
Configuration Manual

MSc Research Project
Data Analytics

Abhishek Sunil Padalkar
Student ID: x19221576

School of Computing
National College of Ireland

Supervisor: Dr. Paul Stynes

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Abhishek Sunil Padalkar

Student ID: x19221576

Programme: Data Analytics

Year: 2021

Module: MSc Research Project

Supervisor: Dr. Paul Stynes

Submission Due Date: 20/09/2021

Project Title: An Object Detection and Scaling Model for Plastic Waste
Sorting

Word Count: 2226
Page Count: 11

I hereby certify that the information contained in this (my submission) is information per-
taining to research I conducted for this project. All information other than my own contribution
will be fully referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required
to use the Referencing Standard specified in the report template. To use other author’s written
or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:

Date: 20/09/2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed into
the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Abhishek Sunil Padalkar
x19221576

1 Introduction

This configuration manual provides a detailed specification of software and hardware used to
implement the research project and a step-by-step guide implemented in the research project.
This manual provides information to replicate the research project fully.

2 Hardware and Software Specification

2.1 Hardware Setup

Table 1 demonstrates all hardware setup utilized in implementing this research project. A local
machine(Macbook Pro) with a graphics processing unit(GPU) is primarily required to carry
out this project. For high-end object detection model training, free cloud service IDE, Google
Colaboratory(Colab) Pro, which provides free 16GB memory P100/V100 GPU, is used.

Table 1: Hardware Specifications

Host Machine Macbook Pro 16” 2019
Operating System Mac OS Catalina Version 10.15.6 (19G2021)

Processor 2.3 GHz 8-Core Intel Core i9
Memory 16 GB 2667 MHz DDR4

Graphics / Graphics Card Intel UHD Graphics 630 1536 MB / AMD Radeon Pro 5500M
Hard Disk APPLE SSD AP1024N (1TB)

System Type 64-bit Operating System
Cloud IDE GPU (Google Colab Pro) Tesla P100 / Tesla V100, 16gb graphics card with 32GB memory

2.2 Software Setup

Table 2 provides all the software and library used to build and train object detection models,
web applications(App) used for plastic waste object detection dataset, transforming the dataset
according to the required model input type, and for diagram creation for the report. To find
further information on each software, click on the software name.

Note: No installation is required for setting up google colab pro. However, a monthly
subscription as a pro member is required to obtain high GPU performance.

This configuration manual provides a detailed specification of software and hardware used
to implement the research project and a step-by-step guide implemented in the research project.
This manual provides information to replicate the research project fully.

1



Table 2: Software Specifications, Web Application tools and Important Libraries

Programming Language Python
Cloud IDE Google Colab Pro
Local IDE Jupyter Notebook

Annotating Bounding Box to dataset Labelbox (Web App)
Dataset transformation Roboflow (Web App)

Model building Tensorflow, Pytorch, Keras library
Model Evaluation & Results Seaborn, Matplotlib library

Methodology & Architecture design draw.io (Web App)

3 Data Preparation

Steps taken to prepare an ideal “WaDaBa” plastic waste object detection dataset is presented
below:

Step 1: Data Downloading
The “WaDaBa” dataset consisting of 4000 plastic object images was downloaded from the

official website of the dataset published by Bobulski and Piatkowski (2018).1 A license agree-
ment was signed before using this dataset for research purposes only.

Step 2: Bounding Box Annotation
The “WaDaBa” dataset published by Bobulski and Piatkowski (2018) is an image classifica-

tion dataset. For this dataset to be trained on object detection models, bounding box annotations
need to be created around each plastic object in all the images. The dataset was uploaded on
Labelbox Web App, which helps the user to create a custom object detection dataset to per-
form bounding box annotations.2 Using the Labelbox app, bounding box around each plastic
object image was manually annotated. Fig. 1 displays a screenshot of the Labelbox annotation
interface while creating the HDPE plastic-type object annotation.

