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1 Introduction

The aim of this paper is to provide a quick overview of the measures involved in the im-
plementation of this project. The objective of the research was to assess the effectiveness
of a mental disease classifier utilizing a data pre-processing technique with a function se-
lection strategy and a new machine learning approach. The second goal was to compare
the performance and assess the performance of the model with few other classifiers. In
the remaining section of the manual are referred to the tools and strategies utilized to
achieve the defined goals.

2 System Specifications

The system configuration which includes memory and operating system on which this
research project has been carried out is mentioned below:

e Operating System: Windows 10 Home

e Installed Memory (RAM): 8.0 GB

e Hard Drive: 1024 GB HDD

e Processor: Intel®) Core™ i5-1035G1 CPU @ 1.19GHz

3 Tools and Technologies

Python’s programming language was utilized for this project, while Jupyter Notebook
was employed as an integrated development environment (IDE). The visualization was
done using python alone. The following are the specific versions of the relevant plat-
form /language:

e Python 3.7.2

e Jupyter Notebook Server v. 6.0.2



Version Operating System Description MD5 Sum File Size GPG

E45e27b85152bbdca4ch 22897802

B533256

Windows 1e6c626514bT2e2100818cd537945710

Figure 1: environment setup

4 Environment setup

Installation of the appropriate platform and languages is the first and most important
step in the implementation of the project. The following URL has been used to download

and install Python.

e On the following URL, Jupyter is installed by using the installation guide. We have
to execute the command at CMD prompt to launch the Jupyter Notebook.

EM Command Prompt

Microsoft Windows [Version 1©.©.19042.1110]
(c) Microsoft Corporation. All rights reserved.

C:\Users\Harshita>jupiter notebook

Figure 2: Command prompt

e After completing the project, the results of the different diagrams were displayed,
comparisons and selection of features were also displayed in the python itself.

5 Data Collection

Data was obtained for this project via the common repository and public repository

kaggle. The description of the data is as follows:
There are 25 columns in the datasets, with 24 columns boolean, with 1 column string.

The attributes are:

e feeling nervous



< dataset.csv (3.38 MB)
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Figure 3: Dataset Description
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material possessions
introvert

popping up stressful memory
having nightmares

avoids people or activities
feeling negative

trouble concentrating
blaming yourself and

Disorder.

These symptoms are attributes of the dataset based on the disorder of the types of mental
illness.

6

Implementation:

The entire code is accessible on the following GitHub repository for this project. The
many procedures involved in this project are explained step by step below.

6.1

Data Preparation and Storage

In data preparation has been done collecting the various symptoms and disorders of the
person from different websites.

File was in CSV format available openly in kaggle website which is a open source
website.

For the study mental disorder symptoms based on the type of mental illness are
used for the analysis.

Here we first set the seed for our code since it preserves the data samples and the
findings.

The data file was then saved to Github in CSV format, then imported to GitHub
using the following code.

In [5]: import numpy as np # linear algebra
import pandas as pd # data processing

import matplotlib.pyplot as plt
import seaborn as sns

The command is use to load the csv file by using the function read csv is shown in
below image.



In [6]: data = pd.read_csv("archive/dataset.csv")

feeling.nervoms  panic  breathingrapidly sweating froubleinconcentration  having touble.insieeping  having frouble.with.work  hopel

] el ] idd il es el 2]
1 i no i [i01] o i) i
Fl e no na na n i [
k] i no na ] na L 2]
£ o ne na 7] ] i} e

& rows = 25 columns

The below figure shows the format of data as data was in string format which was
then converted on Boolean format.

The below image shows the shape of data as the data consist of 40960 columns and 25
rows with various symptoms in of mental disorder in it such as panic attacks, breathing
trouble, sleeping disorder, stress etc.

In [8]: data.shape

out[8]: (4e968, 25)

In [9]: data.columns

Out[2]: Index(['feeling.nervous', 'panic', 'breathing.rapidly', 'sweating',
'trouble.in.concentration', 'having.trouble.in.sleeping',
"having.trouble.with.work®, 'hopelessness', ‘anger', 'over.react’,
‘change.in.eating', 'suicidal.thought', 'feeling.tired', 'close.friend’,
'social.media.addiction', 'weight.gain', 'material.possessions',
'introvert', 'popping.up.stressful.memory', ‘'having.nightmares',
'avoids.people.or.activities', 'feeling.negative®,
'trouble.concentrating', 'blamming.yourself', 'Disorder'],

dtype='object')

The below image shows the information of the dataset does not consists of any null
values as the dataset was in clean.

