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An Object Detection and Scaling Model for Plastic
Waste Sorting

Abhishek Sunil Padalkar
x19221576

Abstract

Plastic waste sorting in recycling industry involves mechanical and chemical sep-
aration of plastic into Polyethylene Terephthalate (PET), High-Density Polyethyl-
ene (HDPE), and Polypropylene (PP). Currently, Polystyrene (PS) and “Other”
types of plastic are not sorted for recycling. Research has shown that higher recyc-
ling output is possible if most plastic types of waste are segregated at first. This
research proposes an Object Detection framework solution to sort plastic waste.
The framework combines an Object Detection and Scaling model (ODSM) and an
Artificial Neural Network (ANN) model incorporating implicit features to detect
five different types of plastics: PET, HDPE, PP, PS, and “Other”. The “WaDaBa”
Plastic waste dataset is used for training purposes which consists of four thousand
plastic waste images. This image classification dataset is pre-processed to object
detection dataset, and pre-trained Scaled-Yolov4 and EfficientDet scaling models
are applied on the plastic dataset. The results of eight trained models are presen-
ted in terms of accuracy, mean average precision(mAP), f1-measure for each plastic
type, train time, inference time, and model size. This research demonstrates the po-
tential of using the Scaled-Yolov4-CSP object detection model on higher resolution
images to sort plastic waste in the recycling industry.

1 Introduction

Plastic recycling has been a challenge from the start of its production. As compared
to 2019, plastic production increased to approximately 30% in 2020. Moreover, plastic
waste and pollution are grown due to mismanagement of plastic items [1]. An estimated
10-14% of plastic is recycled out of the total globally produced plastic. Where the other
calculated 24% is burned for fuel and energy production and, the rest 58-62% is discharged
into landfills, water, or scattered around.1 This problem of less than 15% of the global
recycling rate lies in the process of recycling, where the primary focus goes on plastic
waste collection and sorting. There are many plastic polymer types, out of which seven
types of plastics are out in the market with recyclable ability. These are Polyethylene
Terephthalate (PET) (1), High-Density Polyethylene (HDPE) (2), Polyvinyl Chloride
(PVC) (3), Low-Density Polyethylene (LDPE) (4), Polypropylene (PP) (5), Polystyrene
(PS) (6), Other (7). Due to their durable and flexible properties, PS, LDPE, HDPE, PP,
and PET are majorly used in the packaging industry [2]. The difficulty in plastic sorting
leads to a lower recycling rate and poor quality recycled products.

1OECD 2018, Improving Plastics Management: https://www.oecd-ilibrary.org/content/paper/
c5f7c448-en
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For many years, mechanical sorting, mainly Near-infrared(NIR) technology, is used
to sort the plastic in the recycling centers. Today, an increasing number of studies are
published in image-based smart waste recycling using neural networks(NN). Similar to
waste segregation for recycling, plastic waste also needs to be sorted into its individual
types to be recycled. One study by Bobulski & Piatkowski in 2018 performed image
classification to classify PET and Non-PET plastic using canny edge filter and histogram
approach on the “WaDaBa” dataset, which resulted in a 75.68% recognition rate[3]. The
challenge in the above study is to improve the poor feature extraction technique with one
of the best techniques in computer vision. This research pioneers in performing object
detection on the plastic waste only dataset to detect different types of plastic to aid in
plastic waste sorting.

The aim of the research is to investigate to what extent an Object Detection and Scal-
ing Model(ODSM) can precisely and accurately sort plastic waste. The second objective
is to examine if the accuracy of ODSM can be improved using additional implicit plastic
object features. To address the research question, the researchers derived the following
specific sets of research objectives:

1. Transform the “WaDaBa” plastic dataset to “WaDaBa” object detection dataset,

2. Investigate the state-of-the-art ODSMs on our plastic waste dataset,

3. Evaluate and compare ODSMs based on mAP, accuracy, f1-score, train time, infer-
ence time and model size,

4. Introduce an ANN model trained on implicit features of plastic objects as the second
stage and evaluate its effectiveness on the classification accuracy of ODSMs.

The major contribution of this research is introducing the ODSM approach to sort
plastic waste and a novel strategy to include implicit features after object detection to
improve the sorting of plastic waste. This research is helpful for plastic recycling centers
to start using computer vision-based object detection to sort plastic waste with ease and
less complex systems.

