
Configuration Manual

MSc Research Project

Data Analytics

Maria Raap
Student ID: x19141700

School of Computing

National College of Ireland

Supervisor: Majid Latifi

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Maria Raap

Student ID: x19141700

Programme: Data Analytics

Year: 2021

Module: MSc Research Project

Supervisor: Majid Latifi

Submission Due Date: 23/09/2021

Project Title: Configuration Manual

Word Count: 1037

Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 22nd September 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Maria Raap
x19141700

1 Introduction

The configuration manual lays out hardware specifications, software requirements and dif-
ferent stages of implementation of the ’Vehicle Damage Detection using Semi-Supervised
Object Detection’ project in detail. Section 2 details about system requirements including
the hardware specification and software requirements. Section 3 describes the data source
followed by section 4 detailing the steps required to complete the data pre-processing. In
section 5 outlines the required steps to execute the different models. The configuration
manual concludes with section 6 outlining the evaluation metrics.

2 System Configuration

This section details system requirements and software required for implementation.

2.1 Hardware Requirement

• Virtual Machine: Azure Standard NC6 with 6 vCpus

• RAM: 56GB

• System Type: Ubuntu 18.04 LTS

• GPU: NVIDIA Tesla K80 GPU

• Storage: 512GB SSD

2.2 Software

• Docker: Docker is an open-source platform for developing, shipping, and running
applications. Docker enables the separation of applications from the infrastructure
so software can be delivered quickly. The application can be downloaded from the
docker website1.

• Coco Annotator: Coco Annotator is a web-based image annotation tool used for
labelling images to create training data for image localization and object detection.
The application can be downloaded from Github2.

1https://www.docker.com/products/docker-desktop
2https://github.com/jsbroks/coco-annotator.git

1



• Cuda Toolkit: Cuda Toolkit is an open-source parallel computing platform and
the application programming interface model that allows the use of a CUDA-
enabled graphics processing unit for general-purpose processing – an approach
termed ’GPGPU’. The application can be downloaded from the CUDA website3.

• Anaconda3: Anaconda3 is an open-source platform that can be downloaded from
anaconda distribution website 4. The platform supports various integrated design
frameworks (IDD) for python programming. The models are built for particular
environments using the below-listed libraries.

– Python 3.6.13

– Libraries

∗ numpy 1.19.5

∗ tensorflow 1.3.0

∗ keras 2.0.8

∗ GCC 7.5

∗ CUDA 10.0 (base Mask R-CNN)

∗ CUDA 10.2 (enhanced Mask R-CNN)

∗ detectron2 arch flags 3.7

∗ PyTorch 1.9.0+cu102

∗ Pillow 8.3.1

∗ torchvision 0.10.0+cu102

∗ iopath 0.1.9

∗ opencv-python 4.5.3

∗ h5py

∗ imgaug

∗ IPython[all]

∗ scipy

∗ matplotlib

∗ scikit-image

3 Datasource Description

The images for the project are downloaded from the website: https://www.kaggle.com/.
The relevant datasets contain several images with varying degrees of vehicle damages.
There is no uniform image size or quality. The overview below provides an overview of
images imported downloaded.

3https://developer.nvidia.com/cuda-toolkit
4https://www.anaconda.com/products/individual

2



Table 1: Example images retrieved from Kaggle.com

4 Data Pre-Processing and Exploratory Analysis

Data pre-processing is undertaken in two parts. The first part is the data cleansing,
including the review of and ultimately the selection of appropriate images. Since this
project focuses on vehicle damage detection, images like total wreckage as well as low-
quality images were removed from the overall dataset. This step was carried out in
Ubuntu’s default image viewer. If the decision was made to remove an image, it was
simply removed from the folder. Part two is the annotation of the images which was
carried out in Coco Annotator. Here the images are loaded to the relevant folder location
and can then be viewed in the dataset view, see figure 1. The annotation of the image
itself is done in the single image view. Before the annotation and labelling can commence,
the object categories need to be defined, here only one category ’Damaged’ is used. For
this project the annotations were added as polygons to cater for the asymmetric character
of vehicle damages, it is possible to label more than one damage object in one picture.
Figure 2 as reference for the annotation tool view.

