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A comparative study of cricket par score using
Machine Learning and DL method

Omkar Tawade
19232136

Abstract

Cricket has become popular with the advent of the T20 format, the shortest
format of the game. Like other games, the outcome of a cricket match is also es-
sential, but sometimes rain plays a spoilsport in this game. The current rain rule
method, the Duckworth Lewis method, is used to calculate the revised score. Duck-
worth Lewis method invented for one-day international cricket is now used in T20
cricket by just scaling down the resource table could be contentious. This research
aims to develop models based on a machine-learning algorithm to predict the score
of rain-interrupted matches. The Indian premier league (2008-2020) dataset from
Kaggle is used for the purpose of the study. This research introduced novel features,
including runs, wickets, dot balls, and the number of boundaries scored in the last
five overs. Extreme gradient boosting (XGBoost), Adaptive Boosting (AdaBoost)
and Random forest algorithms are used in the research to produce models. Results
showed that the proposed method successfully predicted scores with less margin of
error when compared to the Duckworth Lewis method. Experiments showed that
models based on second innings data provided better results in terms of RMSE and
MAE.

1 Introduction

Cricket is a game played between two teams in three formats (Test Cricket, One Day
Cricket and T20 Cricket). In T20 cricket, both teams play an innings of 20 overs and
have 10 wickets in hand. The team batting first (Team 1) tries to maximise its score using
over and wickets. The team bowling first (Team 2) tries to restrict this score because it
will be its target. After the first innings, the bowling team (Team 2) gets to bat and tries
to reach the target within 20 overs. It is the shortest version in cricket with a win/loss
outcome. Bad weather often leads to quite exciting twists and turns in test cricket which
is the most extended format in cricket but is not tolerated in the result oriented T20
games.

Cricket has long searched for a fair way to calculate the winning side when inclement
weather affects the limited over game. As a result of an infamous situation from the 1992
world cup semi-final, two English statisticians Duckworth and Lewis (1998), introduced
the Duckworth Lewis Method. International Cricket Council formally adopted it in 1999,
and it is evolved now to become known as the Duckworth Lewis Stern method introduced
by Steven (2016). Duckworth Lewis recognises that each team has two resources available
with which to score runs, batters who are yet to be dismissed and the number of overs
remaining. According to this, a team has 100 per cent resources (50 overs and ten wickets)

1



at the beginning of an inning, so whenever a match is interrupted, then Duckworth Lewis
method takes the number of wickets in hand and number of overs that are lost into an
account and calculates the percentages of resource remaining. Duckworth Lewis table
has resource percentage remaining table 1 obtained by considering all available data of
historic matches. The Duckworth Lewis takes care of all these things and eliminates
possible unfair advantages.

Several matches have been impacted due to the use of the Duckworth Lewis method
because of its robust nature. An incident happened in a T20 match between England
vs West Indies, where West Indies was chasing a total, and they scored 30 runs off the
first two overs, which suggested that they were 11 runs ahead of the par score at this
moment. Rain interrupted the match, and the match was reduced to 22 balls only. It
was challenging and unfair for England to claw back those 11 runs in just 22 balls.

The Duckworth-Lewis Resource table was initially intended for one-day cricket matches,
but it has now been implemented to Twenty20 matches as well, by just scaling down the
table. The reduction of overs from 50 to 20 in Twenty20 matches is the most significant
variation, and this suggests that scoring patterns in Twenty20 matches may differ from
those in One-Day contests. T20 cricket is also limited over format like One-Day cricket,
but there are few changes in the rules like power-play restriction, bowling combination,
etc. Twenty20 is a more animated version of the game, emphasising scoring fours and
sixes. The Duckworth-Lewis technique and its associated resource table are based on
one-day cricket score trends; hence their application in Twenty20 may be questioned.

1233 number of T20 matches were played in 2019, suggesting that around 49,320 over
by over data is generated in 2019. This significant amount of the data generated every
year can be used to improve the existing Duckworth Lewis method. Duckworth Lewis
tables is a static method in which score is derived from a table, but in the proposed
technique machine learning method will be able to analyse the trend of scoring pattern
based on runs scored and the rate at which wickets are lost with respect to power-play
restrictions.

A considerable amount of research has been done to predict the match’s score and
outcome using machine learning techniques. However, little research has been carried
out to improve the Duckworth Lewis method. The rationale behind this research is to
explore possible solutions for improving the existing Duckworth Lewis method by feature
engineering and comparing the results with other states of the art methods.

The research aims at investigating the extent to which machine learning can help to
predict logical scores, unlike the traditional Duckworth Lewis method. To address this
research question following objectives have been derived.

• To study literature review and identify existing methods that can be implemented
and used as criteria for the proposed research and evaluation metrics.

• To design an alternative of the Duckworth Lewis system using the Indian Premier
League Dataset.

