
Current Applicability of Quantum Machine
Learning to Data Analytics

MSc Research Project

Data Analytics

Stephen McMullan
Student ID: x19139497

School of Computing

National College of Ireland

Supervisor: Dr. Majid Latifi

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Stephen McMullan

Student ID: x19139497

Programme: Data Analytics

Year: 2021

Module: MSc Research Project

Supervisor: Dr. Majid Latifi

Submission Due Date: 16/08/2021

Project Title: Current Applicability of Quantum Machine Learning to Data
Analytics

Word Count: 6773

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 19th September 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Current Applicability of Quantum Machine Learning
to Data Analytics

Stephen McMullan
x19139497

Abstract

In recent years, quantum computing and its application to machine learning
have evolved to the point where the data analytics practitioner must ask whether
the technology is ready to aid large scale data processing tasks. This research
describes the state of the art along with the limitations of error prone current
generation quantum processors in the so called NISQ (Noisy Intermediate Stage
Quantum) era. An introduction to the cloud based IBM Quantum infrastructure
and Qiskit software application development kit is given. The design and imple-
mentation in software of quantum classifiers based on the distance measurement
between quantum states using the SWAP Test circuit is examined. A method
of using quantum feature maps and quantum kernel estimation for use with SVM
classifiers on conventional computers is described. This research illustrates the feas-
ibility of application of current quantum hardware technology to multi-dimensional
datasets with a reasonable runtime performance. Future directions for research
into suitable datasets and novel parameterized quantum feature map circuits is ad-
vised to empirically demonstrate advantage for fast, accurate classifications over
conventional ML methods. This process will be aided by the ongoing improvement
in quantum hardware capabilities and larger scale access to quantum computing
services.

1 Introduction

Quantum Machine Learning (QML) is a very recent application within the realm of
quantum computing (Benioff; 1980). It is an area of research bringing together aspects
of mathematics, physics, computer science and data analytics (Feynman; 1981). This
introduction provides a concise description of quantum computing and continues through
to the current application of QML techniques in data analytics.

1.1 Introduction to Quantum Computing

There are several physical fabrication methods being pursued for the production of
quantum computing devices. The most prevalent of these are superconducting circuits
maintained at very low temperatures to reduce the effects of environmental interference.
Other methods include photonics and trapped ion systems. This current generation of
non-error corrected quantum processors belong to the so called Noisy Intermediate Stage
Quantum (NISQ) era of devices.

1

Quantum information can be described using the quantum bit (qubit) which is ana-
logous to the binary digit (bit) representing the values 0 or 1. Unlike the n-bit registers
of conventional computing which can represent one n-bit value at any one time as a bit
string, an n-qubit system can represent 2n values simultaneously through superposition
in an n-dimension Hilbert space. The additional quantum effects of entanglement and
interference allow a parallel processing effect with a probabilistic outcome to produce
the most likely results of a processing operation. This new paradigm of computing al-
lowed the development of algorithms like Grover’s and Shor’s which provided solutions
for problems that would be considered intractable for conventional computers arousing
great interest in the field (Shor; 1994) (Grover; 1996).

Another motivating factor is the slowdown in development of the capacity of integrated
circuits for CPUs and even GPUs which are currently reaching physical limits. This
incentive has not yet yielded a fully fault tolerant and error corrected quantum computing
device to date.

Most experiments in quantum computing are therefore theoretical models executed
on simulators or on small scale quantum hardware devices. These contain a very limited
number of qubits with shallow circuit depths in terms of the number of quantum gates
for processing the input quantum state and producing a coherent result. Experiments
on physical quantum devices require repeated runs of the calculation firstly in order to
determine the probability distribution of the result and secondly to compensate for the
presence of noise or other environmental interference effects (Wittek; 2014).

1.2 Quantum Machine Learning

The potential advantage to the data analytics practitioner for using QML is the capab-
ility of representing huge amounts of information on a relatively small number of qubits
compared to the capacity of a comparable amount of bits in a conventional computer. In
addition, processing those quantum states representing the data inputs can be done in an
inherently parallel fashion. The processing results can be presented as states collapsing
to the most probabilistic outcomes. These quantum effects, notably superposition, en-
tanglement and interference, lend themselves to allowing a highly significant speedup in
processing large datasets over conventional computing devices.

1.3 Research Question

At this stage of the evolution of quantum computing it is desirable to consider the fol-
lowing research questions:

RQ: How can the current state of the art of QML techniques be applied to practical
data analysis problems via the availability of quantum computing cloud platforms?

Sub-RQ1: How can fundamental distance based classification machine learning
algorithms such as kNN and kernel methods such as SVM be applied in the context
of quantum computers?

Sub-RQ2: How can QML classifiers be applied to large cardinality and high di-
mension datasets?

2

1.4 Report Structure

The remainder of this document is structured as follows: Section 2 summarises the current
state of the art with regard to quantum computing and QML. Through a review of notable
literature, the validity of QML for the purpose of data analytics in the near term is
established. Focus is given to establishing a foundation for the viability of distance based
classification techniques such as kNN and SVM with kernels generated on a quantum
processing device. Section 3 introduces the methodology by which the research into
distance based classification problems using quantum devices is performed and how the
results are evaluated. Section 4 describes the design of typical distance based QML
algorithms for classification. Section 5 describes the implementation of the classifiers in
the form of Juypter notebooks using IBM Qiskit quantum machine libraries. Section 6
evaluates the results of running these QML models to process the classic 4-dimensional
Iris dataset in order to illustrate the principles yet also the current limitations of QML.
Section 7 concludes the document and points to future directions for work in this area.

2 Related Work

The evidence from current literature and the state of the art supports the notion that
the development of QML algorithms on quantum computers with quantum processors
has been well established. However, the current implementations of physical quantum
processors in the NISQ era limits their usability and the production of noise free or error
corrected processors remains a significant challenge to the general availability of the first
true general, error corrected quantum computer. Some solace is gained in the knowledge
that conventional computers went through a similar evolution whereby great improve-
ments were made in operating systems, computer languages and software development
frameworks in tandem with the hardware being improved to the standards enjoyed today.
It is anticipated that QML algorithms will continue to evolve despite the lack of suitable
quantum computing hardware to actually allow them to run on any meaningful data. A
theme of this project is to understand how far away the current state of the art is from
quantum computers being able to perform typical useful data analysis.

