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A Deep Learning Recommender System for
Anime

Vidyashree Mahaling Mutteppagol
x19241283@student.ncirl.ie

Abstract

The extensive market available and the rising popularity of the anime industry neces-
sitate a dedicated research study to help build a recommender system that can generate
personalized and accurate anime recommendations for users. The prominent machine
learning models such as the k-nearest neighbours, content-based, collaborative filtering,
autoencoders and hybrid models, that are often used in recommender systems have a
huge potential for development. These models experience data sparsity and cold-start
issues and there is an opportunity for improvement in their predictive accuracies as well.
As a result, a recommender system with a Deep Learning collaborative filtering-based
model is proposed in this research which provides anime recommendations that are highly
relevant to the users’ likes and interests. This model will pre-process the data and trans-
form it employing the techniques of embedding and batch normalization. The anime
dataset used in the research is obtained from the open-source platform - Kaggle. The
top anime recommendations are generated for the user in three cases - User-based CF
model, Item-based CF model and our proposed Model-based CF using Deep Learning
and the results are qualitatively measured and found to be very close to the interests of
the users. In addition to generating the anime recommendations, the proposed model
is evaluated using the metrics of Mean Squared Error (MSE) and Mean Absolute Error
(MAE). The closer to zero values obtained for these metrics of MSE and MAE indicates
that the model performs efficiently.

Keywords: Deep Learning, Collaborative Filtering, Anime, Data Sparsity,
Recommender Systems, Cold-start

1 Introduction

1.1 Background

The volume of digital information at one’s disposal has increased at an unparalleled rate
since the inception of the internet. The task of separating useful data from heaps of useless
data is becoming arduous with such vast amounts of information. Despite the fact that
the search engines such as Google and Bing have been greatly perfected to make relevant
recommendations, they fail to provide content that is highly personalized which is tailored
to the unique likes and interests of individual users. This forms the primary reason for
the increased popularity of the Recommender Systems (RSs) since the previous decade.
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Currently, the RSs are being used in every domain, from recommending music, movies,
books, e-commerce products to even making suggestions for the queries themselves when
people seek answers from the internet regarding anything. In addition to making the
lives of the end-users much simpler, this technology of RSs also helps all the affiliated
businesses by increasing their revenue. When the market is this large, it only makes sense
to strive to enhance the accuracy of the recommendations made.

Although a number of machine learning models have been employed to date to build
the RSs, the one that has sparked a lot of research and attention in recent days is the use
of Deep Learning models. Because of their competency in processing complicated data in
multiple forms like audios, text, videos and pictures, a plethora of Deep Learning-based
models for RSs has been developed in recent years. The application of Deep Learning
in RSs also helps further improve the prediction accuracy and the trustworthiness in the
recommendations made by retrieving the otherwise hidden significant features.

1.2 Motivation

One of the main objectives of building RSs is forecasting the future items that are most
likely for the dataset in question. The output of this prediction can take the form of a
numeric rating, or a binary score or a ranked list of recommended items. The numeric
rating form of output is used by well-known tech companies like Netflix and Amazon.
As a result, there is a lot of room for bettering the predictive accuracy of recommender
systems. This also helps in the growth of the organizations because recommendations
that are highly accurate lead to satisfied customers and their continued association with
the products and services provided. There’s also a huge scope for gaining profit by using
efficient recommender systems with high predictive accuracies in the anime industry
since it has a mass following in the area of entertainment. Studies on the anime industry
estimated that the anime was worth USD 24.23 billion in the year 2020, and is anticipated
to be worth USD 43.73 billion by the year 2027 1. The estimates of this study are
an excellent indicator of the value that the anime industry holds and how building an
RS that provides highly accurate recommendations can be a profitable venture. These
estimates also suggest that, with the anime industry turning into such a strong market,
the number of anime television series and movies produced each year would skyrocket.
It will only make the task of discovering anime that appeals to an individual’s tastes far
more confusing and laborious. Therefore, designing and building a Deep Learning RS
that addresses the issues of cold-start and provides highly accurate recommendations to
the users is an intriguing and profitable research topic.

1.3 Target Users

This research aims in building a RS employing a Model-based Collaborative Filtering
using Deep Learning technique that can generate anime recommendations to the users
with great predictive accuracy. This will be of great benefit to the anime fans and the
active members of the anime community since this RS can help them obtain high-quality
suggestions based on their individual preferences and similar users in the community.
This model could further be employed to boost the sales of the subsidiary businesses
resulting from the anime industry, which mainly sell anime-related goods or streaming
services.

1https://brandessenceresearch.com/technology-and-media/anime-market-size
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1.4 Research Question

Is it possible to build a Model-based Collaborative Filtering recommender system for
anime using Deep Learning?

