ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Forename Surname
Student ID: x19213590

School of Computing
National College of Ireland

Supervisor: Dr. Majid Latifi

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing

Student Name: ... Y1124 V= 1 PO SR UUPTOPRRP
Student ID: ... XL9213590.. i e
Programme: ... MSc in Data Analytics.......cccccoeeueeee. Year: ... 2021.......... .
Module: ... MSc Research Project ... e
Lecturer: = ... Dr. Majid Latifi. ..o e
Submission Due
Date: = ... 2370972021 uieeeeeee ettt
Project Title: Prediction of Length of Stay and Hospital Readmission for Diabetic

o= L=] P
Word Count: ... 1405 e Page Count: 14 e,

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: ... SIKY JAIN..eiiiicc e

Date: ... 2370972021 s

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Silky Jain
Student ID: x19213590

1 Introduction

The purpose of building this document is to present the implementation of the project in a
concise and structured manner such that it can be replicated if required. This project aimed to
build a model for the prediction of length of stay and hospital readmission using a
comprehensive methodological approach involving data cleaning and data pre-processing.
Another objective of this project was to identify the most influencing factors for predicting
length of stay and hospital readmission. The stacked ensemble learning model is proposed
which is then compared with the other base classifiers and existing models on the same field.
The tools and techniques used in the project are specified in this manual.

2 System Specifications

Below are the hardware requirements which is required for running the experiment and
executing code smoothly.

Operating System Windows 10 Home

RAM 8.0GB

Har Disk Space 100 GB Minimum

Processor Intel(R) Core(TM) i7-9750H CPU @
2.60GHz 2.59 GHz

3 Tools/Technology

For implementing this project, Python programming language was used with Integrated
Development Environment (IDE) as Jupyter Notebook working on the Anaconda platform.
The specific versions of the respective platform/language are mentioned below:

Programming Language

Python 3.8.3

IDE

Jupyter Notebook v. 6.0.3

Platform

Anacondav. 4.9.2

Tools

Microsoft Excel, Overleaf, TeXstudio

Web Browser

Google Chrome

4 Pre-requisites software setup

The first step for the execution of this project is the installation of the required platform and

languages.

e Python is installed using the link®.

e Anaconda has been installed using this link?.

e After execution of the project, the results are visualized in the Jupyter Notebook using
the libraries such as MatPlotLib, seaborn, and Plotly.

5 Data Collection

Data for this project is extracted from the UCI Machine learning repository® and data
description is in (Strack et al., 2014).

UCI cioe>

Machine Learning Repository View ALL Data Sets

Center for Machine

About Citation Policy Donate a Data Set Contact

_ar

Check out the beta version of the new UCI Machine Learning Repository we are currently testing! Contact us if you have any issues, questions, or concemns. Click here to try out the new site.

Diabetes 130-US hospitals for years 1999-2008 Data Set

Download: Data Folder, Data Set Description

Abstract This data has been prepared to analyze factors related to readmission as well as other outcomes pertaining to patients with diabetes

lmu Set Characteristics: ‘ Multivariate Number of Instances: | 100000 | Area: Life
l Attribute Characteristics: || Integer Number of Attributes: | 55 Date Donated ‘ 2014-05-03
‘ Associated Tasks: ‘ Classification, Clustering | Missing Values? Yes Number of Web Hits: | 362225

Source:

The data are submitted on behalf of the Center for Clinical and Translational Research, Virginia Commonwealth University, a recipient of NIH CTSA grant UL1 TR00058 and a recipient of the CERNER data. John Clore (jclore '@’ veu edu), Krzysztof J
Cios (kcios ‘@' veu.edu), Jon DeShazo (jpdeshazo ‘@' vcu.edu), and Beata Strack (strackb ‘@' veu.edu). This data is a de-identified abstract of the Health Facts database (Cemer Corporation, Kansas City, MO)

Data Set Information:

The dataset represents 10 years (1999-2008) of clinical care at 130 US hospitals and integrated delivery networks. It includes over 50 features representing patient and hospital outcomes. Information was extracted from the database for encounters that
satisfied the following criteria

(1)Itis an i unter (a hospital admi
(2) Itis a di nter, that is, one during
(3) The length o
(4) Laboratory tests
(5) Medications wer

n)
ich any kind of diabetes was entered to the system as a diagnosis.
st 14 days

@ performed during the encounter.

iministered durina the encounter

6 Implementation

There are various processes involved in the implementation of this project which is given
below:

6.1 Data Preparation and Storage

e Extracting the CSV file from the UCI machine learning repository to the local system.
e Importing the libraries in Jupyter Notebook is shown in Figure below.

