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1 Introduction 
 

The current manual configuration aims to replicate the proposed research project from 

scratch. It contains hardware and software requirements, also all the packages, libraries, and 

programming codes performed during each stage of the implementation.  

 

2 System Configurations 
 

2.1 Hardware 
Operating System: Windows 10 

Processor: Intel(R) Core (TM) i5-6300U CPU @ 2.40GHz   2.50 GHz 

Installed RAM: 8.00 GB (7.88 GB usable) 

 

2.2 Software 
The following software enabled the implementation: 

Microsoft Office: Excel 

Anaconda Navigator for Windows (Version 1.9.7) 

Jupyter Notebook (Version 6.3.0) 

Python (Version 3.8.8) 

 

2.2.1 Python Environment Setup 

 
Machine learning models were completely implemented on Jupyter Notebook hosted by 

Anaconda framework, using python language. The last stage of the project which consisted of 

a fusion of machine and deep learning models was implemented in this environment.  

 

2.2.2 Google Colab Environment Setup 
 

Deep learning models were implemented on Google Colaboratory, a product from Google 

Research that allows to write and execute code in Python language. GPU was set as a 

hardware accelerator.  

 

3 Project Implementation 
 

The current research project involves three main stages: implementation of machine learning 

models, deep learning models, and a fusion system that combines both predictions provided 



2 
 

 

by them. For better understanding, the manual configuration will explain all stages of each 

process.  

 

Machine Learning Models  
 

3.1.1 Data Gathering 

 
The first step is getting the dataset from OAI study1. It is required to create a user and login 

into the account as shown in Figure 1.  

Figure 1. Login to OAI Study 

 

 
Figure 2. Clinical Dataset from OAI study 

Clinical data is downloaded from the website. It is a zipped file that contains clinical data of 

each visit of the patients. The current project only considered the file "AllClinical00" which 

is data at the baseline of the study.  

 
 
1 The Osteoarthritis Initiative: https://nda.nih.gov/oai 
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Figure 3. Dataset Files 

 

There are important attributes such as Sex and Race that were merged from another file as is 

shown in Figure 4.  

 

 
Figure 4. Accessing clinical data from the system 

 

3.1.2 Data Preparation 

 
Libraries required to explore, impute missing values, graph plots, and statistical analysis of 

clinical data are shown in Figure 5.  

 

 
      Fig 5. Libraries required to preprocess clinical data 

Before starting the preprocessing stage, all dataframe was duplicated and a single ID was 

created because the variable outcome is for each knee of the patient, however, clinical data is 

a single row per patient, that process is illustrated in Figure 6.  

 

 
Fig 6. Creating a unique ID for both knees of a patient 
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A column with more than 50% of missing values is dropped. Besides, due to the sensitivity of 

patient information, all rows with NA values are dropped.  

 

 

 
Fig 7. Deleting missing values 

 

The target variable comes from x-ray images, and it is needed to merge it with clinical 

dataset, this process is in Fig 8.  

 

 
Fig 8. Merging target variable with clinical dataframe 

 

 

 

 

 

 

 
Fig 9. Deleting outliers in the dataframe 

 

 
Fig 10. Normalization of variables 

 

3.1.3 Modelling machine learning methods 
 

Implementation of machine learning requires a set of libraries to be set described in Figure 

11.  
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Figure 11. Libraries required to implement machine learning models 

 

 
Figure 12. Train and Test datasets are created  

 

To overcome dealing with an imbalanced dataset, SMOTE technique is applied to enhance 

the models, the implementation of the technique is shown in Figure 13.  

 

 
Figure 13. SMOTE strategy applied in Train dataset 
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Random Forest 

Figure 14 shows the implementation of Random Forest, this is the first machine learning 

model. A search of the best parameters to improve it is conducted by GridSearchCV. Three 

experiments were implemented here, Random Forest with hyperparameters, Random Forest 

taking into consideration hyperparameter and SMOTE technique, and Random Forest with 

hyperparameters and Weighted dataset. In the end, the importance of features in this model is 

plotted. 

 

 
Figure 14. Implementation of Random Forest, a first model with parameters set by default 

 

 
Fig 15. Tunning parameters by GridSearchCV with 3 cross-validation in the process. 

 

 
Fig 16. Random Forest version after applying hyper parametrization, implementing option that 

balance the dataset. 

 

 
Fig 17. Plotting Feature Importance in Random Forest Model 
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Gradient Boosting 

A baseline Gradient Boosting model is implemented however, to enhance it is applied a set of 

searches of the best parameters as shown below.  

 

 

 

 

 

 
Fig 18. Tunning parameters to enhance Gradient Boosting Model 

 

 
Figure 19. Version of Gradient Boosting model with hyperparameters 
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Figure 19. Version of Gradient Boosting model with hyperparameters and SMOTE technique 

applied in the dataset 

 

In the last part of Gradient Boosting model, it is performed a plot that shows the feature 

importance using this algorithm, following the same code as Random Forest.  