1.5 Research Objectives

The following are the objectives of this research to help answer the research question
presented in the above section 1.4:

1. Design a Model-based Collaborative Filtering recommender system using Deep Learn-
ing that can provide highly relevant recommendations to the user based on their
previous rating history and also similar users as them. In addition to that, predict
the user’s ratings to the animes recommended.

2. Does the change in activation function used in the Adam optimizer for the Deep
Learning in the proposed recommender system influence the mean standard error
and the recommended anime? How are the running times impacted?

1.6 Justification and Scope

Though there have been numerous models built for recommending anime, there continue
to exist problems of cold-start and data-sparsity. By employing the Deep Learning ap-
proach to collaborative filtering technique and effectively utilizing the data of similar
users, the proposed model successfully the problems of data-sparsity and cold-start. In
accordance with the computing power available, the number of hidden dense layers in the
model can be increased to further enhance it’s performance.

2 Related Work

2.1 Introduction

The success of any Recommender System (RS) relies on how relevant are the recommend-
ations made to the user. And with the exponential rise in the magnitude of the data in
recent days, this task is only getting arduous. On the bright side though, this has led to
the development of highly advanced algorithmic models for the RSs. Zhang et al. (2019)
classify the currently used RSs into three comprehensive categories – the content-based,
the collaborative filtering and the hybrid RSs. Attempts to solve the problems in con-
ventional RSs such as the data-sparsity, cold-start etc, resulted in the development of
the Deep Learning models. Not only did these Deep Learning models allow the use of
varied data types like audio, video and images along with the text, they were also easily
scalable to huge volumes of data. The subsequent sections present and critically review
the various Deep Learning models employed in the RSs today.

2.2 Model-Based Collaborative Filtering Recommender Systems

A novel model employing the Alternating Least Squares (ALS) method and using the
CF technique as the base for recommending anime tv shows and movies, was proposed
by Girsang et al. (2020). The ALS method helped match the history of the users. By
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normalizing the movie ratings in the dataset, the problem of cold-start was effectively
addressed. And the SimRank tool helped tackle the data sparsity issue. The gradient
descent use minimizes the cost function and the parameters with small values pertaining
to the users are randomized. Post these steps, the model makes recommendations on
the relevant anime. The dataset used for evaluating the proposed model was obtained
from the site of Kaggle with 12294 rows of data for data on anime tv shows and movies
and 73,516 records for users. In addition to generating recommendations based on the
similarity index of the users, the study also evaluates the RMSE (which was found to be
2.537 for the proposed model) and predicts the anime ratings. If the additional features of
the users and anime could be better utilized in addition to the user history, the proposed
model generate highly relevant recommendations to the users. Therefore, this study
provides adequate evidence that the CF models could be employed to generate optimum
recommendations for our proposed research study with the inclusion of Deep Learning
methodologies.

It is found that there is either implicit or explicit dependency on the feedback data
when the RSs are modelled on the user preferences. The models based on the CF methods
employ explicit feedback data and in cases where there is sparsity in the rating data, the
performance presented by them is sub-par. And hence, Feng et al. (2021) claim that
the aforementioned reasons render them highly disadvantageous and propose a novel
CF ranking model that efficiently utilizes both the implicit and the explicit feedback
data. When new users are added to the system, this model successfully addresses the
cold-start and data-sparsity problems. The proposed CF ranking model is a result of
an amalgamation of the pairwise-ranking approach of Bayesian Personalized Ranking
(BPR) and the rating-oriented approach of Probabilistic Matrix Factorization (PMF)
and is termed as the Rating Bayesian Personalized Ranking (RBPR). The datasets used
for the evaluation of this model are - Ciao, MovieLens1M, FilmTrust and MovieLens100k
and the metrics used are Mean Reciprocal Rank (MRR), Recall, Mean Average Precision
(MAP) and Precision. The RBPR model successfully alleviates the cold-start problem in
the RSs and outperforms the baseline models in all of the four datasets used for its testing.
Despite these impressive results, the proposed model fails when recommendations are to
be made in cases where the rating number of the user is not more than one.

2.3 Autoencoder–Based Recommender Systems

With an aim to take advantage of the multiple user preferences that are nonlinear, hidden
yet significant and also attain recommendations that are highly accurate, Shambour
(2021) proposed an autoencoders based Deep Learning model. This model makes use
of the feedforward neural networks concept employed in the recommendation algorithm
called the Autoencoder-based Multi-Criteria (AEMC). The datasets used for testing and
evaluating the performance of the proposed model in the study were Yahoo! Movies and
TripAdvisor. The Multi-Criteria User-based CF (MC-UCF), the Multi-Criteria User-
based Artificial Neural Network (MC-ANN), and the Single-Criteria User-based CF (SC-
UCF) models were used as the baselines against the proposed model. On evaluation, the
proposed AEMC model was found to outperform the baseline models. The AEMC model
presented enhancement in the MAE by 11.73%, 19.97% and 35.51%, and accuracy in the
recommendations by 8.36%, 17.32% and 27.32% over the MC-ANN, the MC-UCF and
the SC-UCF models respectively.