L https://www.python.org/downloads/release/python-383/
2 https://anaconda.org/conda-forge/conda/files?version=4.9.2
3 https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008

2

Importing Libraries

Tt L # Importing Libraries
import numpy as np
3 dimport pandas as pd

Visualization

import missingno as msno
import seaborn as sns

import matplotlib.pyplot as plt
9 import plotly.express as px

11 # Metrics

12 from sklearn.preprocessing import StandardScaler

13 from sklearn.preprocessing import LabelEncoder

14 from sklearn.preprocessing import OrdinalEncoder

15 from sklearn.neighbors import Localoutlierfactor

16 from sklearn.model_selection import train_test_split, GridSearchCv, cross_val score

17 from sklearn.metrics import confusion_matrix, accuracy score,fl_score,recall_score,mean_squared_error, r2_score, roc_auc_sco
from sklearn.metrics import classification_report

import sklearn.metrics as metrics

20 from sklearn.metrics import precision_recall_fscore_support

22 # Models

23 from sklearn.linear_model import LogisticRegression

24 from sklearn.linear_model import SGDClassifier

25 from sklearn.neighbors import KNeighborsClassifier

6 from sklearn.svm import SVC

from sklearn.neural_network import MLPClassifier

28 from sklearn.tree import DecisionTreeClassifier

9 from sklearn.ensemble import RandomForestClassifier

o from sklearn.ensemble import GradientBoostingClassifier
31 from xgboost import XGBClassifier

e Reading data from CSV files and storing it in the form of a dataframe.

Reading data from csv files

In [3]: 1 data = pd.read_csv("C:/Users/silky/Desktop/DAPA - predictive analysis\dataset diabetes\dataset_diabetes\diabetic_data.csv")
2 def display all(data):
3 with pd.option_context("display.max_row", 100, “display.max_columns", 100):
4 display(data)
5 display_all(data.head())
6 IDs_mapping = pd.read_csv("C:/Users/silky/Desktop/DAPA - predictive analysis\dataset diabetes\dataset diabetes\IDs_mapping.c
7
8 display_all(IDs_mapping.head(67))
] »
encounter_id patient_nbr race gender age weight ission_type_id di ,_disposition_id ission_source_id time_in_hospital payer
0 2278392 8222157 Caucasian Female [0 2 6 2 1 1
1 149190 55629189 Caucasian Female [;g‘) 2 1 1 7 3
2 64410 86047875 AfiicanAmerican Female %8; 2 1 1 7 2
3 500364 82442376 Caucasian Male [335 2 1 1 7 2
4 16680 42519267 Caucasian Male [‘s‘g; 2 1 1 7 1
admission_type_id description
[1 Fmernency e
4 »

6.2 Exploratory Data Analysis

Before any cleaning and transformation of data, it is important to understand the data and to
be aware of the features to focus on to undertake data cleaning and pre-processing.
Exploratory Data Analysis
In [4]: 1 data.readmitted = [1 if each=='<30" else @ for each in data.readmitted]

In [5]: 1 # Readmission data on plots

fig, ax =plt.subplots(nrows=1,ncols=2, figsize=(12,5))

labels=['0","'1"]

sns.countplot(x=data.readmitted, data=data, palette="mako",ax=ax[0], edgecolor=".3")

data.readmitted.value_counts().plot.pie(autopct="%1.2f%%", ax=ax[1], colors=['#ffcc99", '#ff9999'],
labels=labels, explode = (@, ©.05), startangle=120,
textprops={'fontsize': 12, 'color':'#0a0aee’'})

N

W NO WA

plt.show()
1
80000
11.16%
60000
3
B £
2 E
& 40000 E
88.84%
20000
0
0
0 1
readmitted

In [69]:

The above figure shows the plot showing the number of patients who were readmitted or not
from the dataset.

In [62]: 1 diabet.age = diabet.age.replace({"[©-10)":5, In [58]: 1 # Countplot for count of patients based on gender
2 "[70-80)":75, 2 sns.countplot(x = "gender", data = diabet)
3 "[60-70)":65, 3 plt.title("Distribution of Number of Gender")
4 "[50-60)":55, 4 plt.show()
5 "[80-90)":85, 5
6 "[40-50)":45, 6 print("Proportions of Race Value")
7 "[30-40)":35, 7 print(diabet.gender.value_counts(normalize = True))
8 "[90-100)":95,
9 "[20-30)":25, Distribution of Number of Gender
10 "[10-20)":15}
1) 50000

13 sns.countplot(x="age", data = diabet, color = ‘orange')
14 #plt.xticks(rotation = 90)
15 plt.show()

£ 30000
8
25000 20000
20000 10000
+= 15000 0
§ Female Male Unknown/Invalid
gender
10000
Proportions of Race Value
5000 Female 0.537586
. Male 0.462384
° — - Unknown/Invalid 0.000029
5 15 25 3B 45 5 6 1 8 © Name: gender, dtype: floaté4

age

The figure shows the plot of the count of patients based on the gender and age group which
shows that there is an almost equal number of patients in terms of gender and there are a
greater number of patients observed from the age 65 to 85 years.

