~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Sachin Nikam
Student ID: x19198159

School of Computing
National College of Ireland

Supervisor: Dr. Rashmi Gupta

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sachin Nikam
Student ID: x19198159
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Dr. Rashmi Gupta
Submission Due Date: 16,/08/2021
Project Title: Configuration Manual
Word Count: 652
Page Count: [1

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sachin Nikam

Date: 10th October 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Sachin Nikam
x19198159

1 Introduction

Configuration manual aims to provide the system requirements like hardware, software,
programming language and workflow to run the code.

2 System Configuration

2.1 Hardware

e OS: Windows 10

RAM: 16 GB

Processor: intel core i5 8th gen
Hard Disk: 1 TB

2.2 Software

e Anaconda: Python Jupyter Notebook
e Google Colab

3 Libraries required to be installed

The project is implemented locally on python using Jupyter notebook as IDE. Network
was train for 30 Epochs. Each Epoch could take 5 to 6 hours. To run smoothly and
increase the run time Google Colab Pro is recommended. Training time to train the
network can be reduced. It is important to import the following libraries in python for
smooth execution.

e pickle
e numpy
e glob

e keras

e music21
e pandas
® OS

e matplotlib

4 Instructions to run the code

e Unzip all the files and place in directory Artefact.zip

e Figure.l shows the directory after unzipping the files.

View

[Il preview pane &8 Bxtra arge icons i) Large icons |2 Medium icons [| Group by ~ [ttem check boxes B ‘_"‘«
[smallicons [BE List I Details Add columns ot | e -
Navigation [T petai = o= _| | soit Hide selected Options
o 00 [Mpeabpane | B e = content T pyr [lsieallcolmnstofit B Hidden ems T 5
Panes. Layout Current view Show/hide
& = v 1 1 > ThisPC > Local Disk(F) > National College of Ireland > Research Project > MLSTM > Artifacts v O
Modelling and *
MsO gy
R Programmin: y 3
X J o~
Research in Co e
Research Proje Code Data Dataset Output Weights

Final output
midi
MLSTM
Artifacts
Code
Data
Dataset
Maestro
2004
2006
2008
2009
2011
2013
2014
2015
2017
input

Figure 1: Directories where files are stored

e In the Artefact directory there is "Dataset” directory contains 3 sub-directories.
Maestro folder contains all the files of Maestro dataset, Midi folder contains dataset
from Feel my sound website and Sample folder contains the sample on which the
model is implemented. This includes 20 of 2017 folder from Maestro dataset.

e In the Code directory, there is mlstm.ipynb file. Open that code file.

e At first all the important libraries are imported.Figure.2 shows the imported lib-
raries

In [1]:

import glob # return file paths with specific file format or pattern
import pickle

import numpy

from music21 import converter, instrument, note, chord, stream # package to read and execute midi files
from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import LSTM

from keras.layers import Activation

from keras.layers import Batchnormalization as BatchMorm

from keras.utils import np_utils

from keras.callbacks import ModelCheckpoint

from keras.optimizers import SGD # Momentum cell to be added in the model
Libraries for Visualization

import numpy as np # linear algebra

import pandas as pd # data processing

import os

import matplotlib.pyplot as pl{

import matplotlib.lines as mlines

Figure 2: importing libraries

e Figure.3 shows the path of the dataset which need to be selected. In glob object

file path for the dataset need to be selected.

In [14]:

notes = [] # Dataframe to store the notes for the Midi files

for file in glob.glob("F:/Mational College of Ireland/Research in Computing/Music/Maestro Dataset/maestro-v1.e.8/input/*.

Generagte music2l objects
Music210bj = converter.parse(file)
print("Parsing ¥s" % file)
notes_to_parse = None
try:

subclassing, though instrument

subclass = instrument.partitionByInstrument(Music210bj)
notes_to_parse = subclass.parts[@].recurse()
except:

notes_to parse = Music210bj.flat.notes
Extract Pitch / Cherd info
for element in notes_to_parse:
if isinstance(element, note.Note):
notes.append(str(element.pitch))
elif isinstance(element, chord.Chord):
notes.append('.".join(str(n) for n in element.normalOrder))