This paper will cover the following structure in order. First, we discuss related work
in Section 2. The research methodology adopted in this work is discussed in Section 3.
Section 4 discusses the design specification. Section 5 discusses the implementation of
the project. Section 6 discusses the evaluation, experiments performed and discussion in
this research. Section 7 concludes the research and discusses the future work.

2 Related Work

Today, plastic waste is sort into its polymer types using only mechanical methods. These
methods have become old, and not much research has been performed to improve these
processes. On the other hand, research in smart waste recycling using technology is
increasing. This section discusses related work in plastic waste sorting and smart methods
in the following sub-sections. Section 2.1 discusses current state-of-the-art techniques
used for plastic segregation in recycling centers. The studies and research performed in
smart waste segregation are discussed in Section 2.2. Section 2.3 discusses the researches
done so far in smart plastic waste sorting and reviews object detection models and feature
extraction methods.
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2.1 Current Plastic Waste Sorting technologies

Plastic Waste Sorting technologies are applied in recycling centers. Mechanical and chem-
ical recycling is the current widely used process to recycle plastic. This subsection dis-
cusses a brief review of current technologies for plastic waste sorting using mechanical,
chemical approaches and a new system proposed in MaRek research.

Mechanical plastic sorting technologies include Near-Infrared radiation (NIR), Hy-
perspectral Imaging (HSI), X-ray transmission, Fourier transformed Infrared Technique
(FT-IR), etc. [4, 5]. X-ray transmission cannot detect plastics other than PVC, whereas
plastics can be inaccurately recognized in Laser-Induced Plasma Spectroscopy (LIPS).
Near-Infrared radiation technology is highly used in sorting plastic, but black colored
plastics, plastic films, and some colored plastic remain undetected.

Chemical methods proved in plastic waste sorting are triboelectric separation, and
froth floatation [6]. Froth floatation can only separate high-density polymers, whereas
the triboelectric separation technique can separate plastic with sizes only 2-4mm.

An entire new plastic producing method is proposed by the MaReK research, where
plastics produced will have a fluorescent color to distinctively separate plastic waste with
their unique tracer technology [7]. This major shift in the whole new plastic production
and recycling process is difficult to achieve.

The mechanical technologies used in plastic waste sorting are complicated, rigid, and
non-flexible in terms of future upgradation, including using the technology. Furthermore,
these technologies generate negative value in plastic recycling due to the high expense
and low recycling output.

2.2 Towards the future of Smart Waste Segregation

Smart waste segregation is a modern approach in waste management and recycling where
waste is segregated or classified using computer vision(CV) and neural network based
models. In waste management, it is necessary to segregate recyclable waste from the
other non-recyclable waste. In this subsection, recent studies on smart waste segregation
and the use of machine learning to increase household recycling are discussed briefly.

Smart waste segregation using CV involves different neural network architectures
where it is essential to know which neural network architecture performs better in sorting
waste [8]. With the best performing neural network architecture, an object detection
model is built to detect and sort waste into different classes [9]. Further, a cloud-based
smart waste segregation architecture can be built using an object detection model to sort
recyclable waste [10]. After waste segregation and plastic recycling, further segregation
of differentiating pure and impure recycled plastic granulates using machine learning can
be performed to obtain high-quality recycled plastic by removing the impure plastic [11].

Furthermore, it is seen that householders can also be encouraged to engage in recycling
using machine learning-based gamification recycling applications. CV-based Inception-
ResNetV2, MobileNetV2, and DenseNet201 assure to perform waste segregation better
in a mobile device [12].

The ability of Convolution Neural Networks (CNNs) to provide reliable accuracy,
learn new unique and abstract features shows promise in the domain of computer vision
[13, 14, 15].
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2.3 Smart Plastic Waste Segregation Today

Smart plastic waste segregation, similar to smart waste segregation, is to sort plastic
waste further into different plastic types using CV and neural network-based models.
The plastic sorting problem is at an early research stage in the CV domain and needs
further study. Many types of research have been performed to classify different waste
materials. However, for plastics, further segregation into their individual plastic category
is necessary for recycling. This subsection discusses CV-based plastic sorting as a second
stage after mechanical sorting and histogram-based PET waste sorting.