• Evaluate the results of the literature review and the proposed method and examine
if the proposed method provides better results than the previous work.

Literature review is described in the Section 2 is based on other researchers work on
the proposed approach. A comprehensive review of methods used earlier for improving
the Duckworth Lewis method and discussed the advantage and shortcoming of the meth-
ods used in the past. Data prepossessing and how the data was obtained is explained
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Table 1: Duckworth Lewis Resource Table (T20 Cricket Edition)

Wickets Lost
Overs Available 0 1 2 3 4 5 6 7 8 9
20 100 96.8 92.6 86.7 78.8 68.2 54.4 37.5 21.3 8.3
19 96.1 93.3 89.2 83.9 76.7 66.6 53.5 37.3 21 8.3
18 92.2 89.6 85.9 81.1 74.2 65 52.7 36.9 21 8.3
17 88.2 85.7 82.5 77.9 71.7 63.3 51.6 36.6 21 8.3
16 84.1 81.8 79 74.7 69.1 61.3 50.4 36.2 20.8 8.3
15 79.9 77.9 75.3 71.6 66.4 59.2 49.1 35.7 20.8 8.3
14 75.4 73.7 71.4 68 63.4 56.9 47.7 35.2 20.8 8.3
13 71 69.4 67.3 64.5 60.4 54.4 46.1 34.5 20.7 8.3
12 66.4 65 63.3 60.6 57.1 51.9 44.3 33.6 20.5 8.3
11 61.7 60.4 59 56.7 53.7 49.1 42.4 32.7 20.3 8.3
10 56.7 55.8 54.4 52.7 50 46.1 40.3 31.6 20.1 8.3
9 51.8 51.1 49.8 48.4 46.1 42.8 37.8 30.2 19.8 8.3
8 46.6 45.9 45.1 43.8 42 39.4 35.2 28.6 19.3 8.3
7 41.3 40.8 40.1 39.2 37.8 35.5 32.2 26.9 18.6 8.3
6 35.9 35.5 35 34.3 33.2 31.4 29 24.6 17.8 8.1
5 30.4 30 29.7 29.2 28.4 27.2 25.3 22.1 16.6 8.1
4 24.6 24.4 24.2 23.9 23.3 22.4 21.2 18.9 14.8 8
3 18.7 18.6 18.4 18.2 18 17.5 16.8 15.4 12.7 7.4
2 12.7 12.5 12.5 12.4 12.4 12 11.7 11 9.7 6.5
1 6.4 6.4 6.4 6.4 6.4 6.2 6.2 6 5.7 4.4

in the Section 3. Section 4 outlines the design specification and architecture to be im-
plemented. Section 5 covers the details of implementation and proposed architecture.
Section 6 provides a through description of experiments for evaluating the performance
of the model.

Figure 1: Duckworth Lewis Resource Graph, from Wikipedia, the free encyclopedia
(2007)
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2 Related Work

2.1 Literature review of Duckworth Lewis Method

Duckworth and Lewis (1998) proposed a unique and fair method of calculating the target
when the rain stops the game. They considered the number of wickets in hands, which
was a unique attribute compared to old methods like the average run rate method, most
productive overs method, PARAB method, and Clarke’s method. This attribute helped
them to calculate the revised target more accurately. Figure 1 suggests the exponential
relation between the number of overs remaining and wickets in hand, which they first
identified. Based on this exponential relationship, they formulated a run production
function to calculate the runs that can be scored in a specific number of overs and
wickets in hands. They established few criteria that must be followed before applying
the method on any match. The relative position of both teams must be exact before the
interruption, sensible result in all situations, independent of team1’s scoring pattern.

As cricket evolved, the average run rate of the one-day international matches also
increased slightly, which suggested an increase in the number of high scoring matches. So
Duckworth and Lewis (2004) updated their original model. In the previous model, the
resource was declining exponentially for the number of wickets. However, in the updated
model, they linearly declined the resource for the given number of wickets because each
over is valued equally, the distribution of runs scored per over tends to be uniform, as
long as the number of wickets lost remains constant.

Jayadevan (2002) found that the pattern of runs scoring in One-Day cricket is not
exponential, as mentioned in the Duckworth Lewis method. After analysing the data of
One-Day cricket matches, he found that the scoring rate of the first ten overs is always
high due to field restrictions and then in the middle over scoring rate drops and again
in death overs scoring rate increases. His method is based on two curves a normal curve
which is a scoring pattern that the team follows before an interruption, and a target curve,
which is the opposite of a normal curve because, after the interruption, it is evident that
the number of overs is going to be reduced and the team will accelerate before the usual
death overs. His analysis led him to found a cubical polynomial equation that was most
suitable to represent the scoring pattern in One-Day cricket since the rate of progress in
the score is not uniform in the normal curve. He found that due to the use of exponential
curves in the Duckworth Lewis method, the revised target whenever a team scores above
300 runs is relatively low, but in his method, the revised for the team who score above
300 runs does not get affected that much due to the use of target curves which is designed
such a way that it does not decrease drastically.

