~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Ruchita Patil
Student ID: 19197411

School of Computing
National College of Ireland

Supervisor: Bharathi Chakravarthi

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ruchita Patil
Student ID: 19197411
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Bharathi Chakravarthi
Submission Due Date: 16,/08/2021
Project Title: Configuration Manual
Word Count: 756
Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ruchita Patil

Date: 20th September 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Ruchita Patil
19197411

1 Introduction

This document explains what hardware and software are necessary for this project. Im-
plementation of the project, which includes libraries, data preparation, and modeling in
python. In this research, we used a variety of models to compare them and calculate the
error rate.

2 System Configuration

2.1 Hardware requirement

Table 1: Device Specification

Hardware | Configuration

System HP Pavilion Laptop

System type | 64-bit operating system
RAM 8 GB

SSD 256 GB

Processor Intel(R) core(TM) i5-1035G1
CPU 1 GHz

Table 2: Windows Specification

Parameter | Configuration

Edition Windows 10 Home Single Language
Version 21H1

OS build 19043.1110

2.2 Software requirement

For this research, we used a variety of methods to obtain data in a csv file. The python
language was used to clean and prepare the data, and it was ran on the Google Colab
tool. In Google Colab, compare the results and plot some graphs.

Table 3: Software requirement

Software Version
Python 3.7(64bit)
Microsoft Excel | 2020

Filter notebooks =
Title
€O Overview of Colaboratory Features =
€O Markdown Guide &
€O Chartsin Colaboratory]
€O External data: Drive, Sheets, and Cloud Storage (]
€O Getting started with BigQuery]
New notebook Cancel

Figure 1: Google Colab website

3 Project Implementation

3.1 Data Collection

Home | Sitemap | RTI Screen Reader ¢
Central Pollution Control Board Apps by CPCB | Jobs | Tenders | Publi

Ministry of Environment, Forest and Climate Change

Government of India

% R

T Home About CPCB ™ Standards ¥ Projects ~ Thrust Area ¥ Environmental Data ~ Laboratory ~

Home > Air Pollution >
Environmental Acts & Rules Air Pollution

AT (A EE T The Air (Prevention and Control of Pollution) Act was enacted in 1981 and amende:
Water Pollution prevention, control and abatement of air pollution in India.

Air Pollu Acts

Noise Pollution » No.14 of 1981, [29/3/1981] - The Air (Prevention and Control of Pollution) Act 1981, amended
Waste Management +
-

Figure 2: Central pollution control board

In Pursuit of Clec

In India, air quality is monitored using Air Quality Index data, and monitoring sta-
tions are set up, with data updated hourly and daily on the Central Pollution Control
Board’s website. I acquired the data from Kaggle, which came from the CPCB’s web-
site. They provide data by city and station. I chose city-level data from a CSV file for

prediction purposes(Yousefi and Hadei; 2019).

kaggle Q_ search Sign In ‘

@ Home Data Tasks Code Discussion Activity Metadata Download (283 MB)
@ Competitions Data Explorer
f Datasets 282.81MB < city_day.csv (2.45 MB) &L

D city_day.csv

<> Code @ city_hour.csv Detail Compact Column 10 of 16 columns

. . [0 station_day.csv
Discussions

m

[station_hour.csv About this file
& Courses [stations.csv o v »
Daily air quality data across cities
v
More A City = B8 Date = # PM2.5 = e PM10
City Date Particulate Matter 2.5- Particulate Mattc
micrometer in ug / m3 micrometer in ug

Figure 3: Dataset website

3.2 Data Preparation

The information is already in CSV format. Using python code, upload the file to Google
Colab and read the csv file. After you've chosen the right data, combine it all into one
parameter.