The below image shows the information of the dataset does not consists of any null
values as the dataset was in clean.It is vital to comprehend the data set before starting
our pre-processing stage, so that we are aware of the subsequent actions for cleaning and
pre-processing purposes.

The dataset is converted in boolean format as shown in below image which was in
string format.

6.2 Exploratory Data Analysis

It is vital that we comprehend the information so that we know how to proceed as part
of the cleaning and pre-processing before we begin with our pre-processing phase.

e As the dataset comprised of many variables, few of these variables could possibly
be linked. This can lower the performance of the model and increase the time and
resources for calculation. The multi-linearity test was thus carried out with the
following code.



In [10]: data.info()

B P
Data columns (total 25 columns):

= Co Lumn MNon-MNull Count Dtyps
=] feeling .. nervous 42968 non-null asbject
i panic 43068 non-rmull abject
2 breathing.rapidly 42968 non-null abject
3 sweating A4SS9Ed non-null object
=3 trouble.in.concentration 49968 non-null obj=ct
= having.trouble.in.slesping 42960 non-null object
& having.trouble .with.work 49960 non-nwll object
7 hopelessness 42960 non=-null object
a8 anger 42960 non=-null aobject
@ SveEr . react 42968 non-null asbject
1 change.in.eating AS968 non-rnull abject
11 zuicidal . thought AS8969 non-null aobject
iz feeling.tired 496 non-rmull object
i% close.frisand 429968 non-null object
i3 social .media.addiction 459960 non-null object
15 welght.gain 49960 non-null obijsct
15 material.possessions 49960 non=null object
17 introvert 4960 non=-null object
18 popping.up.stressful.memory 32960 non-null object
19 having.nightmares 42968 non-mull abject
28 avolids.people.or.activities 48960 non-null object
21 fealing .negativea 4SDES non-rnull object
22 trouble.concentrating 42968 non-null aobject
23 bBlamming . yourseslf 49960 non-null object
24 Disorder 49960 non-null objesct
dtvoes: obiecti2s?

In addition, the use of pandas profiling was examined in further depth by individual
variables for missing values and skewness. The following is the code for this purpose

6.3 Data Cleaning

We must clean up our data and make changes so that the model can provide optimum per-
formance before continue with the model development step. Variable data types were con-
verted, duplicate rows removed, variables with high multicollinearities dropped, columns
with a large number of missing values were removed or missed values imputed using
mean in other columns, amongst other things. Different stages involved. In the following
pictures, the code for each step is presented.

6.4 Feature Selection

We followed the usage of the selection approach Extra Tree Classifier to reduce charac-
teristics. The packages needed to do this are shown below The following code is listed

7 Modelling

Following the installation of all of the models, their performance was assessed using
various indicators. These measures were picked after doing a literature research and were
visually contrasted using a bar graph. The code for which is given below-

The comparison ocf acciracy between different models is find out by below code

The below image shows the accuracy of the performance of the model of all the
algorithms. The logistic Regression, Decision tree and XGBoost showed the similar ac-
curacy and ffnn and svm achieved the lowest.



In [14]: data.head()

Out[14]: feeling.nervous panic breathing.rapidly sweating trouble.in.concentration having.trouble.in.sleeping having.trouble.with.work hopelessness anger over.rea
0 1 1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 1 1 1
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0

5 rows x 25 columns

Exploratory Data Analysis

In [11]: data['Disorder'].value_counts()

out[11]: Normal 8192
Depression 8192
Anxiety 8192
Loneliness 8192
Stress 8192

Name: Disorder, dtype: int64

8 Conclusion

The whole implementation procedure of this project has been outlined in a succinct,
thorough, and sequential way using the information presented in the preceding parts. The
needed packages have also been indicated wherever they were used, and the whole code
has been released on GitHub, the URL for which may be found in the Implementation
section.

