

Configuration Manual

MSc Research Project MSc in Data Analytics

Himanshu Rathee 20132689

School of Computing National College of Ireland

> Submitted to: Dr. Rashmi Gupta

National College of Ireland

Project Submission Sheet - 2019/2020

Student Name:	Himanshu Rathee		
Student ID:	20132689		
Programme:	MSc in Data Analytics	Year:	2020-2021
Module:	Configuration module for research project	t	
Lecturer:	Dr. Rashmi Gupta		
Submission Due Date:	16/08/2021		
Project Title:	Repo Rate modeling based on financial ar	nd economic varia	ables

Word Count:

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the references section. Students are encouraged to use the Harvard Referencing Standard supplied by the Library. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action. Students may be required to undergo a viva (oral examination) if there is suspicion about the validity of their submitted work.

Signature: Himanshu Rathee

Date: 16/08/2021

PLEASE READ THE FOLLOWING INSTRUCTIONS:

- 1. Please attach a completed copy of this sheet to each project (including multiple copies).
- 2. Projects should be submitted to your Programme Coordinator.
- 3. You must ensure that you retain a HARD COPY of ALL projects, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer. Please do not bind projects or place in covers unless specifically requested.
- 4. You must ensure that all projects are submitted to your Programme Coordinator on or before the required submission date. Late submissions will incur penalties.
- 5. All projects must be submitted and passed in order to successfully complete the year. Any project/assignment not submitted will be marked as a fail.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

1. Introduction to the document

This document can be used to configure and run the python code written by the author for this research project. This document includes all the necessary steps along with the appropriate screenshot to replicate the research work.

2. System configuration The basic requirements to carry the research work are:

- PC
- Windows 10
- Anaconda
- Jupyter Notebook
- Google colab
- Microsoft Office

A major part of the coding has been done using jupyter notebook in python 3.8. However, Microsoft office tools such as MS-Word, and Ms-Excel have also been utilized in the data-gathering stage.

3. Data Selection

Two sets of data have been downloaded and used for this research.

Financial and Economic Variables: This data set has been downloaded from Indian Economy database. The link to the page is https://dbie.rbi.org.in/DBIE/dbie.rbi?site=publications. The file Ratios and Rates has been downloaded in .xlsx format and analyzed in Ms-Excel. This file has been read using python and stored as a dataframe. Alternatively, Ratio_Final csv file can be exported to access all the financial variables.

Multivariate VAR Last Checkpoint: Last Saturday at 21:48 (autosaved)

/iew Insert Ce	II Kernel N	avigate Widgets	Help				
№ • • NR	Run 🔳 C 🏓	Markdown 👻 🖾					
		xmatpiotiip iniin	e				
	In [2]:	2 Data Sel	ection				
	[2].		l(r'C:\Users\rathe\T	hesis Code\Data\Ratios_a	nd_Rates_1.xlsx',parse_da	ates=['Date'], index_col='I	Date')
		<bound method="" ndf<="" th=""><th>rame.head of</th><th>Cash Reserve Ratio</th><th>Statutory Liquidity Rat</th><th>io Cash0Deposit Ratio \</th><th>A</th></bound>	rame.head of	Cash Reserve Ratio	Statutory Liquidity Rat	io Cash0Deposit Ratio \	A
		Date					
		2011-04-01	6.0	24.0	0		
		2011-04-08	6.0	24.0	0		
		2011-04-15	6.0	24.0	0		
		2011-04-22	6.0	24.0	0		
		2011-04-29	6.0	24.0	0		
		2021-05-28	4.0	18.0	0		
		2021-06-04	4.0	18.0	4.92		
		2021-06-11	4.0	18.0	0		
		2021-06-18	4.0	18.0	4.96		
		2021-06-25	4.0	18.0			
		Credit	0Deposit Ratio Incre	mental Credit0Deposit Ra	tio \		
		Date					
		2011-04-01	0		0		
		2011-04-08	0		0		
		2011-04-15	0		0		
		2011-04-22	0		9		*

Twitter scraping: The python code in the file scraping tweets.ipynb could be replicated in jupyter notebook or google colab to extract tweets based on search strings. The data retrieved has been stored in a csv file named Tweets3.csv