A study proposed by Kokoulin et al. utilized a CV-based sorting technique using color
and shape to improve classification rate as a second stage after mechanical sorting [16].
Using MobileNet, the authors achieved 98% accuracy on their test set; however, when
tested in real-time with different camera settings dropped the accuracy significantly to
61%.

Bobulski & Piatkowski, in their research, directly addressed the plastic waste sort-
ing problem where they proposed a plastic waste “WaDaBa” dataset and performed a
simple classification to classify PET plastic types from rest types [3]. The approach used
was using color-histogram and Canny-edge-gaussian filter, which resulted in only 75.68%
accuracy. The image histogram method fails to incorporate features like shape, texture
which can improve classification results. The proposed dedicated plastic waste dataset is
necessary to expand on this problem domain.

2.3.1 Object Detection for Plastic Waste Sorting

The object detection model in plastic sorting is to detect multiple plastic waste types in
a single image frame. No research, to knowledge, is published in using object detection
in plastic-waste sorting. Thus, a relevant CV-based approach applicable to the plastic
dataset needs to be studied. In this section, the ability of Deep CNNs to learn transparent
features, the importance of selecting the best neural network architecture as a backbone
for object detection, challenges in small object detection, and state-of-the-art object
detection models to solve plastic sorting are discussed.

Plastics have different visual properties, but differentiating between similar-looking
plastics can be challenging. To extract such visual features, out of five feature extraction
methods, CNNs performs best consistently [17]. It is seen that images having shape,
texture, and color present together help Deep CNNs to achieve the best accuracy, and
Deep CNNs can detect transparent object features better [18, 19, 20]. Furthermore,
Deep CNNs show the ability to distinguish between transparent overlapping objects and
non-transparent ones with the same shape.

However, it is also crucial to select the best performing neural network architecture
to extract more features in object detection. While the DenseNet and InceptionNet
perform well in the waste classification, the current state-of-the-art CSPDarkNet53 and
EfficientNet perform better than them on the COCO dataset [8, 21, 22]. Also, including a
feature fusion module to enhance feature extraction shows improvement in overall mAP
[23]. Evidently, performing controlled scaling on classification and regression modules
and feature fusion modules also increase mAP in object detection [24].

In object detection, objects that fall in the 32x32 pixel or lower category are categor-
ized as small objects [23]. Plastic waste can be of varied sizes, and it cannot be assumed
that plastic waste is of large or medium size. With a realistic notion in mind, this research
hypothesize is that a plastic waste sorting model must be able to detect and predict small
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and large-sized plastic waste for a higher recycling rate commercially.
The main challenge in small object detection is to extract features, and since they are

in low resolution, comparatively, very less feature information is present. As discussed
above, a good neural network architecture combined with an feature fusion module im-
proves the detection accuracy. Furthermore, an neural network architecture learns small
object features better if contextual features are captured [25, 26].

Traditional object detection models show poor performance on small objects [23, 25].
Whereas, current state-of-the-art object detection models, Scaled-Yolov4 and Efficient-
Det, confirm an increase in the performance of small as well as large objects with their
backbone neural network architecture and feature fusion modules [24, 27]. Scaled-Yolov4-
P7 and EfficientDet-d7 achieved 55.5 and 53.7 mAP, respectively, on the COCO dataset.
Thus, scaling on the backbone network and feature fusion module increases the mAP for
small and large objects.

In conclusion, mechanical spectroscopy-based plastic waste sorting techniques are
costly, complex, non-flexible, whereas it is seen that object detection-based smart waste
segregation results in better value. However, CV-based plastic waste sorting in plastic
recycling has been largely understudied. While Bobulski et al. investigated the potential
of plastic waste classification using the image histogram-based feature extraction method,
their work was limited to this basic method [3]. It is seen that current state-of-the-art
object detection models are efficient and have higher feature extraction capability for
small and large objects. Aiming to address this gap, this work investigates a novel object
detection and scaling model approach with better feature extraction capability to solve
plastic waste sorting.

3 Methodology

In this section, the steps followed in the research methodology are discussed. This research
follows mainly five steps: data collection, pre-processing, transformation, data modelling
and training, and evaluation, as shown in fig.1.