The increasing trend of high scoring matches led to the need for the Duckworth Lewis
Stern method. The research performed by Steven (2016) updated the Duckworth Lewis
method. He analysed the scoring pattern of high scoring matches (50 overs - 300 plus
runs) and found that the exponential curve of such matches is straight compared to low or
average scoring matches. To bring this nature of scoring pattern in the Duckworth Lewis
method researcher introduced the damping factor in the equation. The data indicated
that damping in accelerations takes place rapidly in an early stage of 50 over innings and
more slowly at the end of innings. While scoring on the last ball of the innings, wickets
in hands must not be the factor to influence the score. He analysed this criterion and
updated this under his method. These were the two significant changes in the Duckworth
Lewis method, which helped calculate the more realistic target compared to the modern-
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day scoring pattern.
Jewson and French (2018) performed an analysis on the Duckworth Lewis method.

They basically target the matches which were high scoring because in the traditional
Duckworth Lewis method was increasing proportionally, but in a high scoring, this should
not be the case. The run rate is always high, usually throughout the game. They had
used English country cricket ball by ball data in their analysis. In order to observe the
difference between a moderate scoring game and high scoring game, they observed the
median runs coming for any resource combination. Since Duckworth Lewis is relative to
the number of resources available, during this analysis, they found that in the case of high
scoring games or especially in T20 cricket, it is not relative as the team tries to score at
a high run rate even though they lose their few resources. They questioned the fairness
of the Duckworth Lewis method, which only considers two parameters (overs remaining
and wickets in hand). Based on ESPN-Cricinfo data, they described how toss could be
influential in the rain-affected matches.

2.2 Literature review of Duckworth Lewis Method using ma-
chine learning

Bhattacharya et al. (2011) identified that the Duckworth Lewis method is parametric;
however, various non-parametric curves might be used to fit the data and suggest using
a possible advantage while using the non-parametric method. They estimated resources
based on the data, but it suffered from the untidiness of observed data. Therefore isotonic
regression was used to estimate missing values from the data and convert resources such
that they decrease monotonically with remaining overs and wickets lost. A Bayesian
strategy was used to produce a strictly monotonically decreasing resource table, and
Gibbs sampling was used to obtain estimates of the posterior means of the resources used
to create the T20 resource table. Since this model is non-parametric, it relied completely
on observed data, so there was a need for data in which all possible combinations of
overs and wickets were covered. They used only 85 matches data to create this resource
table. Using isotonic regression, they estimated the data where no data was available and
corrected the value for those with a low sample size. While concluding their research, they
pointed out that their method is not intended to replace the Duckworth Lewis resource
table; rather, it was intended to illustrate some problems with the Duckworth Lewis
table.

Mchale and Asif (2013) proposed a modified Duckworth Lewis model. While analysing
the Duckworth Lewis method, they found that the method shows irregular patterns for
the value of successive wickets. The alternate wicket partnership was valued more, so
there were peaks identified in the graph of wicket partnership against runs. Duckworth
and Lewis themselves had confirmed this problem and stated a need for smoothing for
this problem. They achieved smoothing of those lines and formulated the new equation
for function F (w), which is translated as the percentage of runs scored when w wickets
are lost versus when no wickets are lost. After this update, the model they had to change
the function Z(w) used for calculating the run remaining to be scored for a given number
of wickets lost. Since they used cumulative function for F (w), this provided them with
a wide range of curves on which they can model Z(w). They used the truncated Cauchy
distribution as it provided the heavier tail instead of exponential, which was required
since the contribution from lower-order batters was increased considerably.

Shah et al. (2015) reviewed the Duckworth Lewis method and identified the short-
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comings of the method. In this research, they used the data of One-day international
matches affected by the weather. Their first analysis was that the team winning the toss
wins the match in 66% of cases when Duckworth Lewis is applied. They analysed that
the team batting first wins in 64% of cases when Duckworth Lewis is used for target re-
setting. Using a statistical test, they found that the average run rate difference between
the winning and losing teams is not significant. Based on this analysis, they concluded
that the Duckworth Lewis method is influenced more by wickets than run rate or runs
scored.

Jaipal (2017) proposed a method for improving the Duckworth Lewis method using
machine learning methods such as support vector machine, logistic regression, binomial
logistic regression, decision tree, random forest, and neural network. He used match sum-
mary data consisting of 32 variables. In his research, he encountered the class imbalance
problem that he later solved using a library in R called ROSE (Randomly Oversampling
Examples). He used the sampling method for his dataset because it helped him predict
the resource and score correctly as the sensitivity increased. He created the Duckworth
Lewis method using machine learning methods based on wickets remaining and overs
remaining data. He also created an improved version of this method by adding net run
rate, winning toss wins or loses the match. He concluded his research by comparing the
accuracy of each model with its improved version and found that the improved version
surpassed the traditional method except the logistic regression model, in which accuracy
was decreased in the respective improved version of the model.