H 9 s city_ day - Excel

File Home Insert Page Layout Formulas Data Review View Help Q Tell me what you
us & S

A B C D E F G H | J K L M N o

1 City Date PM2.5 PM10 NO NO2 NOx NH3 CO SO2 O3 Benzene Toluene Xylene AQl

2 Delhi 1/1/2015 313.2 608 69.2 36.4 111 33.9 152 9.25 41.7 14.36 24.86 9.84 472
3 Delhi 1/2/2015 186.2 269.6 62.1 32.9 88.1 31.8 9.54 6.65 30 10.55 20.09 4.29 454
4 Delhi 1/3/2015 87.18 131.9 25.7 30.3 48 69.6 10.6 2.65 19.7 391 10.23 1.99 143
5 |Delhi 1/4/2015 151.8 241.8 25 36.9 48.6 130 11.5 4.63 25.4 4.26 9.71 3.34 319
6 Delhi 1/5/2015 146.6 219.1 14 34,9 383 123 9.2 3.33 23.2 2.8 6.21 2.96 325
7 Delhi 1/6/2015 149.6 252.1 17.2 37.8 42.5 135 9.44 3.66 26.8 3.63 7.35 3.47 318
8 Delhi 1/7/2015 217.9 376.5 27 40.2 52.4 135 9.78 5.82 29 4.93 9.42 5.21 353
9 Delhi 1/8/2015 229.9 361 23.3 43.2 51.2 138 11 3.31 30.5 5.8 11.4 4.83 383
10 |Delhi 1/9/2015 201.7 397.4 19.2 38.6 45.6 141 11.1 3.48 32.9 5.25 11.12 5.26 375

Figure 4: Data into CSV format

° from google.colab import files

uploaded = files.upload()

[5] import io #Handle inputout operation.
df = pd.read_csv(io.BytesIO(uploaded['city_day.csv']))
print(df)

Figure 5: Read CSV file

After read the data python provide various function to check data. Head function
provide first five records of the data. info function provide the details about each variables
such as data type and size of each variables. Also shape we used for check the array size,
how many rows and columns are present in the data.

Some libraries are used for preparation of data:

Table 4: Python libraries

Library

Description

Pandas

Read csv file

Pandas

To change date format

10

Handle input/output operation

Data description
[1] P

df.info()

<class 'pandas.core.frame.DataFrame'>
RangelIndex: 29531 entries, @ to 29530
Data columns (total 16 columns)

Column

B W N R W R ®
(o]
[y
jy
£

@
=]
o]

Non-Null Count Dtype

18391 non-null floaté4
25949 non-null floate4
25946 non-null floaté4d
25346 non-null float64
19203 non-null floate4
27472 non-null floaté4
25677 non-null floate4
25509 non-null floaté4d

Figure 6: Check data type of all parameters

All variables’ data types should be checked. We need to cast datatype to Date format
in our situation because Date is an index variable with an object data type.

[] df['Date'] = pd.to_datetime(df['Date’'], infer_datetime_format=True)

[] Delhi= df.loc[df['City'] == 'Delhi']

° Delhi.info()

<class ‘'pandas.core.frame.DataFrame’>
Inte4Index: 2009 entries, 10229 to 12237
Data columns (total 16 columns):

Column

TR OENO VR W R ®
=
=}
N}

5]
o
W

Non-Null Count Dtype
2009 non-null object
2009 non-null datetime64[ns]
2007 non-null floate4
1932 non-null float64
2007 non-null floate4
2007 non-null float64
2009 non-null floate4
2000 non-null float64
2009 non-null floate4
1899 non-null float64
1925 non-null floate4

Figure 7: Change data type

3.3 Data Pre-processing

Check for null values in data pre-processing, and if any are found, replace all null values
with median data obtained using the median function. Splitting the data into train and
test sets is required for applying the model to the dataset.

Describe function calculate the mean, median, max, min values of the data and show-

ing into to one table.

df _input.describe()

Figure 8: Describe code

For example:
Below figure showing calculation of each pollutant so we can modify and analysis
according to results.