 

Xtreme Gradient Boosting (XGBoost) 

A similar approach to Gradient Boosting is set for XGBoost. Firstly, a baseline model is 

performed, then, a search of the best parameters is conducted to fine max_depth, 

min_child_weight, gamma, subsample, colsample_bytree, and reg_alph. The final model is 

presented in Figure 20.  

 

 
Figure 20. Last version of Xtreme Gradient Boosting model 

 

3.1.4 Evaluation 

 
Random Forest, Gradient Boosting, and XGB are evaluated with cross-validation to prevent 

overfitting in the models. Once the predicted values are obtained, they are assessed against 

the real ones. ROC curve is plotted, and Precision, Recall, F1-score, and Accuracy are 

calculated in a classification report.  
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Figure 21. Plotting Confusion matrix 

 

 
Figure 22. Printing classification report 

 

 
Figure 23. Printing ROC Curve 

 

Deep Learning Models  

 
Deep learning models were implemented on Google Colab due to some advantages as the 

time required to run the models and memory available in the cloud service. The source code 

for the deep learning models was based on a GitHub repo2. 

3.1.1 Data Gathering 
 

Images are available on the OAI study website, however, in terms of accessibility and easy 

management of them, we worked with a dataset that has been already cropped3 as is 

illustrated in Figure 24, this dataset corresponds to the baseline of the study. However, the 
 

 
2 https://github.com/fontainelam/KneeOsteoarthritis.git 
3 Chen, Pingjun (2018), “Knee Osteoarthritis Severity Grading Dataset”, Mendeley Data, V1, doi: 

10.17632/56rmx5bjcr.1 
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split into train, test, and validation of 4,466 knee x-ray images were rearranged according to 

our train and test dataset from clinical data as is shown in Figure 25.  

 
Figure 24. X-ray images Dataset 

 

 
Fig 25. Selecting x-ray images according to train and test sets created with clinical data 

 

Train, validation, and test datasets are uploaded in Google Drive to be mounted in Google 

Colab. Click on the URL and select Gmail account to enter the authorization to proceed.  

 

 
Fig 26. Drive mounted in Jupyter Notebook 
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Figure 27. Loading images from Train, Test, and Validation folders 

 

3.1.2 Data Preparation 

 
Figure 28 shows the libraries required to preprocess images by data augmentation. 

ImageDataGenerator is used from Keras Library.  

  

 
Fig 28. Libraries required to preprocess x-ray images 

 

Image rotation, Gaussian Blur, horizontal flip, shearing, and zooming are techniques applied 

to enhance image quality; the script in Figure 29 shows their parameters. 
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Figure 29. Generating augmented data  

 

Before implementing the models, the training set is balanced creating synthetic images, The 

technique will reduce the impact of dealing with an imbalanced dataset. 

 

 
Figure 30. Balancing training dataset 

 

3.1.3 Modelling deep learning methods 

 
The libraries required to implement DenseNet201 and InceptionResNetV2 and its 

correspondent evaluation are listed in Figure 31.  

 

 
Figure 31. Libraries required to implement machine learning models 
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DenseNet201 

All layers in DenseNet201 model are imported from Keras package. A set of parameters such 

as image size, the rate of dropout, learning rate is declared before running the model. Some 

layers are stacked at the end of DenseNet201 schema as illustrated in Figure 32.  

 

 
Figure 32. Execution of DenseNet201 

 

A callback function is created to manage the performance of the model. Its parameters are set 

as shown in Figure 33.  

 

 
Figure 33. Parameters to implement a callback function  

 

The first epochs trained in the previous model are frozen and, 15 layers were added as a 

strategy to improve the model. The neural network was compiled and executed again.  

 

3.1.4 Evaluation 
 

To track the performance of the neural network, it was plotted accuracy and loss for training 

and validation data across the epochs, the code is shown in Figure 34. Furthermore, deep 

learning models followed the same evaluation as machine learning models to be comparable, 

obtaining ROC curve and metrics such as precision, recall, accuracy, and f1-score. 
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Figure 34. Accuracy and Loss Plot for Training and Validation Sets 

 

InceptionResNetV2 

The implementation of this model follows the same process as DenseNet201. The model is 

called from Keras Package before compiling it.  

 

 
Figure 35. Execution of InceptionResNetV2 

 

From both models, predicted values in test dataset are exported in a csv. file to complete the 

last stage in the research project.  

 

4. Fusion Model 

 
This section is implemented in Jupyter Notebook hosted by Anaconda. The first step is to 

obtain probability scores per class from each machine learning model as is demonstrated in 

Figure 36. Then, the average between them is calculated and finally, the class with the 

highest probability score is taken as the KL grade as shown in Figure 38.  
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Figure 36. Probability scores per class from ensemble methods 

 

 
Figure 37. Computing means of probability scores per KL grade 

 

 
Figure 38. Max voting system between machine learning models 

 

A system that performs majority voting between the outcome from machine learning models 

and predicted values from DenseNet201 and InceptionResNetV2 is implemented, the 

technique is shown in Figure 39.  

 

 
Figure 39. Majority voting between three independent outcomes 

 

To conclude the current research project, metrics to evaluate predicted values against real one 

is obtained by executing a classification matrix and report.  
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