ﬁ

National

College of
Ireland

Configuration Manual

MSc Research Project
Data Analytics

Rohit Kumar
Student ID: X15004902

School of Computing
National College of Ireland

Supervisor: Jorge Basilio

‘*—
\ National

Collegef
MSc Project Submission Sheet Ireland

National College of Ireland

School of Computing

Student Rohit Kumar
Name:

Student ID: X15004902

Programme: Data Analytics Year: 2021
Module: MSc Research Project

Lecturer: Jorge Basilio

Submission

Due Date: 23/09/2021

Project Title: Intracranial hemorrhage Detection Using Deep Learning
and Transfer Learning

Word Count: Page Count: ...

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Rohit Kumar

Date: 23/09/2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project m
(including multiple copies)

Attach a Moodle submission receipt of the online m
project submission, to each project (including multiple
copies).

You must ensure that you retain a HARD COPY of the m
project, both for your own reference and in case a project is
lost or mislaid. It is not sufficient to keep a copy on

| computer. |

Assignments that are submitted to the Programme Coordinator Office
must be placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if
applicable):

Configuration Manual

Rohit Kumar
X15004902

1 Introduction

The objective of this paper is to outline the process used to code the project. The hardware
and software combinations necessary to replicate the future research are described. This
section details the programming and implementation processes necessary for efficient
executable code, as well as the actions necessary to run the script.

2 System Configuration

2.1 Hardware Configuration

The Below figure 1 shows the hardware details used to execute the code.

Device specifications

HP Laptop 14s-dqlxxx
Device name LAPTOP-FLPGDREF

Processor Intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz 1.19 GHz
Installed RAM 8.00 GB (7.70 GB usable)

Device ID AT7124827-360C-442C-84DF-429FD39641E7

Product ID 00325-81902-90277-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch ~ No pen or touch input is available for this display

Fig. 1 Device specifications

2.2 Software Configuration

This section contains information about the software standards that were used.

2.2.1 Jupyter notebook in Anaconda:

Anaconda is a Python coding platform that is free, open source, and simple to use. The
anaconda prompt screen in the base root environment is depicted in the following Figure 2.

1

The TensorFlow environment has been chosen for the purpose of executing the CNN model
and Transfer learning model.

{) ANACONDA NAVIGATOR

ﬁ Home

Applications on base (root) |~| Channels

" base (root)

@ Environments
tensorflow]
T vy
ﬁ Learning - Ql
. Datalore IBM Watson Studio Cloud
- Community
Online Data Analysis Tool with smart coding IBM Watson Studio Cloud provides you the
assistance by JetBrains. Edit and run your tools to analyze and visualize data, to cleanse
Python notebooks in the cloud and share and shape data, to create and train machine

learning models. Prepare data and build
models, using open source data science tools
or visual modelina.

Launch Launch

them with your team.

] e
ANACONDA o
S’
Join Now *
Notebook Qt Console
A 601 A 455
Discover premium data) .) - .
science content Web-based, interactive computing notebook PyQt GUI that supports inline figures, proper
environment. Edit and run human-readable multiline editing with syntax highlighting,
docs while describing the data analysis. graphical calltips, and more.

Documentation

Anaconda Blog Launch Launch

Figure 2: Anaconda prompt.

3 Data Gathering

The Dataset available on Kaggle is 427.45GB and can is downloaded from Kaggle using the
Kaggle API.

1. The first step is to set the directory and download the Kaggle in the Jupyter file as
shown in the below image.

In [1]: dimport os
Dirpath ="C:/Users/Rohit/Thesis"
os.chdir(Dirpath)

In [2]: pip install kaggle

2. Next step is to login on your Kaggle account and go to my account page and click on
create new API token.

kcggg;le o} Search

H4Home

Home Competitions Datasets Code Dis

competitions rohitgrak

Datasets

—ode

rohitroré9@gmail.com

Jiscussions

Zourses

Werified

viore
v Viewed
ception Beseline Mod.._. Your email preferences can now be controlled ol

ieedlings - Pretrained ...

