~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Rajesh Ramachandran Nair
Student ID: 20141289

School of Computing
National College of Ireland

Supervisor: Dr Catherine Mulwa

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Rajesh Ramachandran Nair
Student ID: 20141289
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Dr Catherine Mulwa
Submission Due Date: 16,/08/2021
Project Title: Configuration Manual
Word Count: 700
Page Count: [15

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 23rd September 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Rajesh Ramachandran Nair
20141289

1 Hardware Setup

Ubuntu 18.04.5 LTS

me | rajesh-HP-Laptop-15-dbOxxx

7.2GiB

essor AMD® A6-9225 radeon r4, 5 compute cores 2c+3g x 2
s AMD® Stoney
GNOME 3.28.2
S type 64-bit
Disk 250.0GB
Check for updates

Figure 1: The flow indicating methods that is used to identify plagiarism in music

The specification shown in Figure [1] is the machine which was used in this research.
It is having an installed RAM of 8 GB with a 64-bit Operating System and an in-
stalled Ubuntu 18.04.5LTS configuration. The Machine is equipped with AMD®) A6-
9225 Radeon r4, 5 compute cores 2¢+3g x 2 processor, and AMD(®) Stoney graphics.

2 Package Requirements and Installation

Python is used to create this project. Because training on a GPU can take a long time,
the IDE Google Colab was used to prepare the data and train the machine learning
models. The following is a list of libraries that are necessary to execute this project.
To ensure a smooth execution, make sure following libraries are installed on Python. A
package called Music21 is to added to Access The functions to manipulate MIDI files. This
Package was Developed by MIT.

e Numpy{|

'https://numpy.org

https://numpy.org

Pandad?

NLTKE

Sklearn]

MatplotlibEl

Gensim{
Music21

3 Data Preparation

In Figure [2 the following libraries were imported to performed Data preparation and
feature extraction

TN B QPR
import numpy as np #for covering the text to vectors
import pandas as pd# for the dataframe
from music2l import converter, corpus, instrument, midi, note, chord, pitch,stream,roman
#for analysis of the MIDI files to understand the structure of the file
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
#to plot the analysis
import requests#for webscraping the data
from bs4 import BeautifulSoup #for webscraping the data
from multiprocessing.dummy import Pool as ThreadPool # Use this when I0 is the problem
from multiprocessing import Pool # Use this when CPU-intensive functions are the problem.
import gensim, logging
#use for the WORD2VEC model to find the similarity relationship between the simillar chords
import pprint

Figure 2: Libraries required for the preprocess are imported

Next the Appropriate folders are created as shown in figure to store the data set and
they are stored in them. To understand what an MIDI file is made of a sample file is
download to understand them as shown in In Figure [3f]

The sample MIDI file is opened to remove the drum track in order to extract the
correct melody track from the file as shown in Figure [4]

Next the notes are extracted from the MIDI file as shown in Figure

The extracted notes are visualized using the code in Figure [6]

Other properties like the Time signature,chords key Signature is known from below
code Figure [7]

Zhttps://pandas.pydata.org

3https://www.nltk.org

“https://scikit-learn.org

Shttps://matplotlib.org

Shttps://radimrehurek.com

"https://web.mit.edu/music21/

8https://files.khinsider.com/midifiles/genesis/sonic-the-hedgehog/green-hill-zone.
mid

https://pandas.pydata.org
https://www.nltk.org
https://scikit-learn.org
https://matplotlib.org
https://radimrehurek.com
https://web.mit.edu/music21/
https://files.khinsider.com/midifiles/genesis/sonic-the-hedgehog/green-hill-zone.mid
https://files.khinsider.com/midifiles/genesis/sonic-the-hedgehog/green-hill-zone.mid

[1 # Defining some constants and creating a new folder for MIDIs.
midi path = "MIDIs"
sonic folder = "sonic"

'rm -r $midi path
'mkdir $midi path

Some helper methods.
def concat path(path, child):
return path + "/" + child

def download midi(midi_url, path):
'wget $midi url --directory-prefix $path > download midi.log

Downloading an example file.

sonic_path = concat path(midi path, sonic folder)

download midi(
"https://files.khinsider.com/midifiles/genesis/sonic-the-hedgehog/green-hill-zone.mid",
sonic_path)

print(os.listdir(sonic_path))

Figure 3: Downloading a Single MIDI file and creating folder structure

After the structure of the MIDI file is understood next a collection of it is downloaded
using beautiful soup a web scraping tool for python the data set includes 450 MIDI As
in Figure [§] file’][V][T] which will be stored in the directories created.Figure 8