A common problem encountered by the widely-used models like the Matrix Factoriz-
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ation and the CF is the data-sparsity in their rating matrices. A recommended way to
address this issue is to extract the important features from the side information available
on both the users and items and integrate them into the model. Any noise present during
these extractions has to be carefully excluded. Based on this idea, a novel model-based
RS, named the Stacked Discriminative Denoising Autoencoder based Recommender Sys-
tem (SDDRS) was proposed by Wang et al. (2019). This model incorporated the rating
information and the significant side information available in the data into a model based
on Matrix Factorization that employed Deep Learning. The proposed SDDRS model was
tested on datasets of varied sizes viz. MovieLens10M, MovieLens100k and MovieLens1M.
A huge variety of baseline models were used against the SDDRS model for evaluating its
performance such as the Sparse Linear Method (SLIM), the Sparse Linear Methods with
Side Information (SSLIM), the Probabilistic Matrix Factorization (PMF), the Collaborat-
ive Denoising Auto-Encoder (CDAE) and the additional Stacked Denoising Auto-Encoder
(aSDAE), and it outperformed them all. RMSE was used as an evaluation metric and the
proposed model had the lowest values among all the models tested with values of 0.6501,
0.5021 and 0.5019 for the MovieLens10M, MovieLens100k and MovieLens1M datasets
respectively. This model effectively addressed the issue of data sparsity. However, the
model fails to address the cold-start issues in the RSs.

2.4 Fuzzy Logic–Based Recommender Systems

Although it might not be the commonly preferred model like the CF and the content-based
models in building RSs but fuzzy logic can be employed to generate realistic recommend-
ations. This is made possible by the fact that fuzzy logic helps examine the ambiguities
and the uncertainties inherent in the calculation of similarities between the items and the
users. Shojaei and Saneifar (2021) propose a novel model called the MFSR that determ-
ines the similarity based on a hierarchical order. MovieLens1M and MovieLens100K are
the datasets and F1, Precision, MAE and Recall are the evaluation metrics employed in
the evaluation of the model proposed. The New Heuristic Similarity Model (NHSM) and
the Proximity-Impact-Popularity (PIP) were the state-of-the-art models that were used
as the baselines against the MFSR model. The MFSR model outperformed these models
with an F1 value of 0.654 and an MAE value of 0.423 with noteworthy enhancements in
precision and recall values too. The proposed MFSR model could further be enhanced
by incorporating the parameters from the social media networks and detecting the levels
dynamically when multi-level similarities are evaluated.

2.5 Recurrent Neural Network–Based Recommender Systems

Nápoles, Grau and Salgueiro (2020) proposed a novel model for building the RSs based
on the Long-Term Cognitive Networks (LTCNs). LTCNs are a kind of Recurrent Neural
Networks (RNNs) that employ prior knowledge structures. The proposed study excluded
human involvement of any kind, and therefore, employed the Pearson’s correlation coeffi-
cients in place of the prior knowledge structures that are normally used in LTCNs. This
model extended the general usually LTCN model by incorporating the Gaussian-kernel
neurons and also used the user-item based rating matrix. The missing values for ratings
in the dataset were compensated for by using the approximate values determined by the
neurons and thus completed patterns were fed to the LCTN. Since this was an RNN based
model, it comprised of a process that had a learning process with three steps. In cases
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where the prior knowledge structure was not available the weight matrix was calculated
at first, then the Gaussian neurons were trained next and then in the last step, the non-
linear neurons were fixed by employing a new variant of the non-synaptic backpropagation
algorithm. The baselines models used against the proposed model were the matrix fac-
torization (MF), the neural network autoencoder (AE), the k-nearest neighbour (kNN),
the variational autoencoder (VAE) and the single value decomposition (SVD). The study
used three sized variants (top 50, top 200 and top 500) of these three datasets - Netflix,
MovieLens10M and anime for testing the proposed model. The proposed model outper-
formed the baseline models in the top 50 and top 500 categories for the anime dataset,
the top 50 categories for the MovieLens10M dataset and had the fewest errors in the top
50 categories for the Netflix dataset. The cold-start problem which plagues most of the
RSs was solved successfully in this model. This forms a major advantage of this proposed
model in its consideration for application to our research work. An area that could use
help or improvement in this model is utilizing the contextual information about the items
when defining the weight matrix of the LTCN model.