Parsing F:/Nationsl College of Ireland/Research in Computing/Music/Msestro
ANO®41_MID--AUDIO-split_@7-86-17_Piano-e_1-81_wav--1l.midi
Parsing F:/MNational College of Ireland/Research in Computing/Music/Maestro
ANOB41 MID--AUDIO-split @7-86-17 Piano-e 1-81 wav--2.midi
Parsing F:/Nationsl College of Ireland/Research in Computing/Music/Msestro
ANOB41_MID--AUDIO-split_@7-86-17_Piano-e_1-81_wav--3.midi
Parsing F:/National College of Ireland/Research in Computing/Music/Maestro
ANOBA1_ MID--AUDIO-split @7-06-17 Piano-e_1-81 wav--4.midi
Parsing F:/National College of Ireland/Research in Computing/Music/Msestro
ANO@42_MID--AUDIO-split_@7-86-17_Piano-e_1-82_wav--1l.midi
Parsing F:/National College of Ireland/Research in Computing/Music/Maestro
ANOB42 MID--AUDIO-split @7-86-17 Piano-e 1-82 wav--2.midi
Parsing F:/Nationsl College of Ireland/Research in Computing/Music/Msestro
ANOB42_MID--AUDIO-split_@7-86-17_Piano-e_1-82_wav--3.midi
Parsing F:/National College of Ireland/Research in Computing/Music/Maestro
ANOBA3_MID--AUDIO-split @7-06-17 Piano-e_1-83 wav--1.midi
Parsing F:/Nationsl College of Ireland/Research in Computing/Music/Msestro
ANO®43_MID--AUDIO-split_@7-86-17_Piano-e_1-83_wav--2.midi
Parsing F:/National College of Ireland/Research in Computing/Music/Maestro
ANOB43 MID--AUDIO-split @7-86-17 Piano-e 1-83 wav--3.midi
Parsing F:/Nationsl College of Ireland/Research in Computing/Music/Msestro
ANOB43_MID--AUDIO-split_@7-86-17_Piano-e_1-83_wav--4.midi
Parsing F:/National College of Ireland/Research in Computing/Music/Maestro
ANOBA4 MID--AUDIO-split @7-06-17 Piano-e_1-84 wav--1.midi
Parsing F:/National College of Ireland/Research in Computing/Music/Msestro
ANO®44_MID--AUDIO-split_@7-06-17_Piano-e_1-84_wav--2.midi
Parsing F:/National College of Ireland/Research in Computing/Music/Maestro
ANOB44 MID--AUDIO-split @7-86-17 Piano-e_1-84 wav--3.midi
Parsing F:/Nationsl College of Ireland/Research in Computing/Music/Msestro
ANOB44_MID--AUDIO-split_@7-86-17_Piano-e_1-84_wav--4.midi
Parsing F:/National College of Ireland/Research in Computing/Music/Maestro
ANOBAS_MID--AUDIO-split @7-06-17 Piano-e_2-81 wav--1.midi
Parsing F:/Nationsl College of Ireland/Research in Computing/Music/Msestro
ANO®45_MID--AUDIO-split_@7-86-17_Piano-e_2-@1_wav--2.midi
Parsing F:/National College of Ireland/Research in Computing/Music/Maestro
ANOB45 MID--AUDIO-split @7-86-17 Piano-e 2-81 wav--4.midi

Dataset/maestro-vl.
Dataset/maestro-vl.
Dataset/maestro-vl.
Dataset/maestro-vl.
Dataset/maestro-vl.
Dataset/maestro-vi.
Dataset/maestro-vil.
Dataset/maestro-vl.
Dataset/maestro-vl.
Dataset/maestro-vl.
Dataset/maestro-vl.
Dataset/maestro-vl.
Dataset/maestro-vl.
Dataset/maestro-vi.
Dataset/maestro-vil.
Dataset/maestro-vl.
Dataset/maestro-vl.

Dataset/maestro-vl.

a.

a.

a.

a.

a.

a.

a.

a.

a.

a.

a.

a.

a.

a.

a.

a.

a.

a.

8/input\MIDI-Unprocessed_@41_PT
2/input\MIDI-Unprocessed 941 _PI
8/input\MIDI-Unprocessed @841 _PI
2/input\MIDI-Unprocessed_941_PI
8/input\MIDI-Unprocessed_@42_PT
2/input\MIDI-Unprocessed 942 _PI
8/input\MIDI-Unprocessed_042_PI
2/input\MIDI-Unprocessed_043_PI
8/input\MIDI-Unprocessed_@43_PI
2/input\MIDI-Unprocessed _©943_PI
8/input\MIDI-Unprocessed_@43_PI
2/input\MIDI-Unprocessed_@44 PI
8/input\MIDI-Unprocessed_@44 PT
2/input\MIDI-Unprocessed 944 PI
8/input\MIDI-Unprocessed_@44 PI
2/input\MIDI-Unprocessed_945_PI
8/input\MIDI-Unprocessed_@45_PT

2/input\MIDI-Unprocessed _©945_PI

Figure 3: Selecting File path and Parsing Midi files

e In the Data folder "note” file is present. note file holds the signatures of the music
from pickle of stored Midi files, which will be used with the weights generated by
the model. Figure.4 shows the file path of notes and flow of the code.