After the downloaded files are loaded again to process it features of the MIDI especially
the chords or the melody is extracted.Figure []

A data frame is created to store the music name with their corresponding harmony
after the harmonic reduction is done.Figure

Below image shows the vectorizing a harmony before feeding them to train for
Word2Vec model. Figure

Word2Vec model is called to trin on the chords to perform chord substitution. Chord
sustitution is nothing but substituting a chord progression with a similar chord which is
used to perform harmonic Reduction.Figure

At last the MIDI files are converted to set of harmonic reduction values which will be
used to feed the rest of the model.Figure

Ynttps://files.khinsider.com/midifiles/genesis/sonic-the-hedgehog
Ohttps://files.khinsider.com/midifiles/genesis/sonic-the-hedgehog-2
"Uhttps://files.khinsider.com/midifiles/genesis/sonic-the-hedgehog-3

https://files.khinsider.com/midifiles/genesis/sonic-the-hedgehog
https://files.khinsider.com/midifiles/genesis/sonic-the-hedgehog-2
https://files.khinsider.com/midifiles/genesis/sonic-the-hedgehog-3

from music21 import converter, corpus, instrument, midi, note, chord, pitch

def open midi(midi path, remove drums):
There is an one-line method to read MIDIs
but to remove the drums we need to manipulate some
low level MIDI events.
mf = midi.MidiFile()
mt.open(midi_path)
mf.read()
mf.close()
it (remove drums):
for i in range(len(mf.tracks)):
mf.tracks[i].events = [ev for ev in mf.tracks[i].events if ev.channel != 18]

return midi.translate.midiFileToStream(mf)

base midi = open midi(concat path(sonic path, "green-hill-zone.mid"), True)
base midi

<music2l.stream.Score @x7ffbad30d750=>

Figure 4: open close operation and removing the drum track from the file

def extract notes(midi part):
parent element = []
ret = []
for nt in midi part.flat.notes:
if isinstance(nt, note.Note):
ret.append(max(0.8, nt.pitch.ps))
parent element.append(nt)
elif isinstance(nt, chord.Chord):
for pitch in nt.pitches:
ret.append(max (0.0, pitch.ps))
parent element.append(nt)

return ret, parent element

Figure 5: Extraction of notes

@ from music21 import stream

temp midi chords = open midi(
concat path(sonic_path, "green-hill-zone.mid"),
True) .chordify()

temp midi = stream.Score()

temp midi.insert(©, temp midi chords)

Printing merged tracks.
print parts countour(temp midi)

Dumping first measure notes
temp midi chords.measures(9, 1).show("text")

Figure 6: The extracted notes are visualized

c, timeSignature = base midi.getTimeSignatures()[@]

C»

music_analysis = base midi.analyze('key')
print("Music time signature: {@}/{1}".format(timeSignature.beatCount, timeSignature.denominator))
print("Expected music key: {0}".format(music_analysis))
print("Music key confidence: {0}".format(music analysis.correlationCoefficient))
print("0Other music key alterpatives:")
for analysis in music analysis.alternateInterpretations:

if (analysis.correlationCoefficient > 0.5):

print(analysis)

Music time signature: 4/4

Expected music key: a minor

Music key confidence: ©.8778275812674332
Other music key alternatives:

C major

F major

G major

d minor

Figure 7: Other properties of the Files are checked

def download midi files(url, output path):
site request = requests.get(url)
if (site request.status code != 200):
raise Exception("Failed to access {0}".format(url})

soup = BeautifulSoup(site_ request.content, 'himl.parser')
link urls = soup.find all('a’)

for link in link_urls:
href = link['href']
if (href.endswith(".mid")):
file name = get file name(href)
download path = concat path(output path, file name)
midi request = download file(href, download path)

def start midis download(folder, url):
I'mkdir $folder # It is fine if this command fails when the directory already exists.
download midi files(url, folder)

target _games = dict()

target games["sonicl"] = "https://www.khinsider.com/midi/genesis/soenic-the-hedgehog”

target games["sonic2"] = "https://www.khinsider.com/midi/genesis/sonic-the-hedgehog-2"
target_games["sonic3"] = "https://www.khinsider.com/midi/genesis/senic-the-hedgehog-3"

target games["sonicAndKnuckles"] = "https://www.khinsider.com/midi/genesis/sonic-and-knuckles"

for key, value in target games.items():
file path = concat path(sonic path, key)
start_midis_download(file_path, value)