2.1 Emergence of QML

The process of programming a quantum computer involves the construction of a circuit
comprising one or more qubits and encoding the input data into an initial quantum state
for the circuit. That quantum state is then transformed through a series of operations
known as gates. The output of the circuit is measured which collapses the quantum state
back to conventional bit values. The programmed circuit needs to run several times in
order to generate a probability distribution for the results (Metawei et al.; 2020).

Despite the lack of current availability of fault tolerant quantum computing devices
capable of processing large datasets, many algorithms and machine learning models have
been proposed. These have been generally tested with simulators and at small scale with
the current crop of limited physical quantum devices (Ramezani et al.; 2020).

Quantum computing is based on probabilistic programming in that it uses linear al-
gebra and specifically matrix operations to describe quantum state transformations and
their time evolution as per Schrodinger’s equation. The quantum states can contain com-
plex number values which allow the phenomenon of interference whereby the probability

3

of certain outcomes is reinforced by positive interference and other outcomes are reduced
or cancelled by negative interference of probabilities (Nielsen and Chuang; 2002).

The advantage of quantum computing comes from the fact that a conventional com-
puter utilises digital encoding, also known as binary encoding, in order to represent data
values in terms of a string of 1s and 0s. Quantum computers can make use of amplitude
encoding whereby the magnitude of each feature value of the n-dimensional vector rep-
resenting the data point in Hilbert space can be applied. In Hilbert space a vector with
dimension N needs n = log2(N) qubits to be encoded. Quantum superposition allows the
storing of 2n numbers on n qubits, thus reducing the number of bits required exponen-
tially compared to conventional computers (Lloyd et al.; 2013). The current limitations
and challenges regarding the capability of physical quantum devices have not hindered
the development of algorithms and theoretical processing models of quantum computa-
tion. Interesting reusable template circuits have been developed along with algorithms
and models that could potentially achieve a performance advantage over conventional
computing platforms (Ciliberto et al.; 2018).

The role of machine learning is the derivation of a model from data in order to make
predictions on unseen data based on the underlying probability distribution of the dataset.
It is quite common to use heuristic methods to select algorithmic hyperparameters to
minimise a loss function in order to improve the fit of the model. Quantum computing
generalises the probability distribution of the data based on states represented by n-
dimensional vectors in Hilbert space. Hilbert space itself is a generalization of the concept
of Euclidean space whereby lengths and angles and operations such as inner products hold
true based on the laws of linear algebra. With the quantum properties of superposition
and entanglement of states, this allows potentially faster and novel solutions to data
processing problems despite exponentially increasing state space with increases in data
dimensionality which is a clear advantage over conventional computing (Aı̈meur et al.;
2013).

The current issues surrounding the development of physical quantum computing hard-
ware relate to its sensitivity to environmental interference. Quantum hardware requires
the superconducting circuits to be maintained at near zero Kelvin temperatures. Its sta-
bility in terms of holding a steady state to allow processing declines with increases in scale
in terms of number of qubits and the depth of the circuit. This degradation phenomenon
is known as quantum decoherence. In light of this susceptibility to environmental in-
terference, not only have quantum computing models been developed for pure quantum
systems, they have also been inspired the hybridisation of conventional computing and
quantum computing elements. In this case the quantum device provides acceleration of
certain operation suited to the quantum computing model. One example of this would be
quantum variational circuits inspired by deep learning networks where the loss function
and hyperparameter tuning of a quantum model is performed by a conventional com-
puting platform. In this case the use of a calculated loss function and training of the
hyperparameters can mitigate the effects of environmental interference noise and quantum
decoherence effects. Quantum computing has also inspired improvements and new ways
of thinking in the design of algorithms and models for conventional computing platforms
(Schuld et al.; 2020; Benedetti et al.; 2019).

4

2.2 QML for Supervised and Unsupervised Learning

One fundamental technique for classification of data points is to represent them as n-
dimensional vectors in a n-dimensional space and calculate their similarity based on
geometrical distance with respect to existing labelled or unlabelled data points in that
space. The idea is that the closer the new test data point is to existing data points, the
more similar they are in terms of classification (Schuld; 2018). SVM build on this idea of
distance between data points and identifies a limited number of data points (known as
support vectors) from the dataset whereby a hyperplane may be defined with a maximum
margin between these support vectors to segregate the data points for classification pur-
poses. The kernel trick inherent in these techniques allows the replacement of the kernel
defining with distance measurement with alternates. It is possible to produce a quantum
kernel calculating distance between training and test set data points in Hilbert space as a
preliminary computation on a quantum computer yet use the quantum computed kernel
on a conventional computer using SVM to classify future unseen data (Havĺıček et al.;
2019).

There are various methods for calculating the distance between data points repres-
ented as vectors in n-dimensional space. Fidelity or cosine similarity are particularly
suited to quantum computing. Quantum systems operate in Hilbert space and similarity
between data points can be represented as being relative to the angle between the vec-
tors. The smaller the angle between the vectors, the closer the data points are in terms
of similarity. This can be represented by a cosine whose value tends to 1 as the angle
tends to 0. Another method is that an orthogonal projection of one vector representing
the data point onto the other vector calculates a measure of similarity. All vectors in
Hilbert space are normalised so as the magnitude of the projection goes to value one, it
indicates that the points are increasingly similar. This projection can be taken simply
from the inner product of the two vectors which is a basic property of the Hilbert space
and very suitable for calculation using a quantum computer. In either case the distance
between the data points can be defined as (1 - fidelity) (Schuld and Killoran; 2019).

The algorithm for calculating kNN classification is to calculate the distance between
the test point and all the data points for which there is an existing classification. The
top k points are selected which have the lowest distance from the test point. A simple
majority vote is performed amongst these k points to determine which classification is
applied to the test point (Afham et al.; 2020). Note that as the number of training points
(i.e. existing data points with classifications) increases, the effort in classifying the test
point increases. Note also that as the number of dimensions of the vector representing
the data points increases, the more effort is involved in calculating the distance. Indeed
the effort required in calculating the distances from a test data point of D dimensions
to N labelled data points and derive the kNN is O(D*N*k). In comparison the effort
involved in calculating the kNN in a quantum system is O(log(D*N*k)) (Fastovets et al.;
2019; Schuld et al.; 2015).