2.6 Hybrid Recommender Systems

In an attempt to better the predictive accuracy, and solve the problems of the RSs’
inability to learn non-linear latent features, an innovative Deep Learning hybrid model
was proposed by R, Kumar and Bhasker (2020). The proposed model was based on a
Deep Neural Network (DNN) that was built by the consolidation of the side information
present on the items and users. The learning rate of the model is inversely proportional
to its weight decay. Each of the model’s three hidden layers comprises a linear function, a
LeakyRLU and a dropout. The issues of overfitting data are managed by the application
of techniques like dropout and regularization. The cyclical variations in values through
multiple epochs help better the accuracy of the model. The datasets used in this study are
FilmTrust, MovieLens100K, MovieLens1M, and Book-Crossing. The model is evaluated
by employing the satisficing criterion of running time and the optimizing criterion of
predictive accuracy. The predictive accuracy metrics used are the Mean Absolute Error
(MAE), the Mean Squared Error (MSE), the R-squared (R²) and the Root Mean Squared
Error (RMSE), and the running time metrics are the SD and the Mean. The existing
models are outperformed by the proposed hybrid model in the predictive accuracy criteria
in the study. With improvements of 0.7%, 6.27%, 1.2%, and 2.5% for MAE, RMSE, MSE
and R² for the dataset MovieLens100K, the proposed model outperforms the best baseline
technique employed in the model. But there is scope for improvement in the running times
of the proposed model. It consumes more time for training than almost all the baseline
models except for the Nearest Neighbour model. Addressing the problems in streaming
the data and the rankings instead of just solving the rating predictions problems would
help better the proposed model.

Although the RSs built on the memory-based CF help increase the accuracy by em-
ploying the similarity features like the Pearson Correlation Coefficient (PCC), they can’t
be applied to large datasets that have varying data types. To address this issue, Mu
et al. (2019) propose a model with a highly enhanced similarity measure called the Com-
mon Pearson Correlation Coefficient (COPC). To preserve the monotonicity property and
help better the PCC measure, the proposed model makes use of a distance function. In
addition to this, the model also has two additional measures – the Jaccard value and
the Hellinger Distance (Hg) which is a global similarity measure. These measures help
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overcome the data sparsity problem and reduce the effects caused due to the lack of co-
rated items. Anime, MovieLens, BookCrossing and Jester were the datasets used in the
evaluation of the proposed model. The evaluation metrics such as F1-measure, precision
and recall were used in the study and their values saw a measured rise as the number of
recommendations increased. Concerning all the four datasets used, the proposed model
outperformed the baseline models considered. An area of improvement for the proposed
model in this study is the inclusion of other salient factors which could further help
enhance the performance of the RS, such as the elements of diversity, popularity and
viewing times. Data sparsity, which is a major problem that plagues the RSs, is very
efficiently addressed in the proposed study.

A novel, matrix-based factorization model called the Bernoulli Matrix Factorization
(BeMF) was proposed by Ortega et al. (2021) to generate both the prediction and reliab-
ility values. The major difference in this model lies in the fact that instead of employing
the model-based CF technique, it uses the memory-based filtering model. It doesn’t
use the extended architectures that are commonly used to provide the reliability values.
Most RSs use the regression models to design the classification systems in them but the
proposed model uses the Bernoulli distribution-based model which is a huge improve-
ment. The proposed model was evaluated on three datasets – MyAnimeList, FilmTrust
and MovieLens. The baselines models used for comparison against the proposed BeMF
model were the user-based KNN and the item-based KNN which employed the similarity
metric - Jaccard and Mean Squared Difference (JMSD). The evaluation metric of the
confusion matrix was used which showed that the model provided correct predictions for
the majority of the cases. A plot on the quality of predictions also backed up the argu-
ment that the predictions of the BeMF model were highly accurate which had predicted
ratings in the confidence interval of 30% to 50%. A major shortcoming of this study is
that it doesn’t address the cold-start user problems despite achieving high accuracy in
predictions and reliability.

