

Configuration Manual

 Named Entity Recognition on Kannada Low Resource Languages

Using Deep Learning Models

MSc in Data Analytics

Pavan Kulkarni

Student ID: x19231075

School of Computing

National College of Ireland

Supervisor:

Prof Dr. Christian Horn

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Pavan Kulkarni

Student ID: X19231075

Programme: MSc. Data Analytics Year: 2020-2021

Module: Research Project

Lecturer: Dr. Christian Horn
Submission Due
Date: 16/08/2020

Project Title: Named Entity Recognition on Kannada Low Resource using

 Deep Learning and Machine Learning Languages

Word Count: 1568 Page Count: 22

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Pavan Kulkarni

Date:

16/08/2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)
□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).
□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into

the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Pavan Kulkarni

Student ID: x19231075

1 Introduction
This documentation takes us to necessary steps and preparation required to implement and run

this proposed model. Here, the systems requirements used, and hardware configuration of the

system is explained. The minimum system specification requirement necessary to run this

model is explained.

2 System Prerequisites

2.1 Configuration of Hardware used
The setup of the Lenovo laptop that was utilized for the investigation is shown in Figure 1.

The laptop is equipped with an Intel Core i3-8145U CPU, 12 GB of Random-Access Memory

(RAM) and 1 Terra Bytes hard disk. The operating system (OS) is Windows 10 Home edition.

Figure 1. The configuration of system used to run the model.

2

2.2 Configuration of Software
Google Collaboratory and Jupyter Notebook (Anaconda 3) tools are used to carry out the

project. The following section summarizes all of the procedures involved in downloading and

installing the software packages requirement.

3 Setup of the Environment

3.1 Google Notebook for Collaboration
Some of the packages to run BERT model found to be not compatible in the Jupyter Notebook

(Anaconda 3). So, Google Collaboratory is used to run Google’s BERT deep learning model.

And Bi-LSTM, Random Forest Classifier have been run successfully on Jupyter Notebook

(Anaconda 3) without any issues. The following steps will explains how to create the

preliminary setup to run these models.

1. Gmail account is necessary to run model on Google Collaboratory.

2. Click this link after signup and follow the instructions.

3. To utilize the existing notebooks, select New Notebook or Upload.

4. Change the notebook type to GPU after establishing a connection. This is done by clicking

on Runtime and then on Modify Runtime.

Figure 2 : Create a new notebook

https://colab.research.google.com/notebooks/intro.ipynb?authuser=1#recent=true
https://colab.research.google.com/notebooks/intro.ipynb?authuser=1#recent=true

3

Figure 3. Based on the requirements change the runtime type.

5. Then click Save after selecting GPU.

6. Then select Connect to hosted runtime from the dropdown menu of the Connect button.

Figure 5. Use Google's Infrastructure to connect to it.

Figure 4 : Settings for the Runtime

4

3.2 Jupyter Notebook (Anaconda 3)
To install Jupyter Notebook (Anaconda 3), go to this page and click the "download" button to

begin the process. All the download and installation processes are shown in Figure 6.

Figure 6. Anaconda download for windows edition.

After the installation, from start , select Jupyter Notebook (Anaconda 3) from the

Anaconda 3 64 bit drop down icon.

Figure 7. From windows start function select the Jupyter Notebook (anaconda 3) (1)

https://www.anaconda.com/products/individual#windows

5

Figure 8. Create a new blank python 3 notebook from drop down button.

4 Implementation

4.1 Jupyter Notebook data source

4.1.1Random Forest Classifier model:
The dataset is separated by space and file is encoded with ‘utf-8’ format.

Figure 9. Reading the file using pandas and populating missing values.

Figure 10. Select the required columns.

Figure 11. The datatype of the columns used.

6

Figure 12. This is the main function ‘sentence getter’. Group the sentence based on the lambda

function.

Figure 13. The first sentence of the data with ‘word’, ‘POS’ and ‘Tag’ entities.

Figure 14. The words tagged with ‘B-LOC’ is separated from the dataset.

Figure 15. Function extracted the words with ‘I-ORG’ from the input file.

Figure 16. Person names are tagged separately from the dataset.

7

Figure 17. From the dataset ‘o’ is mentioned for words which are not an entity.