Data Collection

Download

"WaDaBa" Website

Data Pre-Processing

Bounding box
annotation

Auto-orientation

Resizing to 
416x416

Resized Original Size

Data Transformation

            Roboflow Web App

Scaled-Yolov4
Format

EfficientDet
.tfrecord 
Format

Transform

Train set
70
:

20
:

10
Validation set

Test set

Data Modelling, Training and
Inference

Scaled-Yolov4 EfficientDet

Model Training

Model
Inference

Implicit 
features

ANN Model

Evaluation and Results

Model Evaluation

Results

Figure 1: Research Methodology

In the first step, Data Collection, the “WaDaBa” plastic dataset published by Bobulski
and Piatkowski (2018) was collected from the official website [3].2 The dataset consists of
four thousand plastic waste images of 5 plastic types: 1) PET, 2) HDPE, 3) PP, 4) PS,
5) Other. An ethical license agreement was signed to use this dataset for this research.

In the second step, Data Pre-processing, the image dataset was first converted to
an object detection dataset by manually creating bounding boxes for 4000 plastic waste

2“WaDaBa” Dataset: http://wadaba.pcz.pl/index.html
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images. Auto-orientation was also applied as the final pre-processing to the dataset.
These images then were resized to 416x416 size for faster training of the object detection
models. Another set of the original-sized images was also saved.

In the third step, Data Transformation, the image dataset was transformed in the
object detection model format of Yolo and EfficientDet. Using Roboflow web app, the
image dataset along with bounding box file was converted into Yolo bounding box format
as (class, centre x, centre y, width, height), and into EfficientDet format as .tfrecord file
with bounding boxes as xmax, xmin, ymax, ymin with a class label. Finally, the dataset
was split into 70:20:10 ratio as train, validation, and test, respectively.

In the fourth step, Data Modelling and Training, state of the art object detection
models, Scaled-Yolov4 and EfficientDet with their individual baseline and highest scaled
models were trained on the transformed plastic dataset [24, 27]. These models were pre-
trained on the COCO dataset and using transfer-learning finetuned on our plastic dataset.
For Scaled-Yolov4, first, the baseline scaled-yolov4-csp model was trained with batch size
16, followed by the scaled-yolov4-p7 model with batch size 8. For the EfficientDet, first,
efficientdet-d0 was trained with batch size 32 for faster training, and efficientdet-d7x was
trained with batch size 8. The batch size was reduced for both of the scaled models due
to excessive memory usage while training. All these four models were trained for 100
epochs, and the learning rate for both efficientdet models was made to 0.05 to obtain
convergence. The trained models were then used for inference on the test set. The final
classification result was passed to an artificial neural network(ANN) model trained on
the additional textual implicit features of each plastic object. The model was created
using Keras library with one input layer of 128 nodes, 3 hidden layers of 64, 32, 16
nodes using ‘tanh’ activation function, and final output layer using ‘softmax’ activation
function. The model was compiled using categorical cross-entropy function, optimized
using Adam optimizer and trained for 100 epochs.

In the fifth step, evaluation, the inference output of each model is evaluated based
on mean average precision and accuracy. The model performance is compared based on
training time, model size, and inference time. For each plastic-type, the model f1-score
is also evaluated. The final results of each model are compared and visualized using the
matplotlib python library.

4 Design Specification

The framework architecture of the implemented plastic sorting object detection and scal-
ing model contains two modules, object detection and scaling model, followed by an
artificial neural network(ANN) model as shown in fig. 2. The inner components of the
object detection and scaling model are discussed in section 4.1. The components of ANN
model is discussed in section 4.2.

4.1 Object Detection and Scaling Model

Plastic sorting starts with getting an image or set of images with plastic object waste.
These images is then passed on to object detection and scaling models to make an infer-
ence. These models are based on Scaled-Yolov4 and EfficientDet. An output inference
detection for plastic object images is generated, with a classified plastic object type along
with the bounding box and prediction score. This classification result is passed on to the
next ANN model for further improvement on classification.
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Figure 2: Framework architecture of Research Project

4.2 ANN Model

The ANN module contains an implicit knowledge input and the classification output from
the object detection model as the input. The ANN model is trained based on the implicit
knowledge about the plastic object present in the dataset. The model is trained on
implicit features of plastic object images. The model takes the input features to generate
the final classification of the object.