Abbas and Haider (2019) proposed a method to develop the Duckworth Lewis method
using machine learning and also compared the same with the original method. They
downloaded all the one-day international matches HTML pages to scrape attributes for
each match and calculated the Duckworth Lewis par score for each over of every match.
They applied neural network and bagging with Näıves algorithm and computed Duck-
worth Lewis winning prediction. Comparing this predictor variable with the actual result
of the match, they got to know that Duckworth Lewis is performing less accurate for the
first four wickets. When reviewing the Duckworth Lewis method, they observed that the
table decreases from top to bottom, which is not ideal for how one-day cricket is played
today. Whenever wickets fall in quick succession batting team tries to play conservative
cricket, which is not reflected in the Duckworth Lewis graph. Researchers applied Particle
Swarm Optimization (PSO) by developing a custom software application in .NET to op-
timise the values of the Duckworth Lewis table.

2.3 Literature review of outcome of a match using machine
learning

Considerable research has been carried out in predicting the outcome of a match. This
research will help identify the essential variables in cricket-related dataset and the imple-
mentation of features in our study.

Passi and Pandey (2018) created different features to calculate the players attributes
to predict the performance of players. In their analysis, they categorised players as
batsmen and bowlers. For batters, they had used a number of innings, batting average
(average number of runs scored in each inning), strike rate (percentage of runs scored
on each ball), number of centuries, number of ducks in the career, and highest score.
For Bowlers, they had used the number of innings, the number of overs, bowling average,
bowling strike rate, and five-wicket hauls. These parameters are used to define the abilities
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of the players. Researchers used the weighting technique and weighted each performance
indicator based on its relative value to other indicators. They had used the analytic
hierarchy process to calculate these weights. Based on these weights, they formulated an
equation to evaluate the player’s consistency, form, and performance against a particular
opponent. After generating this data, they applied Näıves Bayes, decision tree, random
forest and support vector machine to predict the number of runs or predict the number of
wickets. Random forest was one of the accurate classifiers in their research with respect
to precision, F1 score, recall, AUROC, and RMSE.

Jayalath (2018) proposed an approach for analysing one-day international cricket
match predictors. External factors sometimes influence the outcome of a match or players
performance. Factors such as home advantage, toss result, batting first or second, and
day vs day-night game format are discussed in this research. They formulated a logistic
regression that predicts a team winning against a particular opponent based on previous
results. They included predictors such as a home game, day game or day-night game,
toss, batting first, opponent belongs to which continent in their model. This model
suggested that home advantage is a significant factor for the majority of the teams. They
categorised data based on the day and day-night games for further analysis and found
that toss is a significant factor. Based on this result, they decided to use the result of
toss to build a classification tree model to predict the outcome of a match. Further, they
changed the predictor, which was an outcome of the match, to the margin of victory and
performed a regression tree approach as this method helped interpret the results more
clearly.

Nimmagadda et al. (2018) used statistical techniques to predict the outcome of a T20
match while it was still in progress. A multiple regression model is evaluated in order to
create a prediction model. The key outcome was determined by the impact of the toss
winner and the resulting match-winner. The predictive model used the innings score at
regular intervals and the final scores to anticipate the match result. The model predicted
score and run rate projected score was relatively close to the final score, with the model’s
score being more accurate when compared to the actual score.

Sudhamathy and Meenakshi (2020) used the IPL dataset consisting of matches start-
ing from 2008 to 2017. They used the match summary dataset. They used the Boruta
and Importance function for feature selection and found that umpire and venue are insig-
nificant variables in the dataset. They used decision tree, random forest, Näıves Bayes,
and k-nearest neighbour to predict the winner of IPL. Based on the IPL data, their model
suggested that the Kolkata Knight Riders has more probability of winning.

Sinha et al. (2020) implemented a system to predict wins to improve the team per-
formance using a support vector machine. They scraped the data from the official site of
the Indian Premier League. They quantified player performance using multiple statistical
indicators, and a rating index was established. The model was then run on the players
chosen for both sides, and a prediction of win or loss probability was provided. Similar
players were identified using KNN and K-mean using the data of their performance. This
model was able to identify the replacement of injured players. They obtained 96.3%
accuracy for the SVM model.