AQI PM1@ PM2.5 co NO NO2 NOx NH3 502 03

count 1999.000000 1932.000000 2007.000000 2009.000000 2007.000000 2007.000000 2009.000000 2000.000000 1899.000000 1925.00000
mean 250487744 232.809229 117.196153 1.976053 38.985595 50.785182 58.567023 41.997150 15.901253 51.32361
std 119.537333 121.873025 82912945 2.560253 33.380456 22.696721 37.890350 17.301221 7.966770 26.06234

min 29.000000 18.580000 10.240000 0.000000 3.570000 10.630000 0.000000 6.780000 2.340000 6.94000

25% 161.500000 137.040000 57.095000 0.910000 15.895000 33.895000 31.150000 31.157500 10.335000 33.71000
50% 257.000000 216.730000 94620000 1.240000 27.200000 47.150000 52,750000 38.040000 14.450000 44.44000
75% 345.500000 311.667500 153.030000 1.870000 50.790000 63.570000 75.360000 48.792500 19.700000 60.84000
max 716.000000 796.880000 685.360000 30.440000 221.030000 162.500000 254.800000 166.700000 71.560000 257.73000

Figure 9: Describe output

431 # Check missing values
[43] g
df_input.isnull().sum()

AQI 10
PM10 77
PM2.5 2
co 3
NO 2
NO2 2
NOX 0
NH3 9
502 110
03 84

dtype: int64

Figure 10: Find null values

In describe output we get each pollutant avg, minimum, maximum values. We ana-
lyzed some pollutant have null values which is harm-full for model. There are many
options to handle null values some time we drop the records, when dataset is huge be-
cause is not reflected to results.

But in out case data is not huge so we decided to used median fiction. Like median
function mean is also available.

The form of the original distribution is preserved by MinMaxScaler. It has no effect
on the material included in the source information. It’s worth noting that MinMaxScaler
doesn’t lessen the significance of outliers. MinMaxScaler returns a feature with a default
range of 0 to 1.

[44] #For missing values I used median to fill Null values.
df_input['AQI']=df_input['AQI'].fillna((df_input['AQI'].median()))
df_input['PM2.5']J=df_input['PM2.5'].fillna((df_input['PM2.5"'].median()))
df_input['PM18@']=df_input['PM18'].fillna((df_input['PM1@'].median()))
df_input['CO']=df_input['C0O"'].fillna((df_input['CO'].median()))
df_input['NO"']=df_input['NO"'].fillna((df_input['NO'].median()))
df_input['NO2']=df_input['NO2'].fillna((df_input['NO2'].median()))
df_input['NOx']=df_input['NOx'].fillna((df_input['NOx'].median()))
df_input['NH3']=df_input['NH3'].fillna({df_input['NH3'].median()))
df_input['S02']=df_input['S02'].fillna((df_input['S02"'].median()))
df_input['03']=df_input['03"'].fillna((df_input['03'].median()))

Figure 11: Fill NA values with median

‘ [47] # Split train data to X and y
X_train = train_dataset.drop('AQI', axis = 1)
y_train = train_dataset.loc[:,["AQI"']]

Split test data to X and y
X_test = test_dataset.drop('AQI', axis = 1)
y_test = test_dataset.loc[:,['AQI']]

7 [48] y_train.shape
(1607, 1)

Figure 12: Split data into train and test

’ [49] # Transform X_train, y_train, X_test and y_test

Different scaler for input and output
scaler_x = MinMaxScaler(feature_range = (0,1))
scaler_y = MinMaxScaler(feature_range = (0,1))

Fit the scaler using available training data
input_scaler = scaler_x.fit(X_train)
output_scaler = scaler_y.fit(y_train)

Apply the scaler to training data
train_y_norm = output_scaler.transform(y_train)

train_x_norm = input_scaler.transform(X_train)

Apply the scaler to test data

Figure 13: Split data into train and test

3.4 Model building

We employed a variety of models during modeling. Python has various libraries for each
model, so import all of them first. Keras is required for the LSTM and GRU models.
Keras featured a variety of layers that are useful while building a model. We also utilized
a dropout layer to prevent over-fitting.

