~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Krisztina Hapek
Student ID: X17126631

School of Computing
National College of Ireland

Supervisor: Dr. Majid Latifi

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Krisztina Hapek
Student ID: X17126631
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Dr. Majid Latifi
Submission Due Date: 16,/08/2021
Project Title: Configuration Manual
Word Count: 670
Page Count: p|

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 21st September 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Krisztina Hapek
X17126631

1 Introduction

The goal of this project was to propose a fairness-aware recommender system for peer-
to-peer charitable lending platform, Kiva. All pre-processing, model development and
evaluation was performed using Python language in Jupyter Notebook.

This configuration manual presents the hardware and system configurations and data
source for replication of the project.

2 Hardware

The hardware used for the implementation of this project was a MacBook Pro with
macOS Big Sur version 11.5.1 operating system, 2.3 GHz processor and 8GB RAM as
shown in figure [T}

Overview Displays Storage Support Service

macOS Big Sur

Version 11.5.1

MacBook Pro (13-inch, 2017, Two Thunderbolt 3 ports)
Processor 2.3 GHz Dual-Core Intel Core i5

Memory B GB 2133 MHz LPDDR3

Graphics Intel Iris Plus Graphics 640 1536 MB

Serial Number CO2VZKGTHWVZ29

System Report... Software Update...

Figure 1: Hardware configuration

3 Environment

The project was fully developed in Jupyter Notebook 6.1.4. available through Anaconda
Navigator as shown in figure 2]
Anaconda can be downloaded at https://www.anaconda.com/products/individual.

https://www.anaconda.com/products/individual

RStudio and the Spyder IDE were considered in the initial phase of the project,
however, due to the large size of the dataset and the limitations of the computational
power, these environments could not handle the dataset efficiently.

eoce O Anaconda Navigator
{2 ANACONDA NAVIGATOR
A Home
Applications on Channels. Refresh
‘ Environments ~
o o] o
*
A o p—
. . ~ -
N Leaming Jupyter
S’
. Datalore IBM Watson Studio Cloud JupyterLab Notebook
an COmmunity Py
226 614
Online Data Analysis Tool with smart coding IBM Watson Studio Cloud provides you the An extensible environment for interactive Webrbased, interactive computing notebook
assistance by JetBrains. Editand runyour tools to analyze and visualize data, to cleanse and reproducible computing, basedon the environment. Edit and run human-readable
Python notebooks in the cloud and share and shape data, to create and train machine Jupyter Notebook and Architecture. docs while describing the data analysis.
them with your team. learning models. Prepare data and buil
models, using open source data science tools
or visual modelina.
ANACONDA b ® » 8

i

- Py < Al g

Qt Console Spyder Glueviz Orange 3

Discover premium data ar7 415 100 3260
science content
PyQE GUI that supports inline figures, proper Scientific PYthon Development Multidimensional data visualization across ‘Component based data mining framework.
‘multiline edicing with syntax highlighting, EnviRonment. Powerful Python IDE with files. Explore relationships within and among Data visualization and data analysis for
Documentation graphical calltips, and more. advanced edting, interactive testing, related datasets. novice and expert. Interactive workflows
debugging and introspection Features with a large toolbox.

nstal nsta

¥y @& @ _

Anaconda Blog

Figure 2: Anaconda Navigator Home

4 Data

The datasets used in this project were downloaded from the Kiva platform’s Developer
Home on https://www.kiva.org/build/data-snapshots.

The platform provides data snapshots in JSON and CSV formats. The latter was used
in the development of this project. The snapshots consist of three datasets describing
loan characteristics, loan - lender interactions and lenders. As explained in the technical
report, the loan - lender interaction and lender datasets were not included in the model
development after data exploration revealed that the recommender system could not be
built on historical transactions due to the low proportion of returning lenders.

The main raw dataset that the models were developed on, consisted of 34 features
shown in figure 8] The final models used 12 independent variables one-hot encoded and
normalised. These were presented in the technical report.

The data cleaning and transformation process consisted of various steps including
dropping and transforming missing values, dropping features due to large proportion of
missing values, changing data types, adding new, calculated features, one-hot encoding
of categorical variables and normalising float variables.

5 Python Libraries

Figure [4] shows the libraries used during data preparation, visualisations, model imple-
mentation and evaluation and random number generation for the recommender system.
The project relied on Scikit-learn’s classification implementation and evaluation packages.
The recommender system implementation did not require a specific package.

https://www.kiva.org/build/data-snapshots

18
19
20

<class 'pandas.core.frame.DataFrame'=
RangeIndex: 1951124 entries, @ to 1951123
Data columns (total 34 columns):

Column Dtype

2] LOAN_ID int64

1 LOAN_NAME object
2 ORIGINAL_LANGUAGE object
3 DESCRIPTION object
4 DESCRIPTION_TRANSLATED object
5 FUNDED_AMOUNT floatb4
6 LOAN_AMOUNT float64
7 STATUS object
8 IMAGE_ID floatb4
9 VIDEO_ID floatb4
10 ACTIVITY_NAME object
11 SECTOR_NAME object
12 LOAN_USE object
13 COUNTRY_CODE object
14 COUNTRY_NAME object
15 TOWN_NAME object
16 CURRENCY_POLICY object
17 CURRENCY_EXCHANGE_COVERAGE_RATE float64
18 CURRENCY object
19 PARTNER_ID float64
20 POSTED_TIME object
21 PLANMED_EXPIRATION_TIME object
22 DISBURSE_TIME object
23 RAISED_TIME object
24 LENDER_TERM floatb4
25 NUM_LENDERS_TOTAL int64
26 NUM_JOURMAL_ENTRIES int64
27 NUM_BULK_ENTRIES int64
28 TAGS object
29 BORROWER_NAMES object
30 BORROWER_GENDERS object
31 BORROWER_PICTURED object
32 REPAYMENT_INTERVAL object
33 DISTRIBUTION_MODEL object