Tripathi et al. (2020) implemented IPL match prediction using machine learning while
tackling ambiguity in results. They collected historical data from various sites and cre-
ated their player and team databases. They implemented feature engineering in which
they included city, toss winner and toss decision. Also, for player’s data, they added
features such as the batting score of a player, bowling score of a player, a total score
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of a player, and team strength. An analytic hierarchy process was used to obtain the
weights used to calculate batting and bowling features. They implemented models using
Näıves Bayes, AdaBoost, logistic regression, support vector machine, KNN, XGBoost,
extra tree classifier and random forest classifier. These models were compared based on
accuracy, cohen kappa and ambiguity to identify the issue of data symmetry. Models
performance was tuned using hyperparameter tuning, and the random forest model was
the best model with a standard deviation of 6.3%.

Kapadia et al. (2019) discussed whether machine learning could help predict accurate
match results of IPL matches. They designed models to predict the outcome of the
match based on the home ground factor and toss decision. Feature selection was applied
to eliminate irrelevant features from the dataset. Home ground and toss winner features
were created after the data processing. Their results indicated that toss results features
performed slightly better to predict the match’s outcome using the KNN algorithm based
on accuracy, precision and recall. Näıves Bayes results were low for toss related features,
but for home ground related features Näıves Bayes performance was reasonable compared
to other algorithms.

Banasode et al. (2020) implemented a system to predict and analyse the results of IPL
matches. Their study used the IPL dataset to analyse the runs scored by batsmen of each
team over the years, batsmen performance across all venues to find their favourite venue.
They calculated the bowler’s economy rate and analysed bowlers for the economy rate
over the years. Further, they analysed the performance of batters against all bowlers and
bowlers distribution of wickets over the years. In their analysis, they found toss decision
influences the outcome of the match.

Abdul et al. (2020) implemented a model to predict a winner in the T20 world cup.
T20 International results, ranking of teams, fixtures of all teams, qualifiers and past
appearances in the T20 world cup. Random forest, extra trees, ID3 and C4.5 algorithms
were used in the research, and among them, the random forest was the best programming
algorithm based on accuracy and residual score. The model predicted Australia and
England would be the two teams in the final.

3 Methodology

Knowledge Discovery Database (KDD) has been adopted for this research. It starts with
data source which contains the raw data. In our case, the raw data is the data file which
we downloaded from the Kaggle. Further, we have convert this data in to an appropriate
type, selecting particular subset of data which is required for the study, cleaning the
data by removing unwanted noise and filling up the missing values and in the last step
of data processing we have performed transformations on the dataset. So after selection
prepossessing and transformation our data is ready for applying a data mining. In data
mining code process, we discover a pattern by producing the models. In the last step of
this methodology, we convert this statistical model in to visualisation and knowledge is
then inferred with help of this visualisations.

This research involves implementing the solution for calculating the score of rain-
affected matches or providing an alternative method for Duckworth Lewis, which is cur-
rently used for calculating the score of the rain-affected matches. As we discussed in the
section 2.3, about features that were important to predict an outcome of the match. We
have decided to implement few features in our research as they were significant features.
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Figure 2: Knowledge Discovery Database Methodology

Figure 3 depicts the framework for the proposed research.

Figure 3: Research Framework

In this research, we have used the Indian Premier League (IPL) Dataset. IPL is one of
the popular and challenging T20 leagues in the world. We have downloaded the dataset
from the Kaggle. The dataset contains two files, a match summary that consists of team
details, outcome, venue, toss decision and ball by ball detail file consists of team details,
runs scored on every ball, wicket lost, extras and player details. We have used the only
ball by ball dataset that consists of 18 columns and 34,82,424 records. This dataset
contains records of 816 matches that were played from the 2008 to 2020 season. 1

3.1 Feature Engineering

The dataset consisted of only a few variables like the number of over, balls, runs per
ball, extras, boundaries, and wicket. It was impossible to use these variables to build a
dataset that will be able to predict rain-interrupted match scores. So the idea behind
feature engineering was to use this raw data to implement features that will help the
model predict accurately. We added a column ’total runs scored till current ball’ with
the help of run per ball column. Further, we added a column for ’total wickets’ in an
innings because the raw dataset only suggested if a wicket is fallen or not, which could
not add any relation with the score. Our main features in the project are the number of
runs scored, the number of wickets fallen, dot balls scored, and the number of boundaries
scored in the last five overs at any match stage. Cricket is a game of momentum, and
the team with good momentum wins the match most of the time. Based on this idea, we
have tried to add these features to the data, which will help the model understand the
match’s condition.