Figure 18. Converting words into array representation.

Figure 19. Array representation of first five words.

Figure 20. Using Random Forest Classifier assign values to the model.

Figure 21. Based on classification report package found the precision, recall, f1-score and

model accuracy.

8

Figure 22. Accuracy output from the model.

4.1.2 Bi-LSTM Model:

The steps followed to implement the Bi-LSTM model are discussed as follows:

Figure 23. The important libraries required to import into Jupyter Notebook.

Input file will be read similar to above mentioned model with encoding of ‘utf-8’.

Figure 24. Initializing maximum length of sentences, pad function to get the words until last

word and categorize total number of word tags.

Figure 25. Test and train data is split into 10:90 and assign values to test and train variables.

9

Figure 26. The hyperparameters are used in the Bi-LSTM model are mentioned.

Figure 27. The ‘adam’ optimizer, ‘accuracy’ metrics are used during the evaluation.

Figure 28. The Bi-LSTM model run with the above-mentioned parameters.

10

Figure 29. The output of the Bi-LSTM model with accuracy of 0.9623 and loss of 0.2265.

Experiment 1:
The aim of this activity is to improve the Bi-LSTM model and increase the accuracy of the

model. By changing the parameters to find the best fit model. The steps followed are given as

follows.

Figure 30. The parameters used during this test are given in the above figure.

Figure 31. The parameters used during tuning the model are epochs of 50, batch size is 32 and

other values are given in the screen shot.

11

Figure 32. There is an improvement in the loss value. And the accuracy of the model is 0.9624.

Experiment 2:

Figure 33. In second experiment, the values used to tune the model are, dropout= 0.2, learning

rate = 25, activation used ‘softmax’.

Figure 34. The hyperparameter values used are epochs of 30 and batch size of 10.

12

 4.2 Google Collaboratory
The dataset was manually produced, and a copy of it was shared in the moodle. So, save the

files to Google Disk and then mount the drive on the collab laptop. Follow the instructions

below to connect your Google Drive to your notebook.

Run the code below in collab to import the dataset into Google Collab.

Figure 35. Import the file to Google Collaboratory.

Import all the libraries listed in Figure 10.

Figure 36. Import the above mentioined librabries.

Install necessary packages for BERT model.

Figure 37. Import the simple transformers package.

13

4.3 Pre-processing the data
Dataset is imported and select only required columns. Search every word for missing values

and use method ‘fillna’ to populate the missing values with ‘na’. The input file is converted

into ‘utf-8’ format. To understand the data, displaying the top five rows from input.txt.

Figure 38. Reading the file, populating missing values with ‘na’ and printing top 5 values.

BERT models have standard for naming the variables.

Figure 39. Renaming the variables to BERT default names.

Figure 40. Converting the lowercase ‘Tags’ column to uppercase.

Figure 41. Assigning dependent and independent variables to X and Y.

14

Figure 42. Splitting the dataset with test size of 0.2. And assigning the values for test and

train data.

Figure 43. Sample data of train data.

Figure 44. Import NERmodel and NERArgs from simple transformer.

4.4 Model Details
The model code proposed in this part contains the models of segmentation, classification and

the result.

4.4.1 BERT Model

The code for implementing the BERT model is shown in Figure 19.

15

Figure 45. Initializing the hyperparameters.

 Figure 46. Installing ‘bert-base-multilingual-cased’ NERmodel.

Figure 47. Evaluating the model for accuracy score.

Figure 48. The evaluation result from the test.

16

5 Visualization

This section gives an overview of the output of the models. The results of the model include

the duration of the phrase, types of "tags" and diagrams that indicate the loss of training.

Figure 49. Visualization of the sentence in the dataset.

Figure 50. Count plot total number of ‘Tags’ used in the dataset.

17

Figure 51. The count plot of ‘Tags’ with ‘o’ using seaborn.

Figure 52. Count plot of ‘POS’ using seaborn library.

18

Figure 53. Plot shows the Bi-LSTM model performance based on training and validation

loss.

Figure 54. The plot representing the performance of the Bi-LSTM on Kannada Named

Entity Recognition.

19

Figure 55. The graph represents the outcome of the experiment 2.