Readmission probability vs admission type e In [74]: 1 # Count of patients spending time in hospital based on number of days
28 shscEarpiok(xis: Fadiisstall bpe: fojshy o el ECeit (8 % . i 2 sns.countplot(x="time_in_hospital”, data = diabet,
data = diabet, height = 6, kind = "bar", palette = 'gist_rainbow r') N Shden _*digbet time_in hospital.value counts().index)
1 g.set_ylabels("Readmitted Probability") 3 = .time_in_hospital. 4 .
plt.show() 4 plt.show()

=

i print(diabet.time_in_hospital.value_counts())

17500
025
15000

°
8
3

Readmitted Probabity
°
&

°
3
¥ 8
g 8
8 8

time_in_hospital

12500
€ 10000
- |
8
7500 I
A Illl
005 3 2 1 4 5 6 7 8 9 10 1 12 13 14

000
Emergency Elective NewBom Trauma Center
admission_type_id

These figures show the readmission of patients concerning admission type, so there are high
cases of emergencies. It also shows the number of days patients stay at the hospital where
most of the patients stayed for 1 to 3 days while admitted.

6.3 Data Pre-processing

Data cleaning is an important step in model building to get optimal performance. The steps
involved in cleaning are converting the datatypes of the variables, checking and removal of
duplicate rows, dropping columns with high multicollinearity, checking the columns having
missing values and replacing them mean or other values, or dropping the columns if the
percentage of the missing value is high as shown in Figures below.

Missing Values

In [99]: 1 #Checking for missing values in dataset
#In the dataset missing values are represented as '?' sign
for col in df.columns:
if df[col].dtype == object:
print(col,df[col][df[col] == '?'].count())

wob W

race 2273

gender @

age ©

weight 98569
payer_code 40256
medical_specialty 49949
diag_1 21

diag_2 358
diag_3 1423
max_glu_serum @
AlCresult @
metformin ©
repaglinide ©
nateglinide ©
chlorpropamide ©
glimepiride ©
acetohexamide @
glipizide ©
glyburide @
tolbutamide ©

In [100]: 1 # gender was coded differently so we use a custom count for this one
print('gender', df['gender'][df['gender'] == 'Unknown/Invalid'].count())
gender 3
In [101]: 1 #dropping columns with large number of missing values

) df = df.drop(['weight’, 'payer_code’,'medical_specialty'], axis = 1)

In [102]: 1 drop_Idx = set(df[(df['diag 1'] == '?') & (df['diag 2'] == "?') & (df['diag 3'] == '?')].index)
drop_Idx = drop_Idx.union(set(df['diag 1'][df['diag 1'] == '?'].index))
1 drop_Idx = drop_Idx.union(set(df['diag_2'][df['diag 2'] '?'].index))
5 drop_Idx = drop_Idx.union(set(df['diag_3'][df['diag 3'] '?2'].index))
6 drop_Idx = drop_Idx.union(set(df['race'][df['race’] == '?'].index))
drop_Idx = drop_Idx.union(set(df[df['discharge_disposition_id'] == 11].index))
8 drop_Idx = drop_Idx.union(set(df['gender’'][df['gender'] == 'Unknown/Invalid'].index))

9 new_Idx = list(set(df.index) - set(drop_Idx))
16 df = df.iloc[new_Idx]

In [103]: 1 df = df.drop(['citoglipton’, 'examide'], axis = 1)

In [104]: 1 #Checking for missing values in the data
) for col in df.columns:
if df[col].dtype == object:
a print(col,df[col][df[col] == '?'].count())

5 print('gender', df['gender'][df['gender'] == 'Unknown/Invalid'].count())

race @

gender @

age ©

diag_1 @
diag_2 ©
diag_3 ©
max_glu_serum 0@
AlCresult @
metformin @

6.4 Data Transformation

After the data is cleaned there are steps to transform data so that it becomes easy for the
machine learning algorithms to process it. The steps involved in pre-processing are feature
engineering, feature encoding, feature selection, sampling, and scaling of data.

Encoding the outcome variable: The outcome we are looking at is whether the patient gets readmitted to the hospital within 30 days or not. The variable
actually has = 30, = 30 and No Readmission categories. To reduce our problem to a binary classification, we combined the readmission after 30 days and no
readmission into a single category

In [117]: 1 df['readmitted'] = df['readmitted'].replace('>30', 8)
2 df['readmitted'] = df['readmitted'].replace('<30', 1)
3 df['readmitted'] = df['readmitted'].replace('NO', 8)

In [118]: 1 # Creating additional columns for diagnosis
2 df['levell diagl'] = df['diag 1']
3 df['level2 diagl'] = df['diag 1']
4 df['levell diag2'] = df['diag_2']
5 df['level2_diag2'] = df['diag_2']
6 df['levell_diag3'] = df['diag_3"]
7 df['level2 diag3'] = df['diag_3"]