2.7 Dempster–Shafer Theory–Based Recommender Systems

Dempster–Shafer theory (DST) is a general framework that is used to solve uncertainty
problems. It also helps in understanding other theories like the imprecise probability
theory. By employing the DST, a novel method termed, the 2-probabilities focused union
was proposed by Nguyen and Huynh (2017) for application in the RSs. The information
on the user preferences around the products and the services was merged in this method
using the DST. The top two focal elements with the highest probabilities, represented by
the user preferences’ mass functions were retained while discarding the rest as noise. To
test the model, the Movielens and the Flixster datasets were used and to measure the
accuracy of the recommendations made, the evaluation method of Dempster-Shafer Mean
Absolute Error (DS-MAE) was used. For a 24-user combination, the model obtained very
low values for the Standard Deviation (SD) and the Mean. For 4-users, the SD was 0.01
and for 1-user it was 0.106. Despite this, the model has its own advantages, in that, its
computation time showed huge improvements over the 2-points basepoint model, and it
could combine imperfect and uncertain information with the user preferences. Not only
that but the user preferences obtained from diverse sources could also be combined and
used in this model. The area that needs improvements for this model is the accuracy of
the recommendations generated.

Providing soft ratings is a modern, novel technique that is employed in RSs nowadays.
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This technique facilitates building a model that makes use of subjective, imperfect and
qualitative data concerning the user preferences and also allows for consolidation of data
on preferred services and products by the users. A Collaborative Filtering (CF) based
model that provided soft ratings by consolidating all the available data from the social
media handles of the users was proposed by Nguyen, Sriboonchitta and Huynh (2017).
The data from the social media here was employed to eradicate the problems of data-
sparsity and the cold-start, by extracting the community features. To test this model,
the study used the Flixster dataset and provided highly accurate results. A model with
a neighbourhood size of K was used as the baseline for comparison against the proposed
model in the study and the plots of DS-Precision, DS-MAE, and DS-Recall were studied.
It was found that the proposed model had better stability when compared to the baseline
model. Although this is a novel idea where the social media data could be used for
generating soft ratings, there is a cause for concern since there is a scope for overlapping
of the communities in social media platforms. The study also fails to address the grey-
sheep user problems.

3 Methodology

This research will follow the methodology of Knowledge Discovery in Databases (KDD)
for the implementation of the RS model. The stages in the building of the proposed model
and its evaluation such as data acquisition, cleaning, pre-processing and transformation,
will be performed employing the KDD methodology guidelines.

3.1 Data Extraction

The dataset used in this research work is obtained from the open-source platform of
Kaggle 2. This dataset in turn was obtained by making HTTP requests to the public
APIs 3 of the MyAnimeList website 4. MyAnimeList is a comprehensive and possibly
the largest database for all the related information on the anime tv shows and movies
available today. The dataset has five files (anime.csv, anime with synopsis.csv, animel-
ist.csv, rating complete.csv, watching status.csv) with various attributes. The attributes
used and their description is presented in Table 1.

3.2 Data Pre-processing and Analysis

Different kinds of data cleaning techniques have been employed on the dataset because
there are inconsistencies and errors present in it. This involved removal of null values,
dropping unnecessary columns and merging of tables wherever necessary. The data from
the column “Aired” was used to extract only the year for exploratory data analysis
purposes. The Genre column that presents the genres that were tagged to each of the
anime was also pre-processed. It was a single column with comma-separated values from
which all the different genres were separated. There were also a large number of duplicate
ratings for the anime by the same users. They were successfully dropped from the data
frame. After extensive data cleaning and processing, this dataset consisted of 62,941
unique users and 17,559 unique anime shows and movies.

2https://www.kaggle.com/hernan4444/anime-recommendation-database-2020
3https://myanimelist.net/apiconfig/references/api/v2
4https://myanimelist.net/
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Table 1: Dataset Attributes

Attribute
name

Type Description

anime id Integer ID from MyAnimeList website that uniquely identifies
each anime

Name String Full name of the anime
Genre String Comma separated values identifying the genre/genres

that each anime belongs to
Type String Identifies type of the anime such as movie, TV, OVA, etc
user id Integer ID generated by MyAnimeList for its users at random
rating Integer Rating assigned to an anime by a particular user
English name String Full name of the anime in English only
synopsis String Text in the form of string providing the synopsis of the

anime
Aired Date The original broadcast date of the anime

A graph was plotted to understand the trends in the release of anime movies and TV
shows between the year 1910 and early 2020. It can be seen from the plot in the Figure 1
that there was an exponential growth in the number of anime released every year. Please
note that the drop in the count of anime near the year 2020 is because of the lack of
records in the dataset for that year.

Figure 1: Plot of number of anime released from 1910 to early 2020

Once all the genres from the “Genre” column are separated during the data pre-
processing techniques, to get an insight in to the top 100 genres of the anime. As seen
from Figure 2, Comedy and Action are among the top common genres. If given enough
data on the age group of the viewers, a lot of inferences can be drawn by correlating this
data with that and business plans in the anime industry can be geared towards those
profitable areas.