Lloyd et al. (2013) describes a distance calculation based on cluster centroids thus
the kNN algorithm is transformed into a k-means method, whereby each classification is
defined by the centroid (or mean) of all data labelled with that class. Rather than calcu-
lating the distance to each data point from the test point, the distance can be calculated
to the centroid. However, as new classified data is added the centroid must be recalcu-
lated. Shrivastava et al. (2020) discusses the quantum equivalent k-means and k-medians
algorithms in detail with an analysis of the complexity compared with its conventional

5

equivalent and an indication of the speedup possible with quantum processing.

2.3 Recent Developments in Cloud Hosted Quantum Computers

IBM released their multi-tier development roadmap for quantum computing in September
2020. It is based around their Qiskit (pronounced kiss-kit) software development kit
and IBM Quantum cloud based runtime environment comprising simulators and actual
quantum processors. This roadmap covered the evolution of the IBM quantum hardware
ecosystem towards 1000 qubit machine availability with support by developers of kernels,
algorithms and models to provide a rich machine learning environment. The point was
stated that although it took many decades for logic gate circuits to evolve to the computers
of today, the hope is that this process can be accelerated in the case of quantum computing
(IBM’s roadmap for building an open quantum software ecosystem; 2021).

3 Methodology

In order to pursue the objectives of this project, it is necessary to choose a dataset suitable
for the purpose of analysis with the current limitations of quantum computing in mind.
The Iris data set from the scikit-learn Python package is used for this project. The Iris
data set has 150 observations with a dimensionality of 4 and contains three classification
classes. It consists of length and width measurements of petals and sepals from three
different flowers from the Iris family: Iris Virginica, Iris Setosa and Iris Versicolour. The
flowers are classified based on the sepal and petal measurements. Although the dataset
is very small and of low dimension, it is an excellent starting point to demonstrate the
concepts of QML. Figure 1 shows the scatter plots of the different features of the data
set in combinations of two dimensions.

The methodology for researching the answer to the research question and sub-questions
involves the following steps:

1 Use IBM Qiskit software development environment to produce quantum computing
equivalents of distance based classification algorithms such as kNN and SVM.

2 Preprocess the Iris dataset into 120 training data points and 30 test data points,
reduce their dimensionality, normalize and scale.

3 Train the classification models on the training set and record CPU and elapsed
(wall clock) time for completion on an actual quantum processor hosted by IBM
Quantum, an ideal noise-free simulator and a simulator that incorporates a noise
model.

4 Run the classification models on the test set and record CPU and elapsed (wall
clock) time for completion on an actual quantum processor hosted by IBM Quantum,
an ideal noise-free simulator and a simulator that incorporates a noise model.

5 Calculate a classification accuracy score for all the classification models for the three
quantum runtimes and compare with their counterparts running on a conventional
computer with scikit-learn.

6 Evaluate the results from the perspective of technical feasibility of application to
larger datasets in terms of greater cardinality and dimensions.

6

Figure 1: Iris dataset scatter plots produced by Pandas scatter matrix function

A specific example of the methodology applied to analysing the Iris dataset using
QML with SVM kernel methods is shown in Figure 2.

4 Design Specification

Quantum circuits consist of sets of qubits whose quantum states are initialised and then
transformed through a series of operations via quantum gates (analogous to logic gates
in digital circuits) and the eventual quantum state is then measured. This collapses the
quantum state of the qubit to a 0 or 1 reading. By stochastic method and repeating the
circuit and measuring many times, a probability distribution of the qubits final quantum
state may be achieved leading to interpretation of results.

4.1 Quantum Encoding

As a prerequisite to applying the quantum classification algorithms, the dataset must be
encoded into quantum states within the Hilbert space. This process in itself can be very

7

Figure 2: Quantum Classification Process using Kernel methods

compute resource intensive and can negate any speedups that the quantum algorithm
may achieve. There are several possible encoding mechanisms. The simplest method is
basis encoding whereby the binary string representation of the data value is encoded to a
corresponding number of qubits e.g. the value 9 is represented as the binary string 1001
which can then be represented as the 4 qubit state |1001〉. Given that current quantum
devices have limited number of qubits, this is not an efficient encoding method.

An alternative to basis encoding is amplitude encoding (also known as analog encod-
ing). In this case the data dimension values are used to adjust the probability amplitudes
of the quantum basis states. In this way each quantum state can represent all dimensional
values of a data observation. The following worked example illustrates the principle.

The Iris dataset contains 150 observations (50 in each of the three classes) with the
features comprising sepal length, sepal width, petal length and petal width. The feature
values are all defined in units of centimeters. Finally the three classes are defined as
target labels comprising Setosa, Versicolour and Virginica. A single observation from the
dataset is shown in Equation 1 :

data observation = 5.1, 3.5, 1.4, 0.2, Iris-setosa (1)

This data observation could be represented as a four dimensional vector as shown in

8

Equation 2:

feature vector =


5.1
3.5
1.4
0.2

 (2)

In quantum computing, the quantum bit or qubit is the fundamental unit of informa-
tion. A qubit is a two state system where the 0 state is represented as |0〉 which is a ”ket”
in the Dirac notation and the 1 state is represented as |1〉. A qubit represents a two di-
mensional Hilbert space where the basis vectors of the space are |0〉 and |1〉. All quantum
states including superpositions of |0〉 and |1〉 can be defined as linear combinations of |0〉
and |1〉 e.g.

φ = α |0〉+ β |1〉 (3)

where φ represents the general quantum state of a qubit, the coefficients α and β
are the probability amplitudes of the state being measured as |0〉 or |1〉 respectively.
One method of representing data observation feature vectors as quantum states is by
putting the qubit state into superposition and embedding the feature values of the data
observation into the probability amplitudes of the basis states of the qubit. This is known
as amplitude encoding. The four dimensional data observation from the Iris dataset above
can be represented as a two qubit system with a quantum state in Dirac notation as:

φ = 5.1 |00〉+ 3.5 |01〉+ 1.4 |10〉+ 0.2 |11〉 (4)

This vector can then be normalized to unit length in Hilbert space as:

1√
5.12 + 3.52 + 1.42 + 0.22

(5.1 |00〉+ 3.5 |01〉+ 1.4 |10〉+ 0.2 |11〉) (5)

Higher order data i.e. data with more dimensions/features can be represented by
multi-qubit array known as quantum registers.