In [119]: 1 df.loc[df['diag_1'].str.contains('V'), ['levell diagl', 'level2 diagl']] = ©
2 df.loc[df['diag_1'].str.contains('E'), ['levell diagl', 'level2 diagl']] = ©
3 df.loc[df['diag_2'].str.contains('V'), ['levell diag2', 'level? diag2']] = ©
4 df.loc[df['diag_2'].str.contains('E'), ['levell_diag2', 'lewel2 diag2']] = @
5 df.loc[df['diag_3'].str.contains('V'), ['levell diag3', 'level2 diag3']] = ©

df.loc[df['diag 3'].str.contains('E'), ['levell diag3', 'level2 diag3']] = @

7 df['levell diagl']
df["level2_diagl']
df["levell_diag2']
df['level2_diag2']
df['levell_diag3']
df['level2 diag3']

df['levell diagl'].replace('?', -1)
df['level2_diagl'].replace('?’', -1)
df['levell_diag2'].replace('?"', -1)
df['level2_diag2'].replace('?', -1)
df['levell_diag3'].replace('?"', -1)
df['level2 diag3'].replace('?’, -1)

Feature encoding is done to encode the values of features into fewer categories such that it
becomes easier for the ML algorithms to understand data as shown in the figure.

Data Transformation
Feature Engineering

Service Utilization

Service utilization: The data contains variables for number of inpatient (admissions), emergency room visits and outpatient visits for a given patient in the
previous one year. These are (crude) measures of how much hospital/clinic services a person has used in the past year. We added these three to create a
new variable called service utilization (see figure below).

In [107]: 1 df['service_utilization'] = df['number_outpatient'] + df['number_emergency'] + df['number_inpatient']
In [108]: 1 df.head(10).T
Out[108]:
1 2 3 4 5 6 7 8 9 10
encounter_id 149190 64410 500364 16680 35754 55842 63768 12522 15738 28236
patient_nbr 55629189 86047875 82442376 42519267 82637451 84259809 114882984 48330783 63555939 89869032

race Caucasian AfricanAmerican Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian Caucasian AfricanAmerican

gender Female Female Male Male Male Male Male Female Female Female

age [10-20) [20-30) [30-40) [40-50) [50-60) [60-70) [70-80) [80-90) [90-100) [40-50)

admission_type_id 1 1 1 1 2 3 1 2 3 1
discharge_disposition_id 1 1 1 1 1 1 1 1 3 1
admission_source_id 7 7 7. 7 2 2 7 4 4 7
time_in_hospital 3 2 2 1 3 4 5 13 12 9
num_lab_procedures 59 1" 44 51 31 70 73 68 33 47

The figure shows the engineering of the new feature ‘service_utilization’ by combining the
existing feature in the dataset.

Sampling

In [160]: # Importing Libraries for SMOTE sampling

1
2 from imblearn.over_sampling import SMOTE
3 from collections import Counter

4 print('Original dataset shape {}'.format(Counter(y_train)))

Original dataset shape Counter({@: 43711, 1: 4053})
In [161]: 1 sm = SMOTE(random_state=20)
In [162]: 1 pip install --upgrade scikit-learn

Requirement already up-to-date: scikit-learn in c:\users\silky\anaconda3\lib\site-packages (0.24.2)
Requirement already satisfied, skipping upgrade: numpy>=1.13.3 in c:\users\silky\anaconda3\lib\site-packages (from scikit-lear

n) (1.19.5)

Requirement already satisfied, skipping upgrade: joblib>=.11 in c:\users\silky\anaconda3\lib\site-packages (from scikit-learn)
(0.16.0)

Requirement already satisfied, skipping upgrade: scipy>=0.19.1 in c:\users\silky\anaconda3\lib\site-packages (from scikit-lear
n) (1.5.0)

Requirement already satisfied, skipping upgrade: threadpoolctl>=2.0.@ in c:\users\silky\anaconda3\lib\site-packages (from sciki
t-learn) (2.1.0)
Note: you may need to restart the kernel to use updated packages.

In [163]: 1 df.head().T

Out[163]:
1 2 3 4 5
encounter_id 149190 64410 500364 16680 35754
patient_nbr 55629189 86047875 82442376 42519267 82637451

race Caucasian AfricanAmerican Caucasian Caucasian Caucasian

gender 0 0 1 1 1
age s 3 4 5 6
admission_type_id 1 1 1 1 1

The figure shows the SMOTE oversampling where the target variable ‘readmitted’ is having
imbalanced data which is balanced using the sampling technique.

Features are selected based on the important feature identified by the Random Forest
algorithm and then those features are pre-processed and used for building the model as shown
in the figures below.