To better understand the distribution between the mean ratings and the count of the
ratings, a joint plot between the two attributes is plotted as shown in Figure 3. It can
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Figure 2: Word Cloud of the top 100 genres of anime

be inferred from this plot that for most anime, the mean ratings lie between 6.0 and 8.5
for the count of ratings ranging between 25,000 and 60,000. As the count of the rating
increases beyond 100,000, we can see some outliers that have higher ratings. This can
mean that the anime that are popular are also most often rated and that there might
be an inherent bias present in their ratings because the opinions of the viewers are often
influenced by the mass.

Figure 3: Plot of mean ratings Vs count of the ratings
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3.3 Model Description

Based on the studies presented in section 2.2, a Model-based Collaborative Filtering
using Deep Learning is proposed in this research. A traditional Collaborative Filtering
RS makes recommendations or predictions for a user by amassing information or data
on many users and items. This approach has an underlying assumption that, if users A
and B have similar preferences for an item, then user A is more likely to have the same
preferences as B for a totally different item than that of a randomly chosen user. Below
are mentioned the types of the Collaborative Filtering technique.

3.3.1 Memory-based CF method

In this approach, the similarity between either the users or the items is computed by
utilizing the available rating data from the users. If the similarity between users is
computed, then it is termed as the User-based CF model and if the similarity between
items is computed, then it is termed as the Item-based CF model. Here the similarity
between the users is usually computed by either Pearson Correlation or the Cosine-based
approach.

3.3.2 Model-based CF method

In the Model-based CF method, the ratings for the unrated items by the users are pre-
dicted by employing the different kinds of machine learning algorithms or data mining
methods. Therefore, there is no need to calculate the similarity between the users or
items in this approach. Instead, a user-item matrix is generated and this reduces the
dimensionality in terms of latent factors. These rows of latent factor matrices are termed
embedded vectors. Doing so effectively solves the problems caused by data-sparsity in
high dimension vector matrices.

3.3.3 Proposed Model-based CF method using Deep-Learning

The application of Deep-Learning in the Model-based CF method has been a recent
advancement in recommender systems. Here Matrix Factorization algorithms are used in
the Deep Learning architecture. These algorithms decompose the user-item matrix into
a product of two rectangular matrices that are of lower dimensionality. The first matrix
consists of rows for each user and the second matrix consists of a column for every item.
These rows or columns associated with particular users are termed latent factors. And
at the end, the predicted ratings are computed. In mathematical terms, the predicted
rating r that is computed for the user u for item i is given by this formula:

rui =

nfactors∑
f=0

Hu,fWf,i

where, H belongs to the user-item rating matrix and is the value for user’s latent
factors and W belongs to the user-item rating matrix and is the value for item’s latent
factors.

In the proposed model of our research, we compute the predicted ratings based on the
user-item matrix by employing the Keras Dense Layer of Deep Learning and generate re-
commendations. This is explained in detail in the sections of design and implementation.
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Also, for the sake of comparisons, we generate user-based recommendations and item-
based recommendations in this research, with our main objective being ranking-based
recommendations with the proposed model.

3.4 Evaluation Metrics

In addition to qualitatively analysing the generated recommendations, the proposed
model in this research will be evaluated to measure its performance. Two of the evaluation
metrics that will be measured are given below:

3.4.1 Mean Squared Error (MSE)

The calculation that provides an estimate of the average of the squares arising when the
predicted values differ from the actual values, is known as the Mean Squared Error. The
values of the MSE are always positive only, and the closer those values are to zero, the
better. For the proposed model in this research, the MSE is calculated as given below:

MSE =

m,n∑
i,j

Ti,j(r
actual
ij − rpredictedij )2

where, if the item j has been rated by the user i then T ij is a matrix with a cell value
equivalent to 1 or is 0, in case it is not rated. And r ij is the rating for item j by user i
in cases where the rating is present.

3.4.2 Mean Absolute Error (MAE)

The mean value of the absolute errors is given by the evaluation metric called the Mean
Absolute Error. For the proposed model in this research, the difference between the
actual rating of the anime (the true value) and the predicted rating for the anime (the
predicted value) forms a prediction error. The better model always has a lower value for
MAE. The mathematical equation for MAE is given below:

MAE =

m,n∑
i,j

Ti,j|ractualij − rpredictedij |

4 Design Specification

Figure 4 represents the architecture for building a recommender system for anime by
employing the proposed Model-based Collaborative Filtering using Deep Learning. This
model is devised to provide the top recommendations for anime that are not yet watched
by the user and also provide the predicted ratings for the same. The design consists of
an input layer where the variables for the anime and the users are appropriately pre-
processed and fed to the system. These variables are then embedded into vector matrices
in the embedding layers and a dot product for the anime and user embedded matrices is
computed. Embedding helps us find similarities between the users and the anime (which
are discrete objects) and accomplishes the task of making those similarities apparent to
the model. The dot product is further flattened so that it transforms into a long vector
of input data that can be fed to the dense layer for Deep Learning.
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Figure 4: Proposed Model-based Collaborative Filtering Deep Learning model