Figure 1: Labelbox bounding box annotation

1“WaDaBa” Dataset: http://wadaba.pcz.pl/index.html
2Labelbox Website Link: https://app.labelbox.com/

2

https://www.python.org/
https://colab.research.google.com/notebooks/intro.ipynb
https://jupyter.org/
https://app.labelbox.com/
https://app.roboflow.com/
https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
https://seaborn.pydata.org/
https://matplotlib.org/
https://app.diagrams.net/
http://wadaba.pcz.pl/index.html
https://app.labelbox.com/


After annotating all the plastic object images, the Labelbox dataset annotations are exported
as a .json file which includes bounding box annotations with classes for all the images. Fig.
2 displays the screenshot of the export option for all the annotated images after performing
annotations.

Projects Datasets Catalog 

Plastic Labelling 
Add project description 

Overview Labels Performance Issues 

Export 4,000 labels 

Pro tip: You can export with the SDK 

1 # install latest labelbox version (3.0 or above) 

2 # !pip3 install labelbox[data] --pre 

3 

4 import labelbox 

5 # Enter your Labelbox API key here 

6 LB_API_KEY = 11 11 

7 # Create Labelbox client 

8 lb = labelbox.Client(api_key=LB_API_KEY) 

9 # Get project by ID 

10 project = lb.get_project('ckpptor530ryr0ybheopt9fux') 

11 # Export image and text data as an annotation generator: 

12 labels = project.label_generator() 

13 # Export video annotations as an annotation generator: 

14 labels = project.video_label_generator() 

15 # Export labels as a json: 

16 labels = project.export_labels(download = True) 

Email me a link for downloading my export when it's ready 

± Generate export

Export Settings 

JSON 

CV 0 
abhishek padalkar 

National College of Ireland 

Start labeling 

Alexandra from Labelbox 

Hello! We have some exciting updates to share 

with you. Added 'itJ We released the Catalog ... 

Figure 2: Labelbox Json export

Step 3: Data Pre-processing and Data transformation
The annotated dataset created is in the Labelbox format, and for the Object detection and

Scaling models to read the input, it is necessary to transform it to the required model format.
First, we upload the Labelbox format dataset to Roboflow Web app.3 Roboflow Web app is
built for computer vision tasks of data pre-processing, different types of data augmentation, and
transforming the data to required object detection models format. Fig. 3 shows the Labelbox
annotated JSON uploading to the Roboflow web app.

Figure 3: Labelbox Json Upload to Roboflow

First, the data is split into 70:20:10 ratio as train, validation, and test set after uploading the
annotated dataset to Roboflow. Then, two versions of the dataset are created. On both versions,

3Roboflow Computer Vision Web App: https://app.roboflow.com/

3

https://app.roboflow.com/


the auto-orientation pre-processing step is applied. After applying auto-orientation, one dataset
version formed is of original size images. For the other version of the dataset, further pre-
processing is performed to resize the image dataset to 416x416 for faster model training and
performance. Thus, the second resized version of the dataset is formed. Fig. 4a and fig. 4b
shows performed data pre-processing for the original size version and resized version of the
plastic dataset.

(a) Original sized Dataset (b) Resized Dataset

Figure 4: Data Pre-processing for two versions of dataset

After performing data pre-processing, the datasets are exported to the required object detec-
tion format of Scaled-Yolov4 and EfficientDet model. Fig. 5 shows the screenshot of exporting
of the dataset in the two required formats.

(a) Export in EfficientDet TFrecord format (b) Export in Scaled-YoloV4 format

Figure 5: Exporting the data in required model format

Scaled-Yolov4 format and EfficientDet TFRecord format is downloaded for both resized
and original-sized transformed dataset.

