="imagenet')

Downloading data from
96116736/96112376 [= - 1s Qus/step
96124928/96112376 [= - 1s OQus/step

new_input = inceptionModel.input
new_output = inceptionModel.layers[-2].output
img_encoder = Model(new_ input, new output)

vgg model = VGG16_Places365(weights = ‘places’, include top =)
vgg_model. summary()

inp = vgg model.input
out = vgg model.layers[-2].output
vgg encoder = Model(inp, out)

Image feature extraction can now be done.

[] trainEnc = img_encoder.predict generator(img_gen(train), steps = len(train), verbose =1)

/usr/local/lib/python3.7/dist-packages/keras/engine/training.py:1976: UserWarning: “Model.predict g4
warnings.warn(' Model generator”™ is deprecated and *
6000/6000 [] - 1923s 316ms/step

testEnc = img_encoder.predict_generator(img_gen(test), steps = len(test), verbose=1)

/usr/local/1lib/python3.7/di ackages/keras/engine/training.py:1976: UserWarning: ~Model.predict g
warnings.warn(" Model.pr r~ is deprecated and *
1000/1000 [- 303s 3@3ms/step

Following feature extraction, text data has to be processed. This involves splitting words by
whitespace, removing numbers, punctuation and storing them as a list. Starting and ending

tags must be added to sentences to indicate the start and end. The following function was
defined to process text data.

text_processing(filename):
imageDesc = defaultdict(list)
with open(os.path.join(text_path, filename), 'r') as description_list:
for line in description list:
img_val = line.split()
img_key = img val[@]
img_key = img key[0:-2]
image value = img val[1l:]
new_val = []
for word in image_value:
new_val.append(word.lower())
new val.insert(@ rtseq>")
new val.append(”
if img key not i
descriptions =

escriptions = imageDesc[img_key]
descriptions.append(new val)

imageDesc[img_key] = descriptions

return imageDesc

4.4 Modelling

In this section, both CNN models, along with LSTM text generation model are executed. The
process involves merging the features which are extracted using InceptionV3 model and
VGG16 model. Images need to be processed in batches for modelling. The code for
processing images in batches is provided in the code files submitted. Model building can be
done after creating the image generator. The following code shows how the model had been
set up.

create_vgg lstm():

MAX_LEN = max_len

embed dim = 300
IMAGE_ENC DIM = 3@e
vocab_size = len(vector_id)

img_input = Input(shape=(2048,))

img_enc = Dense(embed dim, activation="relu") (img_input)
images = RepeatVector(MAX_LEN){img_enc)

plcimg_input = Input(shape=(4896,))

plcimg_enc = Dense(embed dim, activation = "relu")(plcimg_input)
plcimages = RepeatVector(MAX_LEN)(plcimg_enc)

merge_img = Concatenate()([images, plcimages])

text_input = Input(shape=(MAX_LEN,))
embedding = Embedding(vocab size, embed dim, input length = MAX LEN)(text input)

x = Concatenate()([merge_img, embedding])
y = LSTM(256, return_sequences=
pred = Dense(vocab size, activation= x") (y)

model = Model(inp [img_input, plcimg_input, text_input], outputs=pred)

model . compile(loss = soric tropy', optimizer = "RMSProp", metrics=

model . summary()

Image features are merged in this and processed as a single set of features. This is then passed
to the LSTM network along with text inputs processed from the text data. The following is a
summary of the model that had just been created,

mod_vg = create vgg lstm()

Model: "model 2"

input_5 (InputLayer) [(None, 4696)] %]

dense (Dense) (None, 380) 614700 input_a[e][e]

(Dense) (None, 308) 1229100 input_s[@][e]

repeat vector (RepeatVector) (None, 37, 300) 2] dense[@][@]
repeat_vector 1 (RepeatVector) (None, 37, 309) (2] dense_1[@][@]
input_6 (InputLayer) [(None, 37)] (2]

concatenate_2 (Concatenate) (None, 37, 6@Q) o repeat_vector[0][0]
repeat_vector_1[@][@]

embedding (Embedding) (None, 37, 300) 2658600 input_6[@][@]

concatenate 3 (Concatenate) (None, 37, 908) o concatenate 2[0][0]
embedding[@][@]

1stm (LSTM) (None, 256) 1184768 concatenate_3[0][0]

s
Trainable p: »964,702
Non-trainable params: @

After this, a path has to be specified for saving the model. Early stopping and checkpoints
have also been established to stop the model from overfitting and saving the best model after
execution. Models had been run after this for 10 epochs and 15 epochs and results have been
collected. Following image is of model training.

° history = mod_vg.fit_generator(vgg_img_generator, steps_per_epoch=steps, verbose- , epochs=15, callbacks=[checkpoint_save,early_stop])
[» /usr/local/lib/python3.7/dist-packages/keras/engine/training.py:1915: UserWarning: “Model.fit generator® is deprecated and will be removed in a
warnings.warn(' Model.fit_generator” is deprecated and '
Epoch 1/15
746/740 [=== ===] - 421s 554ms/step - loss: 5.5912 - accuracy: ©.1324

Epoch ©0001: accuracy improved from -inf to ©.13155, saving model to experiment_vgg 15_ep.hdf5
Epoch 2/15
740/740 [=== ===] - 409s 553ms/step - loss: 5.2466 - accuracy: 9.1370

After running the models, greedy search algorithm has been used to form the descriptions.
Words are arranged in a sequence with the based on predictions made by the model created in
the previous steps. Greedy search implementation is given below.

_id[word] for word in sequence if word in vector id]

) € ol

(-1, max_len))
)

g), np-array(plc_img), np.array(txt_sequence)])

5 Evaluation

Evaluation of the model is based on analysing BLEU scores and qualitative analysis. Initially
all the predicted captions for the testing set are collected along with the actual captions of the
images. This has been done in the following way:

1.
2.
3.

4.
5.

After

Create lists for actual and predicted captions

Create a for loop to loop through the entire testing set

Apply the greedy_search algorithm from the previous step on the entire testing set to
obtain predicted captions and store in predicted captions list

Store all actual captions in the actual captions list

Remove starting and ending tags from the predicted and actual captions.

processing the predicted and actual captions, BLEU scores can be calculated. BLEU

Scores are calculated using the corpus_bleu function which is a part of the NLTK package’.
The following image shows the BLEU scores of running the model for 10 epochs.

% corpus_bleu(act caps, pred caps, weights=(1.8, @, 8, 8)))

print(’ u-2: %f' % corpus_bleu(act_caps, pred caps, ig =(@,5, 8.5, 8, 9)))
print u- f' % corpus_bleu(act caps, pred caps, ghts .
print('b % corpus_bleu(act caps, pred caps, weights=(0.25, .25, @.25, 0.25)))

-545666
.000199
-255641
.133@34

After calculating BLEU scores, the outputs have been analysed qualitatively. Samples of
outputs are displayed below.

7 https://www.nltk.org/_modules/nltk/translate/bleu_score.html

S — g
-

00 150 200 250

predicted caption:
a child in a red shirt is running on the beach

a little boy runs away from the approaching waves of the ocean

a little girl runs across the wet beach

a little girl runs on the wet sand near the ocean

a young girl runs across a wet beach with the ocean in the background
child running on the beach

predicted caption:
a boy in a blue shirt is playing on a swing

children are playing on a swing made out of a tire

children swing around in a tire swing at a park

children swinging on a tire swing

small children happily playing on a tire swing

small children wearing blue jeans enjoy swinging in a tire swing