Feature Selection

In [124]: 1 # convert data type of nominal features in dataframe to 'object' type
2 i = ['encounter_id', 'patient_nbr', ‘'gender', 'admission_type_id', 'discharge_disposition_id', 'admission_source_id',\
3 ‘AlCresult’, 'metformin’, 'repaglinide’, 'nateglinide', 'chlorpropamide', 'glimepiride’, 'acetohexamide', \
4 ‘glipizide', 'glyburide', 'tolbutamide', 'pioglitazone', 'rosiglitazone', 'acarbose','miglitol’, \
5 'troglitazone', 'tolazamide', 'insulin', 'glyburide-metformin', 'glipizide-metformin', \
6 'glimepiride-pioglitazone’, 'metformin-rosiglitazone', 'metformin-pioglitazone', 'change', 'diabetesMed', \
7 ‘age', 'AlCresult’', 'max_glu_serum', 'levell diagl', 'levell diag2', 'levell diag3', 'level2 diagl', 'level2 diag2
8
9 df[i] = df[i].astype('object"')

< »

In [125]: 1 df.dtypes

Out[125]: encounter_id object
patient_nbr object
race object
gender object
age object
admission_type_id object
discharge_disposition_id object
admission_source_id object
time_in_hospital int64
num_lab_procedures int64
num_procedures int64
num_medications int64
number_outpatient int64
number_emergency int64
number_inpatient int64
diag_1 object
diag_2 object

Most important features - Random Forest

fime_in_hospital
number_diagnoses
num_procedures
age
num_medications
metformin
A1Cresult_1
pioglitazone

level1_diag1_2.0

rosiglitazone

0.000 0.025 0.050 0.075 0.100 0125 0150 0175
Importance

Feature Scaling

In [141]: 1 # Feature Scaling
> datf = pd.DataFrame()
3 datf['features'] = numerics

datf['std_dev'] = datf['features'].apply(lambda x: df[x].std())
5 datf['mean'] = datf['features'].apply(lambda x: df[x].mean())

In [142]: # dropping multiple encounters while keeping either first or last encounter of these patients
2 df2 = df.drop_duplicates(subset= ['patient_nbr'], keep = 'first')
3 df2.shape

out[142]: (67580, 55)

In [143]: # standardize function
2 def standardize(raw_data):
5 return ((raw_data - np.mean(raw_data, axis = ©)) / np.std(raw_data, axis = 0))

In [144]: df2[numerics] = standardize(df2[numerics])
) import scipy as sp
3 df2 = df2[(np.abs(sp.stats.zscore(df2[numerics])) < 3).all(axis=1)]

Feature Scaling is done to normalize or standardize the feature values in the attributes, so the
results are optimized.

Qutlier Detection

In [12]: 1 # Function for creating box plot for columns having outliers
2 def boxplot for_outlier(df,columns}:
3 count = @
4 fig, ax =plt.subplots(nrows=2,ncels=4, figsize=(16,8))
5 for i in rangs(2):
for j in range(4):
sns.boxplot(x = df[columns[count]], palette="Wistia",ax=ax[i]1[j1)
count = count+l

In [13]: 1 numerical_columns = ['num_medications®,
2 "time_in_hospital',
‘num_lab_procedures’,
4 "num_procedures’,
5 her_outpatient®,

In [14]: 1 boxplot_for_outlier(data,numerical_columns}
- %— ————————* (N) - 1 ————————+ L]
o 20 @0 &0 80 25 50 75 100 125 0 B S0 75 100 135] 2 4 3
num_medications time_in_hospital rum_lab_procedures num_procedures
PUIPRHIMBIIN M M LT B A] L] (LA TR IR LN L L L 10 (LN}
- - . - - v ' . - ' , v v ’ L ' v v
0 i) .ol xn a0 o n 40 &0 0 5 i) 15 20 5 10 15
AUmber_outpatient rumber_emergency rumber_inpatient TUMBEr_diagnoses.

Outliers are detected and plotted in the form of a box plot and are removed as it influences
the results giving biased predictions.

6.5 Data Modelling

The most important step of the data mining process is building a model. For building model,
Scikit-learn machine learning library is used which have packages for data pre-processing,
transformation, building model and evaluation metrics.

The base classifiers build for this project are — Random Forest, Decision Tree, k Nearest
Neighbors, Support Vector Machines, Logistic Regression, Gradient Boosting and Extreme

8

Gradient Boosting. Then based on the performance of each classifier, the best models are
selected for building a stacked ensemble model.

In [168]:

Out[168]:

In [169]:

Out[169]:

In [170]:

Importing Libraries

from
from
4+ from
5 from

sklearn.
sklearn.
sklearn.
sklearn.

ensemble import RandomForestClassifier
metrics import accuracy_score

metrics import precision_score

metrics import recall score

Random Forest Classifier
rm = RandomForestClassifier(n_estimators = 1@, max_depth=25, criterion = "gini", min_samples_split=10)
8 rm.fit(X_train, y_train)

RandomForestClassifier(max_depth=25, min_samples_split=10, n_estimators=10)

Prediction from random forest
rm_prd = rm.predict(X_test)
pd.crosstab(pd.Series(y_test, name = 'Actual'), pd.Series(rm_prd, name = 'Predict'), margins = True)

Predict

Actual

[1

0 4299 4555

1

457 475

All 4756 5030

Al

8854
932

Accuracy, Precision and Recall from the RF classifier
print_report(y_test, rm_prd, thresh)

AUC:0.889

accuracy:0.889
recall:0.898
precision:@.882
fscore:0.890

specificity:0.879

This Figure shows the implementation of the Random Forest Classifier and the results
obtained by using the testing data.