4



4 Object Detection and Scaling Model(ODSM) De-

velopment

In the ODSM part of the research project, Scaled-Yolov4 and EfficientDet models are finetuned
on these two transformed datasets (Wang et al.; 2021; Tan et al.; 2020). These object detection
models are complex high-end models cloned from Github from their original author’s reposit-
ory.4,5 All the ODSMs’ model development, training and inference are performed on Google
Colab Pro.

4.1 Model Setup

The models are first cloned from their respective author’s Github repository. After cloning the
models, the required dependencies of the models are installed or imported. These requirements
are followed by the instructions given in their respective repository. Fig. 6 display screenshots
of Model Setup for EfficientDet and Scaled-Yolov4 for resized data.

(a) Original sized Dataset (b) Resized Dataset

Figure 6: Data Pre-processing for two versions of dataset

For EfficientDet Setup, the model is cloned, and required variables for model training are
initialized. The pre-trained weights of the COCO dataset, the last checkpoint, are downloaded
and copied in a respective folder of the model. EfficientDet model is implemented using the
TensorFlow library.

For Scaled-Yolov4, the model is cloned, and pre-trained weights of the COCO dataset are
downloaded. Pytorch library is imported to run Scaled-Yolov4. Dependencies such as Mish-
CUDA and PyYAML are installed.

4Scaled-Yolov4 Github link: https://github.com/WongKinYiu/ScaledYOLOv4/tree/

676800364a3446900b9e8407bc880ea2127b3415
5EfficientDet Github link: https://github.com/google/automl/tree/

9c58b0b487995d5e6b95ba366cb56cff8f17cd26/efficientdet

5

https://github.com/WongKinYiu/ScaledYOLOv4/tree/676800364a3446900b9e8407bc880ea2127b3415
https://github.com/WongKinYiu/ScaledYOLOv4/tree/676800364a3446900b9e8407bc880ea2127b3415
https://github.com/google/automl/tree/9c58b0b487995d5e6b95ba366cb56cff8f17cd26/efficientdet
https://github.com/google/automl/tree/9c58b0b487995d5e6b95ba366cb56cff8f17cd26/efficientdet


4.2 Model Training

The EfficientDet and Scaled-Yolov4 models were then trained with correct parameters to the
required train function. Both models were trained for 100 epochs, and batch size differed
for attaining convergence without consuming RAM above available RAM. Fig. 7 shows the
screenshot of code snippet of model training for EfficientDet-d0 and Scaled-Yolo-CSP on res-
ized plastic data.

(a) EfficientDet-d0 Training (b) Scaled-Yolov4-CSP Training

Figure 7: ODSMs Training

4.3 Model Testing and Inference

Following training, another important process of inference testing on the test set is performed
with these trained models. Fig. 8 shows models EfficientDet-d0 and Scaled-Yolov4-CSP run
inference on the test set. The inference run predicts and detects the plastic object type.

(a) EfficientDet-d0 Test run (b) Scaled-Yolov4-CSP Test run

Figure 8: ODSMs Inference Run on Test set of resized plastic object images

The inference test images are saved in the given folder for each model, which is displayed
to check the results visually. Fig.9 shows the screenshots of the inference test images of both
models.

Same code style, steps, and procedure are followed to train EfficientDet-d7x, Scaled-Yolov4-
P7 on the resized data and to perform a similar experiment on original sized data.

6



(a) EfficientDet-d0 (b) Scaled-Yolov4-CSP

Figure 9: Inference on Test Images for both ODSMs

5 Object Detection and Scaling Model(ODSM) Eval-

uation

The prediction results from the Scaled-Yolov4 model are copied from the output of the in-
ference test. Whereas the EfficientDet model only saved inference images directly, a small
python code is developed to type in the predicted output in text format. Fig. 10 displays the
code-snippet to get the predicted output from EfficientDet inference results.

Figure 10: Getting Predicted output in list format for evaluation

With the predicted class and true class of the test set, the models are evaluated with metrics
like accuracy, f1-score, mean average precision(mAP). The train time and inference time is
noted while performing training and inference tasks along with the size of the trained model.
With these results and measures, a total of 8 models are critically evaluated and compared
against each other.