References



In [15]: plt.figure(figsize = (15,14))
sns.heatmap(data.corr(), annot = True)

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 8x12993d4fe>
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In [16]: data.boxplot(rot = 90, figsize = (12,10))

Out[16]: <matplotlib.axes._subplots.AxesSubplot at @x12c61740@>



In [17]: data.describe()

out[17]:
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40960.000000
0.200000
0.400005
0.000000
0.000000
0.000000
0.000000

1.000000

40960.000000
0.200000
0.400005
0.000000
0.000000
0.000000
0.000000

1.000000

40960.000000
0.200000
0.400005
0.000000
0.000000
0.000000
0.000000

1.000000

40960.000000
0.200000
0.400005
0.000000
0.000000
0.000000
0.000000

1.000000

40960.000000
0.200000
0.400005
0.000000
0.000000
0.000000
0.000000

1.000000

40960.000000 40960.000000

0.200000
0.400005
0.000000
0.000000
0.000000
0.000000

1.000000

0.200000
0.400005
0.000000
0.000000
0.000000
0.000000

1.000000



Feature importances
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In [18]: ########## Split Features and Target Varible H#####HH##HH
X = data.drop(columns="'Disorder")
y = data['Disorder']

In [19]:  #ww##nwnsnenssasns Splitting into Train -Test Data #######
from sklearn.model_selection import train_test_split
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8, random_state =42)
# Now since we want the valid and test size to be equal (16% each of overall data).
# we have to define valid_size=6.5 (that is 56% of remaining data)
test_size = 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=08.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
(32768, 24)
(32768,)

(4096, 24)
(4096, )

Decision Tree model

In [21]: from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score,fl_score, precision_score, recall_score, classification_report

clf = DecisionTreeClassifier(max_depth=3,min_samples_leaf = 35)
clf.fit(X_train,y_train)

Out[21]: DecisionTreeClassifier(max_depth=3, min_samples_leaf=35)
In [22]: y_pred = clf.predict(X_test)

In [23]: dc_accuracy = accuracy_score(y_pred, y_test)
dc_accuracy

Out[23]: ©.795166015625

In [24]: print(classification_report(y_test, y_pred))

10

feeling.negative |
trouble_concentrating -
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accuracy 9.80 4896
macro avg 9.70 ©.860 8.73 4896
weighted avg 8.69 .80 8.73 4096

LogisticRegression Model

In [25]: from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression(penalty='12',C=0.0000001, solver = "liblinear", max_iter=200, multi_class='ovr', tol=0.62)
logreg.fit(X_train, y_train)

y_pred_class = logreg.predict(X_test)

1r_accuracy = accuracy_score(y_test,y_pred_class)
print("Training Accuracy: ",logreg.score(X_train,y_train))
print("Test Accuracy: ", lr_accuracy)

Training Accuracy: ©.799652099609375
Test Accuracy: ©.798828125

SVM Model

In [26]: from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix

In [27]: svclassifier = SVC(kernel = 'linear', C = ©.00002)

svc_model=svclassifier.fit(X_train, y_train)
# predict the values
svc_pred = svclassifier.predict(X_test)

svc_accuracy = accuracy_score(y_test,svc_pred)
print("Accuracy: ",svc_accuracy)

Accuracy: ©.593994140625

XGBoost

In [28]: from xgboost import XGBClassifier

In [29]: xgb_model = XGBClassifier(learning_rate= 1000, max_depth=3, min_child_weight=5,
n_estimators=5, n_jobs=-1, gamma=10)
xgb_model.fit(X_train, y_train)

/opt/anaconda3/lib/python3.8/site-packages/xgboost/sklearn.py:1146: UserWarning: The use of label encoder in XGBClassifier is d
eprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=F
alse when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with @, i.e. @, 1, 2, ..., [num
_class - 1].

warnings.warn(label_encoder_deprecation_msg, UserWarning)

[16:27:58] WARNING: /Users/travis/build/dmlc/xgboost/src/learner.cc:1095: Starting in XGBoost 1.3.8, the default evaluation met
ric used with the objective 'multi:softprob' was changed from 'merror’ to 'mlogloss’. Explicitly set eval_metric if you'd like
to restore the old behavior.