1https://www.kaggle.com/patrickb1912/ipl-complete-dataset-20082020
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Table 2: Feature Engineering

total
score

total
wickets

total prev
runs
5 overs

prev
wickets
5 overs

prev
5 overs
dot balls

prev
5 overs
boundaries

1 0 222 1.0 0.0 0.0 0.0
1 0 222 1.0 0.0 1.0 0.0
2 0 222 2.0 0.0 1.0 0.0
2 0 222 2.0 0.0 2.0 0.0
2 0 222 2.0 0.0 3.0 0.0

3.2 Hyperparameter Optimization

Model optimisation was one of the time consuming process in our research. In machine
learning, hyperparameter refers to the parameters of a machine learning algorithm that
produce the best results when tested on a validation set. They are set before the training.
The number of trees in a random forest, XGBoost, and AdaBoost is a hyperparameter
learned during the training. Table 3 shows the hyperparameters used in our research
for respective methods. Hyperparameter optimisation finds a combination of hyperpara-
meters that returns an optimal model, which reduces a predefined loss function and, in
turn, increases the accuracy on given independent data. Hyperparameters can have a
direct impact on the training of machine learning algorithms. This to achieve maximal
performance, it is important to understand how to optimise them. Often some of the
hyperparameters matter much more than others.

Random search finds good values with great precision for essential parameters. Ran-
dom search sets up a grid of hyperparameter values and selects random combinations
to train the model and score. This allows to explicitly control the number of parameter
combinations that are attempted. The number of search iteration is set based on time
or resources. Bergstra and Bengio (2012) showed that the random trials are more more
efficient than grid trials for hyper parameter optimizations. One of the important advant-
age of random search is that it does not allocate too many trials to explore unimportant
decisions.

Our research begins with data cleaning steps to deal with the null values in the dataset.
The column that indicates whether a player is dismissed or not contains the null value.
We are replacing this null values with zero. Although we will not use this variable in
model building but we will use this variable to create wickets in last 5 overs variable.
As we discussed in section 3.1, our next step involves the feature engineering process.
After performing all data preparation and cleaning processes, our next step is to build a
model using extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), and
random forest algorithms. The purpose behind using these algorithms is that there is
no mathematical relations between independent and dependent variables, so in such case
decision tree methods can be useful. XGBoost and AdaBoost are the novel methods for
this research. As we seen in the section 2.2, random forest was used for this problem but
in those research different dataset was used, we will verify if our transformed data helps
the random forest to yeild better results. The next step involves the evaluation of these
models using evaluation metrics like root mean squared error (RMSE), mean absolute
error (MAE), and variance explained. Our last step of the research involves comparing
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Table 3: Hyperparameters used in the models

Hyperparameters Description Model
learning rate To correct the residual errors in the predic-

tion, new trees are created based on previ-
ous sequence of trees. This effect can lead
to overfitting. Learning rate allows to slow
down the learning by applying weighting for
the corrections.

XGBoost and
AdaBoost

max depth It is used to avoid overfitting by restricting
the growth of tree. Higher depth leads model
to analyse pattern for particular feature

XGBoost and
Random forest

min child weight It is the minimum sum of weights of all
observations required in a child. If the
tree partition step results in a leaf node
with the sum of instance weight less than
min child weight, then the building process
will give up further partitioning.

XGBoost

gamma It allows split only when there is positive re-
duction in the loss function. It specifies the
minimal loss reduction to make a split.

XGBoost

colsample bytree It is the percentage of features considered for
producing trees. This sub-sampling of fea-
tures avoids model to train on one strong
specific feature.

XGBoost

n estimators It specifies the number of stumps or decision
tree

AdaBoost and
Random forest

the machine learning models with the actual Duckworth Lewis score.

4 Design Specification

We have used three machine-learning algorithms in our research that are XGBoost, Ad-
aBoost and Random Forest. All three algorithms are used for estimating relationships
between a ’total score’ variable and the rest of other variables, also known as independent
variables, for regression analysis. It is used to determine the strength of a relationship
between variables and to predict how they will interact in the future.

4.1 Extreme Gradient Boosting (XGBoost)

Tianqi and Carlos (2016) implemented the advanced version of the gradient boosting
method known as the extreme gradient boosting (XGBoost) method. The main two fea-
tures of this algorithm are that it is fast and performs well compared to the other machine
learning methods. It uses the parallelisation concept, cache optimisation performed by
keeping all its intermediate statistics in the memory, out of memory computation that op-
timises the memory so it can work on the data that is larger than the size of the memory.
All these features help the XGBoost model to perform faster. It involves regularisation
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that helps the model to prevent overfitting. It is derived from the decision tree model,
but the XGBoost model can auto prune to maintain bias-variance. It can handle the
missing value that makes the XGBoost model perform effectively.