Figure 1: Coco Annotator Dataset Overview

3



Figure 2: Coco Annotator Labelling tool

5 Model Training

Before the model can be run, anaconda3 must be installed and the relevant environment
for the run be set up. The detailed setup is described in section 5.1 for the basic Mask
R-CNN model and section 5.2 for the semi-supervised enhanced model.

5.1 Model Implementation Mask R-CNN

• Conda environment setup:

– conda env create -f environment.yml

– conda activate mask-rcnn

• Training:

– Train a new model starting from pre-trained weights

python3 training.py –dataset=/path/to/dataset

weight=/path/to/pretrained/weight.h5

– Resume training a model

python3 training.py –dataset=/path/to/dataset

weight=/path/to/pretrained/weight.h5

• Testing

– Image

python3 image detection.py –dataset=/path/to/dataset

weights=/path/to/pretrained/weight.h5 –image=/path/to/image/directory

• Annotation generating:

python3 annotating generation.py –dataset=/path/to/dataset

weights=/path/to/pretrained/weight.h5 –image=/path/to/image

4



Figure 3: Mask RCNN Training initiation sample

5.2 Model Implementation enhanced Mask R-CNN with ’Un-
biased Teacher’

• Conda environment setup:

– conda create -n detectron2 python=3.6

– conda activate detectron2

– conda install pytorch==1.9.0 torchvision -c pytorch

– python -m pip install ’git+https://github.com/facebookresearch/detectron2.git’

• Training:

– Train a new model with 1% labelled data and ResNet50

python train net.py –num-gpus 1

config configs/coco supervision/rcnn R 50 FPN sup01 run1 cd.yaml

SOLVER.IMG PER BATCH LABEL 1

SOLVER.IMG PER BATCH UNLABEL 1

– Train a new model with 1% labelled data and ResNet101

python train net.py –num-gpus 1

config configs/coco supervision/rcnn R 101 FPN sup01 run1 cd.yaml

SOLVER.IMG PER BATCH LABEL 1

SOLVER.IMG PER BATCH UNLABEL 1

– Train a new model with 5% labelled data and ResNet50

python train net.py –num-gpus 1

config configs/coco supervision/rcnn R 50 FPN sup05 run1 cd.yaml

SOLVER.IMG PER BATCH LABEL 1

SOLVER.IMG PER BATCH UNLABEL 1

– Train a new model with 5% labelled data and ResNet101

5



python train net.py –num-gpus 1

config configs/coco supervision/rcnn R 101 FPN sup05 run1 cd.yaml

SOLVER.IMG PER BATCH LABEL 1

SOLVER.IMG PER BATCH UNLABEL 1

– Train a new model with 10% labelled data and ResNet50

python train net.py –num-gpus 1

config configs/coco supervision/rcnn R 50 FPN sup10 run1 cd.yaml

SOLVER.IMG PER BATCH LABEL 1

SOLVER.IMG PER BATCH UNLABEL 1

– Train a new model with 10% labelled data and ResNet101

python train net.py –num-gpus 1

config configs/coco supervision/rcnn R 101 FPN sup10 run1 cd.yaml

SOLVER.IMG PER BATCH LABEL 1

SOLVER.IMG PER BATCH UNLABEL 1

Figure 4: enhanced Mask RCNN Training initiation sample

Figure 5: Epoch Training Run Sample

6 Evaluation Metrics

The evaluation of the relevant model run is triggered through the command ’python3 eval-
uation.py –dataset=/’path to dataset’ –weights=/’path to pretrained weight.h5”. Rel-
evant output metrics are displayed automatically in separate windows, see figure 6. A

6



confusion matrix of the predictions and ground truth together with the precision-recall
regression is available.

Figure 6: Mask R-CNN Evaluation code screenshot

Further evaluation matrix can be also retrieved from tensorboard with the command
’tensorboard –logdir=logs/’path to trained dir”. Tensorboard can be viewed under port
6006, graphics can also be exported from there. Here metrics such as loss function in
general and specific for mask and box loss is available in graph format as well as the
overall progression of the mean average precision.

7



Figure 7: Tensorboard Screenshot with loss graph

8


	Introduction
	System Configuration
	Hardware Requirement
	Software

	Datasource Description
	Data Pre-Processing and Exploratory Analysis
	Model Training
	Model Implementation Mask R-CNN
	Model Implementation enhanced Mask R-CNN with 'Unbiased Teacher'

	Evaluation Metrics