NN Architectures = V...

rog Breed - Pretrained...

Using Kaggle's beta APIl, you can interact with C
command line. Read the docs

¥ Gold Medal Solution...

3.

4.

6.

Fig. 3 Kaggle my Account page

Once we click on Create New APl Token the Kaggle.json file will be download on
the machine.

To download the dataset, store the Kaggle.json file in the Kaggle folder on the C
drive. When we install Kaggle in Jupyter, it displays the downloaded file path,
therefore we must save the Kaggle.json file in that location.

Next step is to visit on the link https://www.kaggle.com/c/rsna-intracranial-
hemorrhage-detection/data and copy the dataset API. The below figure 4 shows the
dataset page with the API.

C @& kaggle.com/c/rsna-intracranial-hemorrhage-detection/data R - 4 o
D YouTube ™4 Gmail *h Dashboard ﬁ Mail - Rohit Kuma.. & DataCamp == NCI Cloud Services H R Pragramming A-.. ﬂ Linkedin » [E Reading
Q Search

Overview Data Code Discussion Leaderboard Rules Team My Submissions Late Submission e

This is a two-stage challenge. You will need the images for the current stage - provided as stage_2_test.zip. You will also need the
training data - stage_2_train.csv - and the sample submission stage_2_sample_submission.csv, which provides the IDs for the test set,

as well as a sample of what your submission should look like.

Note: The timeline page outlines the two-stage format and deadlines. Stage 2 data is now available in accordance with this timeline.
Also review two-stage FAQs for more details.

Fig. 4 RSNA Dataset Page.

The dataset can be downloaded using 2, option 1 is open anaconda command prompt
and paste the API key and click enter as shown in the figure 5 and another method is
to use Jupyter Notebook and add the Kaggle username and Password and then Run
the API as shown in the Figure 6.

https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/data
https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/data

base) C:\Users\Rohit>cd Thesis

base) C:\Users\Rohit\Thesis>kaggle competitions download -c rsna-intracranial-hemorrhage-detection

DOHQloadin rsna-intracranial-hemorrhage-detection.zip to C:\Users\Rohit\Thesis
igg; | 181G/181G [5:30:50<00:00, 9.77M8/s]
| 181G/181G [5:30:50<00:00, 9.81MB/s]

(base) C:\Users\Rohit\Thesis>g

Fig5 Anaconda Command Prompt

from keras import backend as K
import tensorflow as tf

Using TensorFlow backend.

In [7]: # Set environment variables for using the Kaggle API.
os.environ["KAGGLE_USERNAME"] = "Account_username"
os.environ["KAGGLE_KEY"] = "Account_Key"

In [8]: !'kaggle competitions download -c rsna-intracranial-hemorrhage-detection

Downloading rsna-intracranial-hemorrhage-detection.zip to {raw_data_dir}
0% | | 524M/181G [01:50<7:16:35, 7.41MB/s]"C
0% | 525M/181G [01:51<10:52:45, 4.96MB/s]

Fig. 6 Jupyter Notebook

4 Data Conversion

First step: Unzip the downloaded dataset in the hard disk. Because the data is so big and I do
not have enough space in my device so | have used an external hard disk.

Second step: open the Intracranial_Hemorrhage Detection.ipynb file and load the dataset
files as shown in the below code

In [1]: ######### 1importing Library to read the files

import pandas as pd
import numpy as np

In [2]: Data_PATH = 'D:/rsna-intracranial-hemorrhage-detection/'

TRAIN_Image = 'stage_2_ train/'

TEST_Image = 'stage_2_test/'

train_CSV = pd.read_csv(Data_PATH + 'stage_2_train.csv')

subm_CSV = pd.read_csv(Data_PATH + 'stage_2_ sample_submission.csv')

Third Step: In this step reading and train label file and converting into data frame.