5 Implementation

The project was implemented with steps from dataset annotation, data transformation
to final output classification on different platforms. The acquired WaDaBa dataset was
uploaded to Labelbox, a platform to create a plastic waste object detection dataset. This
final bounding box annotated dataset was exported as a .json file. This dataset is in a
generic Labelbox object detection format that differs from the format needed for Scaled-
Yolov4 and EfficientDet models. The dataset is uploaded on Roboflow, a web application
that can pre-process and transform the dataset into a desired object detection model
format. Using Roboflow, two versions of the dataset were created, as discussed in section
3, and exported to Scaled-Yolov4 format and TFrecords EfficientDet format.

The generated dataset is uploaded on google drive and then imported to Google Colab
Pro for model training. Scaled-Yolov4 model implemented in Pytorch and EfficientDet
model implemented on Tensorflow were cloned from Github from the actual authors
of the models to Google Colab Pro [24, 27]. 3,4 All experiments were performed on
Google Colab with machines having Tesla P100 or V100 16GB graphics card with 32GB
memory. A total of 8 models were finetuned on our plastic dataset, Scaled-Yolov4 baseline
model, Scaled-Yolov4 P7 scaled model, EfficientDet-d0 baseline model, and EfficientDet-
d7x scaled model on the resized dataset and original-sized plastic dataset.

A training dataset for implicit features is created using the pandas library. This
dataset contains features of a plastic object such as color, type of light on the object,
deformation level, level of dirt on the object, if the object has a cap on it, and if the
object has a ring on it. These features available in the original dataset in the file name
are used to investigate if utilizing them can improve the accuracy of class identification.

3Scaled-Yolov4 Github link: https://github.com/WongKinYiu/ScaledYOLOv4/tree/

676800364a3446900b9e8407bc880ea2127b3415
4EfficientDet Github link: https://github.com/google/automl/tree/

9c58b0b487995d5e6b95ba366cb56cff8f17cd26/efficientdet
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Another input variable is created called a predicted class which is the output from the
ODSMs. All combinations of classes are paired with the implicit features to ensure no
bias and reliable results based on the implicit features. These input features are then
mapped to the output class variable. Fig.3 displays the creation of the ANN training
dataset. This dataset is used to train the ANN model. Then the inference on the test
set from each model is passed to the ANN model, and results are noted.

Vertical ContainerVertical ContainerVertical Container

For one Plastic object

Predicted Labels Implicit featuresPairing

True LabelPP Other

1 0000

Ring

Type 
of 

light
Deform

level
Dirt
level

0100 1 3 0 00

0100 1 3 0 00
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Implicit features of the object (PET) paired with all types

0100 1 3 0 00

0100 1 3 0 00

PET HDPE PS

0 0001

0 0010

0 0100

0 1000

Color Cap

Pairing for N plastic objects

Concatenate all to
create final dataset

Figure 3: Implicit features data creation

6 Evaluation

In this research, four experiments were performed which are described in subsections 6.1,
6.2, 6.3, and 6.4. Experiment 1, 6.1, is performed to replicate the PET vs. Non-PET
study by Bobulski et al. (2018). Experiment 2, 6.2, Object detection and Scaling models
are trained and tested on the final resized plastic dataset. In experiment 3, 6.3, Object
detection and Scaling models are trained and tested on the final original sized plastic
dataset. In experiment 4, 6.4, an ANN model further incorporating implicit features of
plastic objects is implemented. All the experiments were performed on the Google Colab
Pro setup discussed in the previous section, 5. Finally, the results of all the models are
compared.

6.1 Experiment 1: PET vs Non-PET

The aim of this experiment was to replicate the histogram-based using canny edge filter
PET plastic classification of Bobulski et al. (2018). In this experiment, the same steps
were followed as given in the paper. We used the Canny Edge filter using Gaussian filter,
locate the object using thresholding, and finally used a histogram to detect PET plastics
vs. Non-PET plastics. Table 1 demonstrates the comparison of our achieved results as
compared to Bobulski’s original study results. Our results came around the same as the
original study.
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Table 1: Comparison between Original Study and our Replicated study results

Accuracy False Acceptance Rate False Rejection Rate
Bobulski Result 75.68% 21.45% 2.86%

Our Result 73.77% 24.22% 2%

6.2 Experiment 2: ODSMs on resized plastic dataset

The aim of this experiment was to train and evaluate four ODSMs on the resized plastic
dataset. This was split into two sub-experiments, where EfficientDet(ED) was trained
first and then Scaled-Yolov4(SV4). Both models utilized were pre-trained on the COCO
dataset to achieve better detection and accuracy.