4.2 Adaptive Boosting (AdaBoost)

Freund and Schapire (1997) implemented an ensemble learning method known as adapt-
ive boosting algorithm (AdaBoost). It involves a sequential process in which trees are
dependent on the output of the previous tree. The decision trees in this model do not
have equal weightage. Also, the decision trees are not large, they just have one root node
and two leaf nodes, and they are also known as stumps in the AdaBoost method. At
the start, the algorithm provides the weights to each record such that the summation of
weights is one that suggests all variable is equally important. Features in the data are
used to create the stumps, and these stumps are further compared based on the entropy
and Gini index, and the stump, which has a lesser value, is selected for the base learner
model. The performance of the stump is calculated to update the initial weights. The
weight of the wrong classified record is increased, and the weights of the rest of the other
records are decreased. The process will continue depending on the number of estimators
passed in the AdaBoost function. The mean value predicted by the stumps is considered
during testing to combine the weak learners and make them strong learners.

4.3 Random Forest

Breiman (2001) implemented an extension of the random decision tree algorithm know as
random forest. Random forests minimise the overfitting and high variance problem that
arises when tree length increases. Bags are created in this method where the subset of
records and columns are selected, and a decision tree is fitted on each bag. While testing,
random forest calculates the mean of predicted values of all decision trees. Bagging
provides a model to extract the pattern from all features instead of extracting pattern
only from strong variables.

5 Implementation

Our research started by reading the data and creating a dataset sub-sample consisting
of only necessary variables. The data contains matches from the 2008 season to the 2020
season. The dataset contains teams whose names were changed, and few teams like Pune,
Kochi and Gujarat played the IPL for two or three seasons. To make data consistent,
we decided to remove Pune, Kochi and Gujarat team data from the dataset and rename
teams to their latest updated name. In order to make easily readable data, we decided
to replace the team name with the initials of the teams. Further, feature engineering
was implemented on the data. As Team 2, which bats second, knows the target, which
can influence the scoring pattern, we decided to build separate models for the first and
second innings. We produce two models based on first and second innings data for each
algorithm. The batting team and bowling team variables were categorical variables, so
we implemented one-hot encoding. Data was divided into a ratio of 75:25 for training
and testing purposes.

Python version 3.7 is used for implementing the research, and the code is written
using google colab. The miscellaneous operating system interface (OS) library reads the
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data from the given directory. Data was stored on google drive, so the google colab
library was used to link the drive. Numpy library was used to store the train and test
data. Data were split using the sci-kit learn library. Sci-kit learn libraries are utilised for
Random forest, Adaptive boosting and RandomSearchCV. Also, the matplot library was
used to visualise the variance in the models. The configuration of the machine used for
the research is as follows:

• Intel Core i3 10th Gen (macOS)

• 1.1 GHz Dual-Core

• 8 Gb Ram

• 256 Gb SSD

6 Evaluation

Extensive analysis has been performed on all three models. Hyperparameter tuning was
performed to obtain the best performance to produce the best models. Data was first
initially split according to the first and second innings. The first innings data consists
of 86,121 records and the second innings data consists of 80,341 records. Further, each
innings data was split into training and test data. All the results obtained from the
models are evaluated using the Mean absolute error (MAE), Root Mean Squared Error
(RMSE), and Variance explained.

6.1 Extreme Gradient Boosting Model (XGBoost)

Random search cross-validation was performed to find the best hyperparameters for the
XGBoost model on both innings data. The model was initialised with the best para-
meters. Figure 4a and figure 5a shows the parameters used for each innings respectively.
The results varied after hyperparameter tuning. 84.8 % accuracy was obtained on train-
ing data of first innings data, and 78% accuracy was obtained for the validation set of
first innings. Compared to the first innings, the model obtained using second innings
data performed excellent with the training accuracy of 99.9% and validation accuracy of
99.2%.

(a) XGBoost Model Parameters for First In-
nings

(b) XGBoost Model First Innings Residual Plot

Figure 4: XGBoost Model - First Innings
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The first innings model’s MAE is 9.92, which suggest that the error between the
predicted score and actual is not high, and the predicted score is deviated by nine runs.
RMSE suggested that the predicted score can be deviated from the actual score by 13
runs. Variance explained score is 78% suggest that model is not biased. Also, Figure 5b
helps to understand that most of the predicted score deviated by actual score around 25
runs.

(a) XGBoost Model Parameters for Second In-
nings

(b) XGBoost Model Second Innings Residual
Plot

Figure 5: XGBoost Model - Second Innings

6.2 Adaptive Boosting Model (AdaBoost)

In the adaptive boosting algorithm, we had used XGBoost base learners. We passed
the same hyperparameters for the base learners that we used in the XGBoost model.
Figure 6a shows the parameters used in the model. Since we used XGBoost weak learner,
it is evident that the accuracy of AdaBoost 1st inning model compared to XGBoost
first innings model should increase. Our AdaBoost model performed as expected as the
accuracy of training data is 89.4%, and validation accuracy is 82.2% which is better than
the XGBoost model. Figure 6b suggest that error is more for predicting score around
150 runs.