The proposed model in this research utilizes one dense layer as represented in Figure
4. Depending on the requirements the hyper-parameters in this layer can be tuned. To
overcome the problem of overfitting the data, batch normalization is employed here. Then
to convert the linear output from the batch normalization step into non-linear output, we
employ activation functions (either Sigmoid or ReLU – Rectified Linear Unit). This helps
the model learn from the non-linear behaviour which is highly beneficial to the accuracy
of the recommender. In addition to this, the problem of vanishing gradient is also solved
by employing activation functions. When the gradient becomes zero or gets very close to
zero value, the model or neural layer stops learning which is termed as vanishing gradient
problem.
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Sigmoid functions provide us with a weighted estimate which helps in the exact com-
parisons between two items. For example, an output from this function with a value of
0.734 between two items X and Y would indicate that X is 0.734 times more than Y. The
sigmoid function’s output is always in the range of (0,1) and is calculated by using the
below equation:

σ(x) =
1

1 + e−x

The Rectified Linear Unit or ReLU function produces a zero output for all the inputs
that are smaller than zero and a value of x for all values otherwise. This function requires
very low resources for computation and learns faster and more evenly. It is given by the
equation below:

f(x) =

{
0 if x < 0

1 otherwise

The output from the dense layer is then provided to the loss function that employs
binary cross-entropy. This helps the model compute the cross-entropy loss that exists
between the predicted values and the original or true values. The output is then fed to
the Adam optimizer for training the data and the final output is obtained.

5 Implementation

5.1 Model Setup

For the implementation of the proposed model in this research, Google Collab was used.
The Tensor Processing Units (TPUs) present in Google Collab is used as the runtime.
Since Deep Learning models have huge computational demands for training the mod-
els, TPUs are used in this research which helps train the model much faster. So, the
backend allocated in Google Collab using TPU as the runtime had the following system
specifications – 12.69 GB RAM and 107.72 GB of allocated disk memory (Hard drive
size). Python 3.7 is used as the programming language for the implementation of the
model. For building the Deep Learning layer, TensorFlow and Keras libraries are used.
For data pre-processing and the rest of the code, the following libraries are used in python
– pandas, numpy, matplotlib, seaborn, and WordCloud.

5.2 Modelling of Deep Learning Collaborative Filtering Recom-
mender System

As can be seen in the architecture presented in Figure 4, the data is subject to pre-
processing by encoding and then embedded (128 bits embedding size) into two vector
matrices – one for anime items and one for the users. A dot product is computed on
these matrices to generate the anime-user matrix which is then flattened before being fed
to the Deep Learning dense layer. The TensorFlow and the Keras libraries are used for the
dense layer. A shallow dense layer employing batch normalization and Sigmoid or ReLU
activation function is designed. The Adam optimizer using the binary cross-entropy as
the loss function is used to train the model.
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After the dense layer, we perform two experiments – first, we employ the Sigmoid
activation function with 20 epochs to generate the recommendations and measure the
evaluation metrics and second, we employ the ReLU activation function with 50 epochs
and follow the same procedure. These activation functions help eradicate the problems of
vanishing gradient and data sparsity and are also computationally cheaper. The model
summary explaining the different variables factored in building this Deep Learning Model-
based CF recommender system is given in Figure 5.

Figure 5: Model summary with dense layer parameters

5.3 Training and Testing Details

After the initial data pre-processing, the dataset was split into training and testing data-
set. The training data had 48,962,760 records and the testing data had 10,000 records.
The validation loss at the end of each epoch was monitored when the data was being
trained and the hyper parameters were appropriately tuned. The callback function was
also employed in training the model where the regularization technique of early stopping
monitored the validation loss with a patience of 3 epochs.

The parameters involved and learning details of the Deep Learning model built in
this research are presented in the Table 2. Post the training and testing of the dataset,
parameters of MAE and MSE were evaluated and graphs of Model-loss were plotted and
customized functions were run to generate anime recommendations.