Figure 8: A collection of 450 MIDI files are Webscraped

‘, def harmonic reduction(midi file):
ret = []
temp midi = stream.Score()
temp midi chords = midi file.chordify()
temp midi.insert(®, temp midi chords)
music key = temp midi.analyze('key')
max_notes per chord = 4
for m in temp midi chords.measures(@, None): # None = get all measures.
if (type(m) != stream.Measure}:
continue

Here we count all notes length in each measure,
get the most frequent ones and try to create a chord with them.
count dict = dict()
bass note = note count(m, count dict)
if (len(count dict) =< 1):
ret.append("-") # Empty measure
continue

sorted items = sorted(count dict.items(), key=lambda x:x[1])
sorted notes = [item[@] for item in sorted items[-max notes per chord:]]
measure chord = chord.Chord(sorted notes)

Convert the chord to the functional roman representation

to make its information independent of the music key.

roman_numeral = roman.romanNumeralFromChord(measure chord, music key)
ret.append(simplify roman name(roman numeral))

return ret

Figure 9: Harmonic reduction happens

def

def

def create midi dataframe(target_games):

key signature column = []

game_name_column = []

harmonic reduction column = []

midi_pame_column = []

pool = Pool(8)

midi params = []

for key, value in target games.items():
folder path = concat path(sonic path, key)
for midi name in os.listdir(folder path):

midi params.append((key, concat path(folder path, midi name)))

results = pool.map(process single file, midi params)
for result in results:
if (result is None):
continue

key signature column.append(result[0])

game name column.append(result[1])
harmonic_reduction_column.append(result[2])
midi name column.append(result[3])

d = {'midi name': midi name column,
'game name': game name column,
'key signature' : key signature column,
"harmonic reduction': harmonic reduction column}
return pd.DataFrame(data=d)

sonic df = create midi dataframe(target games)

Figure 10: A new dataframe is created after the harmonic reduction

vectorize harmony(model, harmonic reduction):
Gets the model vector wvalues for each chord from the reduction.
word vecs = []
for word in harmonic reduction:
try:
vec = model[word]
word vecs.append(vec)
except KeyError:
Ignore, if the word doesn't exist in the vocabulary
pass

Assuming that document vector is the mean of all the word vectors.
return np.mean(word vecs, axis=0)

cosine similarity(vecA, vecB):
Find the similarity between two vectors based on the dot product.
csim = np.dot(vechA, vecB) / (np.linalg.norm{vecA) * np.linalg.norm(vecB))
if np.isnan(np.sum(csim)):
return @

return csim

Figure 11: Vectorize the harmony for Word2vec

[1 import pandas as pd
import numpy as np

sonic_df = pd.read_excel("/content/Sonic MIDI.xLsx")

[1 # import modules & set up logging
import gensim, logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=Llogging.INFO)

model = gensim.models.Word2Vec(sonic df["harmenic reduction”], min count=2, window=4)

Figure 12: Word2Vec is performed for chord substitution

o sonic df = sonic df.sample(frac=1).reset index(drop=True)

° fiter = pd.Excelwriter('/content/Sonic_similarity shuffled.xlsx')
sonic df.to excel(writer)
writer.savel)

Figure 13: The data is preprocessed to be fed to final models

4 Model Implementation and Evaluation

The following packages were imported to run the machine learning models As shown in
Figure [14]

o import pandas as pd
import numpy as np
import nltk
from nltk.corpus import stopwords
from nltk.stem import SnowballStemmer
import re
from gensim import utils
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from gensim.models import Doc2Vec
from sklearn.metrics.pairwise import cosine similarity
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy score
from sklearn.metrics import confusion matrix
from sklearn.metrics import classification report
import matplotlib.pyplot as plt

Figure 14: imported packages

As shown in Figure [15] After the packages are imported the data In the Dataframe is
being loaded

Then bag of words is being vectorized using CountVectorizer() and the dataset is split
to 4:1 train test ratio for training,shown in Figure

After the train test split is done the train data is served to all the models one by
one and the results are evaluated using the Confusion matrix and ROC Curve,shown in
Figure [0

In this code the it checked at which value of K the KNN performs best and the
respective graph is plotted.As shown in Figure The KNN model is trained and
evaluated.

This code will be used to check the accuracy of each model at different plagiarism
values(0.8,0.7,0.6,05).As shown in Figure

This concludes with the Configuration Manual.