4.2 Quantum Distance Measurement

The preprocessing of the data involves representing the data points as quantum states.
The Iris dataset consists of four features or dimensions and thus are represented by 4-
dimensional vectors in Hilbert space. All the classification algorithms under consideration
e.g. kNN and SVM make their classifications based on distance between data points.
The underlying assumption is that feature vectors containing the data observations of
similarly classed observations will lie close together within the feature space. In the case
of quantum computing this feature space is known as Hilbert space.

There are several definitions of distance that can be applied to judge similarity of
vectors in Hilbert space. The vectors are a representation of a quantum state whereby
the data observation feature values are encoded into the vector dimensions. A property
of Hilbert space is that inner products between vectors are easily calculable. Cosine
similarity is a measure of similarity between vectors. It is expressed as the cosine of the
angle between the vectors in n-dimensional space. It can be calculated by taking the
inner product of the two vectors and then dividing by the product of their magnitudes
in order to normalise the result.

cosine similarity =
〈A,B〉
|A| · |B|

(6)

9

cosine distance = 1− cosine similarity (7)

Figure 3: Angle between vectors defined using an inner product (Afham et al.; 2020)

From Figure 3 it can be seen that vectors that are close have a relatively small angle
between them. The cosine of the angle as it approaches zero (hence the vectors are
closer) tends to the value one and likewise if the vectors are orthogonal i.e. the angle
between them is 90 degrees then the cosine value is value zero. Note that quantum states
in Hilbert space are by convention normalised to have length one. Note also that the
vectors representing the quantum states can have complex values therefore the convention
is to use the general term ”inner product” rather than ”dot product” to represent the
operation. For pure quantum states i.e. those that can be represented as vectors in
Hilbert space, the fidelity is a measure of the ”closeness” and it is defined as the squared
overlap between them

fidelity = |〈α|β〉|2 (8)

It can be seen that the fidelity is simply the square of the cosine similarity between
two unit length vectors representing quantum states in Hilbert space. Another definition
of distance is:

distance = 1− fidelity (9)

4.3 SWAP Test Circuit

The fidelity between quantum state inputs can be measured using a SWAP Test quantum
circuit (Fredkin and Toffoli; 1982). This consists of the quantum circuit as shown in Figure
4. The SWAP Test quantum circuit consists of a control qubit initialised to the |0〉 state
and multi-qubit registers representing the two quantum states φ and ψ for which the
distance is to be measured. The control qubit is put through a Hadamard gate that puts
the initial |0〉 state into a superposition:

1√
2

(|0〉+ |1〉) (10)

The overall state of the quantum system at this point is:

1√
2

(|0〉+ |1〉) |φ〉 |ψ〉 (11)

10

Figure 4: SWAP Test circuit (Afham et al.; 2020)

This state then acts as the control on a controlled SWAP (or Fredkin gate) which
operates as follows (Fredkin and Toffoli; 1982):

|0〉 |a〉 |b〉− > |0〉 |a〉 |b〉 (12)

|1〉 |a〉 |b〉− > |0〉 |b〉 |a〉 (13)

The overall quantum state at this point is (Afham et al.; 2020):

1√
2

(|0〉 |φ〉 |ψ〉+ |1〉 |ψ〉 |φ〉) (14)

The control qubit is put through another Hadamard gate before being measured
and collapsing its quantum state to either a 0 or 1 conventional bit measurement. The
probability of measuring 0 and 1 on the control qubit is:

P (0) =
1

2
+

1

2
| 〈φ|ψ〉 |2 (15)

P (1) =
1

2
− 1

2
| 〈φ|ψ〉 |2 (16)

P (0)− P (1) = | 〈φ|ψ〉 |2 (17)

By running the circuit many times, it is possible to estimate P(0) and P(1) and thus
calculate the fidelity by taking their difference(Afham et al.; 2020).

4.4 Quantum Classification with Interference

An extension to the SWAP Test circuit involves using a construct called an Oracle which
can bring ALL the quantum states representing ALL the data points in the data set into
superposition. This allows the fidelity of the test data point to be measured with respect
to the entire dataset instead of one vector / quantum state at a time (Buhrman et al.;
2001).

In addition, quantum interference can be used to reinforce the probability of obtaining
certain desired results and and reduce or remove less probable results via constructive
or destructive interference. This effect can be used as a way of deriving the kNN from

11

the total set of distances calculated via the Oracle and superposition of all the quantum
states representing the entire dataset in one operation. (Brassard et al.; 1998) (Deutsch;
1985).

In order to represent all the observations in the data set simultaneously in superpos-
ition as quantum states, an Oracle W is required as shown in Figure 5. The function
performed by the Oracle W is:

W |i〉 |0〉 = |i〉 |φi〉 (18)

where φi is the i-th observation from the dataset.

Figure 5: SWAP Test circuit including Oracle W (Afham et al.; 2020)

This circuit allows the measurement of the fidelity of the full data set in superposition
against the test data observation in one operation rather than N operations i.e. one vector
(representing a classified data observation) at a time (Afham et al.; 2020).

In the Figure 5, r1 represents the control qubit which is a single qubit, r2 represents the
quantum register (consisting of several qubits) initialised to the amplitude encoded state
of the test data observation, r3 represents the quantum register containing the super-
position of states representing the classified dataset and r4 represents the computational
basis. r2 and r3 consists of n = log2(N) qubits where N represents the dimensionality of
the vector representing the quantum state of the data.

In order to measure the output of the circuit, a measurement must first be taken of r1
which collapses the quantum state to 0 or 1. Additionally a measurement must be taken
of the r4 register which collapses the quantum state to a value i which represents the i-th
observation from the dataset. Pi(0) is the probability of getting 0 measurement in the
control qubit for observation i whereas Pi(1) is the probability of getting 1 measurement in
the control qubit for observation i. Over many measurements Qi is directly proportional
to the fidelity:

Qi = Pi(0)− Pi(1) (19)

This quantity Qi can be determined stochastically over many iterations of the ex-
periment. Due to the quantum parallelism effect and its associated probabilistic nature,
only those states representing data observations which have high fidelity with respect to
the test data state have high probability of getting detected upon measurement with a
limited number of iterations. Moreover no sorting is required to determine the nearest
data points to the test observation (Afham et al.; 2020).