Sub-Experiment 2.1: ED-d0 and ED-d7x finetune on “WaDaBa”
In this sub-experiment, the ED-d0 baseline model and ED-d7x scaled model was trained

on the transformed resized dataset. The classification accuracy for ED-d0 and ED-d7x
was 75% and 71% respectively and mAP was 67% and 55% respectively. The accuracy
achieved was slightly lower than that of the Bobulski study.

Sub-Experiment 2.2: SV4-CSP and SV4-P7 fine-tune on “WaDaBa”
The SV4-CSP baseline model and SV4-P7 scaled model were trained on the transformed

resized dataset in this sub-experiment. The classification accuracy for SV4-CSP and
SV4-P7 was 97% and 90%, respectively, and mAP was 79% and 63%, respectively. This
sub-experiment demonstrated significantly better results than the previous one.

6.3 Experiment 3: ODSMs on original image size plastic data-
set

The aim of this experiment was to train and evaluate four object detection and scaling
models on the original size plastic dataset. This was split into two sub-experiments with
the same settings as the previous experiment. Here, we check if changing the resolution
size can improve the results for plastic sorting.

Sub-Experiment 3.1: ED-d0 and ED-d7x finetune on “WaDaBa”
In this sub-experiment, the ED-d0 baseline model and ED-d7x scaled model was trained

on the transformed original sized dataset. The classification accuracy for ED-d0 and ED-
d7x was 69% and 71% respectively and mAP was 65% and 56% respectively. This showed
lower results than the previous two sub-experiments.

Sub-Experiment 3.2: SV4-CSP and SV4-P7 fine-tune on “WaDaBa”
The SV4-CSP baseline model and SV4-P7 scaled model were trained on the transformed

original sized dataset in this sub-experiment. The classification accuracy for SV4-CSP
and SV4-P7 was 97% and 95% respectively, and mAP was 97% and 72% respectively. This
sub-experiment demonstrated the highest results than all the previous sub-experiments.
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6.4 Experiment 4: Artificial Neural Network incorporating im-
plicit knowledge

The aim of this experiment is to build and train an artificial neural network model which
takes the final class output of the trained ODSMs along with six implicit knowledge of
each plastic object image as input and gives a final class output. The aim was to find
out if utilizing additional implicit knowledge of plastic objects can improve the class
prediction accuracy of the trained ODSMs further. The table 2 shows the before and
after the accuracy of the class prediction of all the models using the final ANN module.

Table 2: Class Accuracy comparison before and after using implicit features

Model Class Prediction Accuracy
Before ANN After ANN

Scaled-Yolov4-Baseline (Original size image) 97% 81%
Scaled-Yolov4-p7 (Original size image) 95% 81%
Scaled-Yolov4-Baseline (Resized image) 97% 83%

Scaled-Yolov4-p7 (Resized image) 90% 83%
EfficientDet-d0 (Original size image) 69% 79%
EfficientDet-d7x (Original size image) 71% 79%

EfficientDet-d0 (Resized image) 74% 83%
EfficientDet-d7x (Resized image) 71% 83%

6.5 Discussion

In this research study, a total of four pre-trained object detection models were fine-tuned
on two variations of the “WaDaBa” plastic dataset. This section critically compares the
results of the experiments mentioned above to understand ODSMs performance in given
settings and the value of additional implicit plastic object features for classification.

A comparison of the four models on two variations of the dataset by accuracy and
mAP is shown in the fig.4a. The accuracy scores are on the test set, while the mAPs are
on the training set. The accuracy confirms how accurately the model classifies plastic
waste, whereas the mAP proves how precisely the model detects the object considering
the bounding box edges around the objects for each class. Models trained on original-
sized images show better accuracy and mAP score than those on resized images. Also,
the baseline scaled-yolov4-csp model on the original sized image shows promising results
with 97% accuracy and 97% of mAP on the “WaDaBa” dataset.