train_CSV['filename'] = train_CSV['ID'].apply(lambda st: "ID_" + st.split('_')[1] + ".png")
train_CSV['type'] = train_CSV['ID'].apply(lambda st: st.split('_')[2])

subm_CSV['filename'] = subm_CSV['ID'].apply(lambda st: "ID_" + st.split('_')[1] + ".png")
subm_CSV['type'] = subm_CSV['ID'].apply(lambda st: st.split('_"')[2])

print(train_CSV.shape)
train_CSV.head()

Fourth Step: Due to the limited hardware available for implementation, | chose to convert
50,000 DICOM images from the train folder and 5,000 DICOM images from the test folder.

Fifth Step: Duplicate photos are deleted from the training data, and 15 percent of the
training data is separated into validation data, which is then used to further validate the model
after it has been trained.

Sixth Step: importing the import libraries for windowing and image conversion.
In [19]: # Importing Library for windowing and conversion
import json
import cv2

import pydicom
from tgdm import tqgdm

Seventh Step: once the libraries imported get the pixel of the image and save if in a function.

In [2@]: def get_pixels_hu(scan):
image = np.stack([scan.pixel_array])
image = image.astype(np.intl6)
image[image == -2000] = ©

intercept = scan.Rescalelntercept
slope = scan.RescaleSlope

if slope != 1:
image = slope * image.astype(np.floaté4)
image = image.astype(np.intl6)

image += np.intl6(intercept)

return np.array(image, dtype=np.intils6)

Eighth Step: 3-channel windowing of Brain, Subdural and bone is done in this step

def apply_window(image, center, width):
image = image.copy()
min_value = center - width // 2
max_value = center + width // 2
image[image < min_value] = min_value
image[image > max_value] = max_value
return image

def apply_ window_policy(image):

imagel = apply_window(image, 4@, 8@) # brain
image2 = apply_window(image, 88, 28@) # subdural
image3 = apply_window(image, 48, 388) # bone
imagel = (imagel - ©) / 8@
image2 = (imagez - (-2@)) / 2ee
image3 = (image3 - (-158)) / 388
image = np.array([

imagel - imagel.mean(),

image2 image2.mean(),

image3 - image3.mean(),

])-transpose(1,2,0)

return image

Ninth Step: Setting the directory to save the resized 128x128 PNG dimensional file.

def resize_save(filenames, load_dir):
save_dir = 'C:/Users/yufen/Desktop/Resize_PNG_Data/'

if not os.path.exists(save_dir):
os.makedirs(save_dir)

for filename in tqdm(filenames):
try:

path = load_dir + filename
new_path = save_dir + filename.replace('.dcm', '.png')
dem = pydicom.dcmread(path)
image = get_pixels_hu(dcm)
image = apply_window_policy(image[8])
image -= image.min((e,1))
image = (255*image).astype(np.uint8) # Norma
image = cv2.resize(image, (128, 128)) # Resiz
res = cv2.imwrite(new_path, image)

e the Image
image pixel

except ValueError:
continue # black image,

In the folder, the selected images begin to download. As shown in the figure below,

T 5

Quick access
Il Desktop
¥ Downloads
Documents
&= Pictures
Culture submit
Rohit
St, Nicholas Mon
m Videos

@ OneDrive

= This PC
B 3D Objects
B Desktop
Documents
4 Downloads
D Music
= Pictures

52,793 items

Resize_PNG_Data v (] Search Resize

~

1D_00d6d8187 ID_Oadbeef57 ID_Oa6bbcb9da

[Se=s]

ID_Oa32a21c3 ID_0a8503d93 ID_0a81231b8

&)

ID_0a8489864 ID_Oab6f2ce6 ID_Oabc8dd29 ID_Oabd443be ID_Oae7b0aec

«BON.N NO

6

5 Data Generator

Data generator function is used on the resized PNG images of Train, Test and Validation
Data.