In [15]: with open('F:/National College of Ireland/Research Project/MLSTM/data/notes', 'wb') as filepath:
pickle.dump(notes, filepath)

In [16]: |n vocab = len(set(notes))
sequence_length = 100
Pitch info
pitchnames = sorted(set(item for item in notes))
note to int = dict((note, number) for number, note in enumerate(pitchnames))

Train X = []
Train_y = []

In [17]: for i in range(@, len(notes) - sequence length, 1):
sequence in = notes[i:i + sequence length]
sequence_out = notes[i + sequence_length]
Train_X.append([note_to _int[char] for char in sequence_in])
Train_y.append(note_to_int[sequence_out])

n_patterns = len(Train_x)

Train_X
Train X

numpy.reshape(Train_X, (n_patterns, sequence length, 1))
Train X / float(n vocab)

Train_y = np_utils.to categorical(Train_y)

Figure 4: File path to open notes from Data directory

e Figure.5 shows the model design which includes two LSTM layers by adding Mo-
mentum layer in to it.

In [18]: # LSTM Model
model = Sequential()
model . add (LSTM(
512,
input_shape=(Train_X.shape[1], Train_X.shape[2]),
recurrent_dropout=8.3,
return_sequences=True

))

In [19]: # Recurrent Layer
model.add(LSTM(512, return sequences=True, recurrent dropout=8.3,))
model.add (LSTM(512))
model.add(BatchNorm())
model.add(Dropout(8.3))
model.add(Dense(256))
model .add(Activation('relu'))
model.add(BatchNorm())
model.add(Dropout(©.3))
model.add(Dense(n_vocab))
model .add(Activation(' softmax'))
epochs = 50
learning_rate = 9.1
decay_rate = learning_rate / epochs
momentum = 8.8
sgd = SGD(learning_rate=learning_rate, momentum=momentum, decay=decay_rate, nesterov=False)
model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy'])
print(model. summary())

Model: "sequential 1"

Layer (type) Output Shape Param #
1stm_3 (LSTM) (None, 188, 512) ——
1stm 4 (LSTM) (Nene, 168, 512) 2099200
1stm 5 (LSTM) (None, 512) 2099200
batch_normalization_2 (Batch (MNone, 512) 2048
dropout_2 (Dropout) (None, 512) <]

Figure 5: Model design

e In Figure.6 file path is given where the weights are stored. Separate folder is created
in Artifacts where the weights can be stored. In the Artifacts already generated
weights are stored which can be used and model can be designed with "notes” file.
Model is trained in this step. Epochs can be changed depending on the machine
performance, 30 Epochs are given in this code for smooth execution which took 3
days to run the code.

In [21]: # Training

filepath = "weights-improvement-{epoch:82d}-{loss:.Af}-bigger.hdf5"
checkpoint = ModelCheckpoint(
filepath,

monitor="loss',
verbose=8,

save best only=True,
mode="min’

callbacks_list = [checkpoint]
model.fit(Train_X, Train_y, epochs=30, batch_size=1008, callbacks=callbacks_list)

scores = model.evaluate(Train_X, Train_y, verbose=8)
print("Accuracy: %.2f%%" % (scores[1]*16@))

Epoch 1/3@
56/56 [=] - 21295 38s/step - loss: ©.6807 - accuracy: 0.0019
Epoch 2/3@
56/56 [==== 1 - 2466s 44s/step - loss: 9.6453 - accuracy: 2.8016
Epoch 3/3@
56/56 [====] - 2824s 36s/step - loss: ©.5933 - accuracy: 0.0020
Epoch 4/3@
56/56 [====] - 2399s 43s/step - loss: 9.5101 - accuracy: 0.8019
Epoch 5/3@
56/56 [=] - 2821s 36s/step - loss: ©.4004 - accuracy: 0.0025
Epoch 6/3@
56/56 [====] - 2148s 38s/step - loss: 9.2984 - accuracy: ©.8029
Epoch 7/3@
56/56 [====] - 1985s 35s/step - loss: ©.2055 - accuracy: 0.0032
Epoch 8/3@
56/56 [====] - 1987s 36s/step - loss: ©.1492 - accuracy: ©.8034
Epoch 9/3@
56/56 [=] - 1880s 33s/step - loss: ©.1135 - accuracy: 0.0038
Epoch 18/30
56/56 [====] - 193@s 35s/step - loss: 9.8904 - accuracy: ©.8852
Epoch 11/3@
56/56 [====] - 21185 38s/step - loss: ©.8751 - accuracy: 0.0049
Epoch 12/38
56/56 [====] - 1806s 32s/step - loss: 8.8643 - accuracy: B.9066
Epoch 13/3@
56/56 [=] - 1914s 34s/step - loss: ©.8565 - accuracy: 0.0072

oL aaran

Figure 6: Training model and generating weights

e In Figure.7 shows the loading of weights to get the sequences and generating the
output file. File path for loading weights need to change. The last generated weight
is the weight with the minimum loss. Weights generated by the model are stored
in Weights directory. Due to submission memory limits, weight with the minimum
loss is placed in the directory.