12

4.5 Quantum Kernel Estimation

An alternative classification mechanism is examined whereby SVM classifiers are run
using kernels generated on quantum computers. Four different feature maps are examined
which encode the dataset into a higher dimensional Hilbert space and then apply a
quantum kernel estimation circuit to deduce a decision boundary hyperplane to segregate
the data for classification. This involves quite a complex mathematical process which is
described in Havĺıček et al. (2019).

5 Implementation

IBM Qiskit is an open source software development kit (SDK) for developing applications
for quantum computers. Qiskit allows the construction of quantum computing circuits
with gates and measurements. It also offers some higher level modules that encapsulate
domain specific functions in the areas of Machine Learning, Finance, Optimizations and
modelling processes for Physics, Chemistry and Biology.

The Qiskit SDK also incorporates an interface to the physical quantum devices offered
on the cloud based IBM Quantum platform. This platform offers a free service for visu-
ally composing quantum circuits called IBM Quantum Composer along with a Python
notebook environment called IBM Quantum Lab. IBM Quantum Services provides a set
of quantum computers from 1 up to 65 qubits at the time of writing. Not all of these
systems are publicly available. The larger systems are reserved for use by IBM and their
academic research partners. The lower specification open systems can have quite a back-
log of jobs waiting to run and a potential wait time of several hours before results are
available. This is very reminiscent of the batch job submission mode of computing on
time shared mainframe computers.

The physical quantum devices do incorporate all the real world imperfections as-
sociated with non-error correcting and environmentally influenced quantum processors.
However, a range of cloud based simulator devices is also offered along with local sim-
ulator devices that can be created in the IBM Quantum Lab notebook environment for
experimental purposes. This latter mode of processing is ideal for exploring the data
analytics implications of constructing QML models. This includes the preprocessing step
of encoding datasets as quantum states and the post processing step of measuring the
computed outputs. The results from the simulators can then be compared with those ob-
tained from the actual quantum processors in terms of the accuracy of classification test
metric which may differ due to introduced environmental noise and decoherence effects
in the physical circuit. The runtimes between the simulators and the shared resources of
the IBM Quantum physical devices are also of interest to the data analytics practitioner.

The process of implementing the design of the quantum circuits in order to classify
the Iris dataset is as follows:

1 Use IBM Qiskit software development environment running within a Juypter note-
book on a local Anaconda environment or on IBM Quantum cloud environment.

2 Design a quantum circuit that represents the problem under consideration, in this
case classification of the Iris dataset.

3 Compile the circuit for a specific quantum service i.e. quantum hardware processor
or simulator.

13

4 Encode the training and test data points from the dataset into quantum states to
be processed through the circuit. This process is known as quantum embedding.

5 Run the compiled circuit on the specified quantum system or simulator bearing
in mind that the results are stochastic and will require numerous runs to create a
probability distribution of the results.

6 Compute summary statistics and visualize the results of the experiments. Com-
pare the results of the experiments with their counterparts in conventional machine
learning via the Python scikit-learn machine learning library.

5.1 Implementation of kNN

The kNN algorithm has no inbuilt support in IBM Qiskit and must be implemented
from first principles using quantum circuitry, specifically the SWAP Test circuit with an
Oracle implementation to put the training dataset into superposition. The kNN algorithm
consists of the following broad steps:

1 Calculate the ”distance” of the new test data observation from all classified points
in the dataset

2 Choose the k points from the dataset that are closest in ”distance” to the test data
observation

3 By majority vote, assign the most common classification from the k Neighbours to
the test data observation

Figure 6 shows an example of a k=3 neighborhood where circles and squares represent
two different classes. The star represents a test data observation. Based on k=3 the
majority class of the neighbours is square and this forms the classification of the test
data.

Figure 6: An example of kNN where k=3 (Afham et al.; 2020)

14

5.2 Implementation of SVM with Quantum Kernel Estimation

Havĺıček et al. (2019), Schuld and Killoran (2019) and Schuld et al. (2020) describes the
foundation of using kernel feature maps for classification. In this experiment, the Quan-
tumIris.ipynb notebook was used to generate an SVM kernel using 4 different quantum
feature map variants as provided by the IBM Qiskit SDK: ZFeatureMap without qubit
entanglement, ZZFeatureMap with Linear entanglement between qubits, ZZFeatureMap
with circular entanglement between qubits and PauliFeatureMap containing repetitions
of the Pauli expansion circuit. These feature maps and the general technique of Quantum
Kernel Estimation is described in Havĺıček et al. (2019).

Feature maps project the dataset into a higher dimensional Hilbert space which allows
for generating a hyperplane with a maximal margin between class defining boundary
points known as support vectors. The hope in pursing this method is that by using
quantum effects like qubit entanglement and parameterized quantum state rotation gates
in the feature map to detect structure in the data in a manner reminiscent of the hidden
layers of a neural network. This may lead to a machine learning model that could be
hard to compute by conventional means. These models may perform better on certain
datasets where convention classification methods have failed to perform to a high level.

Havlicek’s work was implemented in the IBM Qiskit machine learning library and
made generally available in Aug 2020. This was convenient as I am very much trying to
treat this area from the perspective of the Data Analytics practitioner rather than getting
deeply involved in the design of QML algorithms and implementation circuits from first
principles. Leveraging the support of routines from a high-level machine learning library
like Qiskit seems a more sensible approach with that objective in mind. In this manner
I limited the scope of my contribution to identification of quantum kernel estimation for
SVM as a promising area of practical QML application for the Data Analytics practitioner
with an example implementation involving classification of a small but realistic dataset
using quantum computing resources from the IBM Quantum environment.

Feature maps to project multi-dimensional feature values to higher dimensional spaces
are a standard technique from classical machine learning. The idea is that it may not
be possible to segregate the data points of, for example, a two-dimensional dataset for
the purposes of classification or clustering. However, it may be possible to segregate
them if the data points are projected into a 3 dimensional or higher space where the data
points spread out to a certain degree in the higher dimension state space which allows a
hyperplane to be produced to act as a decision boundary i.e., points to one side of the
hyperplane are deemed to belong to class A and those to the other side are class B. This
concept is frequently used in Support Vector Machine (SVM) classification.