Table 5: Python libraries

Library Description

Tensor flow | Import keras

Keras Import sequential, Layers , Callback
Layers Dense, LSTM, Dropout, GRU

Create LSTM or GRU model
def create_model(units, m):
model = Sequential()
First layer of LSTM or GRU
model.add(m (units = units, return_sequences = True,
input_shape = [X_train.shape[1], X_train.shape[2]]))
model.add(Dropout(©.2))
Second layer of LSTM or GRU
model.add(m (units = units))
model.add(Dropout(©.2))
model.add(Dense(units = 1))
#Compile model
model.compile(loss="mse’, optimizer='adam")
return model

Figure 14: LSTM and GRU model

sklearn library included linear model, from that we import linear-regression. We can
build model using Linear regression function. After executing model fit train dataset into
model using fit function. Predict test data using prediction function.

[] mreg = LinearRegression()

mreg.fit(x_trainl,y trainl)

mlr_y predict = mreg.predict(x testl)
mlr_y predict_train = mreg.predict(x_trainl)

Figure 15: Linear Regression

In python there is in-build function for Decision tree, which included parameters so
we can build model according to our requirement. For decision tree sklearn included tree
library so we can import Decision tree regression file. After executing model fit train
dataset into model using fit function. Predict test data using prediction function.

o dec_tree = DecisionTreeRegressor(random_state = @)
dec_tree.fit(x_trainl,y trainil)

dt y predict = dec tree.predict(x testl)
dt_ vy predict_train = dec_tree.predict(x_trainl)

Figure 16: Decision Tree

Create LSTM - GRU model
def create model GRU LSTM(units):
model = Sequential()
First layer-GRU
model.add(GRU(units = units, return_sequences = True,
input shape = [X _train.shape[1], X train.shape[2]]))
model.add(Dropout(2.3))
Second layer-LSTM
model.add(LSTM(units = units, return_sequences=False))
model.add (Dropout(®.3))
model.add(Dense(units = 64))
model.add(Dense{units = 1))
#Compile model
model.compile(loss="mse', optimizer="adam')

return model

GRU and LSTM
model gru = create model(64, GRU)
model lstm = create model(64, LSTM)

model gru lstm = create model GRU LSTM(128)

Figure 17: GRU-LSTM proposed model

3.5 Evaluation

Evaluation purpose we used various measures such as root mean square error, mean
absolute error and r-square. Using metrics library we calculate all measures.

Table 6: Python libraries

Library | Description
Math Import Square-root
sklearn | Import metrics

° #LSTM

rmse_LSTM = sqrt(metrics.mean_squared_error(y_test, prediction_lstm_test))
mae_LSTM = metrics.mean_absolute_error(y_test, prediction_lstm_test)

mdae_LSTM = metrics.median_absolute_error(y_test,prediction_lstm_test)

[] #GRU
rmse_GRU = sqrt{metrics.mean_squared_error(y_test, prediction_gru_test))
mae GRU = metrics.mean absolute error(y test, prediction gru test)

mdae_GRU = metrics.median_absolute_error(y_test,prediction_gru_test)

[] #logistic regression
rmse_mlr = sqrt(metrics.mean_squared_error(y_testl, mlr_y predict))
mae_mlr = metrics.mean_absolute_error(y_testl, mlr_y_predict)

mdae_mlr = metrics.median_absolute_error(y_testl,mlr_y predict)

[] #decsison tree
rmse_dt = sqrt(metrics.mean_squared_error(y_testl, dt_y predict))
mae_dt = metrics.mean_absolute_error(y_testl, dt_y_predict)

mdae_dt = metrics.median_absolute_error(y_testl,dt_y_predict)

[] #GRU_LSTM
rmse_GRU_LSTM = sqrt(metrics.mean_squared_error(y_test, prediction_gru_lstm_test))
mae_GRU_LSTM = metrics.mean_absolute_error(y_test, prediction_gru_lstm_test)

mdae_GRU_LSTM = metrics.median_absolute_error(y_test,prediction_gru_lstm_test)

Figure 18: Result of measure

References

Yousefi, S., S. A. and Hadei, M. (2019). Applying epa’s instruction to calculate air quality
index (aqi) in tehran, Journal of Air Pollution and Health pp. 81-6.

	Introduction
	System Configuration
	Hardware requirement
	Software requirement

	Project Implementation
	Data Collection
	Data Preparation
	Data Pre-processing
	Model building
	Evaluation