Out[29]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=1l, gamma=10, gpu_id=-1,
importance_type='gain', interaction_constraint:
learning_rate=1000, max_delta_step=8, max_depth=3,
min_child_weight=5, missing=nan, monotone_constraints='()",
n_estimators=5, n_jobs=-1, num_parallel_tree=1,
objective='multi:softprob’, random_state=e, reg_alpha=e,
reg_lambda=1, scale_pos_weight=None, subsample=1,
tree_method="exact', validate_parameters=1, verbosity=None)

In [38]: xgb_pred = xgb_model.predict(X_test)
In [31]: xgb_accuracy = accuracy_score(y_test, y_pred)
xgb_accuracy

Out[31]: ©.795166015625
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FFNN (Feed Forward Neural Network)

In [32]: from tensorflow.keras import optimizers
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

In [33]: # create a sequential model
model = Sequential()

# add the hidden Layer
model.add(Dense(input_dim=24,units=5, activation='tanh'))

model .add(Dense (input_dim=12,units=5, activation='tanh'))

# add the output Layer
model.add(Dense(input_dim=4,units=1,activation="sigmoid"'))

# define our Loss function and optimizer
model.compile(loss="binary_crossentropy’,
# Adam is a kind of gradient descent
optimizer=optimizers.Adam(1r=0.01),
metrics=['accuracy’])

/opt/anaconda3/1ib/python3.8/site-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:374: UserWarning: The ‘1r' argu
ment is deprecated, use " learning_rate’ instead.
warnings.warn

In [34]: history = model.fit(X_train, y_train, batch_size = 32, epochs = 50, validation_data = (X_valid, y_valid))
history

Epoch 1/50

1024/1024 [ ] - 3s 2ms/step - loss: -39.2989 - accuracy: ©.3979 - val_loss: -76.2462 - val_accur
acy: 0.4036

Epoch 2/50

1024/1024 [ ] - 1s 1ms/step - loss: -112.6837 - accuracy: ©.3992 - val_loss: -149.0477 - val_acc
uracy: ©.4036

Epoch 3/50

1024/1024 [ ] - 2s 2ms/step - loss: -185.4497 - accuracy: ©.3992 - val_loss: -221.7492 - val_acc
uracy: ©.4036

Epoch 4/50

1024/1024 [ ] - 2s 2ms/step - loss: -258.1535 - accuracy: ©.3992 - val_loss: -294.3581 - val_acc
uracy: ©.4036

Epoch 5/5@

1024/1024 [ ] - 1s 1ms/step - loss: -338.7133 - accuracy: ©.3992 - val_loss: -366.8860 - val_acc
uracy: ©.4036

Epoch 6/5@

1024/1024 [ 1 - 1s 1ms/step - loss: -403.2484 - accuracy: ©.3992 - val_loss: -439.417@ - val_acc
uracy: ©.4036

Epoch 7/5@

1024/1024 [ 1 - 1s 1ms/step - loss: -475.9418 - accuracv: ©.3992 - val loss: -512.156@ - val acc

In [35]: FFNN_train_accuracy = model.evaluate(X_train, y_train)[1]
print("Training Accuracy = %s" % FFNN_train_accuracy)

1024/1024 [ 1 - 1s ims/step - loss: -3634.8838 - accuracy: ©.3992
Training Accuracy = 0.399169921875

In [36]: FFNN_test_accuracy = model.evaluate(X_test, y_test)[1]
print("Testing Accuracy = %s" % FFNN_test_accuracy)

128/128 [ ] - @s ims/step - loss: -3660.8799 - accuracy: 0.4@31
Testing Accuracy = ©.403076171875

Accuracy VS Epochs Plot

In [37]: epochs = range(1, 51)
train_accuracy = history.history["accuracy"]
val_accuracy = history.history["val_accuracy"]

In [38]: plt.figure(figsize = (8,6))
plt.plot(epochs, train_accuracy, label="Training Accuracy")
plt.plot(epochs, val_accuracy, label="Validation Accuracy")
plt.title("Neural Network Classifier Accuracy vs Epochs™)
plt.xlabel("Epochs™)
plt.ylabel("Accuracy")
plt.legend()
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0.400 -
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In [39]:
In [40]:

In [41]:

Out[41]:

0.404 -

Neural Network Classifier Accuracy vs Epochs

/ — Training Accuracy
alidation Accuracy

o 10 20 30 40 50

Comparision Between Accuracy Of Different Models

accuracy = [lr_accuracy, dc_accuracy, svc_accuracy, xgb_accuracy, FFNN_test_accuracy]

label = ["Logistic Regression", "Decision Tree", "SVM", "XGBoost", "FFNN"]

plt
plt
plt

plt.
plt.

.figure(figsize = (12,10))
.bar(label, accuracy)
.title("Performance Accuracy")

xlabel("Models")
ylabel("Accuracy")

Text(8, ©.5, 'Accuracy')
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