In [175]:

Out[175]:

In [176]:

Out[176]:

In [177]:

Importing Llibraries

from sklearn.tree import DecisionTreeClassifier

Decisison Tree Classifier

dtree = DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=28,

max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=16,
min_weight_fraction_leaf=0.0, random_state=None,
splitter='best"')

dtree.fit(X_train, y_train)

DecisionTreeClassifier(criterion="entropy', max_depth=28, min_samples_split=10)

Decision Tree prediction
dtree_pred = dtree.predict(X_test)

pd.crosstab(pd.Series(y_test, name = 'Actual'), pd.Series(dtree_pred, name = 'Predict'), margins = True)
Predict 0 1 Al
Actual

0 8229 7538 15767

1

847

761

1608

All 9076 8299 17375

Accuracy, precision and recall from Decision Tree Classifier
2 print_report(y_test, dtree_pred, thresh)

AUC:0.888
accuracy:0.888
recall:0.865
precision:0.906
fscore:0.885
specificity:0.910

This figure shows the implementation of the Decision Tree Classifier and the results obtained
by using the testing data.

In [202]: # Plotting the train and test data points
plt.figure(figsize=(12,5))
p = sns.lineplot(range(1,15),train_scores,marker='*",label="Train Score')
p = sns.lineplot(range(1,15),test_scores,marker='0"',label='Test Score')

1.00 ~ ~+= Train Score

S~
= \ Test Score
00
—

In [203]: #Setup a knn classifier with k neighbors
knn = KNeighborsClassifier(2)

knn.fit(X_train,y_train)
knn.score(X_test,y_test)

Out[203]: ©.8350987165701997

This figure shows the implementation of k Nearest Neighbors, where the value of ‘k’ is
selected optimally by implementing the values from 1 to 15 as shown in the plot and the
results obtained by using the testing data while building a classifier for k=2.

SVM

SVM without hyperparameter

In [189]: # import V€ classifier
learn.svm import SVC

instantiate classifier with default hyperparameters
Swe=SvC()

sve.fit(X_train,y_train)

make predictions on test set
y_pred=svc.predict (X_test)

print_report(y_test, y_pred, thresh)

fscore:0.768
specificity:8.746

out[182]: (@.763581871535@413,
©.7636521695343415,
©.7809423988333941,
©.7562331759410441,
@.768389194036543,
©.7462213442366835)

In [198]: # SVM prediction
y_pred=sve.predict(x_test)
pd.crosstab(pd.Series(y_test, name = 'Actual'), pd.Series(y_pred, name = 'Predict’), margins = True)
[19
Predict 0 1 Al
Actual

0 9595 10275 19870
1 832 @88 1820
All 10427 11263 21690

This figure shows the implementation of the Support Vector Machine file and the results
obtained by using the testing data, there were other experiments also done for other kernels
like polynomial, sigmoid which is there in the code.

10

L_new = pd.DataFrame(train_input
nodel_selection import Lradr
Inear_model import Loglstic
1nodel_selection import cross
¥_train, ¥_test, y_train, y_test = train_
4 Logistic Re the L1 L

est_split(train_input_new, train_cutput_new, test size=8.58, randon_states

True, penalty="11', solver='liblinear’}

Out[1BG): LogisticRegression(penalty="11", solver='liblinear')

ed2 = Logit.predic
sstab(pd.Series(y_test, name = 'Actuzl’), pd.Serles(logit pred2, name = 'Predict'), margins = True)
Dut
Predict @ 1
Actual
0GR 10004 19670
1 Bs 984
Al 10722 109ER 29680
In [188]: | 1 print_report(y_test, logit_pred?, thresh)
aLC:e.745
accuracy:8.745
recall:B. 747
precision:@. 746
Fscore:0.747
specificity:0.748
Dut[1EE

This figure shows the implementation of Logistic Regression and the results obtained by
using the testing data.