(a) AdaBoost Model Parameters for First In-
nings

(b) AdaBoost Model First Innings Residual Plot

Figure 6: AdaBoost Model - First Innings

The second innings model using the AdaBoost algorithm is the best model, with a
training accuracy of 99% and a validation accuracy of 97.6%. Also, the RMSE and MAE
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for this model were dropped to 4.43 and 2.94 respectively. Figure 7b is a similar result
that we obtained in the XGBoost method.

(a) AdaBoost Model Parameters for Second In-
nings (b) AdaBoost Model Second Innings Residual

Plot

Figure 7: AdaBoost Model - Second Innings

6.3 Random Forest Model

Random search cross validation was performed to find best parameter to tune the random
forest model. Figure 8a shows the best parameter obtained in hyper parameter tuning.
Among all three models, random forest algorithm for first innings data performed better
with a training accuracy of 94.3% and validation accuracy of 86.1%. RMSE and MAE
value for random forest was 10.98 and 7.16 respectively which were lowest for first innings
model when compared with other two models. The residuals plot shown in figure 8b is
similar to other two models.

(a) Random forest Model Parameters for First
Innings

(b) Random Model First Innings Residual Plot

Figure 8: Random forest Model - First Innings

As we seen in other two models, similar trend was seen in the random forest model.
The training and validation accuracy of the model observed was 99.7% and 99%, respect-
ively. RMSE and MAE values are 2.76 and 1.31, which were closest to the XGBoost
model. Figure 9b suggest that residuals are scattered less, and we can observe that
margin of error is very less when the model is predicting based on validation data.
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(a) Random forest Model Parameters for Second
Innings

(b) Random Model Second Innings Residual
Plot

Figure 9: Random forest Model - Second Innings

Table 4: Evaluation Metrics - First Innings Models

First Innings
Model Training Accur-

acy
Validation Ac-
curacy

RMSE MAE

XGBoost 84.8% 78.0% 13.82 9.92
AdaBoost 89.4% 82.2% 12.45 9.33
Random Forest 94.3% 86.1% 10.98 7.16

Table 5: Evaluation Metrics - Second Innings Models

Second Innings
Model Training Accur-

acy
Validation Ac-
curacy

RMSE MAE

XGBoost 99.9% 99.2% 2.58 1.55
AdaBoost 99.9% 97.5% 4.43 2.94
Random Forest 99.7% 99.0% 2.76 1.13

6.4 Discussion

Jaipal (2017) in his research provided the Duckworth Lewis based random forest model
which obtained an accuracy of 95% . The research followed the basic idea of the Duck-
worth Lewis method that is using overs remaining and wickets remaining data of the
match. Along with this data, the researcher added two features, such as the win or loss
variable and the run rate, which were significant as they increased the model’s perform-
ance. Based on the results obtained, it is evident that our model performed slightly better
than the mentioned research for the random forest algorithm.

In the second innings model, we have included the first innings total column, which
helped the model to perform well. All three models predicted using less margin of error
using the second innings model. XGBoost was the best model for the second innings
data. We also observed a trend in first innings models, as they were creating more errors
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while predicting the score of matches which ranges around 150 runs. The average score
of IPL matches ranges from 150 to 160 runs, so the data for this range is more compared
to matches where the score of a match is above 200 runs or below 100 runs.

We compared our model with the actual match situation. We considered an IPL match
played between Sunrisers Hyderabad (SRH) and Delhi Capitals (DC) in 2021. This match
was finished without an interruption, but to test our model, we are considering that match
has been interrupted at 14th over in the second innings. Feeding all details to XGBoost
model, our model predicted that the SRH lost the match by three runs, and according to
the Duckworth Lewis method, SRH won the match by seven runs, but the actual result
of the match was a tie which suggests that our model predicted score with less margin
of error. Table 6 suggest that random forest model predicted score more accurately and
overall all our three models performed better for predicting the runs.

Table 6: Comparison of method using an IPL match SRH vs DC 2021

Duckworth Lewis Method SRH won by 7 runs
XGBoost Model SRH lost by 3 runs
AdaBoost Model SRH lost by 4 runs
Random forest Model SRH lost by 1 run
Actual Result Match was tie

7 Conclusion and Future Work

The research aimed whether machine learning model can used to predict score in rain
interrupted matches. In order to address this study, we studied about the features which
can be useful during our research in the section 2.3. Hyperparameter optimization and
random search cross validation method were used to find the best parameter for all three
models. As seen in the section 6, all models were trained and tested on the transformed
data and result shows that margin of error for our model is less compared to the Duck-
worth Lewis method.

The proposed models produces good results with less RMSE and MAE values as
well as good variance score. The first innings model performance was not however good
when compared to second innings model. Second innings model contains first innings
total similarly in future work could involve considering the average score of each team in
IPL. Also features related to team strength based on previous performance or rankings.
Batters and bowlers feature can also considered to check if model produces better results.
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