10

[1 duplicate = []
for 1 in sonic df.score:
if i = ©.5:#here the plagiarism values values can be adjusted to ©.8,0.7,0.6,0.5
duplicate.append(1)
else:
duplicate.append(@)

sonic_df['duplicate'] = duplicate

‘, corpus = []#bag of words are created to be fed the models

for i in range(len(sonic_df}):

source = re.sub("\[|\I|\, N], ", "",sonic_df['sourceChord'][i])
target = re.sub("\[|\]|\, N], ", "",sonic_df['targetChord'][1i])
source = source.lower()

target = target.lower()

source = source.split()

target = target.split()

source = ' '.join(source)

target = ' '.join(target)

sourceandtarget = source + target
corpus.append(sourceandtarget)#bag of words to be vectorized

Figure 15: plagiarism threshold can be adjusted and next cell is converting the chord to
bag of words

‘, Trom sklearn.feature extraction.text import CountVectorizer #bag of words are created to vectors
cv = CountVectorizer(max_features = 577)
X = cv.fit transform{corpus).toarray()
y = sonic df['duplicate’]

Trom sklearn.model selection import train test split
X _train, X test, y train, y test = train test split(X, y, test size = ©.20, random state = @

Figure 16: Bag of words are vectorized and data is split to 4:1 ratio

@ #Naive Bayes Model
from sklearn.naive bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(X train, y train)
y pred = classifier.predict(X test)
#evaluation and results
print(classification report(y test,y pred))
#ROC curve
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc curve(y test, y pred)

Figure 17: Naive Bayes model trained and evaluated

11

@ #Logistic Regression
from sklearn.linear model import LogisticRegression
classifierl = LogisticRegression(random state = 0)
classifierl.fit(X train, y train)
y pred = classifierl.predict(X test)
#evaluation and results
print(classification report(y test,y pred))
#Roc curve
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc curve(y test, y pred)

Figure 18: Logistic Regression model trained and evaluated

‘, #Decision tree Classifier
from sklearn.tree import DecisionTreeClassifier
classifier2 = DecisionTreeClassifier(criterion = 'entropy’, random state = @)
classifier2.fit(X train, y train)
y pred = classifier2.predict(X test)
#evaluation and results
print(classification_report(y test,y pred))
#Roc curvy
from sklearn.metrics import roc curve
fpr, tpr, thresholds = roc curve(y test, y pred)

Figure 19: Decision tree classifier model trained and evaluated

° #Random Forest Classifier
from sklearn.ensemble import RandomForestClassifier
classifier3 = RandomForestClassifier(n estimators = 18, criterion = 'entropy', random state = 0)
classifier3.fit(X train, y train)
y pred = classifier3.predict(X test)
#evaluation and results
print(classification_report(y_test,y pred))
#Roc curve
from sklearn.metrics import roc curve
fpr, tpr, thresholds = roc curve(y test, y pred)

Figure 20: Random forest model trained and evaluated

12

O #n

from sklearn.neighbors import KNeighborsClassifier
#Setup arrays to store training and test accuracies
neighbors = np.arange(1, 3)
train accuracy =np.empty(len(neighbors))
test accuracy = np.empty(len(neighbors))
for i,k in enumerate(neighbors):

#Setup a knn classifier with k neighbors

knn = KNeighborsClassifier(n neighbors=k)

#Fit the model
knn.fit(X train, y train)

#Compute accuracy on the training set
train accuracy[i] = knn.score(X train, y train)

#Compute accuracy on the test set
test accuracy[i] = knn.score(X test, y test)

print(k)

Figure 21: K number is determined

13

[] #K number plot
plt.title('k-NN Varying number of neighbors')
plt.plot(neighbors, test accuracy, label='Testing Accuracy')
plt.plot(neighbors, train accuracy, label='Training accuracy"’)
plt.legend()
plt.xlabel(‘Number of neighbors')
plt.ylabel('Accuracy"')
plt.show()

@ #KNN model called
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n neighbors=2)
knn.fit(X train,y train)
y pred = knn.predict(X test)
#Evaluation and results
print(classification report(y test,y pred))
#Roc Curve
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc curve(y test, y pred proba)

Figure 22: KNN model trained and evaluated

‘, #bar plot of accuracy of each model at different plagiararism threshold wvalue
height = [95,92, 89, 86]
bars = ['0.5', '8.6', '8.7', '8.8']
plt.bar(bars, height)
plt.ylabel('Accuracy')

plt.xlabel('Different Plagiarism threshold')
plt.title('Accuracy at different threshold of KNN Model')

Figure 23: Accuracy graph for each model is plotted with different plagiarism threshold

14

References

15

	Hardware Setup
	Package Requirements and Installation
	Data Preparation
	Model Implementation and Evaluation