XG Boost

In [46]:| 1 # X6 Boost Classifier
2 xgh_model = XGBClassifier(random_state=42, n_jobs=-1,max_depth=3)

xgb_model.fit(X_train, y_train)

C:\Users\silky\anaconda3\1ib\site-packages\xgboost\sklearn.py:888: UserWarning: The use of label enceder in XGBClassifier is de
precated and will be removed in @ future release. To remove this warning, do the following: 1) Pass option use_label _encoder=Fa
1se when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with @, i.e. 8, 1, 2, ..., [num_
class - 1].

warnings.warn(label_encoder_deprecation msg, Userbiarning)

[@0:17:42] WARNING: C:/Users/Administrator/workspace/xgboost-winéd_release_1.3.@/src/learner.cc:1861: Starting in XGBoost 1.3.
@, the default evaluation metric used with the objective 'binary:logistic' was changed from ‘error’ to 'loglass'. Explicitly se
t eval _metric if you'd like to restore the old behavior.

Out[46]: XGBClassifier(base_score=B.5, booster='gbtree’, colsample bylevel=1,
colsample_bynode=1, colsample bytree=1, gamma=a, gpu_id=-1,
importance_type="gain’, interaction_constraints="",
learning_rate=0.300880012, max_delta_step=8, max_depth=3,
min_child weight=1, missing=nan, monotone_constraints="()",
n_estimators=100, n_jobs=-1, num_parallel tree=l, random_state=42,
reg_alpha=e, reg_lambda=l, scale_pos_weight=1, subsample=1,
tree_method="exact', validate_parameters=1, verbosity=None)

In [47]:| 1 # Predicting results from the XG Boost for training and validation datset
y_train_preds = xgh_model.predict_proba(X_train)[:,1]
3 y_val_preds = xgb_model.predict_proba(X_val)[:,1]

print("XGBOOST")
xgb_train_pred = gradient_model.predict_proba(X_train)[:,1]
xgb_val_pred = gradient_model.predict_proba(X_val)[:,1]

print("Gradient Boosing")

print(‘Training: ')

xgb_train_suc, xgb_train_sccuracy, xgb_train_recall, xgb_train_precision, xgb_train_fscore, xgb_train_specificity = print_re
print(‘validation:")

xgb_val_suc, xgb_val_accuracy, xgb_val_recall, xgb_val_precision,xgh_val fscore, xgb_val_specificity - print_report(y_val,xg

»
XGBOOST
Gradient Boosing
Training:
AUC:8.697
accuracy:8.641
recall:d. 604
precision:®.649
fscore:0.626
specificity:8.678

This figure shows the implementation of Extreme Gradient Boosting and the results obtained
by using the testing data.

11

Gradient Boost

In [44]: # Gradient Boost model
gradient_model = GradientBoostingClassifier(random_state=42)
gradient_model.fit(X_train, y_train)

Out[44]: GradientBoostingClassifier(random_state=42)

In [45]: # Training and validation prediction from Gradient Boosting

gh_train_pred - gradient_model.predict_proba(X_train)[:,1

gb_vald_pred = gradient_model.predict proba(X_val)[:,1]

print("Gradient Boosing")

print('Training: ')

gbc_train_auc, gbc_train_accuracy, gbe_train_recall, gbc_train_precision,gbc_train_fscore, ghc_train_specificity = print_rep

print(‘Validation:")

gbc_val_auc, ghc_val_accuracy, ghc_val_recall, gbc_val_precision, gbc_val_fscaore, gbc_val_specificity = print_report(y_val,g
3

Gradient Boosing
Training:
AUC:@.697
accuracy:8.641
recall:@. 504
precision:8.5649
fscore:0.626
specificity:0.678

validation:
AUC:8.663
accuracy:9.626
recall:@.595
precision:@.544
fscore:@.619
specificity:@.658

This figure shows the implementation of Gradient Boosting and the results obtained by using
the testing data.

Then finally the stacked ensemble model is built by selecting only the best performing
models and then the results of those base models are used to train the meta classifier Random
Forest and final prediction results are obtained. The ‘vecstack’ package is used to stack
together with the base models.

Stacked Ensemble Model - Final Model

In [206]: 1 # selecting list of top performing models to be used in stacked ensemble method
models = [

GradientBoostingClassifier(random_state=42),

XGBClassifier(random_state=42, n_jobs=-1,max_depth=3),

SVC(kernel="poly', C=1.9),

KNeighborsClassifier(2),

DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=28,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.8, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=10,
min_weight_fraction_leaf=0.8, random_state=None,
splitter='best'),

LogisticRegression(fit_intercept=True, penalty='none'),

LogisticRegression(fit_intercept=True, penalty='11', solver='liblinear')

In [207]: L !Ipip install vecstack

This figure shows the stacking of models for hospital readmission prediction.

Stacked Ensemble Model - Final Model

In [132]: I # selecting Llist of top performing models to be used in stacked ensemble method
models = [

SVC(kernel="poly', C=1.0),

KNeighborsClassifier(2),

DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=28,
max_features=None, max_leaf_nodes=None,
min_impurity decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=10,
min_weight_fraction_leaf=0.08, random_state=None,
splitter='best'),

LogisticRegression(fit_intercept=True, penalty='none'),

LogisticRegression(fit_intercept=True, penalty='1l1', solver=z'liblinear"')

In [133]: I !pip install vecstack

This figure shows the stacking of models for the length of stay prediction.