7



5.1 Evaluation and Results

All the scores for the above metrics and measures were manually inputted in a dictionary for
each model on each dataset type. Using pandas, seaborn, and matplotlib libraries, the final
comparisons and visualization of all the models were performed. Fig. 11 shows the screenshot
of a scatterplot with Accuracy vs. mAP achieved by each of the eight trained models.

Figure 11: Code snippet of plotting scatterplot of Accuracy vs. mAP for ODSMs

6 Data Preparation for Artificial Neural Network

(ANN) model

In the next part of the project, the implicit features dataset of the plastic objects is created to
train the ANN model.

The “WaDaBa” dataset has an extra set of features for each plastic object image stored in
the image file. Pandas library was used to create this new dataset of implicit features. Using
python, filenames of the train and validation set of image dataset are extracted, and a train set
CSV file is created with implicit features paired with all the plastic types present in the data.
This data has 11 features and one true output classification input. The first five are binary
features of the predicted class: PET(0/1), HDPE(0/1), PP(0/1), PS(0/1), and Other(0/1). The
rest six are the implicit features from the file name: color, type of light, deformation level, dirt
level, cap, ring. Each plastic object image is paired with all five predicted classes making sure

8



no bias in the experiment. Fig. 12 shows the screenshot of code-snippet of implicit features
dataset creation.

Figure 12: Code-Snippet for implicit features dataset creation

For the test set of implicit features data creation, the predicted class for the test images
for each model is extracted and paired with the test image object implicit features. The test
set data file is different for all the models as each model had different predicted values. Fig.
13 demonstrates the implicit feature dataset with train and test for EfficientDet on the original
sized dataset.

(a) EfficientDet Train set (b) EfficientDet-d0 Test set

Figure 13: Implicit features dataset

9



7 Artificial Neural Network (ANN) Model Develop-

ment

The ANN model is trained on implicit features created to investigate the changes in classifica-
tion results of ODSMs. For each ODSM, the inference run created different predicted outputs,
thus creating a test set of implicit features. Keras library is used to create a simple ANN model.

The ANN model created is made up of Dense layers. The input layer consists of 128
neurons with input shape as (11,) and “tanh” activation function is used for the classification
task. Additional three hidden layers with 64, 32, and 16 nodes and “tanh” activation function
are present. The final output layer has eight nodes to classify five classes with a “softmax”
activation function. Fig. 14 displays the ANN model creation for EfficientDet-d0 resized
dataset trained on the implicit features.

Figure 14: ANN model building and training on implicit features

Fig. 15 shows class prediction using this implicit feature-based trained ANN model on the
EfficientDet-d0 predicted output on resized images. Further, to evaluate the model perform-
ance, a confusion matrix and classification report are used.

This process is applied for all the 8 ODSMs to investigate the impact of additional implicit
feature knowledge in class prediction.

10



Figure 15: ANN model testing on EfficientDet-d0 prediction results

References

Bobulski, J. and Piatkowski, J. (2018). Pet waste classification method and plastic waste data-
base - wadaba, pp. 57–64.

Tan, M., Pang, R. and Le, Q. V. (2020). Efficientdet: Scalable and efficient object detec-
tion, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Wang, C.-Y., Bochkovskiy, A. and Liao, H.-Y. M. (2021). Scaled-yolov4: Scaling cross stage
partial network, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 13029–13038.

11


	Introduction
	Hardware and Software Specification
	Hardware Setup
	Software Setup

	Data Preparation
	Object Detection and Scaling Model(ODSM) Development
	Model Setup
	Model Training
	Model Testing and Inference

	Object Detection and Scaling Model(ODSM) Evaluation
	Evaluation and Results

	Data Preparation for Artificial Neural Network (ANN) model
	Artificial Neural Network (ANN) Model Development 