#HA##### Image Data Generator is applied for the augmentation of the converted png Image,

def Datagen creater():
return ImageDataGenerator()

def training gen(datagen):

return datagen.flow from dataframe(
training dataf,
directory="C:/Users/yufen/Desktop/Resize PNG_Data/",
x col='filename',
y_col=['any', ‘'epidural’', 'intraparenchymal',

'intraventricular', 'subarachnoid', 'subdural'],

class_mode='raw',
target size=(128, 128),
batch_size=32,

)

def testing gen():

return ImageDataGenerator().flow from dataframe(
sample_test,
directory= "C:/Users/yufen/Desktop/Resize PNG_Data/",
x col="filename',
class_mode=None,
target size=(128, 128),
batch_size=32,
shuffle=False

)

def validating gen(datagen):

return datagen.flow from dataframe(
validate dataf,
directory="C:/Users/yufen/Desktop/Resize_PNG_Data/",
x _col='filename',
y col=['any', 'epidural', 'intraparenchymal',

'intraventricular', 'subarachnoid', 'subdural'],

class_mode='raw',
target size=(128, 128),
batch size=32,
shuffle=False,

)

Using original generator

data_generator = Datagen_creater()

training gen = training gen(data_generator)
validating gen = validating gen(data generator)
testing gen = testing gen()

6 Executing CNN

Below function is used for the model checkpoint of the and learning rate reduction of the
model

below is the function used to Reduce learning rate when a metric has stopped improving.
early stop

from keras.callbacks import ReduceLROnPlateau

learning rate_ reduction = ReduceLROnPlateau(monitor='wval accuracy', patience = 2, verbose=1,
checkpoint = ModelCheckpoint(
"Full_model.h5', #full model checkoint i1is set because during training the mode

monitor='val loss',
verbose=0,
save_best_only=True,
save_weights only=False,
mode="auto')

Below is the code of CNN Model building

#initializing CNN

cnn_model = models.Sequential()

#model architecture defining

cnn_model.add(Conv2D(32, (3, 3), activation = 'relu', input shape = (128, 128, 3)))

cnn_model.add (MaxPooling2D((2, 2)))

‘relu'))

cnn_model.add(Conv2D(32, (3, 3), activation
cnn_model.add (MaxPooling2D((2, 2)))

#fully connected layer

cnn _model.add(Flatten())
cnn_model.add(Dense (64, activation = 'relu'))
cnn_model.add(Dense(128, activation = 'relu'))

#one layer activated by sigmoid
cnn_model.add(Dense(6, activation = 'sigmoid'))

CNN model applied using the code Below:

setting the time to check the time taken by model
BATCH SIZE = 32

import datetime

start = datetime.datetime.now()

Setting steps per epochs for final model
total steps = files.shape[0] // BATCH SIZE
total steps = total steps // 4

#fitting the model
cnn_history = cnn model.fit(training gen,
steps per epoch = total steps,
epochs = 10,
validation data = validating gen,
validation steps=total steps * 0.15,
callbacks = [learning rate reduction, checkpoint])

Evaluation of the model:

calculating the model prediction values

validating preds = cnn model.predict(validating gen, verbose = 1)

Confusion matrix is imported using kears application

from sklearn.metrics import confusion matrix

print (confusion matrix(y true, y prediction))
cm = confusion matrix(y true, y prediction)

Confusion matrix function created :

import itertools

def plot confusion matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):

plt.figure(figsize = (6,6))
plt.imshow(cm, interpolation='nearest', cmap = cmap)
plt.title(title)
plt.colorbar()
tick marks = np.arange(len(classes))
plt.xticks(tick marks, classes, rotation=90)
plt.yticks(tick marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

thresh = cm.max() / 2.
cm = np.round(cm,2)
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1l])):
plt.text(j, i, cm[i, J],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_ layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()

Below code is to calculate for classification report accuracy

from sklearn.metrics import classification_report, precision_score, recall_score, fl_score, accuracy_score