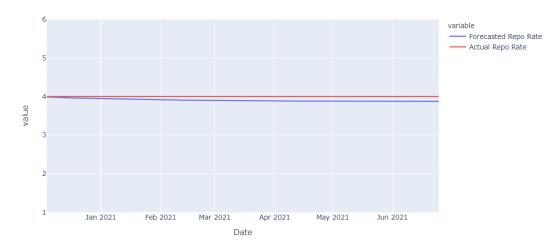
c	Câ twitter_scraper.jpynb ☆ File Edit View Insert Runtime Tools Help Last.saved.at.15.August	Comment	Share 🕻	× H
=	+ Code + Text	Connect 👻	🖌 🎤 Editir	ng ^
Q ()	<pre>[] import nest_asyncio nest_asyncio.apply()</pre>			
	[] import twint			
	<pre>[] from google.colab import drive drive.mount('drive')</pre>			
	Mounted at drive			
	<pre>[] # Configure c = twint.config() c.lang * en" ac.Username = "newsinvesting" c.Limit = 2000 c.since = 2011-01-04' c.mtit = 2021-06-25' c.Pandas = True c.outpu = "tweets.json"</pre>			
	c.search = ['India','Economy','POlicy','RBI'] # Rum twint.run.Search(c) Tweets_df = twint.storage.panda.Tweets_df			
	14236070480581115 2021-88-07 04:42:18 +0000 commycontrolcomo MBUTPOLicy At the August Policy watering, the BUT retained policy flaxbility and 142360540374208092 2021-88-06 13:22:06 +0000 CHDD14FUSTNAFED Shaktikarta Das, the Governor of the Nesrre Bank of India (BBI) has stressed on co 142360540374208092 2021-88-06 13:22:06 +0000 CHDD14FUSTNAFED Shaktikarta Das, the Governor of the Nesrre Bank of India (BBI) has stressed on co 142350405120061257 2021-88-06 04:14:14000 CHUMENTL The Nesrre Bank of India's (BBI) Monetary Policy on this copected corres, 1423504713789185 2021-88-06 04:44:33 +0000 CHUMENTL The Nesrre Bank of India's (BBI) Monetary Policy Committee has keet the interest rates	ntinued policy su 00 billion export maintaining its f	upport from t target 2. focus on sup	all sic RBI Mor porting

4. Data Transformation

The transformation of the financial and economic variable dataset has been performed in each python file before the model building. However, the transformation of the data scraped from Twitter has been performed in twitter transformation.ipynb. This file can be replicated and run to assign sentiments to tweets using the Textblob.

```
In [22]: sentyEng = []
          for i,text in enumerate(MixedTweet.tweet):
           blob = TextBlob(text)
            print(blob.sentiment)
            if blob.sentiment[0]>0:
               print('Positive')
               sentyEng.append('Positive')
            elif blob.sentiment[0]<0:</pre>
               print('Negative')
               sentyEng.append('Negative')
            else:
               print('Neutral')
               sentyEng.append('Neutral')
```

5. Machine Learning Models


Multivariate VAR model: The python file Multivariate VAR.ipynb can be replicated and run to get the results of the VAR model. All the libraries that have been used have been declared in the file. This file has been labeled and has all the steps required to apply a VAR model to the financial dataset. The evaluations and forecasts are at the end of the file.

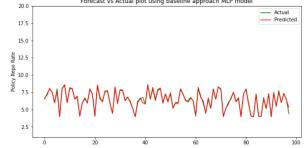
In [38]: mse1 = mean_squared_error(df_forecast['Policy Repo Rate_2d'],df_test['Policy Repo Rate']) rmse1 = math.sqrt(mse1) mae1 = mean_absolute_error(df_forecast['Policy Repo Rate_2d'],df_test['Policy Repo Rate']) MaPE1 = nmean_dostict_error(ur_foreast['Policy Repo Rate_21',Juit_rest['Policy Repo Rate_21']) / df_forecast['Policy Repo Rate_2d']))
print('The Root Mean Square Error is for VAR model is {:.2f}'.format(mse1))
print('The Mean Absolute Error is for VAR model is {:.2f}'.format(mae1))
print('The Mean Absolute Percentage Error is for VAR model is {:.2f}'.format(MAPE1)) 4 The Root Mean Square Error is for VAR model is 0.10 The Mean Absolute Error is for VAR model is 0.09