def create network(Test_X, n_vocab):
""" create the structure of the neural network
model = Sequential()
model.add(LSTM(
512,
input_shape=(Test_X.shape[1], Test X.shape[2]),
recurrent_dropout=8.3,
return_sequences=True

))

model.add(LSTM(512, return_sequences=True, recurrent_dropout=8.3,))

model .add(LSTM(512))

model.add(BatchNorm())

model . add(Dropout(8.3))

model .add(Dense(256))

model.add(Activation('relu'))

model.add(BatchNorm())

model.add(Dropout(8.3))

model.add(Dense(n_vocab))

model .add(Activation('softmax'))

epochs = 58

learning_rate = 8.1

decay_rate = learning_rate / epochs

momentum = @.8

sgd = SGD(learning_rate==learning_rate, momentum=momentum, decay=decay_ rate, nesterov=False)
model.compile(loss="binary_crossentropy', optimizer=sgd, metrics=['accuracy'])
print(model.summary())
model.load_weights('C:/Users/SACHIN/weights-improvement-38-0.0254-bigger.hdf5")

return model
Figure 7: Loading weights

e In Figure.8 shows the loading the weight and taking signatures from "notes” file
and generating output file. The path needs to change for the output file and loading
notes data.

In [31]: def create_midi(prediction_output):
offset = @
output_notes = []
for pattern in prediction_output:
pattern is a chord
if ('.' in pattern) or pattern.isdigit():
notes_in_chord = pattern.split('.')
notes = []
for current_note in notes_in_chord:
new note = note.Mote(int(current note))
new_note.storedInstrument = instrument.Piano()
notes.append(new_note)
new_chord = chord.Chord(notes)
new chord.offset = offset
output_notes.append(new_chord)
else:
new_note = note.Note(pattern)
new_note.offset = offset
new_note.storedInstrument = instrument.Piano()
output_notes.append(new_note)
offset += 8.5

midi_stream = stream.Stream(output_notes)

midi_stream.write('midi', fp='test_output.mid')
with open('F:/National College of Ireland/Research Project/MLSTM/data/notes', 'rb') as filepath:
music21_obj = pickle.load(filepath)

pitchnames = sorted(set(item for item in music21_obj))

n_vocab = len(set(music21 obj))

Test_X, normalized_input = prepare_sequences(music21_obj, pitchnames, n_vocab)
model = create_network(normalized_input, n_vocab)

prediction_output = generate_notes(model, Test_X, pitchnames, n_vocab)

create midi(prediction output)

Model: "sequential 3"

Figure 8: Generating output

e Figure.9 shows the reading the output file for the analysis and further code shows
the visualisations of output file and the analysis.

In [43]:
FILEMAME="F: /MNational College of Ireland/Research Project/MLSTM/output.mid"

Llisting current data on our folder.

print({os.listdir("."))

from music2l import converter, corpus, instrument, midi, note, chord, pitch

def open_midi(midi_path, remove drums):
There is an one-Lline method to read MIDIs
but to remove the drums we need to manipulate some
Llow level MIDI events.
mf = midi.MidiFile()
mf.open(midi_path)
mf.read()
mf.close()
if (remove_drums):
for i in range(len(mf.tracks)):
mf.tracks[i].events = [ev for ev in mf.tracks[i].events if ev.channel != 18]

return midi.translate.midiFileToStream(mf)

base_midi = open_midi(FILENAME, True)
#print(base _midi)

Figure 9: Reading output file to for visualisations

e Sometimes the midi files does not support the normal media players present in the
system. These files need DAW or the special player to play the files. The same
can be played by using online midi playelﬂ Figure.10 shows the representation of
output midi file on the online midi player.

B Online Sequencer Sequences Members Import MIDI Forum Sell Your Music Online m Make Your Own Musi

- Make music online
Login Register ao v

BPM 116 Title oupurmid [0 B ¢® | Instrument Electric Piano | BXKE I QA | &~ | O « ucent’s Guide to Online S¢

0 1

Now choose which instruments to use for each track in the MIDI file.
4 5 6

Ele Pi
[Untitled Track] (0 notes) eculc Plano

[Untitled Track] (0 notes) LR

Electric Piano
Kick (0 notes)

< I < B < I <

Clap (0 notes) VEVLe(m(Piano

Electric Piano
Hat (0 notes) =

|I
<

Electric Piano
Snare (0 notes) -

Ele Pi
FL Keys (31 notes) el

Electric Piano

< I <

[Untitled Track] (0 notes)

Preview/Import

Add Audio Track

Figure 10: Online Midi player

References

Thttps:/ /onlinesequencer.net /import

	Introduction
	System Configuration
	Hardware
	Software

	Libraries required to be installed
	Instructions to run the code