12

In [209]:

task:

n_classes:

metric:
mode:
n_models:

model ©:
fold
fold
fold
fold
fold

MEAN:

PWNREO

stacking(models,

X_train, y_train, X test,

regression=False,
mode="oof_pred_bag',
needs_proba=False,
save_dir=zNone,
metric=accuracy_score,
n_folds=5,
stratified=True,
shuffle=True,
random_state=0,
verbose=2)

[classification]

[2]

[accuracy_score]

[oof_pred_bag]

[71

[GradientBoostingClassifier]

[0.88184834]

[0.88458019]

[0.87714482]

[0.89212995]

[0.88469458]

[0.88407957] + [0.00486840]

Training the Stacked Ensemble model with 5 cross vaidations for the List of models selected
S_train, S_test =

Then the base models are trained using 5-fold cross-validation where the first four folds are used to train the
data and the last fold is used to test the data and get the final predictions which are then augmented to the
dataset. This augmented dataset is then used to train the meta classifier Random Forest which is shown in the

below figure.

In [210]:

model = model.fit(5_train, y_train)
y_pred

print(*Final prediction score:

Final prediction score:

In [211]:

4 TN =
5 FN =
™ =
FP =

= model.predict(s_test)
[%.8F]" %

[2.94307291]

CM=confusion_matrix(y_test,y_pred)
sns.heatmap(CM, annot=True,cmap="Y1GnBu" ,fmt='g')

cM[e][e]
cM[a][e]
CM[1][1]
CcM[e][1]

specificity = TN/(TN+FP)

loss_log = log_loss(y_test, y_pred)
accz accuracy_score(y_test, y_pred)
roc=roc_auc_score(y_test, y_pred)

prec = precision_score(y_test, y_pred)

rec =

recall_score(y_test, y_pred)

f1 = f1_score(y_test, y_pred)

mathew = matthews_corrcoef(y_test, y_pred)
model_results =pd.DataFrame([['STacked Classifier2',acc, prec,rec,specificity, f1,roc, loss_log,mathew]],

columns = ['Model’,

model_results

Out[211]

Model Accuracy

16, max_depth=25, criterion =

'Accuracy', 'Precision’, 'Sensitivity','Specificity’,

Precision Sensitivity Specificity F1 Score

initializing generalizer model i.e., RF classifier in our case
model = RandomForestClassifier(n_estimators =

"gini", min_samples_split=1@)

accuracy_score(y_test, y_pred})

'F1 Score','ROC','Log_Loss"', "'mathew

ROC Log_Loss mathew_corrcoef

0 STacked Classifier2 0.943973

0.989357

0.898059 0.99026

20000

17500

15000
- 12500
i- 10000
- 7500
- 5000

- 2500

0.9415 0.94416

1.935111 0.89182

This figure shows the prédiction

Stacked Ensemble model.

results of the hospital readmission prediction using the

13

In [139]: # Results and confusion matrix for the stacked ensemble model
CM=confusion_matrix(y_test,y_pred)
sns.heatmap(CM, annot=True,cmap="Y1GnBu" ,fmt="g")

™ = cm[2][e]

FN = cM[1][@]

TP = CM[1][1]

FP = cM[@][1]

specificity = TN/(TN+FP)

loss_leog = log_loss(y_test, y_pred)
acc= accuracy_score(y_test, y_pred)
roc=roc_auc_score(y_test, y_pred)
prec = precision_score(y_test, y_pred)
rec = recall_score(y_test, y pred)
fl = f1_score(y_test, y_pred)

mathew = matthews_corrcoef(y_test, y_pred)
model_results =pd.DataFrame([[STacked Classifier2’,acc, prec,rec,specificity, f1,roc, loss_log,mathew]],

columns = ['Model’, ‘Accuracy’,’Precision’, 'Sensitivity®, 'Specificity”, 'F1 Score',"ROC’,'Log_Loss', ‘mathew_
model_results

Out[139]:
Model Accuracy Precision Sensitivity Specificity F1 Score ROC Log_Loss mathew_corrcoef

0 STacked Classifier2 0901444 0900973 0902794 0900034 09013833 0.901439 3.404057 0.802885

- 16000
= 14000
= 12000

L 10000

= 2000

This figure shows the prediction results of the length of stay prediction using the Stacked
Ensemble model.

7 Conclusion

All the pre-requisites — hardware and software configuration and requirement with the library
and packages used for building models have been described in this document. This report
explains the complete project development process in a structured, concise, and detailed
manner which will help in understanding the flow of implementation.

References

Strack, B. et al. (2014) ‘Impact of HbA1lc Measurement on Hospital Readmission Rates: Analysis of 70,000
Clinical Database Patient Records’, BioMed Research International. Edited by A. Rizvi, 2014, p. 781670. doi:
10.1155/2014/781670.

14