The Mean Absolute Percentage Error is for VAR model is 2.43%

Forecast vs Actual plot using VAR model

• LSTM /baseline Sequential and MLP model: The LSTM_MLP_NN_Baseline.ipynb file can be replicated or run to get the output of these three models. The dataset used for these models is the financial and economic variable data from the Indian Economy website itself.

4 Building LSTM model


In [13]:	<pre>#Defining the LSTM model n_features=x_train.shape[1] model=Sequential() model.add(LSTM(100,activatic model.add(Dense(n_features)) #Model summary model.summary()</pre>		',input_shape=(1,1))))	
	Model: "sequential"				
	Layer (type)	Output	Shape	Param #	-
	lstm (LSTM)	(None,	100)	40800	
	dense (Dense)	(None,	1)	101	
	Total params: 40,901 Trainable params: 40,901 Non-trainable params: 0				-
In [14]:	#Compiling model.compile(optimizer='ada	am', los	s = 'mse')		
In [15]:	#Training model.fit(x_train,y_train, e	epochs =	5, batch_size=1)		

MLP model output

Out[159]: <matplotlib.legend.Legend at 0x25ad6d1e7c0>

Forecast vs Actual plot using baseline approach MLP model

Sequential Model

In [84]:	<pre>model = Sequential() model.add(Dense(25, input_dim=11, activation='sigmoid', kernel_initializer='he_uniform')) model.add(Dense(10, activation='sigmoid')) model.add(Dense(1, activation='linear'))</pre>
In [85]:	<pre>opt = SGD(learning_rate=0.1,momentum=0.9)</pre>
In [86]:	<pre>model.compile(loss='mean_squared_error', optimizer=opt)</pre>
In [87]:	<pre>history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=150, verbose=0) # evaluate the model train_mse = model.evaluate(trainX, trainy, verbose=0) test_mse = model.evaluate(testX, testy, verbose=0) print('Train_mse: %.5f, Test_mse: %.5f' % (train_mse, test_mse))</pre>
	Train mse: 0.00094, Test mse: 0.00139
In [88]:	<pre>pyplot.title('Loss / Mean Squared Error Baseline Sequential NN') pyplot.plot(history.history['loss'], label='train') pyplot.plot(history.history['val_loss'], label='test') pyplot.legend() pyplot.show()</pre>
	Loss / Mean Squared Error Baseline Sequential NN
	0.6 - train 0.5 -
	0.4 -
	0.3 -
	0.2 -
	0.1 -
	and have a second

• Novel Sequential and MLP model: The file Novel_Model.ipynb could be utilized and run to get the merged data of both the sentiment analysis as well as the financial variable data. These data sets have been merged by taking the weeks and years from both the data sets

In [2]:	<pre>df = pd.read_csv("Sentitweets.csv")</pre>
In [3]:	<pre>def weeklumberFromDate(datee): datee = datetime.datetime.strptime(datee, "%Y-%m-%d") weeklumber = datetime.date(datee.year, datee.month, datee.day).isocalendar()[1] return weeklumber</pre>
In [4]:	<pre>def yearFromDate(datee): datee = datetime.datetime.strptime(datee, "%Y-%m-%d") return datee.year</pre>
In [5]:	df["Year"] = df["date"]
In [6]:	df = df.rename(columns={'date': 'Week'})
In [7]:	<pre>df["Week"] = df["Week"].apply(weekNumberFromDate)</pre>
In [8]:	<pre>df["Year"] = df["Year"].apply(yearFromDate)</pre>
In [9]:	<pre>df = df.drop(columns="tweet")</pre>
In [10]:	<pre>df = df.groupby(['Week', 'Year'], as_index=False)['Sentiments'].mean()</pre>
In [11]:	df
Out[11]:	Week Year Sentiments
	0 1 2012 0.0