A simple example of projecting the feature values of a two-dimensional data observa-
tion (x1, x2) into three dimensions is to synthesis the third feature value (x1, x2, x1 *
x2) by simply multiplying the two feature values x1 and x2. The question of whether this
trivial example of a feature map would allow the production of a segregating hyperplane
in three dimensions would depend on the dataset and experimentation.

In the case of quantum kernels, the feature map is represented by a matrix. A matrix
represents an operation or transformation of a state in a state space. A matrix operation
can put a feature vector into a higher dimensional space by first zero-valuing the additional
dimensions and then applying the matrix transformation. In the case of quantum feature
estimation, the feature map matrix represents the inner products or fidelities of all the
pairs of feature vectors representing the dataset. As demonstrated in the report the Swap

15

Test circuit can produce this inner product or fidelity measurement. However, Havlicek
et al produced a more efficient way of producing this matrix through quantum circuits
such as ZFeatureMap and ZZFeatureMap circuit implementations.

The second part of the operation is to calculate an estimated quantum kernel which
segregates the data projected datapoints in Hilbert space using the maximum margin
between support vectors.

6 Evaluation

6.1 Experimentation using kNN

Attempts were made to implement the kNN classification algorithm as described in Afham
et al. (2020). Through the use of the SWAP Test circuit implemented in the QiskitIn-
tro.ipynb Juypter notebook provided, it is possible to calculate the distance between a
test data point and all other training data points in the Iris dataset. This is feasible due
to the small number of observation in the dataset. The algorithm, especially as developed
as a quantum circuit, does not scale well to larger number of observations or a greater
number of features/dimensions.

Afham et al. (2020), Schuld et al. (2017) mentions the use of an Oracle to represent
all the training data and allows a test data point distance to be measured with respect to
all training data points simultaneously and the closest training points to be presented in
one quantum circuit operation. The implementation of the Oracle also proved to be the
defining point of this experiment. There is no clear guidance on how to implement this
Oracle as a quantum circuit and Qiskit does not provide a specific Oracle implementation
of this case. The implementation of such an Oracle would surely involve the use of
Quantum Random Access Memory (QRAM) and using quantum interference to reduce
the probabilities of all but the closest data points but this remains to date a theoretical
construct. Schuld (2018) describes a QRAM as having the device attributes whereby
data is loaded in parallel into a quantum register. The Oracle is queried using an index
register and which loads the indexed data into the register. The index register can be put
into a superposition of all states and thus the QRAM can load all data into the quantum
register simultaneously. This quantum parallelism and production of a QRAM device is
still the subject of active research.

Apart from some initial investigation of the construction of the SWAP Test circuit
and experimentation with some sample data points, a full implementation of the kNN
algorithm was not performed. This was due to the apparent lack of runtime performance
and the inability to construct an Oracle circuit to allow, even in simulation, the super-
position of all states from the training set. Focus shifted to the development of quantum
generated kernels for SVM running on conventional computer hardware as described be-
low.

6.2 Runtimes of SVM Quantum Kernel Classifiers

Table 1 records the CPU time and elapsed wall-clock time for generating the kernel
feature maps for the four feature map circuit variants for an actual quantum processor
and two simulators, one ideal and the other incorporating a noise model.

In this case the quantum circuit qubits are initialised into the |0〉 state and rotation
gates applied using the feature vector values as angles by way of hyperparameters. The

16

Table 1: Quantum kernel generation runtimes by FeatureMap and Processor/Simulator

Quantum FeatureMap
ibmqx

Quantum
Processor

StateVector
Simulator (Ideal)

QASM
Simulator (Noisy)

ZFeatureMap

CPU times:
user 1min,
sys: 2.15 s,
total: 1min 2s
Wall time: 50min 1s

CPU times:
user 901 ms,
sys: 194 ms,
total: 1.1 s
Wall time: 2.2 s

CPU times:
user 1min 11s,
sys: 1.31 s,
total: 1min 12s
Wall time: 1min 58s

ZZFeatureMap
(Linear Entanglement)

CPU times:
user 2min 7s,
sys: 2.18 s,
total: 2min 9s
Wall time: 51min 44s

CPU times:
user 1.16 s,
sys: 48.3 ms,
total: 1.21 s
Wall time: 2.45 s

CPU times:
user 2min 19s,
sys: 2.13 s,
total: 2min 22s
Wall time: 3min 50s

ZZFeatureMap
(Circular Entanglement)

CPU times:
user 1min 59s,
sys: 2.07 s,
total: 2min 1s
Wall time: 56min 6s

CPU times:
user 1.2 s,
sys: 43.8 ms,
total: 1.24 s
Wall time: 2.36 s

CPU times:
user 2min 53s,
sys: 1.74 s,
total: 2min 55s
Wall time: 4min 16s

PauliFeatureMap

CPU times:
user 2min 3s,
sys: 2.11 s,
total: 2min 5s
Wall time: 53min 47s

CPU times:
user 1.43 s,
sys: 98.5 ms,
total: 1.53 s
Wall time: 2.94 s

CPU times:
user 4min 15s,
sys: 2.2 s,
total: 4min 17s
Wall time: 5min 55s

different feature map circuits allow repetitions of the circuit as a way to increase the
parameterization of the classification process in a way similar to the parameterized layer-
ing of neural networks with configurable weights and biases as training hyperparameters.
Just as in neural network design there is no absolute definition of good and bad design.
To a large degree trial and error (and error measurement) is required until the circuit is
performing adequately well for purpose.

6.3 Accuracy of SVM Quantum Kernel Classifiers

Table 2 records the classification accuracies achieved by the four feature map circuit
variants for an actual quantum processor and two simulators, one ideal (StateVector)
and the other incorporating a noise model (QASM).

Table 2: Kernel classification test scores by Feature Map and Processor/Simulator

Quantum FeatureMap
ibmqx

Quantum
Processor

StateVector
Simulator

QASM
Simulator

ZFeatureMap 0.97 0.97 0.97
ZZFeatureMap

(Linear Entanglement)
0.9 0.93 0.97

ZZFeatureMap
(Circular Entanglement)

0.93 0.93 0.93

PauliFeatureMap 0.97 0.97 0.93

17

6.4 Accuracy of SVM Conventional Kernel Classifiers

Table 3 records the classification accuracies achieved by conventional SVM kernels on the
Iris dataset and may be compared with the classification accuracy scores achieved by the
quantum generated kernel classifier as shown in Table 2.