: print('Model: CNN', '\n', classification report(y_true, y prediction, target names = ['No Hemorrhage', 'Has Hemmorrhage

Model: CNN

7 Executing the Dense Net

######## Second Transfer Learning Model ------ DenseNetl2]-—————————————e

from keras.applications.densenet import DenseNetl2l
from keras.layers import Dense, GlobalAveragePooling2D
from keras.models import Model

from keras import backend as K

base model = DenseNetl2l(input shape=(128, 128, 3), include_ top=False, weights='imagenet', pooling='avg')

base_model.summary ()

Calculating the dense Layer

layers = base _model.layers
print (f£"The model has {len(layers)} layers")

#model = Sequential()

base model = DenseNetl2l(include_top=False, weights='imagenet')
X = base model.output

X = GlobalAveragePooling2D()(x)

predictions = Dense(6, activation="sigmoid") (x)

model = Model(inputs=base model.input, outputs=predictions)
model.compile(loss="'binary crossentropy',

optimizer='adam',
metrics=['accuracy'])

Evaluation steps for this model is same as we have used earlier for CNN
Model

8 Executing the Xception Model

———————— e ——————— Xception MOdel -—=—===——m—mmmmm——————
from keras.applications import Xception

: def create_model():
base model = Xception(weights = 'imagenet', include top = False, input shape = (128,128,3))
X base_model.output
X GlobalAveragePooling2D() (x)
X Dropout(0.15) (x)
y_pred = Dense(6, activation = 'sigmoid')(x)

return Model(inputs = base_model.input, outputs = y_ pred)

: LR = 0.00005
model = create_model()

: model.compile(optimizer = Adam(learning_rate = LR),
loss = 'binary crossentropy',
metrics = [tf.keras.metrics.AUC()])

10

To Check the MOdel Layers

layers = model.layers
print (£"The model has {len(layers)} layers")

The model has 135 layers
#train length = len(train df)

total steps = files.shape[0] // BATCH SIZE
total steps = total steps // 4

history = model.fit(
training gen,
steps_per epoch = total_ steps,
validation data=validating gen,
validation_steps=total_steps * 0.15,
callbacks=[learning rate_reduction, checkpoint],
epochs=10

Evaluation steps for this model is same as we have used earlier for CNN
Model, Because the model gave high accuracy, so | have evaluated the
model using ROC Curve.

The below code is for ROC Curve

from sklearn.metrics import auc
auc_keras = auc(fpr_keras, tpr_keras)

from sklearn.metrics import roc_curve
fpr_keras, tpr_keras, thresholds_keras = roc_curve(y_true, xXception_ y_preds)

plt.figure(1l)
plt'plOt([Or l]r [Or l]: Ik"l)
plt.plot(fpr_keras, tpr_keras, label='ROC curve (area = {:.3f})'.format(auc_keras))

plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc="best"')

plt.show()

The prediction value of the Xception model is then used in conjunction with the test picture
file to identify the different subtypes of intracranial hemorrhage.

11

from PIL import Image
for i in range(20):

for j in range(l,7):
if test frame.iloc[i,j] > 0.01:

path = "C:/Users/yufen/Desktop/Resize_PNG_Data/" + str(test frame.iloc[i,0])

img = Image.open(path)

plt.imshow(img)

print(str(test_frame.iloc[i,0]) + " has a probability: " + str(test_frame.iloc[i,j]) + " for a '" + str(te

plt.show()

12

	1 Introduction
	2 System Configuration
	2.1 Hardware Configuration
	2.2 Software Configuration
	2.2.1 Jupyter notebook in Anaconda:

	3 Data Gathering
	4 Data Conversion
	First step: Unzip the downloaded dataset in the hard disk. Because the data is so big and I do not have enough space in my device so I have used an external hard disk.

	5 Data Generator
	6 Executing CNN
	7 Executing the Dense Net
	8 Executing the Xception Model