0	1 2012	0.0
1	1 2014	0.0
2	1 2016	1.0
3	1 2017	-1.0

MERGED dataset

In [19]: new_df = rf.merge(df, how='left')

In [20]: new_df
Out[20]:

	Date	Cash Reserve Ratio	Statutory Liquidity Ratio	Policy Repo Rate	Reverse Repo Rate	Marginal Standing Facility (MSF) Rate	Bank Rate	Call Money Rate (Weighted Average)	910Day Treasury Bill (Primary) Yield	INR0US\$ Spot Rate (Rs. Per Foreign Currency)	INR0Euro Spot Rate (Rs. Per Foreign Currency)	Forward Premia of US\$ 10month	Forward Premia of US\$ 30month	Year	Week	Sentiments
0	2011- 04-01	6.0	24.0	6.75	5.75	0.00	6.00	7.60	0.00	0.00	0.00	0.00	0.00	2011	13	NaN
1	2011- 04-08	6.0	24.0	6.75	5.75	0.00	6.00	6.22	0.00	0.00	0.00	0.00	0.00	2011	14	0.000000
2	2011- 04-15	6.0	24.0	6.75	5.75	0.00	6.00	6.77	0.00	0.00	0.00	0.00	0.00	2011	15	NaN
3	2011- 04-22	6.0	24.0	6.75	5.75	0.00	6.00	6.40	0.00	0.00	0.00	0.00	0.00	2011	16	NaN
4	2011- 04-29	6.0	24.0	6.75	5.75	0.00	6.00	6.87	0.00	0.00	0.00	0.00	0.00	2011	17	NaN
485	2021- 05-28	4.0	18.0	4.00	3.35	4.25	4.25	3.18	3.40	72.48	88.23	5.46	5.63	2021	21	0.000000
486	2021- 06-04	4.0	18.0	4.00	3.35	4.25	4.25	3.13	3.41	73.03	88.45	3.62	4.08	2021	22	0.133333
487	2021- 06-11	4.0	18.0	4.00	3.35	4.25	4.25	3.11	3.40	72.98	88.98	4.19	4.30	2021	23	0.000000
488	2021- 06-18	4.0	18.0	4.00	3.35	4.25	4.25	3.16	3.47	74.14	88.26	3.97	4.15	2021	24	NaN
489	2021- 06-25	4.0	18.0	4.00	3.35	4.25	4.25	3.15	3.47	74.18	88.57	3.80	3.99	2021	25	1.000000
490 r	ows × '	l6 column	s													

.

Data Transformation

1 Creating functions for imputing, handling NAs, null and empty values $~\P$

Function to impute missing values in a data frame

	Cash Reserve	Statutory Liquidity	Policy Repo	Reverse Repo	Marginal Standing Facility	Bank	Call Money Rate	910Day Treasury Bill	INR0US\$ Spot Rate (Rs. Per	INR0Euro Spot Rate (Rs. Per	Forward Premia	Forward Premia	Year	Mook	Sentiments
	Ratio	Ratio	Rate	Rate	(MSF) Rate	Rate	(Weighted Average)	(Primary) Yield	Foreign Currency)	Foreign Currency)	of US\$ 10month	of US\$ 30month	rear	Week	senumenus
0	1.0	1.0	0.611111	0.578313	0.0	0.291667	0.619699	0.0	0.0	0.0	0.0	0.0	0.0	0.230769	NaN
1	1.0	1.0	0.611111	0.578313	0.0	0.291667	0.430917	0.0	0.0	0.0	0.0	0.0	0.0	0.250000	0.5
2	1.0	1.0	0.611111	0.578313	0.0	0.291667	0.506156	0.0	0.0	0.0	0.0	0.0	0.0	0.269231	NaN
3	1.0	1.0	0.611111	0.578313	0.0	0.291667	0.455540	0.0	0.0	0.0	0.0	0.0	0.0	0.288462	NaN
4	1.0	1.0	0.611111	0.578313	0.0	0.291667	0.519836	0.0	0.0	0.0	0.0	0.0	0.0	0.307692	NaN

Now with this merged dataset, the novel approach models have been trained. The results of both the models have been labeled and commented on in the file.