Table 3: SVM classification test scores by Kernel

SVM Kernel
Classification

test score
Linear 0.97
Poly 0.93
Rbf 0.97

Sigmoid 0.93

6.5 Discussion

In Table 2 I show the classification test scores produced by three different SVM kernels
pre-calculated on an actual quantum computing device along with two quantum device
simulators, one ideal / noise free (StateVector) and the other noisy (QasmSimulator). The
metric refers to the number of correct predictions of class as a percentage for the test
set of 30 observations chosen from the overall Iris dataset of 150 data observations. The
quantum computer calculated kernels are produced using a FeatureMap which consists of
a quantum circuit incorporating different ways of arranging the operator gates and using
qubit state rotations to encode the training values as hyperparameters.

The FeatureMap circuits allow the repetition of the basic circuit constructs to allow
more layers and more hyperparameters and greater “trainability” of the circuit to model
the statistical properties of the dataset allowing better predictions on unseen data. For
the sake of simplicity, only one layer was chosen for each of the FeatureMaps due to the
additional quantum computing resources required in terms of circuit depth which brings
a longer runtime and is more prone to noise.

Regardless of this, all experiments yielded high accuracy results with marginal dif-
ferences as did the classical experiments using conventionally generated kernels. The
point of this is that there is no credible advantage in using QML in this context. The
limitations of the quantum computing devices available to me prevent the processing of
a larger or more complex (in terms of numbers of features or structure within the data)
dataset.

Given these constraints, it is easy for classical methods to perform just as well or
indeed better than the quantum equivalent from a prediction accuracy point of view
as demonstrated in Table 3. From a runtime performance point of view there is no
contest. The current runtimes required for using physical quantum devices in the IBM
Quantum environment with the job submission queue and shared runtime execution can
be punishing where SVM kernel calculation using scikit-learn can be done in milliseconds.
However, this may change as the data sets grow exponentially larger and more complex.
At some point it may become computationally infeasible for a kernel to be generated using
conventional and available computing resources and that is the opportunity for QML and
quantum computing. Unfortunately, we are quite far from that point presently.

The runtime results for the SVM quantum kernel classifiers in Table 1 demonstrate
that the quantum circuit running on the IBM Quantum hardware takes of the order of

18

1-2 minutes approximately of CPU time. Unfortunately due to the job queuing and time
sharing execution mode for the public access quantum processors, the elapsed wall-clock
time can be up to an hour. Considering the low dimensionality and cardinality of the
dataset, this represents a serious performance deterrent to any data analytics practitioner.
The simulator times are more reasonable and ideal for model development purposes.

The accuracy of classification for the quantum processor holds up well in comparison
to both the simulators and the conventional SVM kernels. However this is largely down
to the dataset and its attributes which are rather simplistic in this case. SVM with
conventional kernels is able to generate both the kernel and classification results for the
test set based on the training set in a matter of milliseconds for this dataset.

However the true advantage of generating a kernel on a quantum system is to develop
a trained model that can potentially very accurately represent a hard to train classifier
in comparison with conventional ML. QML can potentially achieve this through gate
parameterization using the training data as hyperparameters and quantum effects such
as entanglement between qubits which are not feasible to represent on a conventional
computer. This may allow the quantum trained model to learn a feature set in a similar
manner to hidden layers within an artificial neural network and possibly come up with
a SVM decision boundary hyperplane that cannot be computed using a conventional
computer.

There is scope for this mode of operation where the kernels can be generated offline
on a quantum computer for datasets that are not classifiable using conventional methods
and then the precompiled kernel can be brought back to a conventional computer for
classification usage using an SVM in the normal manner. However this would require a
dataset whose classification accuracy metric is low for conventional SVM kernels or of a
scale large enough to be prohibitive in terms of conventional computing cost. Under these
circumstances and with adequate access to large scale quantum computing resources in
terms of number of qubits, circuit depth and time allocations, it might be possible to
construct a quantum kernel with a significantly better classification accuracy. It is worth
noting that no such dataset has to date been identified other than contrived artificial
examples and there are still overbearing restrictions on stable quantum circuits in terms
of number of qubits and circuit depth to allow this type of processing.

7 Conclusion and Future Work

To address the objectives of this research and assess the current application of QML to
large scale data analytics problems, the small scale Iris dataset was processed to highlight
any limitations of QML. kNN and quantum kernel estimation for use in conjunction with
conventional SVM classifiers were considered. Three Python based Jupyter notebooks
were provided to explore the dataset and introduce the IBM Quantum cloud computing
environment and the Qiskit machine learning libraries. These notebooks are a very good
programming entry point and template for anyone wanting to explore QML in the IBM
Quantum environment with processing on multi-dimensional datasets.

The most significant outcome of this research is guiding the reader to the concept
of quantum computation of feature maps and kernels to be subsequently used by SVM
classifiers on conventional computers and demonstration of this concept by providing
example notebook implementations. The advantage of this precomputed quantum kernel
method is the use of gate parameterization and quantum effects like qubit entanglement

19

in the feature map to detect structure in the data that could be hard to detect by
conventional ML. An efficient method of generating the kernel representing the decision
boundary hyperplane can be done due to the inner product properties of Hilbert space in
order to calculate distance between feature vectors. Although SVM performs very well
with conventional computers in terms of accuracy and fast runtimes as shown by the use
of scikit-learn, there may be datasets to which the quantum kernel estimation technique
lends itself in terms of intractability of calculating a hyperplane using conventional ML.
Unfortunately at this point in time no datasets possessing these characteristics have been
identified by research apart from a contrived example by Havĺıček et al. (2019).

For the data analytics practitioner, QML remains a theoretical curiosity in terms of
practical applications to large scale data processing and analytics. Active research is
ongoing to identify quantum circuits and models to aid useful practical applications in
machine learning. The current issues with the lack of fault tolerant quantum hardware
and the relatively scarce small scale systems available on a time shared basis illustrates
an absence of clear advantage over conventional machine learning. Regardless of this,
the ideas brought forward by QML allow re-examination of how one looks at data and
how one implements machine learning processing algorithms and thus may well inspire
improvements to the conventional machine learning techniques.