dtypes: float64(7), int64(4), object(23)
memory usage: 586.1+ MB

Figure 3: Dataframe features

import os

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import sklearn

from sklearn.model_selection import train_test_split
from sklearn import metrics

from sklearn.metrics impert accuracy_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

from sklearn.metrics import classification_report
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.preprocessing import MinMaxScaler

from sklearn.preprocessing import StandardScaler
from sklearn.naive_bayes import BernoulliNB

from sklearn.naive_bayes import GaussianNB

from sklearn.naive_bayes import MultinomialNB

import random

Figure 4: Python libraries

6 Models

This project combined classification models and a custom implementation of the e-greedy
policy. The models were run with various parameters, different train-test splits and
with different target variables to predict either a binary or a 5-class classification. The
algorithms presented here show the final implementation of each model. Figure [5| shows
the Multinomial Naive Bayes implementation. Figure [6] shows the logistic regression
algorithm. Figure [7| shows the e-greedy implementation, which was an adapted version
of an implementation proposed by [LeDoux] (2020)).

The original e-greedy policy has a temporal element as the model learns from historical
rewards through each iteration. This temporal element was not included in the present
project as loan applications have a finite life on the platform and they expire either
after getting funded or after the allowed funding period is over, therefore the same loans
cannot be recommended infinitely. Furthermore, the goal of the proposed model was to
avoid strengthening biases, thus in stead of learning from prior rewards achieved, the loan
selection was based on a dummy reward derived from the predicted funding status of the
applications. Applications predicted as not funded received a higher dummy reward score
than applications predicted as funded.

MultiNB = MultinomialNB()
mnb = MultiNB.fit(X_train, Y_train)
print (MultiNB)

Y_expect _test

Y_pred_mnb = MultiNB.predict(X_test)

print(accuracy_score(Y_expect, Y_pred_mnb))
print(precision_recall_fscore_support(Y_expect, Y_pred_mnb, average='binary'))

#print(confusion_matrix(Y_test, Y pred _mnb))
plot_confusion_matrix(mnb, X_test, Y_test)
plt.show()

print(classification_report(Y_test, Y_pred_mnb})

MultinomialNB()
0.934402582373639
(0.9596509808911476, ©.9720026306761861, ©.96578731546008657, MNone)

Figure 5: Multinomial Naive Bayes

from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(solver="1liblinear", random_state=0).fit(X_train, Y_train)

Y_pred_lr = lr.predict(X_test)

print(accuracy_score(Y_expect, Y_pred_1lr))
print(precision_recall_fscore_support(Y_expect, Y_pred_lr, average='binary'))

#print(confusion_matrix(Y_test, Y_pred_lr))
plot_confusion_matrix(lr, X_test, Y_test)
plt.show()

print(classification_report(Y_test, Y_pred_lr))

0.952522887333479
(0.9528262177332089, ©.9996493695285062, 0.9756763506201616, None)

Figure 6: Logistic Regression

1 def epsilon_greedy_policy(rec_input, arms, epsilon=0.3, slate_size=15, batch_size=5):
2 i

3 Applies Epsilon Greedy policy to generate loan recommendations.

4 Args:

5 df: dataframe. Dataset to apply the policy to

6 arms: list or array. ID of every eligible arm.

7 epsilon: float. represents the % of timesteps where we explore random arms

8 slate_size: int. the number of recommendations to make at each step.

9 batch_size: int. the number of users to serve these recommendations to before updating the bandit's poli
10 i

11 # draw a @ or 1 from a binomial distribution, with epsilon% likelihood of drawing a 1
12 explore = np.random.binomial(l, epsilon)

13 # if explore: shuffle loans to choose a random set of recommendations

14 if explore == 1 or rec_input.shape[0]==0:

15 recs = np.random.choice(arms, size=(slate_size), replace=False)

16 # if exploit: sort loans by "score", recommend loans with the highest score

17 else:

18 scores = rec_input[['dummy_score', 'loan_id']]

19 scores['loan_id'] = scores.index

20 scores = scores.sort_values('dummy_score', ascending=False)

21 recs = scores.loc[scores.index[@:slate_sizel, 'loan_id'l.values

22 return recs

23

24 # apply epsilon greedy policy to the rec_input dataset
25 recs = epsilon_greedy_policy(rec_input, arms, epsilon=0.3, slate_size=15, batch_size=20)

26

27 # save recs to df

28 recs_topd = pd.Series(recs, name = 'loan_id")

29 recommendations_3@ = df.merge(recs_topd, left_on='loan_id', right_on="'loan_id")
30

31 #concat with cumulative

32 cumulative_3@ = pd.concat([cumulative_30, recommendations_30], axis=@)

33 print("Cumulative dummy score is ", cumulative_3@.dummy_score.sum{))

34 print("Mean cumulative dummy score is", cumulative_30@.dummy_score.sum() / 15)
35 print("Number of batches performed:", cumulative_3@.dummy_score.count() / 15)

Figure 7: e-greedy policy

References

LeDoux, J. (2020). Multi-armed bandits in python: Epsilon greedy, ucbl, bayesian uch,
and exp3.
URL: https://jamesrledoux.com/algorithms/bandit-algorithms-epsilon-ucb-exp-

python/

	Introduction
	Hardware
	Environment
	Data
	Python Libraries
	Models