A comparison of the four models on two variations of the dataset by f1-scores for each
plastic-type is shown in fig.4b. The f1-score is calculated on the test data. All ODSMs
achieved a high f1-score for PET plastic objects, whereas none for Other plastic types.
Moreover, PP and PS plastic objects are less precisely detected than PET and HDPE
plastic types. This result demonstrates the limitation of this study directly relating to
our imbalanced dataset. The class proportion in the dataset is 55% for PET, 15% for
HDPE, 16% for PP, 13% for PS, and 1% for Other. It is also seen that the Scaled-Yolov4
models outperform the EfficientDet models in all plastic types impressively.

A comparison of the four models on two variations of the dataset by training time
and inference time is displayed in fig.5a. Training time is the total time consumed by the
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(a) Accuracy vs mAP (b) F1-score for each Plastic object type

Figure 4: Model Metric Summaries

model to train over 100 epochs. Inference time is the time taken for the model to detect
and classify the plastic object. For both, less time indicates better model performance.
It is also seen that Baseline Scaled-Yolov4-CSP models consumed significantly less time
to train and make an inference with 1.48 hrs and 0.02s, respectively, on original-sized
images with higher accuracy, mAP, and F1-score.

Model size comparison of the four models trained on two variations of the dataset is
shown in fig.5b. It is seen that EfficientDet models require significantly less memory to
store the model weights being more efficient in size than Scaled-Yolov4.

(a) Train vs Inference time

(b) Model Size

Figure 5: Model Performance Summaries

In this research, an additional experiment was performed to train an ANN model with
six implicit plastic object features to investigate if the final classification accuracy of the
ODSMs can be improved further. It is seen that feeding the output of the class from the
ODSM along with the implicit features does not guarantee improvement in the classific-
ation accuracy. This is because the ANN model is trained on the features independent of
those from ODSMs, thus not fully incorporating the convolution-based output from the
object detection model. Thus, Scaled-Yolov4 models classification accuracy output more
than 90% were degraded to 81-83%. In contrast, the EfficientDet model’s classification
accuracy output was improved to 79-83%. This is the limitation of this study where

11



the implicit features trained independently on the ANN model not incorporating image
feature output from ODSM.

This research demonstrated the potential of ODSMs on plastic waste sorting in the
recycling industry as compared to the current mechanical or chemical-based sorting.
The models trained were fine-tuned on our dataset showing the ability of continuous
improvement using transfer learning. ODSMs can also upgrade for better results with
more research in ease. This will also make the process cost and time-effective.

This research study aimed to explore the performance of Object detection and scal-
ing models based on accuracy and precision to sort plastic waste. Additional model
performance was evaluated in train time, inference time, and model size for practical
industrial use. Lastly, an experiment was aimed to evaluate the effectiveness of implicit
features using an ANN model on final classification accuracy for plastic objects. The key
implications resulted from the research study is given as follows:

• Baseline Scaled-Yolov4-CSP trained on higher resolution images of “WaDaBa”
dataset shows industry acceptable performance based on accuracy, mAP, and F1-
scores, train, and inference time with considerable model size.

• Scaled-Yolov4 ODSM outperforms in plastic recognition than histogram Canny edge
filter based study by roughly 23% accuracy on “WaDaBa” dataset.

• Incorporating implicit textual features of plastic objects trained independently on
the ANN model does not guarantee the increase in plastic classification accuracy.

• Practical use of ODSMs in plastic waste sorting can reduce cost and time as these
models are flexible to improve further, able to continuously train on new images on
the cloud, and use transfer learning to transfer weights when necessary.

• The dataset size with only 4000 images is still less for object detection and scaling
model to demonstrate the potential results.

7 Conclusion

The aim of this research was to explore the extent of object detection and scaling models in
smart plastic waste sorting. This research demonstrated that Scaled-Yolov4-CSP on the
original sized “WaDaBa” dataset shows promising industry-standard results in accuracy,
mAP, train, and inference time with considerable model size. Object detection and
scaling model with FPN shows better results in small objects like plastic waste than
using a Canny edge gaussian filter. This research shows the potential of using the Object
detection and Scaling model for plastic waste sorting in practice, but it still has a few
limitations which can be addressed in future work.

The limitation of the “WaDaBa” dataset having only 4000 plastic waste images can be
addressed by increasing the dataset size and more plastic object samples. In this study,
the plastic waste small objects were detected using only FPN as a feature enhancement.
In future work, an object detection model which utilizes contextual features to detect
small objects can be studied.
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