References

Afham, Basheer, A. and Goyal, S. K. (2020). Quantum k-nearest neighbor machine
learning algorithm, arXiv:2003.09187 [quant-ph] . arXiv: 2003.09187.
URL: http://arxiv.org/abs/2003.09187

Aı̈meur, E., Brassard, G. and Gambs, S. (2013). Quantum speed-up for unsupervised
learning, Machine Learning 90(2): 261–287.

Benedetti, M., Lloyd, E., Sack, S. and Fiorentini, M. (2019). Parameterized quantum
circuits as machine learning models, Quantum Science and Technology 4(4): 043001.
Publisher: IOP Publishing.
URL: https://doi.org/10.1088/2058-9565/ab4eb5

Benioff, P. (1980). The computer as a physical system: A microscopic quantum mech-
anical Hamiltonian model of computers as represented by Turing machines, Journal of
Statistical Physics 22(5): 563–591.
URL: https://doi.org/10.1007/BF01011339

Brassard, G., Chuang, I., Lloyd, S. and Monroe, C. (1998). Quantum computing, Proceed-
ings of the National Academy of Sciences 95(19): 11032–11033. Publisher: National
Acad Sciences.

Buhrman, H., Cleve, R., Watrous, J. and De Wolf, R. (2001). Quantum fingerprinting,
Physical Review Letters 87(16): 167902. Publisher: APS.

Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S.
and Wossnig, L. (2018). Quantum machine learning: a classical perspective, Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
474(2209): 20170551. Publisher: Royal Society.
URL: https://royalsocietypublishing.org/doi/10.1098/rspa.2017.0551

20

Deutsch, D. (1985). Quantum theory, the Church–Turing principle and the universal
quantum computer, Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences 400(1818): 97–117. Publisher: The Royal Society London.

Fastovets, D. V., Bogdanov, Y. I., Bantysh, B. I. and Lukichev, V. F. (2019). Machine
learning methods in quantum computing theory, International Conference on Micro-
and Nano-Electronics 2018, Vol. 11022, International Society for Optics and Photonics,
p. 110222S.
URL: https://www.spiedigitallibrary.org/conference-proceedings-of-
spie/11022/110222S/Machine-learning-methods-in-quantum-computing-
theory/10.1117/12.2522427.short

Feynman, R. P. (1981). Simulating physics with computers, 1981, International Journal
of Theoretical Physics 21(6/7).

Fredkin, E. and Toffoli, T. (1982). Conservative logic, International Journal of theoretical
physics 21(3): 219–253. Publisher: Springer.

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search, Proceed-
ings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 212–219.

Havĺıček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M. and
Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces,
Nature 567(7747): 209–212. Number: 7747 Publisher: Nature Publishing Group.
URL: https://www.nature.com/articles/s41586-019-0980-2

IBM’s roadmap for building an open quantum software ecosystem (2021).
URL: https://www.ibm.com/blogs/research/2021/02/quantum-development-
roadmap/

Lloyd, S., Mohseni, M. and Rebentrost, P. (2013). Quantum algorithms for supervised
and unsupervised machine learning, arXiv preprint arXiv:1307.0411 .

Metawei, M. A., Said, H., Taher, M., Eldeib, H. and Nassar, S. M. (2020). Survey on
Hybrid Classical-Quantum Machine Learning Models, 2020 International Conference
on Communications, Computing, Cybersecurity, and Informatics (CCCI), pp. 1–6.

Nielsen, M. A. and Chuang, I. (2002). Quantum computation and quantum information,
American Association of Physics Teachers.

Ramezani, S. B., Sommers, A., Manchukonda, H. K., Rahimi, S. and Amirlatifi, A. (2020).
Machine Learning Algorithms in Quantum Computing: A Survey, 2020 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8. ISSN: 2161-4407.

Schuld, M. (2018). Supervised learning with quantum computers, Springer.

Schuld, M., Bocharov, A., Svore, K. and Wiebe, N. (2020). Circuit-centric quantum
classifiers, Physical Review A 101(3): 032308. arXiv: 1804.00633.
URL: http://arxiv.org/abs/1804.00633

21

Schuld, M., Fingerhuth, M. and Petruccione, F. (2017). Implementing a distance-based
classifier with a quantum interference circuit, EPL (Europhysics Letters) 119(6): 60002.
arXiv: 1703.10793.
URL: http://arxiv.org/abs/1703.10793

Schuld, M. and Killoran, N. (2019). Quantum Machine Learning in Feature Hilbert
Spaces, Physical Review Letters 122(4): 040504. Publisher: American Physical Society.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.122.040504

Schuld, M., Sinayskiy, I. and Petruccione, F. (2015). An introduction to quantum machine
learning, Contemporary Physics 56(2): 172–185.

Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and
factoring, Proceedings 35th annual symposium on foundations of computer science,
Ieee, pp. 124–134.

Shrivastava, P., Soni, K. and Rasool, A. (2020). Classical Equivalent Quantum Unsuper-
vised Learning Algorithms, Vol. 167, pp. 1849–1860.

Wittek, P. (2014). Quantum Machine Learning: What Quantum Computing Means to
Data Mining, Quantum Machine Learning: What Quantum Computing Means to Data
Mining. Pages: 163.

22

	Introduction
	Introduction to Quantum Computing
	Quantum Machine Learning
	Research Question
	Report Structure

	Related Work
	Emergence of QML
	QML for Supervised and Unsupervised Learning
	Recent Developments in Cloud Hosted Quantum Computers

	Methodology
	Design Specification
	Quantum Encoding
	Quantum Distance Measurement
	SWAP Test Circuit
	Quantum Classification with Interference
	Quantum Kernel Estimation

	Implementation
	Implementation of kNN
	Implementation of SVM with Quantum Kernel Estimation

	Evaluation
	Experimentation using kNN
	Runtimes of SVM Quantum Kernel Classifiers
	Accuracy of SVM Quantum Kernel Classifiers
	Accuracy of SVM Conventional Kernel Classifiers
	Discussion

	Conclusion and Future Work