6 Evaluation

The proposed model in this research has been tested for the anime dataset by generating
the anime recommendations and also by measuring the evaluation metrics - MSE and
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Table 2: Parameters and Learning Details of the Proposed Model

Proposed Algorithm Parameter Details
Batch Size 10000
Adam Optimizer Minimum Learning Rate =

0.00001, Maximum Learn-
ing Rate = 0.00005, Ramp
up epochs = 5, Exponential
decay = 0.8, Sustain Epoch
= 0

Regularization Technique Early stopping while mon-
itoring validation loss by
employing a patience of 3
epochs

Loss Function Binary Cross-entropy
Was the data shuffled? Yes

Using Sigmoid Activation
Function

Epochs 20

Using ReLU Activation
Function

Epochs 50

MAE. The model loss was also plotted to analyse the difference between the training and
testing loss. The details on the evaluation of the proposed model are as presented below:

6.1 Experiment 1 – Using Sigmoid Activation Function

In the first experiment using the Adam Optimizer, the Deep Learning layer in the pro-
posed model is trained using the sigmoid activation function with 20 epochs. On evalu-
ating the outcome of this model, the MSE was 0.07, the MAE was 0.1909 and the model
loss was found to be 0.4842. The closer the MSE and MAE values are to zero, the better
the model is. The Figure 6 shows the MSE, MAE and loss calculated in the code imple-
mentation. The Figure 7 gives the graph of the model loss where the model losses for
training and test data was evaluated and plotted. This plot provides an insight into the
performance trend of the model.

Figure 6: MSE, MAE and Model loss using Sigmoid activation function
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Figure 7: Model Loss using Sigmoid activation function

The ranking based recommendations for to the randomly picked user id “100919” are
the actual recommendations made by the proposed Model-based CF using Deep Learning
model and the predicted ratings of the anime are also presented. This is depicted in Figure
8. Please note the column for synopsis is cropped due to heavy textual data.

Figure 8: Example for ranking-based recommendations using Sigmoid activation function

17



6.2 Experiment 2 – Using ReLU Activation Function

In the second experiment using the Adam Optimizer, the Deep Learning layer in the
proposed model is trained using the ReLU activation function with 50 epochs. On eval-
uating the outcome of this model, the MSE was 0.0926, the MAE was 0.2433 and the
model loss was found to be 0.5530. The closer the MSE and MAE values are to zero, the
better the model is. The Figure 9 shows the MSE, MAE and loss calculated in the code
implementation. The Figure 10 gives the graph of the model loss where the model losses
for training and test data was evaluated and plotted. This plot provides an insight into
the performance trend of the model.

Figure 9: MSE, MAE and Model loss using ReLU activation function

Figure 10: Model Loss using ReLU activation function

The ranking based recommendations for the randomly picked user id “100919” are the
actual recommendations made by the proposed Model-based CF using Deep Learning
model and the predicted ratings of the anime are also presented. This is depicted in
Figure 11.
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Figure 11: Example for ranking-based recommendations using ReLU activation function

6.3 Discussion on Experiments 1 and 2

The proposed recommender system employing Model-based Collaborative Filtering using
Deep Learning is evaluated on the anime dataset using two separate activation functions
and a different number of epochs. This helps us better understand if they impact the
quality of anime recommendations generated and if there is a change in the performance
of the model indicative in its evaluation metrics – MSE and MAE. The first experiment
where the Sigmoid activation function is used with 20 epochs results in MSE of 0.07 and
MAE of 0.1909. The second experiment where the ReLU activation function with 50
epochs is used results in an inferior MSE value of 0.0926 and MAE value of 0.2433. At
first, this might not look significant but, the training and computational time, taken by
ReLU are significantly higher than that of the Sigmoid activation function model. Also,
the recommendations made by the Sigmoid-based model are qualitatively better than the
ones made by ReLU. This is indicative in their predicted ratings for the recommended
anime and can be verified by looking at the Figure 8 and the Figure 11.

7 Conclusion and Future Work

One of the main objectives while implementing the Model-based Collaborative Filtering
using Deep Learning for recommending anime was to address the problem of data sparsity
and cold-start. By successfully employing a Deep Learning layer in combination with the
Collaborative Filtering approach, we addressed the aforementioned issues and generated
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top recommendations to the user with predicted ratings.
In an attempt to find the best parameters of performance for the proposed model,

hyper-parameter optimization was performed. It was found that the Sigmoid activation
function with 20 epochs provided the best results. An MSE as low as 0.07 and an MAE
of 0.1909 was achieved. The closer to zero values of these metrics indicates that they
performed best with these hyper-parameters.

Since the dataset used for generating recommendations in this research was huge and
taken from the real-time website “MyAnimeList”, which is an encyclopaedia of all things
anime, this model can very well be used to be implemented in a real-time application
for recommending anime. As a part of the future scope, the proposed model can further
be improved by using the demographic information of the users and making recommend-
ations based on the age groups of the users. It’d be interesting to see how would the
recommendations differ for every user based on these factors.
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